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Abstract
We consider the problem of distributed online optimization, with a group of learners connected
via a dynamic communication graph. The goal of the learners is to track the global minimizer
of a sum of time-varying loss functions in a distributed manner. We propose a novel algorithm,
termed Distributed Online Mirror Descent with Multiple Averaging Decision and Gradient Con-
sensus (DOMD-MADGC), which is based on mirror descent but incorporates multiple consensus
averaging iterations over local gradients as well as local decisions. The key idea is to allow the
local learners to collect a sufficient amount of global information, which enables them to more ac-
curately approximate the time-varying global loss, so that they can closely track the dynamic global
minimizer over time. We show that the dynamic regret of DOMD-MADGC is upper bounded by
the path length, which is defined as the cumulative distance between successive minimizers. The
resulting bound improves upon the bounds of existing distributed online algorithms and removes
the explicit dependence on T .
Keywords: Online convex optimization, online learning, distributed optimization, regret analysis

1. Introduction

In recent years, applications have emerged that require extremely large data volumes over many
networked machines. As a result, distributed collection and processing of these datasets are not only
desirable but often necessary (Boyd et al., 2011). Therefore, distributed optimization has become
popular in solving problems that arise in various areas of control and learning (Boyd et al., 2011;
Duchi et al., 2012; Xi et al., 2014; Rabbat, 2015).

The aforementioned distributed optimization methods assume a static loss function. Neverthe-
less, in many practical applications, the system parameters and loss functions vary over time. For
example, time-varying loss functions frequently appear in online machine learning, where data sam-
ples arrive dynamically, so that newly observed data samples result in new losses. Another example
is object-tracking, where the goal is to track the time-varying states of a moving target. These
problems can be solved using online optimization algorithms that update the decisions based on the
dynamically arriving data.

The performance of online optimization algorithms is usually measured in terms of regret. De-
pending on the problem environment and settings, different notions of regret have been proposed
in the literature. For instance, static regret measures the accumulated loss incurred by the online
optimization algorithm against that of an offline optimal solution, which is made in hindsight given
the knowledge of all loss functions. The static regret of online optimization algorithms has been
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extensively studied in the literature (Cesa-Bianchi and Lugosi, 2006; Shalev-Shwartz, 2012; Hazan,
2019; Orabona, 2019).

Dynamic regret is a more appropriate performance metric when the underlying target of interest
is time-varying. Dynamic regret measures the accumulated loss experienced by the online algorithm
versus that of a sequence of optimizers, which separately minimize the loss functions at every
round. In contrast to the static regret, it is impossible to guarantee a sublinear upper bound on the
dynamic regret for every problem instances, due to the arbitrary and potentially severe fluctuations
in the problem environment. Instead, the growth of the dynamic regret depends on some regularity
measures, which reflect the speed of changes in a dynamic environment. For instance, the path
length is a popular regularity measure that is related to the rate of changes in the sequence of
minimizers over time, i.e.,

CT =

T∑
t=2

‖x∗t − x∗t−1‖, (1)

where x∗t = argminx∈X ft(x) is the minimizer of the time-varying loss function. When loss func-
tions are convex, the dynamic regret of online convex optimization algorithms can be bounded by
O(
√
T (CT + 1)) (Zinkevich, 2003), which can be improved to O(

√
T (CT + 1)) when knowledge

of the path length CT and the number of rounds T is available in advance (Yang et al., 2016). Re-
cent studies have shown that the dependency of dynamic regret on the number of online rounds
can be removed when stronger assumptions on the function curvature is available (Mokhtari et al.,
2016; Zhang et al., 2017). In particular, a dynamic regret bound of O(1 + CT ) has been derived
for strongly convex and smooth loss functions (Mokhtari et al., 2016; Zhang et al., 2017), which
improves the prior bound of (Zinkevich, 2003) by removing a

√
T factor.

However, (Mokhtari et al., 2016; Zhang et al., 2017) focus on centralized problems, where there
is only a single learner. Distributed optimization can be more challenging since the learners have
only partial information about the global problem, which necessitates engagement in communica-
tion so that they can complement their insufficient knowledge. None of the previously proposed
distributed online convex optimization algorithms (Shahrampour and Jadbabaie, 2018; Dixit et al.,
2019; Zhang et al., 2020) achieve O(1 + CT ) dynamic regret.

In this paper, we investigate whether it is possible to obtain the aforementioned dynamic regret
bound of O(1 + CT ) in distributed online convex optimization. To this end, we propose a new
algorithm termed Distributed Online Mirror Descent with Multiple Averaging Decision and Gradi-
ent Consensus (DOMD-MADGC), which is a variant of DOMD with an improved dynamic regret.
Previous works on distributed mirror descent (Shahrampour and Jadbabaie, 2018; Xi et al., 2014;
Rabbat, 2015) perform a single consensus step only on the local decision vectors, and then each
learner tries to minimize its local loss using its local gradient information. The resulting lack of
knowledge about the global gradient prevents the learners from closely tracking the time-varying
global minimizer. In contrast, DOMD-MADGC allows the communication of the local gradient
vectors in addition to the local decisions, leading to reduced global loss. We further observe that
simply averaging the local decisions and the local gradients in a single consensus step does not pro-
vide the dynamic regret bound that we seek. Therefore, we design DOMD-MAGDC to use multiple
consensus averaging iterations per online round to collect the local information update from distant
learner nodes. Our analysis reveals that a logarithmically increasing number of consensus iterations
will result in sufficiently fast decrease of local errors. With the proposed design, DOMD-MADGC
achieves a dynamic regret bound of O(1 +CT ), without any prior knowledge of the path length CT
or the number of rounds T .
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2. Related Works

Early works on online convex optimization mostly concern static regret. In the centralized set-
ting, it has been established that various optimization methods including online gradient descent
(Zinkevich, 2003), online dual averaging (Xiao, 2010), online mirror descent (Duchi et al., 2010),
and many others (Shalev-Shwartz, 2012; Hazan, 2019) achieve an upper bound of O(

√
T ) and

O(log T ) on the static regret, for convex and strongly convex loss functions, respectively. Further-
more, to bound constraint violation and static regret an algorithm based on the Lyapanov technique
is developed in (Wei et al., 2020) that uses a primal-dual version of the mirror descent method. The
static regret of distributed online convex optimization algorithms has also been extensively studied
in the literature (Hosseini et al., 2013; Mateos-Núnez and Cortés, 2014; Akbari et al., 2015; Tsianos
and Rabbat, 2016; Lee et al., 2016; Yuan et al., 2020), where the same regret rates have been derived
under similar convexity assumptions. However, it is not previously known whether similar results
hold for the more useful dynamic regret. That is, whether there exists a distributed online algorithm
that has dynamic regret bound comparable to the most competitive centralized online algorithms.

