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ABSTRACT

Horizontal and vertical handoffs are important ramification-
s of user mobility in multi-tier heterogeneous cellular net-
works. They directly affect the signaling overhead and qual-
ity of calls in the system. However, they are difficult to
analyze due to the irregularly shaped network topologies in-
troduced by multiple tiers of cells. In this work, a stochastic
geometric analysis framework on user mobility is proposed,
to capture the spatial randomness and various scales of cell
sizes in different tiers. We derive theoretical expressions for
the rates of all handoff types experienced by an active user
with arbitrary movement trajectory. Empirical study using
real user mobility trace data and extensive simulation are
conducted, demonstrating the correctness and usefulness of
our analysis.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless com-
munication

Keywords

Cellular networks; mobility; handoff; stochastic geometry;
analytic geometry

1. INTRODUCTION

Traditional single-tier macro-cellular networks provide wide
coverage for mobile user equipments (UEs), but they are
insufficient to satisfy the exploding demand for high band-
width access driven by modern mobile traffic, such as multi-
media transmissions and cloud computing tasks. One ef-
fective means to increase network capacity is to provide
more serving stations within a geographical area, i.e., in-
stalling a diverse set of small-cells such as femtocells [14]
and WiFi hotspots [12], overlaying the macrocells, to form
a multi-tier heterogeneous cellular network. Each small-cell
is equipped with a shorter-range and lower-cost base sta-
tion (BS) or access point (AP), to provide nearby UEs with
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Figure 1: An example of a three-tier cellular net-
work. Tier-1, 2, and 3 BSs are represented by
squares, circles, and triangles respectively; blue
curves show intra-tier cell boundaries; green curves
show inter-tier cell boundaries. A UE starts a call
at X and terminates it at Y. It experiences one hor-
izontal handoff at B; and two vertical handoffs at B>
and Bs.

higher-bandwidth network access with lower power usage,
and to offload data traffic from macrocells. The commercial
deployment of small-cells has attracted increasing attention
in recent years. For example, AT&T Inc. now supplies a
femtocell product [1], and it has also deployed WiFi APs in
a number of metropolitan areas with dense population [2].
In the presence of multiple tiers of cells, however, mobile
UEs may experience internetworking issues among differen-
t tiers. In particular, vertical handoffs (i.e., handoffs made
between two BSs in different tiers) are introduced [41]. Com-
pared with horizontal handoffs (i.e., handoffs made between
two BSs in the same tier), vertical handoffs have a more
complicated impact on both the UEs and the overall sys-
tem. Additional risks are present during channel setup and
tear down when a vertical handoff is made, such as (1) extra
traffic latency; (2) additional network signaling; (3) more
UE power consumption due to simultaneously active net-
work interface to multiple tiers; and (4) higher risk in call
drops or degraded quality of service (QoS) caused by the
lack of radio resource after handoffs. Furthermore, vertical
handoffs may be classified into inter-RAT (radio access tech-
nology) handoffs (e.g., handoffs made between LTE access
and WiFi access) and intra-RAT handoffs, where the former
could cause worse performance degradation on UEs [3].



The handoff rate is defined as the expected number of
handoffs experienced by one UE per unit time, which di-
rectly affects the signaling overhead in the system and QoS
of UEs. As a prerequisite to performance evaluation and sys-
tem design in heterogeneous cellular networks, it is essential
to quantify the rates of different handoff types. However,
a study on handoff rates in heterogeneous cellular networks
will inevitably be challenged by the irregularly shaped multi-
tier network topologies introduced by the small-cell struc-
ture. An example topology with three tiers of BSs is shown
in Fig. 1. First, BSs are spread irregularly, sometimes in
an anywhere plug-and-play manner, leading to a high level
of spatial randomness. Second, different tiers of cells are
equipped with BSs communicating at different power level-
s, causing various scales of cell sizes. As a consequence, it
is difficult to characterize the cell boundaries and to track
boundary crossings made by UEs (i.e., handoffs) in the sys-
tem. Few previous works have resolved the above challenges.

