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ABSTRACT

Error accumulation is an essential component of the TOP-k
sparsification method in distributed gradient descent. It im-
plicitly scales the learning rate and prevents the slow-down
of lateral movement, but it can also deteriorate convergence.
This paper proposes a novel sparsification algorithm called
regularized TOP-k (REGTOP-k) that controls the learning
rate scaling of error accumulation. The algorithm is devel-
oped by looking at the gradient sparsification as an inference
problem and determining a Bayesian optimal sparsification
mask via maximum-a-posteriori estimation. It utilizes past
aggregated gradients to evaluate posterior statistics, based
on which it prioritizes the local gradient entries. Numerical
experiments with ResNet-18 on CIFAR-10 show that at 0.1%
sparsification, REGTOP-k achieves about 8% higher accuracy
than standard TOP-k.

Index Terms— Gradient sparsification, TOP-k algorithm,
Bayesian inference, distributed stochastic gradient descent,
communication-efficient distributed learning

1. INTRODUCTION
Consider a distributed stochastic gradient descent (SGD)
setting [1], where N workers compute gradients and share
them with a server to estimate a global gradient. In itera-
tion t, worker n starts from a common model wt ∈ RJ and
computes its local gradient using a local surrogate loss func-
tion determined by averaging the loss over a stochastically-
selected mini-batch. Let gt

n ∈ RJ denote the gradient com-
puted by worker n. After receiving gt

1, . . . ,g
t
N , the server

estimates the global gradient gt by weighted averaging, i.e.,

gt =

N∑
n=1

ωng
t
n (1)

for some non-negative weights ωn. The estimated gradient is
used to update the common model as wt+1 = wt−ηtgt with
some learning rate ηt.

With realistic models, the scale of communication in such
settings can be prohibitive, e.g., for ResNet-110 J ≈ 1.7×106

[2]. Assuming 1000 mini-batches at each worker, the net-
work exchanges 1.7×109 symbols per epoch for each worker.
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A classical solution to this issue is gradient sparsification
[1, 3]: in each iteration, the workers only send important gra-
dient entries along with their indices. The term sparsification
refers to the fact that this approach can be interpreted as if the
sever approximates local gradients with their sparsified ver-
sion. Typical order of sparsity in practice is less than 1%, i.e.,
fewer than 0.01J entries are sent by each worker [3, 4, 5, 6, 7].

The key point in gradient sparsification is the design of a
mechanism which can efficiently find important gradient en-
tries. This can be challenging, as each worker has no explicit
information about the gradients of other workers, and hence
decides locally. In this work, we address this challenge by de-
veloping a new algorithm called REGTOP-k, which extracts
global information from earlier iterations. REGTOP-k can be
seen as the classical TOP-k with regularization that controls
the learning rate scaling property of error accumulation. We
illustrate this property next.
1.1. Error Accumulation and Learning Rate Scaling
The standard approach for sparsification is TOP-k, which se-
lects the k largest accumulated gradient entries in each itera-
tion. In iteration t, worker n computes its local gradient gt

n
and the accumulated gradient as atn = ϵtn + gt

n, where ϵtn
is the sparsification error from the previous iteration. It then
selects the k entries of atn with the largest amplitude which
results in the sparsified gradient ĝt

n ∈ RJ . The sparsification
error is then updated as ϵt+1

n = atn − ĝt
n.

As one may notice, beyond naive selection of the k largest
gradient entries, a key procedure in TOP-k is error accumu-
lation, i.e., the computation of sparsification error ϵtn. This
way, the initially unselected entries get the chance of being
selected after their errors become large enough. After such
an entry is eventually selected, SGD moves a large step in the
entry’s direction, whose length is proportional to the gradient
of that entry accumulated in previous iterations. This behav-
ior is known as learning rate scaling [8]. Though this scaling
is fairly effective for smooth losses, for other losses it can re-
sult in either alternation around the optimum or divergence.
This behavior is best understood through a toy example that
is given in the sequel.
1.2. A Motivational Example
Consider logistic regression with J = 2, where N = 2 work-
ers employ distributed gradient descent to minimize the cross-
entropy. Let worker 1 and 2 have single data-points (x1, 1)
and (x2, 1), respectively, where x1 = [100, 1] , and x2 =
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Fig. 1. Example of large learning rate scaling in TOP-k.