There has been a surge of recent interest in studying dynamic regret in the centralized setting
(Hall and Willett, 2013, 2015; Jadbabaie et al., 2015; Yang et al., 2016; Mokhtari et al., 2016;
Zhang et al., 2017; Chang and Shahrampour, 2020). Previous works on online gradient descent
(Zinkevich, 2003), and online mirror descent (Hall and Willett, 2013, 2015) show that the dynamic
regret of both methods is bounded by O(

√
T (1 + CT )) when the loss functions are convex, which

can be tightened to O(
√
T (1 + CT )) when the knowledge of path length CT is present a priori

(Yang et al., 2016). Furthermore, when the loss functions are strongly convex and smooth, the
upper bound on the dynamic regret can be improved to O(1 + CT ) (Mokhtari et al., 2016; Zhang
et al., 2017). In another direction, researchers have used various regularity measures to bound the
dynamic regret of different online optimization algorithms (Jadbabaie et al., 2015; Besbes et al.,
2015; Chang and Shahrampour, 2020; Campolongo and Orabona, 2020, 2021). The above works
do not apply to the distributed setting.

Distributed online mirror descent is studied in (Shahrampour and Jadbabaie, 2018), where a
dynamic regret bound of O(

√
T (1 + CT )) is derived when the joint knowledge of the path length

CT and the number of rounds T is available in advance. However, it is generally impossible to know
CT beforehand in practice, so most subsequent works do not require this assumption. A distributed
online gradient tracking algorithm is proposed in (Lu et al., 2019), which has a dynamic regret
bound of O(

√
1 + CTT

3/4
√

lnT ). The dynamic regret of distributed online proximal gradient
descent with an O(log t) communication steps per round is bounded by O(log T (1 + CT )) (Dixit
et al., 2019). Different from (Shahrampour and Jadbabaie, 2018), the learners do not receive a new
cost function at every round in (Dixit et al., 2019) since every single consensus step is counted as an
online round. Using the gradient variation as the regularity measure VT =

∑T
t=2 supx∈X ‖∇ft(x)−

∇ft−1(x)‖, a dynamic regret bound ofO(
√
T (1+CT )+VT+

√
VTCT ) is derived in (Li et al., 2020),

which is improved to O(1 +CT +V ′T ) in (Zhang et al., 2020), where V ′T is a variant of VT in which
gradients are evaluated at the optimal points. However, the work of (Zhang et al., 2020) studies
only unconstrained online optimization problem. Therefore, the results in (Dixit et al., 2019; Zhang
et al., 2020) are not directly comparable to ours due to the differences in modeling and problem
setup.

In this work, we show that the proposed DOMD-MADGC has a dynamic regret bound ofO(1+
CT ). In contrast to most prior works, where the dynamic regret bound depends on a combination
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of a sublinear term in T (e.g., log T or
√
T ) and some regularity measure, our bound depends only

on the path length CT . Furthermore, the resulting bound of O(1 + CT ) improves upon the existing
regret bounds in dynamic distributed learning. Unlike (Shahrampour and Jadbabaie, 2018), the
dynamic regret bound of our proposed algorithm can be achieved by selecting a step size without
the knowledge of the path length CT or the number of rounds T . Unlike (Zhang et al., 2020), in this
work, we allow the optimization variables to be constrained by an arbitrary compact and convex set.

3. Problem Formulation

3.1. Network Model

We consider a distributed learning network in a time-slotted setting. The learner nodes interact with
each other over a time-varying communication topology, which is modeled by an undirected graph
Gt = (V, E t), where V = {1, . . . , n} and E t ⊂ V × V denote the set of nodes and edges present at
round t, respectively.

Different from online convex optimization where only a single learner is present, in distributed
online optimization, every node i ∈ V is a local learner that receives a private local loss in ev-
ery round. Each learner node i is associated with a sequence of time-varying loss functions, i.e.,
{fi,1(x), fi,2(x), . . . , fi,T (x)}, where fi,t denotes the scalar-valued loss function of node i at round
t, and x ∈ X represents a decision variable taken from a compact and convex set X . At each
round t, after each learner i submits a decision xi,t, the local loss function fi,t(x) is revealed, and
the learner suffers a corresponding loss of fi,t(xi,t). Each local loss is only observed by a single
learner. Therefore, the learners need to interact with each other, to supplement their incomplete
knowledge of the global task.

3.2. Distributed Online Optimization

We are interested in an optimization problem with a global loss function, represented by ft(x) at
round t. It is based on the local loss functions that are distributed over the entire network, i.e.,

ft(x) =
n∑
i=1

fi,t(x). (2)

The goal of the online learners is to minimize the total loss over a finite number of rounds T .
Prior studies on online learning often measure the quality of decisions in terms of static regret,
defined as the difference between the total loss incurred by the online algorithm and that of an
optimal fixed offline solution, which is made in hindsight with knowledge of ft(x) for all t. The
benchmark variable in static regret is a fixed point in the feasible set X . Such a static metric can
accurately reflect the performance of an online algorithm as long as the static benchmark performs
consistently well over all rounds. However, this does not always hold in a dynamic environment,
where the sequence of loss functions are time-varying. Thus, dynamic regret has been proposed as
a more stringent metric that incorporates a time-varying comparator sequence. Most commonly, the
performance of online algorithms is measured relative to a sequence of minimizers (Shahrampour
and Jadbabaie, 2018; Zhang et al., 2020), i.e,

RegdT =
1

n

n∑
i=1

T∑
t=1

ft(xi,t)−
T∑
t=1

ft(x
∗
t ). (3)
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where x∗t = argminx∈X ft(x) is a minimizer of the global loss function at round t.
It is well-known that online optimization problems may be intractable in a dynamic setting, due

to arbitrary fluctuation in the loss functions. Therefore, obtaining a sublinear bound on the dynamic
regret may be impossible. However, it is possible to bound the dynamic regret in terms of regularity
measures that reflect how fast an environment changes as time progresses. A popular quantity to
represent such regularity is the path length CT , defined in (1), which collects the variation between
successive minimizers.