In this work, we contribute to user mobility modeling by
providing new technical tools to quantify the rates of hori-
zontal and vertical handoffs, under random multi-tier BSs,
arbitrary user movement trajectory, and flexible user-BS as-
sociation. A new stochastic geometric analysis framework
on user mobility is proposed. In this framework, different
tiers of BSs are modeled as Poisson point processes (PPP-
s) to capture their spatial randomness. To model flexible
scaling of cell sizes in different tiers, we consider the biased
user association scheme [10,27,32,40], in which each tier of
BSs is assigned an association bias value, and a UE is as-
sociated with a BS that provides the largest biased received
power. Through stochastic and analytic geometric analy-
sis, we derive exact expressions for the rates of all handoff
types experienced by an active UE with arbitrary movement
trajectory.

We confirm our theoretical analysis through an empiri-
cal study using the Yonsei Trace [17]. The trace provides a
large data set, accumulating fine-grained mobility data from
commercial mobile phones in an 8-month period. Numerical
studies using the empirical trace data set, together with fur-
ther simulation, demonstrate the correctness and usefulness
of our analytical conclusions.

The rest of the paper is organized as follows. In Section 2,
we discuss the relation between our work and prior works.
In Section 3, we describe the system model. In Section 4,
we present our contributions in handoff rates derivations.
In Section 5, we present empirical study with the Yonsei
Trace as well as simulation. Finally, conclusions are given
in Section 6.

2. RELATED WORKS

2.1 Mobility Modeling Based on Queueing Sys-
tems

One common category of previous works employ queue-
ing systems to model heterogeneous cellular networks. In
this case, cells are modeled as queues, active users are mod-
eled as units in the queues, and handoffs correspond to u-
nit transfers among queues. Ghosh et al. [22] studied the
single-cell scenario using an M/G/oco queue. Kirsal et al.
[28] studied one WLAN cell overlaying one 3G cell, and
a two-queue model is proposed accordingly. For multicel-
1 scenarios, queueing network models have been employed
in [6,9,15,19,35]. However, none of these works explicitly

modeled the geometric patterns of cell shapes in heteroge-
neous networks.

2.2 Geometric Pattern Study

In order to characterize the geometric patterns of cellular
network topologies, a second category of works model the
shape of cells, mostly in non-random regular grids. Zonoozi
and Dassanayake [45] modeled a one-tier cellular network as
a hexagonal grid. Anpalagan and Katzela [4] studied a two-
tier cellular network by modeling small-cells as hexagons,
and each macrocell as a cluster of neighbouring small-cells.
Shenoy and Hartpence [38] studied a two-tier network by
modeling WLAN small-cells as squares, and macrocells as
larger squares, each covering 5 x 5 WLAN cells. Hasib and
Fapojuwo [24] studied a two-tier cellular network including
one hexagonal macrocell and a predetermined NN circular mi-
crocells. Lin et al. [31] conducted a pioneering study on the
user mobility in one-tier macro cellular network considering
randomly distributed BSs. Macrocells were modeled as a
standard Poisson Voronoi. However, in [31], the authors did
not consider multi-tier BSs with different scales of cell sizes.
To the best of our knowledge, ours is the first work studying
user mobility in multi-tier heterogeneous cellular networks
that captures their random geometric patterns.