[−100, 1]. The workers agree on a model with weight vec-
tor w = [θ1, θ2] and zero bias. The loss of worker n ∈
{1, 2} in this case is Fn (w) = log (1 + exp {− ⟨w;xn⟩}),
and the empirical risk used for distributed training is F (w) =
(F1 (w) + F2 (w)) /2. Worker n shares its gradient

gn = − exp {− ⟨w;xn⟩}xn

1 + exp {− ⟨w;xn⟩}
, (2)

with the server who computes g = 0.5 (g1 + g2).
Figure 1 shows training loss against iterations for learning

rate η = 0.9 and w0 = [0, 1] for both TOP-1 sparsification
and non-sparsified cases. It is observed that TOP-1 is not able
to reduce the empirical risk even after 100 iterations. This
behavior can be explained as follows: at w0, the gradients
are g1 = 0.736 [−100, 1] and g2 = 0.736 [100, 1], and TOP-
1 selects the first entry at both workers. One can however
see that despite their significantly larger amplitudes, the first
entries do not contribute in the training, as they cancel out af-
ter averaging. With TOP-1, the aggregated sparsified gradient
remains zero, and hence the distributed gradient descent re-
mains at w0 for several iterations. It starts to move from the
initial point only after a large number of iterations when the
accumulated sparsification error at the second entry starts to
surpass the first entry in amplitude. For comparison, we fur-
ther show the results for REGTOP-1: our proposed algorithm
tracks non-sparsified training consistently.

One can readily extend this toy-example to a setting where
learning rate scaling hinders the convergence. For instance,
let the loss of worker n be F̃n (w) = Fn (w) + G (θ2), for
some G (θ2) whose derivative at θ2 = 1 is 1. Starting from
w0 = [0, 1], TOP-1 aggregates zero gradients in the first 50
iterations and moves from w0 only at t = 51 when the ac-
cumulation error at both workers read ϵtn = [0, 100]. At this
iteration, the workers send their sparsified accumulated gra-
dients ĝt

n = [0, 100], which leads to gt = [0, 100]. Com-
paring this gradient with the non-sparsified aggregation in the
first iteration, one can see that TOP-1 scales the learning rate
with factor 50. Depending on G (θ2), this large scaling of the
learning rate can deteriorate the convergence of the optimizer.

1.3. Related Work
Several lines of work have extended distributed SGD with
TOP-k: the study in [9] proposes an adaptive sparsification
technique based on TOP-k aiming to reduce the computa-

tional complexity. The authors of [8] develop the deep gra-
dient compression scheme that incorporates the ideas of mo-
mentum correction into TOP-k. Online adaptation of TOP-k
with the goal of having minimum training time is discussed
in [10]. In [11], the TOP-k extension Atomo is introduced,
which sparsifies the gradients in an arbitrary atomic decom-
position space. Layer-wise gradient sparsification for deep
neural networks (DNNs) is further investigated in [12]. In
[13], the authors propose a scalable sparsified gradient com-
pression that uses the similarity of local gradients to enhance
the scalability of TOP-k. The above lines of work substan-
tially differ from our study as they mainly focus on adapting
the classical TOP-k to a wider range of distributed settings,
e.g., various optimizers. Unlike these lines of work, our study
aims to develop a new sparsification scheme that controls the
learning rate scaling.