Since the local loss function is available only to the local learner, due to partial access to the
global information, it is unlikely for each learner to accurately compute the global minimizer x∗t at
each round t. To minimize the dynamic regret, a careful design of the online algorithm is required
to allow distributed learners to collect sufficient global information to track the time-varying global
minimizer. Thus, it is necessary to use the local information as well as those collected from the
neighboring learners, so that each learner can find its local estimates sufficiently close to the global
gradient∇ft(x∗t ) and minimizer x∗t .

3.3. Preliminaries

To be self-contained, we collect here several standard definitions that are used in this paper. We use
‖.‖ to denote the `-2 norm throughout the paper.

Definition 1: A function f(x) is Lipschitz continuous with factor G if for all x and y in X , the
following holds:

|f(x)− f(y)| ≤ G‖x− y‖, ∀x, y ∈ X .
Definition 2: A subdifferentiable function f(x) is β-smooth with respect to some norm ‖ · ‖, if

there exists a positive constant β such that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖2, ∀x, y ∈ X .

where∇f(x) stands for the subgradient of function f(x).
Definition 3: A subdifferentiable convex function f(x) is λ-strongly convex with respect to

some norm ‖ · ‖, if there exists a positive constant λ such that

f(y) + 〈∇f(y), x− y〉+
λ

2
‖x− y‖2 ≤ f(x), ∀x, y ∈ X .

Definition 4: The Bregman divergence with respect to the function r(x) is defined as

Dr(x, y) = r(x)− r(y)− 〈∇r(y), x− y〉.
The Bregman divergence is a general distance-measuring function, which contains the Eu-

clidean norm and the Kullback-Leibler divergence as two special cases.

4. Distributed Online Mirror Descent with Multiple Averaging Decision and
Gradient Consensus

We now present DOMD-MADGC, a distributed online optimization algorithm that incorporates
multiple consensus averaging of local gradients as well local decisions, over time-varying dynamic
learning networks. We will bound the performance of DOMD-MADGC in terms of dynamic regret,
showing that it achieves the same regret rate as the centralized algorithms of (Mokhtari et al., 2016;
Zhang et al., 2017).
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4.1. Algorithm Description

DOMD-MADGC uses mirror descent as its optimization engine. The core of the algorithm is the
use of consensus averaging over both the local decisions and the local gradients. We note that
in prior studies on mirror descent, only the local decisions are used to reach a consensus, while
DOMD-MADGC applies consensus averaging to the local gradients as well. We motivate this
design choice by comparing it with standard online mirror descent, where each learner performs
consensus averaging over the local decision vectors, and then uses its own local gradient to update
its decision. Therefore, in standard online mirror descent, while each learner aims to stay close
to the averaged decision, it takes a step in a direction to minimize its local loss, which may not
align well with the direction toward the global minimizer. In other words, each local learner has
access to only one component of the global loss, and the resulting lack of knowledge may prevent
the learner from closely tracking the time-varying global target. Therefore, DOMD-MADGC uses
both the local gradients and the local decisions in the consensus phase. As a result, the learners can
use a local approximation of the global gradient in their decision updates, which leads them to find
decisions that reduces the global loss function.

However, simply adding gradient consensus to standard online mirror descent still does not suf-
ficiently reduce the dynamic regret. The success of the algorithm relies on the accuracy of the learn-
ers’ approximation of the global solution and gradient. In particular, in the commonly used strategy
of single consensus averaging, every learner collects the information from immediate neighboring
learners only. In a large network with a diverse set of learners, the knowledge of a small group of
learners in a local neighborhood may not be sufficient to build an accurate approximation of the
global loss, leading to decision update directions that deviate from the global minimizer. This is-
sue can be resolved by applying consensus averaging for multiple times. It is important to have a
proper number of consensus iterations to ensure that the errors due to the lack of access to global
information are sufficiently small. Yet, an increase in the consensus iterations leads to a larger com-
munication overhead. Therefore, this requires a careful design to balance the need for information
sharing and communication overhead. In DOMD-MADGC, we will show that a logarithmic number
of consensus iterations in time suffices to achieve O(1 + CT ) dynamic regret.

The detailed procedure of DOMD-MADGC is as follows. At each round t, every learner node
i maintains a decision vector xi,t, a local estimate of the global minimizer yi,t, and a local approx-
imate gradient of the global gradient gi,t. Let W t denote the weight matrix of the network used at
round t. Every learner i updates its approximation of the global minimizer after Kt = d −2 log t

log σ2(W t)e
consensus iterations, where σ2(W t) is the second largest singular value of the communication net-
work graph at round t, i.e., W t. At iteration Kt, after collecting messages from all its neighboring
learners, learner i’s estimate of the global minimizer is

yi,t =

n∑
j=1

((W t)Kt)ijxj,t. (4)

Then, the loss functions are revealed to the learners individually. Every learner i computes
the gradient of the local loss function ∇ft,i(yt,i), which is evaluated at its estimate of the global
minimizer yi,t. Next, every learner i updates its estimate of the global gradient using Kt consensus
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Algorithm 1 DOMD-MADGC
Input: Arbitrary initialization of {xi,1} ∈ X ; step size η; time horizon T .
Output: Sequence of decisions {xi,t, yi,t : 1 ≤ t ≤ T}.
1: for t = 1, 2, . . . , T do
2: set Kt = d −2 log t

log σ2(W t)e
3: yi,t =

∑n
j=1((W t)Kt)ijxj,t

4: gi,t =
∑n

j=1((W t)Kt)ij∇fj,t(yj,t)
5: xi,t+1 = argmin

x∈X

{
〈x, gi,t〉+ 1

ηDr(x, yi,t)
}

6: end for

averaging iterations over the local gradients, which leads to

gi,t =

n∑
j=1

((W t)Kt)ij∇fj,t(yj,t). (5)

The objective of this step is to enable the learners to access an estimate of the global gradient,
which is collaboratively built based on the knowledge of the individual local learner as well as the
neighboring learners.