2.3 Real-world Trace Study

Another important category of related works employ em-
pirical traces to investigate user mobility. Kotz et al. [25,29]
studied user mobility patterns on the Dartmouth campus.
McNett and Voelker [34] characterized the mobility and ac-
cess patterns of hand-held PDA users on the UCSD campus,
and a campus waypoint model was proposed to characterize
the trace. Halepovic and Williamson [23] studied mobili-
ty parameters such as the number of calls initiated per user,
call inter-arrival time, and the number of cell sites visited per
user, based on data traffic traces of a regional CDMA2000
cellular network. Rhee et al. [37] concluded that human
walk patterns contain statistically similar features observed
in Levy walks, based on a large daily GPS trace set accumu-
lated in 5 different places in US and Korea. In [16], empir-
ical study on spatial and temporal mobility patterns of the
Yonsei Trace [17] was conducted, in order to predict user-
s’ future position precisely. Ficek and Kencl [21] proposed
inter-call mobility model to locate users’ position between
calls based on the trace accumulated in a trip between San
Jose and San Francisco. Baumann et al. [11] predicted user
arrival and residence times in the system through extracting
important parameters from the trace accumulated by Nokia
Research.

These works based on real-world traces study are practi-
cally valuable for system evaluation and design. However,
they are insufficient to provide in-depth analytical modeling
of handoff and data rates. In our work, we use the Yonsei
Trace [16,17] to demonstrate the correctness and usefulness
of our theoretical results.

2.4 Handoff and Association Decision Algo-
rithms

Orthogonal to the scope of this work, there is a large
body of previous works that study handoff timing algorithm-
s, without considering the random geometric patterns of UEs
and BSs. One type of handoff decision algorithms employ
a threshold comparison of one or several specific metrics,



(e.g., received signal strength, network loading, bandwidth,
and so on) to derive handoff decisions [30, 33, 36,44]. An-
other type uses dynamic programming (DP) [42] or artificial
intelligence techniques (e.g., fuzzy logic [26]) to improve the
effectiveness of handoff procedures.

3. SYSTEM MODEL
3.1 Multi-tier Cellular Network

We consider a heterogeneous cellular network with spatial-
ly randomly distributed K tiers of BSs. Let K = {1,2,..., K}.
In order to characterize the random spatial patterns of BSs,
we use the conventional assumption that each tier of BSs
independently form a homogeneous Poisson point process
(PPP) in two-dimensional Euclidean space R? [7,8, 18,27,
32,39,40]. Let @ denote the PPP corresponding to tier-k
BSs, and let A; be its intensity.

3.2 Biased User Association

Different tiers of BSs transmit at different power levels.
Let P, be the transmission power of tier-k BSs, which is
a given parameter. If P;(x), for P;(x) € {P1, Ps,...,Px},
is the transmission power from a BS at x and P,(y) is the

P (x
a\xtiy)l“*
y|” is the propagation loss function with vy > 2.

In order to capture various scales of different cell sizes, the
biased user association is studied in this work [27, 32, 40].
Given that a UE is located at y, it associates itself with
the BS that provides the maximum biased received power as
follows:

received power at y, we have P,(y) = , where a|x —

_ _ -
BS(y)—argxerg%kBkPklx vy~ (1)

where BS(y) denotes the location of the BS chosen for the
UE, Py|x — y|™” is the received power from a tier-k BS lo-
cated at x, and By is the association bias, indicating the
received power preference of UEs toward tier-k BSs. By
may be different in different tiers, mainly because (1) differ-
ent radio access technologies may require different received
power levels, and (2) some tiers could be assigned larger val-
ues of By, in order to offload data traffic from other tiers.
As a consequence, the resultant cell splitting forms a gener-
alized Dirichlet tessellation, or weighted Poisson Voronoi [5],
an example of which is shown in Fig. 1. Let T® denote the
overall cell boundaries, and let T,(:.> denote the boundaries
of tier-k cells and tier-j cells, which is also referred to as

type k-7 cell boundaries in this paper. Note that T,(:7.> and

T;}C) are equivalent (type k-j cell boundaries and type j-k
cell boundaries are equivalent).

Note that for Bi, Bs,..., Bk, their effects remain the
same if we multiply all of them by a same positive constant.