Developing sparsification algorithms based on model
statistics has been recently investigated in [7] and [14]. In
[7], the authors revisit TOP-k sparsification and give an alter-
native interpretation as the optimal sparsifier for per-iteration
communication budget. The notion of optimality is then ex-
tended to the entire training leading to a new TOP-k based
sparsification scheme. The study in [14] proposes a statistical
approach for gradient sparsification by treating local gradients
as random variables distributed with empirically-validated
sparsity-inducing distributions. It is worth mentioning that,
these studies do not propose any mechanism for controlling
the learning rate scaling and mainly focus on extending TOP-
k sparsification under a new set of design constraints. To
our best knowledge, our work is the first study that develops
a sparsification algorithm based on error accumulation that
controls learning rate scaling.

1.4. Contributions
In this work, we develop a Bayesian framework for gradient
sparsification. Unlike earlier studies, we focus on the learn-
ing rate scaling of TOP-k and propose a regularization tech-
nique to control this property. In a nutshell, our main con-
tributions are as follows: (1) We formulate gradient sparsi-
fication as an inference problem. Invoking this formulation,
we represent the Bayesian optimal sparsifier as a maximum-
a-posterior (MAP) estimator. (2) We construct a prior belief
on the gradient entries by interpreting TOP-k as a mismatched
MAP sparsifier with postulated uniform likelihood. We call
this prior distribution the TOP-k prior belief. (3) Using the
TOP-k prior belief, we determine the optimal sparsification
mask and show that it is a regularized form of the TOP-k spar-
sifier. We validate our derivations through numerical exper-
iments, which suggest that while TOP-k oscillates at a fixed
optimality gap, REGTOP-k can converge to the global opti-
mum with significantly sparser local gradients.

Notation Vectors are shown in bold, e.g., x. The j-th entry
of vector x is represented as x[j]. Entry-wise multiplication
and division are denoted by ⊙ and ⊘, respectively. The inner
product of x and y is represented by ⟨x;y⟩. The ℓp-norm of
x is denoted by ∥x∥p. For an integer N , the set {1, . . . , N} is
abbreviated as [N ]. We denote the cardinality of set S by |S|.



2. PRELIMINARIES
We consider the distributed setting described in Section 1. Let
Dn = {xn,i for i ∈ [Dn]} denote the training batch of size
Dn at worker n ∈ [N ] whose entries are sampled independent
and identically distributed (i.i.d.) from p (x). The distributed
training in this setting is formulated as

min
w∈RJ

N∑
n=1

ωnFn(w) (3)

for some ωn proportional to Dn, where Fn(w) is the empiri-
cal loss computed by worker n, i.e.,

Fn (w) =
1

Dn

Dn∑
i=1

f(w|xn,i) (4)

for some loss function f (w|x). The goal is to solve this
optimization in a distributed fashion with minimal commu-
nication overhead. We consider a gradient-based optimizer,
where the server in iteration t is interested in computing gt =∑

n ωng
t
n with gt

n denoting the gradient of Fn(w) at wt.
TOP-k Sparsification With gradient sparsification, worker
n sends the sparsified gradients ĝt

n = stn ⊙ atn to the sever,
where stn ∈ {0, 1}J is the sparsification mask and atn denotes
the accumulated gradient computed by adding the local gra-
dient gt

n to the sparsification error ϵtn as defined in Section
1. The TOP-k mask is determined by selecting the k largest
entries of atn, i.e., stn = Topk (a

t
n), where the top k selector

Topk (·) is defined as follows: let the entries of x ∈ RJ be
sorted as |xi1 | ≥ . . . |xiJ |; then, the i-th entry of Topk (x) is

Topk (x)[i] =

{
1 if i ∈ {i1, . . . , ik}
0 elsewhere.

(5)

Upon receiving the sparsified gradients ĝt
n = stn⊙atn, the

server estimates the global gradient as gt =
∑

n ωnĝ
t
n. Note

that the communication reduction by gradient sparsification
is achieved at the expense of an extra index transmission per
symbol. However, the index can be losslessly represented by
log J bits, so its communication can be neglected.