After computing the local estimate vectors yi,t and gi,t, learner node i updates its local decision
variable by

xi,t+1 = MDη(gi,t, yi,t)
∆
= argmin

x∈X

{
〈x, gi,t〉+

1

η
Dr(x, yi,t)

}
, (6)

where MDη(g, y) represents the mirror descent update with a step size of η, and Dr(x, y) is the
Bregman divergence between x and y corresponding to the regularization function r(x). Recall
that xi,t and yi,t are respectively the local decision and the local estimate of the global minimizer
at round t. Thus, (6) suggests that every learner i aims to stay close to the locally estimated global
minimizer yi,t as measured by the Bregman divergence, while taking a step in a direction close to
gi,t to reduce the local estimate of the global loss function at the current round. The above procedure
of DOMD-MADGC is summarized in Algorithm 1.

4.2. Improved Dynamic Regret

In this section, we show how DOMD-MADGC improves the dynamic regret via multiple consensus
averaging over both the local gradients and the local decisions. We first start by stating several
standard assumptions commonly used in the literature of learning theory.

The following set of assumptions are commonly used in the literature after the group of studies
began by (Hazan et al., 2006; Shalev-Shwartz and Singer, 2007), to provide stronger regret bounds
by constraining the curvature of loss functions. For example, they are also used in (Chang and
Shahrampour, 2020; Hendrikx et al., 2020; Zhang et al., 2020).

Assumption 1. The loss functions fi,t(x) are λ-strongly convex and β-smooth. The loss func-
tions have bounded gradients, i.e., ‖∇fi,t(x)‖ ≤ G. The regularization function r(x) is µ-strongly
convex and µ′-smooth.
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The next set of assumptions pertain to the distributed nature of the learning network. Following
previous studies on distributed optimization with time-varying network topology, we make several
standard assumptions on topology graph Gt.

Assumption 2. The weight matrix W t is doubly stochastic, i.e.,

n∑
j=1

W t
ij =

n∑
i=1

W t
ij = 1, ∀t ≥ 0. (7)

Also, there exists a path from any learner i to any learner j, i.e., the network is connected in each
online round.

Assumption 2 ensures that the entries of the matrix (W t)K = W t . . .W t︸ ︷︷ ︸
K times

are close to 1/n,

which is expressed by

n∑
j=1

∣∣∣∣((W t)K
)
ij

− 1

n

∣∣∣∣≤ √nσK2 (W t), (8)

where σ2(W t) is the second largest singular value of the weight matrix W t. This is a standard
property of doubly stochastic matrices (Horn and Johnson, 2012).

Now, we are ready to analyze the performance of DOMD-MADGC. We begin by bounding the
distance between the exact average of the local decisions and the current global minimizer in the
following lemma.

Lemma 1 Under Assumptions 1 and 2, the sequence of decisions generated by DOMD-MADGC
with the step size η < µ′

λ satisfy the following bound:

‖x̄t+1 − x∗t ‖ ≤ ρ‖x̄t − x∗t ‖+ ‖∆t‖+ ‖δt‖, (9)

where x∗t is the minimizer of ft(x), x̄t = 1
n

∑n
i=1 xi,t represents the exact average of local decisions,

ρ = µ′−ηλ
µ , and ∆t and δt are given by

∆t = x̄t+1 −MDη(ḡt, x̄t), (10)

δt = MDη(ḡt, x̄t)−MDη(∇ft(x̄t), x̄t). (11)

The following is a proof sketch of Lemma 1. We first decompose the left-hand side of (9)
into multiple terms, each representing a distinct source of error. In particular, the time-varying
minimizers and limited local knowledge are two prominent source of errors. The error term due
to the first source, called tracking error, measures the distance between the time-varying minimizer
and the local decision of a learner, if it had access to exact average of the local decisions and global
loss functions. Using the smooth duality property, from Lemma 2.19 in (Shalev-Shwartz, 2012),
we bound the tracking error based on ‖x̄t − x∗t ‖. The other error terms are denoted by ∆t and δt.
They are due to the second source of error, which reflects the inadequacy of the knowledge of local
learners. Thus, they are called network errors. Since the learners do not have access to the gradient
of the global loss and the exact average of decisions x̄t, their approximation of these quantities will
always have some errors. The detailed proof of Lemma 1 is given in App. A of (Eshraghi and Liang,
2021).
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The result in Lemma 1 implies that after one round of DOMD-MADGC, the distance between
the exact average of the local decisions x̄t+1 and the current global minimizer x∗t is less than a
ρ-fraction of the distance between x̄t and x∗t , plus the network errors ∆t and δt.

The following lemma provides an alternative form of update for mirror descent, which we re-
quire in our regret analysis.

Lemma 2 Suppose r(x) is strongly convex and y satisfies ∇r(y) = ∇r(u) − η∇f(l) for some
convex function f(x), and vectors l, u ∈ X and step size η. We have

argmin
x∈X

{
〈∇f(l), x〉+

1

η
Dr(x, u)

}
= argmin

x∈X
Dr(x, y).

Lemma 2 is given as Proposition 17 in (Chiang et al., 2012).
We are now ready to upper bound the dynamic regret in Theorem 3.