Py B, ) 1/v
P;B;

For presentation convenience, we define Si; = (

Clearly, Bir; = ﬁ
™
Let Ay denote the probability that a UE associates itself
with a tier-k BS. As derived in [27], we have

)\k(PkBk)%
K E
21 Ai(PBj)7

3.3 UE Trajectory and Handoff Rate

Ap = (2)

We aim to study the rates of all types of handoffs of some
active UE moving in the network. Let 7o denote the tra-
jectory of the UE, which is of finite length. The number of
handoffs the UE experiences is equal to the number of in-
tersections of 7o and T, which is denoted by N'(7o, T™").
In this paper, a handoff made from a tier-k cell to a tier-j
cell is called a type k-j handoff. The number of type k-j
handoffs is denoted by Ny, (7o, T](Clj)).

If j # k, a type k-j (vertical) handoff is not equivalent to
a type j-k handoff. When the UE crosses type k-j boundary,
either a type k-j or a type j-k handoff is made, depending
on the moving direction. Thus, the number of type k-j plus
type j-k handoffs is equal to the number of intersections
of To and ng)v which is denoted by N (7o, T](clj)). In other
words, we have N (7o, T,(Clj)) = Ni;i (To, ng))—k/\/jk(%, ng}).

If 5 =k, N(To, T,(;k)) = Nix(To, T](clk)) indicates the num-
ber of type k-k (horizontal) handoffs.

In Section 4, we aim to study all types of handoff rates,
which correspond to the expected numbers of handoffs ex-
perienced by the active UE per unit time.

4. HANDOFF RATE ANALYSIS IN MULTI-
TIER CELLULAR NETWORKS

The proposed analysis of handoff rates consists of a pro-
gressive sequence of four components, which are described
in the following subsections.

4.1 Length Intensity of Cell Boundaries

Handoffs occur at the intersections of the active UE’s tra-
jectory with cell boundaries. In order to track the number
of intersections, we need to first study the length intensity
of cell boundaries T (resp. T](:].)L which is defined as the

expected length of T (resp. T,(:j)) in a unit square. Higher
length intensity of cell boundaries leads to greater opportu-
nities for boundary crossing, and thus higher handoff rates.
The cell boundaries T™) is a fiber process [43] generated
by &1, ®2,...,Pk. T also corresponds to the set of points
on R?, where a same biased power level is received from two
nearby BSs,; and this biased received power level is no less
than those from any other BSs. Mathematically, we have

T® —{x

s.t. P =

Vk,j S ]C,HX1 c q)k,XQ S ‘I)]',X1 #Xg,

Pi.Bx P; B,

i —x[7 T o — x|

P;B;

ly —x[7 } @

and

Vi EIC,y € ‘I’i,PT >
Similarly, Tilj) can be expressed as

Tlg) —{x

dx; € Dy, x2 € (I)]',Xl 75 X2,

s.t. P = Di By L5 B; and
Ix1 —x|7 |x2 —x|7
Vie K,y € ®;, P, > PiBi (4)
ly —x|7

Note that [J_, Uf(:k ng) =W,
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Figure 2: The blue bold curves show T(!); and the
region within red dashed curves shows T?(Ad).

Let w1 (T(l)) denote the length intensity of T which is
the expected length of T™ in a unit square! [43]:

(V) =E (|1 M0,1?) ). (5)

where |L|; denotes the length of L (i.e., one-dimensional
Lebesgue measure of L). Similarly, let p; (TE)) denote the
length intensity of T,(:J):

(1) = & (T (Yo7, ) (6)
= Zszl Z;{:k M (Tl(clj))
4.2 Ad-Extended Cell Boundaries

It is difficult to directly quantify the one-dimensional mea-
sures fi1 (T(l)) and 1 (T](Clj)) on the two-dimensional plane.
Instead, we first introduce the Ad-extended cell boundaries,

Note that we have p1 (T™)

which extends the one-dimensional measures to two-dimensional

measures.