3. BAYESIAN GRADIENT SPARSIFICATION
Though intuitive, there is no existing study that examines the
optimality of TOP-k sparsification. In this section, we de-
velop a stochastic framework for gradient sparsification by in-
terpreting it as a Bayesian inference problem. We then show
that, despite its effectiveness, TOP-k is not the optimal ap-
proach in this stochastic framework. We derive the REG-
TOP-k algorithm by characterizing the optimal sparsification
scheme in the Bayesian sense. Due to the lack of space, we
only present the key steps in this section. Detailed derivations
are skipped and left for the extended version of the paper.
3.1. Bayesian-Optimal Sparsification
Let us start with a thought experiment in which a genie pro-
vides each worker information about the aggregated gradient
of the other workers. For entry j ∈ [J ], worker n knows in
advance the weighted sum gradient of the other workers, de-
noted by ztn[j], which satisfies at[j] = ωna

t
n[j] + ztn[j], where

at[j] is the j-th aggregated entry when the workers apply no

sparsification, i.e., at[j] =
∑

n ωna
t
n[j]. Worker n decides to

transmit atn[j], only if at[j] is within the top k gradient entries.
In other words, given that the workers know ztn[j], they ap-
ply TOP-k directly on the average gradient. We refer to this
idealized approach as global TOP-k. It is readily seen that
global TOP-k is in practice infeasible, as worker n does not
have access to ztn[j].

Statistical Global TOP-k Although worker n does not
know ztn[j], it has partial access to zℓn[j] for ℓ < t through the
global gradients collected in previous iterations. This can be
used to estimate ztn[j], i.e., the workers use the information
collected through time to apply the global TOP-k statistically.
In the Bayesian framework, we can formulate a statistical
global TOP-k via the following principle MAP problem:

Definition 1 (Principle MAP Problem). Let Tt
k denote the set

of k largest entries of |at|. Worker n determines its posterior
probabilities

P t
n[j] = Pr

{
j ∈ Tt

k

∣∣atn,{aℓn,gℓ : ℓ < t− 1
}}

(6)

for j ∈ [J ], where gℓ is the aggregated gradient in iteration
ℓ < t that is already known to all workers.1 Worker n then
selects the k entries with the largest posteriors.

To solve the principle MAP problem, we invoke the Bayes
rule. The posterior probability P t

n[j] is expanded as

P t
n[j] = Pr

{
j ∈ Tt

k

∣∣atn,{aℓn,gℓ : ℓ < t
}}

(7a)

= Lt
n[j] Pr

{
j ∈ Tt

k

∣∣atn} (7b)

where Pr {j ∈ Tt
k |atn } is the prior belief, i.e., the prior prob-

ability of j ∈ Tt
k based on the local gradient of worker n, and

Lt
n[j] denotes the likelihood given by

Lt
n[j] ∝ p

(
aℓn,g

ℓ : ℓ < t
∣∣ j ∈ Tt

k,a
t
n

)
. (8)

Here, we use notation p (·) to refer to the probability density
function (PDF).
TOP-k in Bayesian Framework TOP-k can be seen as a
mismatched form of the principle MAP sparsifier under a spe-
cific prior belief. To see this, let us consider the following
prior probability, to which we refer to as TOP-k prior belief.

Definition 2 (TOP-k Prior Belief). Given the accumulated
gradient atn, the probability of entry j being among the top
k entries of gt is proportional to |atn[j]|, i.e.,

Pr
{
j ∈ Tt

k

∣∣atn} =
|atn[j]|
∥atn∥1

. (9)

With this prior belief, the MAP sparsifier reduces to

argmaxk
j

P t
n[j] = argmaxk

j
Lt
n[j]|a

t
n[j]|, (10)

where argmaxkj xj returns the k largest entries of the se-
quence {xj : j ∈ [J ]} for J ≥ k.

1Note that in distributed SGD, the server broadcasts either gt or wt+1

to all workers at iteration t. In the latter case, the workers can recover the
gradient as gt =

(
wt+1 −wt

)
/ηt.



Comparing (10) with TOP-k, one can readily conclude
that TOP-k is a MAP sparsifier whose likelihood Lt

n[j] is uni-
form. This is however a mismatched assumption. In fact,
TOP-k simply ignores the information collected in previous
iterations and infers the dominant entries solely based on the
local accumulated gradients.