Theorem 3 Under Assumptions 1 and 2, the dynamic regret of DOMD-MADGC, with Kt =
d −2 log t

log σ2(W t)e and a fixed step size µ′−µ
λ < η < µ′

λ , satisfies

Regd
T ≤

G‖x̄1 − x∗1‖
1− ρ

+
G

1− ρ

T∑
t=2

‖x∗t − x∗t−1‖+
(GRµ′ + ηG2 + ηλGR

µ
+GR

)√nπ2

6

where R = maxx∈X ‖x‖, and CT is the path length defined in (1).

The proof of Theorem 3 is given in App. B of (Eshraghi and Liang, 2021).
Remark 1. Theorem 3 indicates that the dynamic regret of DOMD-MADGC is bounded by

O(1 + CT ), where CT is the path length, defined in (1).
Remark 2. Recall that the dynamic regret of the distributed online mirror descent algorithm in

(Shahrampour and Jadbabaie, 2018) is upper bounded by O(
√
T (1 + CT )) for convex and Lips-

chitz continuous cost functions. Theorem 3 shows that the upper bound on the dynamic regret can
be improved to O(1 + CT ) using both primal and dual information boosted with multiple consen-
sus steps for strongly convex and smooth cost functions. The O(1 + CT ) dynamic regret bound
of DOMD-MADGC is smaller than O(

√
T (1 + CT )) as long as CT is in the order of o(T ). Fur-

thermore, in contrast to (Shahrampour and Jadbabaie, 2018), our regret bound can be achieved by
setting a constant step size without any prior knowledge of CT or the number of rounds T .

Remark 3. Recent studies on distributed online convex optimization have shown that the upper
bound on the dynamic regret can be as tight as O(1 + CT + VT ) or O(log T (1 + CT )) when the
loss functions are strongly convex and smooth (Zhang et al., 2020; Dixit et al., 2019). Theorem 3
shows that by employing multiple consensus averaging iterations over both local decisions and local
gradients, DOMD-MADGC can improve the dynamic regret bound to O(1 + CT ). In particular,
gradient exchange allows the learners to approximate and track the global gradient, which is boosted
by multiple consensus iterations to allow them to collect the information of a larger number of
nodes. These two steps together enable the learners to more precisely track the time-varying global
minimizer, which lead to the improved regret bound of O(1 + CT ).
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5. Discussion

We now turn to investigate the effect of network topology and weight matrix on the communication
load. Recall that W t represents the weight matrix of the network topology in online round t. The
largest singular value σ1(W t) = 1 since W t is doubly stochastic. The number of consensus steps
per round Kt = d −2 log t

log σ2(W t)e ≤ d
2 log t

1−σ2(W t)e, which follows from the fact that log σ−1
2 (W t) ≥

1−σ2(W t). Therefore, the parameter Kt is controlled by the spectral gap of the weight matrix W t,
i.e., γ(W t) = 1− σ2(W t).

Using the spectral gap, we can derive explicit bounds on the number of consensus steps for
several interesting networks.

Regular Grids: The grid graph is formed by placing the nodes on a two dimensional plane. In
d-connected regular grid, each node directly connects with its d nearest neighbors in axis-aligned
directions. The grid networks have often been used to model cluster computing and sensor networks.
For a

√
n-by-

√
n d-regular grid network the second-largest singular value is bounded by σ2(W t) =

1 − Θ(k
2

n ) (Duchi et al., 2012; Chung and Graham, 1997). In this case, the number of consensus
steps per round is bounded by Kt ∈ O(n log t

d2
).

Random Geometric Graphs: A random geometric graph can be constructed by placing the nodes
uniformly on a two dimensional plane and connecting any pair of nodes whose distance is less than
some pre-determined radius r. These graphs are commonly used to model the connectivity pattern
of a set of wireless devices, such as in mobile communication networks. The properties of a random
geometric graph with r = ((log1+εn)/n)1/2 and ε > 0 are analyzed in (Von Luxburg et al., 2014).
In this case, the second-largest singular value of W t is bounded by σ2(W t) = 1 − Ω( log1+εn

n ), so
Kt is in the order of O(n log t

logn ).
Communication cost vs. regret bound: The communication cost of DOMD-MADGC, which

is defined as the overall number of consensus iterations, is O(T log T ) after T rounds. In com-
parison, prior works based on a single consensus iteration per online round has a communication
cost of O(T ) after T rounds. On the other hand, those prior works arrive at an upper bound of
O(
√
T (1 +CT )) on the dynamic regret when the prior knowledge of CT is not available, which has

an additional
√
T factor compared with our bound. Thus, the extra communication cost ofO(log T )

can be viewed as the price of removing the O(
√
T ) factor in the dynamic regret bound.

6. Conclusion

In this paper, we have presented a novel algorithm for distributed online optimization, with an aim
to improve the dynamic regret. The proposed DOMD-MADGC runs multiple consensus averaging
iterations over both the local decisions and the local gradients, which allows the distributed learners
to accurately estimate the gradients of the time-varying global loss functions. Furthermore, our
algorithm does not require any prior knowledge of the regularity measures, such as CT , or the
number of rounds T . Our theoretical analysis shows that the dynamic regret of DOMD-MADGC is
bounded by O(1 + CT ), which is the best known result for distributed online optimization.
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Soomin Lee, Angelia Nedić, and Maxim Raginsky. Coordinate dual averaging for decentralized on-
line optimization with nonseparable global objectives. IEEE Transactions on Control of Network
Systems, 5(1):34–44, 2016.

Xiuxian Li, Xinlei Yi, and Lihua Xie. Distributed online convex optimization with an aggregative
variable. arXiv preprint, arXiv:2007.06844, 2020.