The Ad-extended cell boundaries of T™)| denoted by T® (Ad)

is defined as

T (Ad) = {x ’3y eTW, st. |x—y| < Ad}. (7)

In other words, T®®(Ad) is the Ad-neighbourhood of T,
A point is in T® (Ad) iff its (shortest) distance to TV
is less than Ad, as shown in Fig. 2. Similarly, we define
T(2.)(Ad) as the Ad-extended cell boundaries of ng) (i-e,

Ad-neighbourhood of T(l))
T,(fj.)(Ad {x ’Ely € Tkj , st x—yl < Ad} (8)

The area intensity of T®)(Ad) is defined as the expected
area of T® (Ad) in a unit square:

w2 (T?(aa) = E([T? @) 0, 17]),  ©

where | S| denotes the area of S (i.e., two-dimensional Lebesgue

measure of S). Similarly, the area intensity of T,(C?(Ad) is
E(|T2@aNo.0’). 10

Because @1, ..., Pk are stationary, TW is also stationary,
and thus the unit square could be arbitrarily picked on RZ.

p2 (T2 (Ad)) =

Because @1, P> ...,
and T;?(Ad) are also stationary and isotropic. As a re-
sult, given a reference UE located at 0, the area intensity of
T® (Ad) (resp. T,(fj)(Ad)) is equal to the probability that
the reference UE at 0 is in T (Ad) (resp. T(z)(Ad))

12 (T (Ad)) = P(0 € T® (Ad)), (11)
12 (T (Ad)) = P(0 € T\Y (Ad)). (12)

We observe that the probabilities in (11) and (12) are
analytically tractable, which will be presented in the next
subsection.

4.3 Derivations of the Area Intensities

In this subsection, we present the derivations of P(0 €
T® (Ad)) and P(0 € Tg‘;)(Ad)). First, we study the proba-
bility that the reference UE at 0 is in Tgfj)(Ad), given that
it is associated to a tier-k BS at a distance of r¢ from it. By
employing both analytic geometric and stochastic geometric
tools, we derive the following theorem:

THEOREM 1. Suppose the reference UE is located at 0, it
is associated with a tier-k BS, and their distance is R. The
conditional probability that 0 € T,(fj)(Ad) given R =ro is

P (o € T® (Ad)|R = ro, tier = k:) -
1 —exp (=20 AdroF (Br;) + O(Ad%)),  (13)

s 1 [T
5):@/0 VBT

The proof is omitted due to the limited space.

Second, through stochastic geometric tools and decondi-
tioning on R, we can derive the unconditioned probabilities
that the reference UE at 0 is in T(?(Ad) and in T;CQJ.)(Ad):

where

— 2B cos(0)de. (14)

THEOREM 2. The area intensities of T (Ad) and Tgfj) (Ad)
are:

(a)
p2(T? (Ad)) =P(0 € T® (Ad))
K A (SE N Ad]—“ﬂm
=3 ( ( )) +0O(Ad%).
=t (Z < AP )
(15)
(b)
p2 (T (Ad)) = (0 € T<2>(Ad))
Ak(AjAdf(ﬁkjS)) Aj(AkAdf(ﬁij)) n O(AdQ) itk
= (2’2 L M52 (S 2iBy)? 7
A o(Ad?) if k=3
(I xiB3) 2
(16)

See Appendix for the proof.
4.4 From Area Intensities to Handoff Rates

In this subsection, we derive handoff rates from area in-
tensities derived in Theorem 2. This involves two steps:

® i are stationary and isotropic, T (Ad)



(1) from area intensities pa (T(2>(Ad)) and p2 (T,(fj)(Ad))
to length intensities p1(T") and 1 (T,(Clj)), and (2) from
length intensities to handoff rates.

First, we derive the length intensity 1 (T(l)) (resp. p1 (ng)))
from the area intensity o (T(2>(Ad)) (resp. p2 (Tg)(Ad)))
as follows

THEOREM 3. The length intensities of TV and ng) can
be computed as follows:

(a)
K (S A F(B)

L(TM) Z - (17)
= 2 (2 )
(b)
A F (Brj) XA F (Bjk) . i
K \.B2 %+ K J2 g fk#7,
T(l) 2(21':1 A16m) (2 i )
pa ( k]) A2F(1) o
3 if k=j.
2(S B2
(18)

PRrROOF. It follows Section 3.2 in [20] and [13] by taking
Ad— 0. O

REMARK 1. Note that, if we consider the single-tier case
by taking K = 1, we have F(1) = 4, and ,ul(T(l)) =
1 (Tgll)) = 2v/A1. This matches the length intensity of a
standard Poisson Voronoi. See Section 10.6 of [43].