REGTOP-k Sparsification It is not straightforward to de-
termine the exact expression for likelihood Lt

n[j], since the
statistical model of its forward probability problem is not com-
pletely known. In the sequel, we approximate it in the large-
system limit J → ∞ under some simplifying assumptions.

We start the derivations by finding an alternative expres-
sion for the posterior probability P t

n[j]:

Proposition 1. The posterior P t
n[j] is computed as

P t
n[j] =

∫
Fk
j

qn(a
t)dat,

where Fk
j =

{
x ∈ RJ : xj ∈ argmaxki xi

}
with xi denoting

the i-th entry of x, and qn(a
t) is

qn(a
t) = p

(
at

∣∣atn,{aℓn,gℓ : ℓ < t
})

. (11)

Proof. The proof is given by standard marginalization and
use of the fact that atn,

{
aℓn,g

ℓ : ℓ < t
}
→ at → Tt

k form a
Markov chain.2 Details are left for the extended version.

Using this alternative form, we can write

Lt
n[j] ∝

1

|atn[j]|

∫
Fk
j

qn(a
t)dat. (12)

The likelihood calculation is hence reduced to the character-
ization of the conditional distribution qn (a

t). To describe
qn(a

t), we need to specify the stochastic model that describe
the relation between at and atn,

{
aℓn,g

ℓ : ℓ < t
}

. Consider-
ing the gradient aggregation strategy at the server, we can
write at = ωna

t
n + ztn, where ztn denotes the vector form

of ztn[j] as defined above. We now describe the time evolu-
tion of ztn via an additive model, i.e., ztn = zt−1

n + ξtn for
some innovation ξtn, which we treat as a random variable. It
is worth mentioning that the innovation describes the differ-
ence between two consecutive local gradients, and hence its
distribution depends on the dataset.

We now divide the index set [J ] into two subsets, namely
St−1
n and its complement, where St−1

n denotes the support of
the previous sparsification mask of worker n st−1

n . We now
focus on j ∈ St−1

n . For this set, worker n has already received
the aggregated gradient in the last iteration, i.e., at[j] = gt[j].
We can hence write

zt−1
n[j] = gt−1

[j] − ωna
t−1
n[j] = ωna

t
n[j]∆

t
n[j] (13)

where we define ∆t
n[j] = (gt−1

[j] −ωna
t−1
n[j])/ωna

t
n[j], and refer

to it as the posterior distortion. We now write at[j] = ḡtn[j] +

ξtn[j], where ḡtn[j] = ωna
t
n[j](1 + ∆t

n[j]).

2Note that Tt
k is defined in Definition 1.

To proceed with the exact computation of likelihood
Lt
n[j], we require an explicit expression of the distribution of

ξtn[j]. This is however analytically infeasible, as it depends on
several problem-specific factors, e.g., data distribution, learn-
ing rate, and loss function. We hence invoke large-deviations
arguments and the method of types to asymptotically approx-
imate the likelihood for a class of settings in which ξtn is
distributed symmetrically around zero and is fast decaying.
We skip details due to lack of space.

Proposition 2. Let pj (ξ) denote the distribution of the j-th
entry in ξtn, i.e., ξtn[j]. Assume that pj (ξ) represents a sym-
metric zero-mean distribution, and that for j ∈ [J ], given a
small δ, there exists a small ε, such that∫ ε|at

n[j]|

−ε|at
n[j]

|
pj (ξ) dξ ≥ 1− δ. (14)

Moreover, assume that the entries of ξtn are independent. Then,
as J → ∞, we have∫

Fk
j

qn(a
t)dat ∝ |atn[j]|

{
uµ(|1 + ∆t

n[j]|) j ∈ St−1
n

C j /∈ St−1
n

,

for some constant C, and a non-decreasing uµ : R+ 7→ R+

that approximates the sign function and is tuned by a positive
parameter µ.