Kaihong Lu, Gangshan Jing, and Long Wang. Online distributed optimization with strongly
pseudoconvex-sum cost functions. IEEE Transactions on Automatic Control, 65(1):426–433,
2019.
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Appendix A. Proof of Lemma 1

We begin by considering the difference between x̄t+1 = 1
n

∑n
i=1 xi,t+1 and x∗t . Using the update in

(6), i.e., xi,t+1 = MDη(gi,t, yi,t), and by adding and subtracting several terms we obtain

‖x̄t+1 − x∗t ‖ =
∥∥∥ 1

n

n∑
i=1

MDη(gi,t, yi,t)−MDη(∇ft(x∗t ), x∗t )
∥∥∥

≤
∥∥∥ 1

n

n∑
i=1

MDη(gi,t, yi,t)−MDη(ḡt, x̄t) + MDη(ḡt, x̄t)−MDη(∇ft(x∗t ), x∗t )
∥∥∥

≤
∥∥∥MDη(ḡt, x̄t)−MDη(∇ft(x̄t), x̄t) + MDη(∇ft(x̄t), x̄t)−MDη(∇ft(x∗t ), x∗t )

∥∥∥
+
∥∥∥ 1

n

n∑
i=1

MDη(gi,t, yi,t)−MDη(ḡt, x̄t)
∥∥∥

≤
∥∥∥MDη(∇ft(x̄t), x̄t)−MDη(∇ft(x∗t ), x∗t )

∥∥∥+
∥∥∥MDη(ḡt, x̄t)−MDη(∇ft(x̄t), x̄t)

∥∥∥
+
∥∥∥ 1

n

n∑
i=1

MDη(gi,t, yi,t)−MDη(ḡt, x̄t)
∥∥∥, (12)

where the first line follows from the fact that x∗t = MDη(∇ft(x∗t ), x∗t ). We bound each of the terms
on the right hand-side of (12) separately. The first term of the above inequality can be expanded as∥∥∥MDη(∇ft(x̄t), x̄t)−MDη(∇ft(x∗t ), x∗t )

∥∥∥2

≤ ‖∇r∗(∇r(x̄t)− η∇ft(x̄t))−∇r∗(∇r(x∗t )− η∇ft(x∗t ))‖2

≤ 1

µ2
‖∇r(x̄t)− η∇ft(x̄t)− (∇r(x∗t )− η∇ft(x∗t ))‖2, (13)

where the first line is obtained using the alternate form of mirror descent update stated in Lemma
2, and the fact that the inverse of ∇r(x) is ∇r∗(x) when r(x) is strongly convex. Here r∗(x)
denotes the conjugate function (Shalev-Shwartz, 2012). We have also used the fact that the dis-
tance of the projection of two points into a convex set is smaller than the distance between these
unprojected points. Note that since r(x) is µ-strongly convex, its conjugate r∗(x) is 1/µ-smooth
(Shalev-Shwartz, 2012).

We now proceed to bound the right hand-side of (13). The smoothness of r(x) implies

r(y) ≤ r(x) + 〈∇r(x), y − x〉+
µ′

2
‖y − x‖2, ∀x, y ∈ X . (14)

In addition, ft(x) is λ-strongly convex, i.e.,

ft(y) ≥ ft(x) + 〈∇ft(x), y − x〉+
λ

2
‖y − x‖2,∀x, y ∈ X . (15)

We multiply (15) by −η and add it to (14) to obtain

r(y)− ηft(y) ≤ r(x)− ηft(x) + 〈∇r(x)− η∇ft(x), y − x〉+
µ′ − ηλ

2
‖y − x‖2, ∀x, y ∈ X ,

(16)
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which shows that the function r(x) − ηft(x) is (µ′ − ηλ)-smooth when η < µ′/λ. Therefore, we
have

‖∇r(x̄t)− η∇ft(x̄t)− (∇r(x∗t )− η∇ft(x∗t ))‖2 ≤ (µ′ − ηλ)2‖x̄t − x∗t ‖2. (17)

By combining the above inequality and (13), we have∥∥∥MDη(∇ft(x̄t), x̄t)−MDη(∇ft(x∗t ), x∗t )
∥∥∥2
≤ ρ2‖x̄t − x∗t ‖2, (18)

where ρ = µ′−ηλ
µ . Substituting (18) into (12), and using the definitions of ∆t and δt in (10), we get

‖x̄t+1 − x∗t ‖ ≤ ρ‖x̄t − x∗t ‖+ ‖∆t‖+ ‖δt‖. (19)

Appendix B. Proof of Theorem 3

We provide a proof sketch for Theorem 3. We begin the proof by first bounding the network error
term ∆t. Using the definition of ∆t and simple norm properties, we have

‖∆t‖ =
∥∥∥ 1

n

n∑
i=1

MDη(gi,t, yi,t)−MDη(ḡt, x̄t)
∥∥∥

≤ 1

n

n∑
i=1

∥∥∥MDη(gi,t, yi,t)−MDη(ḡt, x̄t)
∥∥∥

≤ 1

n

n∑
i=1

‖∇r∗(∇r(yi,t)− ηgi,t)−∇r∗(∇r(x̄t)− ηḡt)‖, (20)

where the last line follows the result of Lemma 2, and the fact that the inverse of ∇r(x) is ∇r∗(x)
when r(x) is strongly convex (Shalev-Shwartz, 2012). We note that r∗(x) denotes the conjugate
of r(x), which is defined by r∗(x) = maxu{〈u, x〉 − r(u)}. We have also used the fact that the
distance between the projection of two points into a convex set is less than that of unprojected points.
In addition, since r(x) is µ-strongly convex, its conjugate r∗(x) is 1/µ-smooth (Shalev-Shwartz,
2012). Thus, we have