Second, we can derive the expected number of handoffs of
an active UE as follows:

THEOREM 4. Let To denote an arbitrary UE’s trajecto-
ry on R? with length |To|i. Then, the expected number of
intersections of To and T™) (resp. T,(é)) are

E (N(%,T“))) :%m (T To)1, (19)
E (VT T)) =2m (1) 1%l (20)
and the expected number of type k-j handoffs are
LE (M(To, ) ifk#3
E (N (To, TY) = ¢ 2 I To(21
(Moo, ) E(MTT()) k=3 =

Proor. TM and T(1>

processes with length intensity 1 (T(1>) and 1 ( re-
spectively. The proof follows the conclusions in Sectlon 9.3

of [43]. O

are stationary and isotropic fibre
(1))

Note that the expected number of type k-j handoffs is the
same as the expected number of type j-k handoffs, both of
which are equal to half of E (N(’ﬁ), (1>)).

Let v denote the instantaneous velocity of an active UE,
H (v) denote its overall handoff rate (i.e., sum handoff rate

of all types), and Hy;(v) denote its type k-j handoff rate.
Then we have the following Corollary from Theorem 4:

COROLLARY 1.

H(v) :%m (TM)o, (22)
oy Em () ik A,
Hij(v) = {iul (T](Clj))v if k=7j. (23)

Note that the above handoff rates are instantaneous rates.
Our analysis allows time-varying velocity for the UEs, in
which case the handoff rates are also time varying.

S. EXPERIMENTAL STUDY

In this section, our analysis is validated via experimenting
with real-world traces and simulations.

5.1 Yonsei Trace Data

We use the real-world Yonsei Trace [17] to validate our
analytical results. The trace was accumulated from 12 com-
mercial mobile phones during an 8-month period in 2011 in
the city of Seoul. An application named SmartDC had been
running on the commercial mobile phones equipped with
GPS, GSM, and WiFi. For every 2 to 5 minutes, the ap-
plication collected UE’s location information (latitude and
longitude), the MAC addresses of surrounding WiFi APs,
and the cell IDs of nearby cellular BSs they could detec-
t. Fach AP has a unique MAC address and each BS has
a unique cell ID. By analyzing the data set, we are able
to determine which APs and BSs a UE could detect at the
recorded coordinates and time instants. In the following, we
regard cellular BSs as tier-1 BSs and APs as tier-2 BSs.

5.2 Data Processing

5.2.1 Location Approximations of APs and BSs

As the data set does not explicitly provide the latitudes
and longitudes of APs and BSs, we apply the following ap-
proach to approximate their locations: for each AP (resp.
BS), we list all the coordinates recorded by UEs when they
are able to detect the AP (resp. BS). Then, we approximate
the location of the AP (resp. BS), by taking the average of
these recorded coordinates.

5.2.2  Reference Region

In order to avoid the edge effect, we define a reference re-
gion, in which most recorded coordinates are located. The
UEs’ trajectories are only accounted inside the reference re-
gion. By plotting the cumulative distribution function (cd-
f) of the latitude (resp. longitude) of all recorded coordi-
nates, we observe a sharp step upward between 37.48° N and
37.58°N (resp.126.9°F and 127.1°FE). As a consequence,
we employ the rectangle defined by 37.48°N, and 37.58°N,
126.9°F, and 127.1°E as the reference region.