Proof. The proof follows large-deviations arguments. We
skip the details here due to lack of space and leave them for
the extended version of the paper.

From Proposition 2, we can conclude that under the given
assumptions, the likelihood for large J is approximated by

Lt
n[j] = uµ(|1 + ∆t

n[j]|). (15)

where, for j /∈ St−1
n , we define ∆t

n[j] = Q for some Q satis-
fying uµ(|1 +Q|) = C. The Bayesian-optimal sparsification
is hence approximated by substituting this expression into the
principle MAP sparsifier.

3.2. REGTOP-k Algorithm
The asymptotic expression (15) for the likelihood implies that
for Bayesian-optimal sparsification, the top k selector should
be applied on a regularized accumulated gradient, i.e.,

ãtn = atn ⊙ uµ(|1 +∆t
n|), (16)

where ∆t
n ∈ RJ collects the posterior distortions ∆t

n[j] for
j ∈ [J ]. We now follow the definition of uµ (·) in Proposi-
tion 2 and set3 uµ (x) = tanh (x/µ), where we can treat µ as
a hyperparameter. This concludes the REGTOP-k algorithm,
whose pseudo code is given in Algorithm 1.

Discussions on Algorithm 1 REGTOP-k starts by applying
standard TOP-k in the initial iteration. From t = 1, worker
n after calculating its accumulated gradient atn determines
the posterior distortion ∆t

n for those entries that were sent

3Note that other choices, e.g., sigmoid function, are also valid.
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Algorithm 1 REGTOP-k Sparsification at Worker n

Initialization: Set ϵ0n = {0}J and some Q,µ > 0

1: for t = 0 do Sparsify via TOP-k and collect g0 end for
2: for t ≥ 1 do
3: Determine local gradient gt

n at global model wt

4: Determine accumulated gradient as atn = ϵtn + gt
n

5: Determine the posterior distortion as

∆t
n=st−1

n

[(
gt−1 − ωna

t−1
n

)
⊘ ωna

t
n

]
+Q

(
1− st−1

n

)
6: Find the sparsification mask as

stn = Topk

(
atn ⊙ tanh

(
|1 +∆t

n|
µ

))
7: Sparsify as ĝt

n = stn ⊙ atn and send to server
8: Update the sparsification error as ϵt+1

n = atn − ĝt
n

9: end for

in the previous iterations, i.e., j for which stn[j] = 1. The im-
pact of the regularization applied by REGTOP-k can be intu-
itively illustrated by considering the following extreme cases:
(1) As µ → 0, the regularizer converges to 1, and hence REG-
TOP-k reduces to standard TOP-k. TOP-k is hence a special
case of REGTOP-k with no regularization. (2) Assume the
j-th local gradient entries of all workers are large in ampli-
tude but cancel out after aggregation.4 In this case, after the
initial aggregation, worker n determines its posterior distor-
tion as ∆t

n[j] = 0 − at−1
n[j]/a

t
n[j] = −1. This leads to the

j-th regularized accumulated gradient entry damped to zero
and prevents its selection in iteration t. This way the selec-
tion frequency of constructively-aggregated gradient entries
with small amplitudes is increased, and hence large scaling of
learning rate is avoided.

4. NUMERICAL VALIDATION
We validate REGTOP-k through numerical experiments. We
start with the problem of linear regression. For this learn-
ing problem, we can track the optimal solution and hence
evaluate the distance between the converging point and the
global optimum, which is a strong notion of convergence. We
further give the results for training ResNet-18 on CIFAR-
10. Throughout the numerical experiments, REGTOP-k is
compared against TOP-k and the distributed gradient descent

4Recall the toy-example in Section 1.

without sparsification. As mentioned, the existing extensions
to TOP-k, e.g., [7, 8, 9], do not revise the derivation of sparsi-
fication mask. This means that with respect to impact of large
learning rate scaling, these approaches perform identically to
TOP-k, and thus our comparison with TOP-k suffices.