‖∇r∗(∇r(yi,t)− ηgi,t)−∇r∗(∇r(x̄t)− ηḡt)‖

≤ 1

µ
‖∇r(yi,t)− ηgi,t −∇r(x̄t) + ηḡt‖

≤ 1

µ

[
‖∇r(yi,t)−∇r(x̄t)‖+ η‖gi,t − ḡt‖

]
≤ µ′

µ
‖yi,t − x̄t‖+

η

µ
‖gi,t − ḡt‖, (21)

where the last line is obtained due to the smoothness of r(x). The above inequality implies that the
norm of the network error term ∆t, and ultimately the dynamic regret, are bounded by ‖yi,t − x̄t‖,
which indicates the need for consensus over local decisions, and by ‖gi,t − ḡt‖, which indicates
the necessity of consensus over local gradients. The resultant error bound based on these terms
shows the importance of having accurate estimation of the exact average of decisions and gradients,
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which motivates running a sufficient number of consensus iterations on both local decisions and
local gradients to reduce the above terms. Thus, we combine (20) and (21), and noting the number
of consensus iterations Kt = d −2 log t

log σ2(W t)e, to obtain

‖∆t‖ ≤
µ′

nµ

n∑
i=1

∥∥∥ n∑
j=1

((
(W t)Kt

)
ij

− 1

n

)
xj,t

∥∥∥
+

η

nµ

n∑
i=1

∥∥∥ n∑
j=1

((
(W t)Kt

)
ij

− 1

n

)
∇fj,t(yj,t)

∥∥∥
≤ µ′

nµ

n∑
i=1

n∑
j=1

∣∣∣∣((W t)Kt
)
ij

− 1

n

∣∣∣∣∥∥∥xj,t∥∥∥
+

η

nµ

n∑
i=1

n∑
j=1

∣∣∣∣((W t)Kt
)
ij

− 1

n

∣∣∣∣∥∥∥∇fj,t(yj,t)∥∥∥
≤ µ′

nµ

n∑
i=1

√
nσKt2 (W t)R+

η

nµ

n∑
i=1

√
nσKt2 (W t)G

≤ µ′

µ

R
√
n

t2
+
η

µ

G
√
n

t2
, (22)

where the third inequality follows from (8). The above inequality implies that the network error ∆t

is bounded by O( 1
t2

). This is an important result, since it implies that ∆t is summable over time.
In the next step, we bound the other error term δt. Similar to the case with ∆t, we use an

alternative form of mirror descent update, and the properties of the conjugate function r∗(x). We
show that the norm of δt is bounded by ‖yi,t− x̄t‖. Our analysis further shows that a logarithmically
increasing number of consensus averaging iterations Kt = d −2 log t

log σ2(W t)e is sufficient to bound δt
also by O(1/t2). Next, using the result of Lemma 1, and the upper bounds derived on ∆t and
δt, we bound the cumulative distance between the exact average of decisions and the time-varying
minimizer

∑T
t=1 ‖x̄t − x∗t ‖. We choose a step size µ′−µ

λ < η < µ′

λ to ensure that ρ < 1 in order to
bound

∑T
t=1 ‖x̄t − x∗t ‖ by O(1 + CT ).

We note that ∆t is bounded by O(1/t2), shown in (22). Now we proceed to bound the other
term on network error δt as follows:

‖δt‖ = ‖MDη(ḡt, x̄t)−MDη(∇ft(x̄t), x̄t)‖
≤ ‖∇r∗(∇r(x̄t)− ηḡt)−∇r∗(∇r(x̄t)− η∇ft(x̄t))‖

≤ 1

µ
‖∇r(x̄t)− ηḡt −∇r(x̄t) + η∇ft(x̄t)‖

≤ η

µ
‖ḡt −∇ft(x̄t)‖

≤ η

µ

∥∥∥ 1

n

n∑
i=1

gi,t −
1

n

n∑
j=1

∇fj,t(x̄t)
∥∥∥ (23)

where the first inequality follows from the alternative form of mirror descent update in Lemma 2.
We also note that since r(x) is µ-strongly convex, which implies its conjugate r∗(x) is 1/µ-smooth.
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The last line shows that the network error δt relates to the distance between the average of the
gradients of local learners and the gradient of the global loss function evaluated at x̄t. Therefore,
we have

‖δt‖ ≤
η

µ

∥∥∥ 1

n

n∑
i=1

n∑
j=1

(
(W t)Kt

)
ij

∇fj,t(yj,t)−
1

n

n∑
j=1

∇fj,t(x̄t)
∥∥∥

≤ η

µ

∥∥∥ 1

n

n∑
j=1

∇fj,t(yj,t)−
1

n

n∑
j=1

∇fj,t(x̄t)
∥∥∥

≤ η

µ

1

n

n∑
j=1

∥∥∥∇fj,t(yj,t)−∇fj,t(x̄t)∥∥∥
≤ η

µn

n∑
j=1

λ‖yj,t − x̄t‖, (24)

where the second line follows from the fact that the matrix (W t)Kt = W t . . .W t︸ ︷︷ ︸
Kt times

is doubly stochas-

tic. We have also used the strong convexity of local loss functions to obtain the right-hand side
of (24). The above inequality illustrates that the error δt is directly bounded by the distance be-
tween the local inexact average yj,t and the exact average of decisions x̄t. Thus, with Kt consensus
iterations, we have

‖δt‖ ≤
η

µn

n∑
j=1

λ
n∑
i=1

∣∣∣∣((W t)Kt
)
ij

− 1

n

∣∣∣∣∥∥∥xi,t∥∥∥
≤ η

µ

√
nλσKt2 (W t)R

≤ ηλ
√
nR

µt2
, (25)

where the last line is obtained using Kt = d −2 log t
log σ2(W t)e. From (22) and (25), we observe that both

error terms ∆t and δt are bounded by O(1/t2).
Next, we upper bound the cumulative distance between x̄t and x∗t . We first expand the summa-

tion and add and subtract several terms to obtain

T∑
t=1

‖x̄t − x∗t ‖ = ‖x̄1 − x∗1‖+
T∑
t=2

‖x̄t − x∗t−1 + x∗t−1 − x∗t ‖

≤ ‖x̄1 − x∗1‖+
T∑
t=2

‖x̄t − x∗t−1‖+
T∑
t=2

‖x∗t − x∗t−1‖

≤ ‖x̄1 − x∗1‖+
T∑
t=2

[
ρ‖x̄t−1 − x∗t−1‖+ ‖∆t‖+ ‖δt‖

]
+

T∑
t=2

‖x∗t − x∗t−1‖

≤ ‖x̄1 − x∗1‖+ ρ
T∑
t=1

‖x̄t − x∗t ‖+
T∑
t=1

(Rµ′ + ηG+ ηλR

µ

)√n
t2

+
T∑
t=2

‖x∗t − x∗t−1‖,

(26)
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where we have applied Lemma 1 in the third line. We have further used the network error bounds
in (22) and (25) to obtain the right hand-side of (26). The step size is chosen µ′−µ