5.2.3 UE Trajectory

In the trace data, the coordinates of a UE are recorded
only once every few minutes. To recover its full trajectory,
we regard it as moving in a straight line at a constant ve-
locity between two consecutive recorded coordinates. Thus,
interpolations can be made to determine the coordinate of
the UE at any time. Note that only the trajectories inside
the reference region are used.

5.2.4 Handoff Rates

Through the locations of BSs and APs, as well as the
UE trajectories, we are able to derive all types of empirical
handoff rates following the biased user association scheme
discussed in Section 3.2. If we ignore all the APs, we can
also derive the empirical handoff rates for one-tier case.
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5.2.5 BS and AP Intensities

The AP (resp. BS) density is computed as the number of
APs (resp. BSs) over the area of the reference region, which
is 455.1 unit/km? (resp. 52.6 unit/km?). This indicates an
urban area with high population and BS densities.

5.3 Empirical Results

We compare the handoff rates derived from our analysis
and those from our empirical study based on the Yonsei
Trace. The empirical handoff rates are derived from the
steps in Sections 5.2.1 - 5.2.4. For the analytical results,
we use the BS and AP intensities shown in Section 5.2.5 as
input parameters.

For the two-tier case, the comparison of analytical and
empirical handoff rates is shown in Fig. 3. For the one-tier
case (by eliminating all the APs), the comparison is shown
in Fig. 4. Both figures illustrate the accuracy of our analysis.
When the UE’s velocity is low, empirical handoff rates are s-
lightly greater than analytical handoff rates. This is because
the locations of APs and BSs are not strictly homogeneous
distributed (e.g., some APs and BSs are crowded along some
streets, or at the center of the urban region). We also ob-
serve that UEs with lower velocity are more likely to be
sampled in the region with higher AP and BS densities. As
a consequence, the empirical handoff rates are higher than
those expected by our analytical results.

Fig. 3 and Fig. 4 also show that type 1-1 horizontal hand-
off rates are almost the same in the one-tier and two-tier
cases, but extra type 1-2 and type 2-1 vertical handoffs are
introduced in the two-tier case. This agrees with our expec-
tation that adding a second tier of APs brings more vertical
handoffs. In addition, as a validation of (21), type 1-2 and
type 2-1 handoff rates are almost the same in empirical re-
sults.

1, si
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Figure 5: Two-tier case: handoff rates under differ-
ent /\1.
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Figure 6: Three-tier case: handoff rates under dif-
ferent \s.

5.4 Simulation Study

In this subsection, we present simulation results to further
demonstrate our analysis in more complex heterogeneous
cellular networks.

5.4.1 Simulation Setup

The simulation procedure is as follows: in each round of
simulation, two or three tiers of BSs are generated on a 10 k-
m X 10 km square. Then, we randomly generate 5 waypoints
Xi,...,X5 in the central 5 km x 5 km square (uniformly
distributed). The five line segments X1 X2, X2 X3, ..., X4 X5
construct the trajectory of an active UE. In this way, we de-
rive the simulated handoff rates in this round of simulation.
The above procedure is repeated 200 rounds to derive one
simulated data point. Note that in this subsection, in order
to avoid overlapping in figures, we only show the sum rate of
type j-k and type k-7 (k # j) handoffs for easier inspection;
the individual handoff rates are half of the sum handoff rate.

5.4.2 Handoff Rates under Different BS Intensities

We study handoff rates under different BS intensities.
Fig. 5 shows a two-tier case, with parameters as follows:
P1 = 30 dBm, PQ =20 dBI‘ﬂ7 and Bl = Bz = 1, )\2 =1
unit/ka. Fig. 6 shows a three-tier case, with parameters
as follows: P = 30 dBm, P, = 20 dBm, P; = 10 dBm,
By = B = B3 = 1, and Ay = A3 = 1 unit/km?. The pa-
rameter values ¥ = 3 and v = 60 km/h are used for both
Fig. 5 and Fig. 6.