4.1. Linear Regression
We consider a distributed setting with 20 workers that solve
a distributed linear regression problem via distributed SGD.
Each worker has 500 labeled data-points of dimension 100.
The workers employ the method of least-squares (LS). The
global loss is determined by arithmetic averaging, i.e., ωn =
1/N . The training is performed via full-batch gradient de-
scent. The learning rate is kept fixed at η = 10−2.

Synthetic Dataset Generation The local datasets are gen-
erated independently via a Gaussian linear model. For worker
n, data-points are sampled independently from an i.i.d. zero-
mean and unit-variance Gaussian process. To label these data-
points, we generate the ground truth model tn ∈ RJ i.i.d. ac-
cording to a Gaussian distribution with mean un and variance
h2. The mean un is further sampled from a Gaussian pro-
cess with mean U and variance σ2. The labels are determined
via the linear model as yn,i = xT

n,itn + εn,i, where εn,i is a
zero-mean Gaussian perturbation with variance ϵ.

Numerical Results We evaluate performance by tracking
the optimality gap: in iteration t, we compute the difference
between the globally updated model parameter, i.e., wt, and
the global minimizer w⋆, i.e., δt = ∥wt −w⋆∥. We denote
the sparsification factor by S = k/J .

Figure 2 sketches the optimality gap δt in the logarithmic
scale against the number of iterations for the three algorithms.
Here, we set U = 0, σ2 = 5, h2 = 1 and ϵ = 0.5. The fig-
ure shows the convergence for three sparsity factors, namely
S = 0.4, S = 0.5, and S = 0.6. As observed, the REGTOP-k
algorithm starts to track the (non-sparsified) distributed SGD
at S = 0.6 while TOP-k remains at a certain distance from the
optimal solution. This behavior can be intuitively explained
as follows: for both sparsification approaches, the aggrega-
tion of large local gradient entries gradually moves the initial
point towards the global optimum. At a certain vicinity of the
optimum, the impact of smaller gradient entries in conver-
gence becomes more dominant. TOP-k selects these entries
only after large error accumulation, which due to learning rate
scaling leads to oscillation around the optimum at a fixed dis-
tance. To avoid such oscillation, TOP-k would need signifi-
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Fig. 3. ResNet-18 on CIFAR-10 with 0.1% sparsification.

cant damping of the learning rate that can slow convergence.
REGTOP-k, however, selects the small (but dominant) gradi-
ent entries at lower error accumulation levels, which prevents
large learning rate scaling.
4.2. Training ResNet-18 on CIFAR-10
We now employ REGTOP-k to train ResNet-18 on CIFAR-10,
with data-points distributed evenly among N = 8 workers.
The clients compute their local gradients over mini-batches
of size 20. The aggregation is performed by arithmetic aver-
aging. The learning rate is set to η = 0.01, and the clients
sparsify with S = 0.001, i.e., 0.1% sparsification.
Numerical Results Figure 3 shows the validation accuracy
against the number of iterations for both TOP-k and REG-
TOP-k. To keep the comparison fair, we have considered the
same initialization of the global model for both algorithms
and identical batch samplers. As the figure shows, after the
first 600 iterations, the model trained by REGTOP-k sparsi-
fication starts to give strictly higher accuracy as compared
with the one trained by standard TOP-k. As the number of
iterations surpasses 1500, the difference between the accu-
racy values exceeds 8%. This considerable gain indicates that
REGTOP-k can substantially improve the efficiency of sparsi-
fication in real-world applications.

5. CONCLUSIONS
Information collected during training can be used for efficient
compression of local gradients in distributed learning. We
have invoked this idea and developed a Bayesian framework
to regularize the TOP-k sparsification algorithm. Numerical
investigations validate our derivations. REGTOP-k can track
the performance of non-sparsified distributed learning at sig-
nificantly lower sparsity factors than TOP-k. Interestingly,
this gain is achieved with no considerable increase in compu-
tation complexity. This work can be extended in various re-
spects. Most naturally, the proposed scheme can be extended
to adaptive sparsification frameworks.
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