λ < η < µ′

λ such
that ρ < 1. Thus, we have

T∑
t=1

‖x̄t − x∗t ‖ ≤
‖x̄1 − x∗1‖

1− ρ
+
(Rµ′ + ηG+ ηλR

µ

) √nπ2

6(1− ρ)
+

1

1− ρ

T∑
t=2

‖x∗t − x∗t−1‖. (27)

Now we are ready to establish an upper bound on the dynamic regret. Since each learner main-
tains two as follows:

1

n

n∑
i=1

T∑
t=1

ft(yi,t)−
T∑
t=1

ft(x
∗
t ) =

1

n2

n∑
i=1

n∑
j=1

T∑
t=1

fj,t(yi,t)−
1

n

T∑
t=1

n∑
j=1

fj,t(x
∗
t )

≤ 1

n2

n∑
i=1

n∑
j=1

T∑
t=1

fj,t(yi,t)− fj,t(x∗t )

≤ 1

n2

n∑
i=1

n∑
j=1

T∑
t=1

G‖yi,t − x∗t ‖

≤ 1

n

n∑
i=1

T∑
t=1

G‖yi,t − x̄t‖+
T∑
t=1

G‖x̄t − x∗t ‖, (28)

where we have used the Lipschitz continuity of local loss functions in the third line. It can be
observed that the dynamic regret is a sum of two components. The first component reflects how close
the local inexact average estimate is to the exact average of decisions. The second term measures
the difference between the average of local decisions and the time-varying global minimizer, which
is bounded in (27). Therefore, we now only need to bound the first term. Using (8), we have

1

n

n∑
i=1

T∑
t=1

G‖yi,t − x̄t‖ ≤
1

n

n∑
i=1

T∑
t=1

G
n∑
j=1

∣∣∣∣((W t)Kt
)
ij

− 1

n

∣∣∣∣∥∥∥xj,t∥∥∥
≤

T∑
t=1

GR
√
nσ2(W t)Kt

≤ GR
√
n

T∑
t=1

1

t2

≤ GR
√
n
π2

6
. (29)

Substituting (27) and (29) into (28) leads to the dynamic regret bound of

Regd
T ≤ GR

√
n
π2

6
+G
‖x̄1 − x∗1‖

1− ρ
+
(GRµ′ + ηG2 + ηλGR

µ

) √nπ2

6(1− ρ)
+

G

1− ρ

T∑
t=2

‖x∗t − x∗t−1‖.

(30)
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Appendix C. Experiments

We illustrate the performance of DOMD-MADGC with a series of numerical experiments on real
datasets. In particular, we consider the problem of multi-class classification in the distributed online
learning setting over notMNIST, CIFAR-10 (Krizhevsky, 2009), and the aloi dataset from the LIB-
SVM repository (Chang and Lin, 2011). These three datasets respectively cover the cases of large
number of data samples, large number of features, and large number of classes.They are summarized
in Table 1.

Dataset # Features # Classes # Examples
aloi 128 1000 108,000

notMNIST 784 10 500,000
CIFAR-10 3,072 10 60,000

Table 1: Summary of datasets

For all experiments presented in this section, the underlying network topology is time-varying.
In particular, the communication graph switches sequentially in a round robin manner within a pool
of randomly generated doubly stochastic matrices. In addition, each dataset is divided into equally-
sized parts, and distributed among the learner nodes in the network.

In the first experiment, we consider multi-class classification with logistic regression over a large
distributed network consisting of 1500 learner nodes. In this task, the learners observe a sequence
of labeled examples (ω, z) taken from the aloi dataset, where ω ∈ Rd denotes the feature vector,
and z ∈ R represents the true label.

For logistic regression, the loss associated with each data point is given by f(x, (ωt, zt)) =
log(1 + exp(−ztxTωt)). We use negative entropy as the regularization function r(x). In addition,
we set the batch size to 10 data examples per online round, and use the step size of η = 0.01.

In Fig. 1, we compare the performance of DOMD-MADGC with fixed and increasing number
of consensus rounds versus DOMD (Shahrampour and Jadbabaie, 2018). Fig. 1 shows that DOMD-
MADGC, even with fixed and small K = 1 and 5 outperforms the existing DOMD algorithm,
which verifies the effectiveness of the proposed approach based on the communication of both
local gradients and local decisions. We also find that the overall loss of DOMD-MADGC with
logarithmically increasing number of consensus iterations decreases faster than all alternatives.

Next, we consider the problem of ridge regression on the well-known notMNIST dataset, and
over a network with 200 distributed learners. For this task, the loss associated with each data point
is given by f(x, (ωt, zt)) = (xTωt − zt)

2. In the experiment, we set the batch size to 40, set
η = 7×10−4, and use the negative entropy as r(x). Fig. 2 shows the overall loss versus the number
of online rounds. We find that DOMD-MADGC reduces the overall loss faster than the alternatives.

We have also experimented on the CIFAR-10 dataset to solve the ridge regression problem in a
distributed online manner. We consider a network of 500 learner nodes, and set the batch size to 10,
and η = 0.5. Fig. 3 shows that DOMD-MADGC outperforms standard DOMD method in terms of
the overall loss.
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Figure 1: Logistic regression on aloi dataset.
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Figure 2: Ridge regression on notMNIST dataset.

0 20 40 60 80 100 120 140
Round

8.425

8.450

8.475

8.500

8.525

8.550

8.575

8.600

Lo
ss
 o
ve

r e
nt
ire

 d
at
as
et

1e7
DOMD
DOMD-MADGC-Fixed, k=1
DOMD-MADGC-Fixed, k=5
DOMD-MADGC

Figure 3: Ridge regression on CIFAR-10 dataset.
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