Fig. 5 illustrates that increasing A1 leads to higher type
1 — 1 handoff rate but lower type 2 — 2 handoff rate. Fig. 6
illustrates that increasing A2 leads to higher type 2 —2 hand-
off rate but lower type 1 —1 and 1 — 3 & 3 — 1 handoff rates.
Both observations suggest that increasing the BS intensity
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Figure 7: Two-tier case: handoff rates under differ-
ent Bi.

10!

Figure 8: Three-tier case: handoff rates under dif-
ferent B-.

of one tier causes higher horizontal handoff rate within this
tier, but lower handoff rates outside this tier.

5.4.3 Handoff Rates under Different Association Bias
Values

Next, we study handoff rates under different association
bias values. Fig. 7 shows a two-tier case, with parameters
as follows: P1 = 30 dBm, P, = 20 dBm, B2 = 1, and
A = X2 = 1 unit/km?. Fig. 8 shows a three-tier case,
with parameters as follows: P; = 30 dBm, P, = 20 dBm,
P3 =10 dBIIl7 Bl = Bg = 1, )\1 = )\2 = )\3 =1 unit/ka.
The parameter values v = 3 and v = 60 km/h are used for
both Fig. 7 and Fig. 8. These figures suggest that, increasing
the association bias value of one tier has a similar effect as
increasing the BS intensity of this tier, leading to higher
horizontal handoff rate within this tier, but lower handoff
rates outside this tier.

6. CONCLUSIONS

In this work, we provide a theoretical framework to study
user mobility in heterogeneous multi-tier cellular networks.
Through establishing a stochastic geometric framework, we
fully capture the irregularly shaped network topologies in-
troduced by the small-cell structure. Theoretical expressions
for the rates of all types of handoffs experienced by an active
UE with arbitrary movement trajectory are derived. Empir-
ical study on the Yonsei Trace and extensive simulation are
conducted, validating the accuracy and usefulness of our an-
alytical conclusions.
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8. APPENDIX

Proof. (a) Let E; denote the event that there is at least
one tier-i BS located in Si;(Ad). Then

P (0 € T (Ad)|R = ro, tier = k)

—1—P (EﬂEﬁﬂ...ﬂﬁm — 1o, tier = k)
K

=1 —exp <—Z |Ski(Ad)|)\i>
1=1

K
=1 —exp <— D 2\ AdroF (Bri) + O(Ad2))
=1
K
= 2\ AdroF(Bri) + O(Ad?). (24)

=1

Furthermore, according to the results in [27], the prob-
ability density function (pdf) of the distance between the
reference UE and the reference BS is

K
21
Fo(roltier = k) = Zk’“m oxp <—7rr%ZAi6?k>~ (25)

i=1
Also, we have P(tier = k) = Ay, thus

P (0 € T<2>(Ad))

K oo
= Z/ P(0 € T® (Ad)|R = 7o, tier = k)
k=170

- fi(roltier = k)P(tier = k)drg

K . K
= Z / 2T AL T0 eXP <71'7“§ Z )\Zﬁfk)
k=170

i=1

K
. <Z 20 AdroF (Br:) + O(Ad2)> dro

i=1

_ i Ak (Zf{ﬂ XiAdF (Bri) ‘;O(Ad2)) 7 (26)
k=1 (Zszl )‘Zﬂz?k) ’

which completes the proof of (a).
(b)
Similar to (26), if k # j we have

P (o € T,@(Ad))
_ /°° P(0 € T (Ad)|R = ro, tier = k) i (roltier = k)

’ - P(tier = k)dro
+ /Ooo P(0 € T} (Ad)|R = ro, tier = j) f; (roltier = j)

- P(tier = j)dro

Y (A AdF (Br;) + O(Ad?)) n A (A AdF (Bjr) + O(Ad?))

B K 3 K 3 '
(5,083 (ZH x3)
(27)
Otherwise, if £ = j we have
2
P (0 c T;fk) (Ad)) = Ak (/\kAd]:(l) + O(;,»Ad )) , (28)

(S nes)?

which completes the proof of (b). [J
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