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ABSTRACT
We consider the problem of fair multi-resource allocation for mobile

edge computing (MEC) with multiple access points. In MEC, user

tasks are uploaded over wireless communication channels to the

access points, where they are then processed with multiple types

of computing resources. What distinguishes fair multi-resource

allocation in the MEC environment from more general cloud com-

puting is that a user may experience different levels of wireless

channel quality on different access points, so that the user’s channel

bandwidth demand is not fixed. Existing resource allocation studies

for cloud computing generally consider Pareto Optimality (PO),

Envy-Freeness (EF), Sharing Incentive (SI), and Strategy-Proofness

(SP) as the most desirable fairness properties. In this work, we show

these properties are no longer compatible in MEC, since there exists

no resource allocation rule that can satisfy PO+EF+SP or PO+SI+SP.

Hence, we propose a resource allocation rule, called Maximum Task

Product (MTP), that retains PO, EF, and SI. Extensive simulation

driven by Google cluster traces further shows that MTP improves

resource utilization while achieving these fairness properties.
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1 INTRODUCTION
Computation offloading, i.e., uploading and executing jobs on a

remote server, is a strategy to overcome the restrictions of resource-

constrained mobile devices. Mobile cloud computing facilitates

computation offloading by providing access to the vast resource

hosted by clouds, e.g., Google Cloud Platform. However, the la-

tency experienced in reaching a distant cloud server through a

wide area network limits the effectiveness of mobile cloud com-

puting. In 2014, the European Telecommunications Standards Insti-

tute (ETSI) launched a new standardization group on the so-called

Mobile/multi-access Edge Computing (MEC) with the purpose of
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providing cloud computing capabilities within the radio access net-

work [3]. Hence, instead of utilizing the servers in the core network,

mobile users can offload their tasks to the MEC servers at the edge

of the network. MEC offers a service environment characterized by

proximity, low latency, high bandwidth, and personalized mobile

applications [9, 12].

MEC users often have direct access to utilize the computing ca-

pabilities of multiple MEC-capable access points (APs) to offload

their tasks. To execute a task at an AP, the task input data and exe-

cution results are sent through the shared wireless communication

link, which may have different channel quality for different APs.

In addition to this wireless communication resource, user tasks in

MEC further require multiple types of computing resources (e.g.,
CPU cores and memory) provided by the MEC servers [7]. Hence,

MEC is characterized by the allocation of multiple communica-

tion and computation resources. Different MEC tasks can consume

vastly different amounts of these resources. For instance, language

translation, face recognition, and augmented reality applications

typically have CPU-intensive tasks, graph analytics and data in-

dexing may have memory-bound tasks, and video processing and

vehicle-to-infrastructure communication services can bottleneck

on the wireless communication link bandwidth. Such high level of

diversity in resource demands significantly complicates resource

allocation in MEC. It is challenging to ensure efficient resource

utilization and fairness among MEC users that offload different

types of tasks. Indeed, it is non-trivial to even define fairness in the

multi-resource environment.

Yet, developing a fair resource allocation mechanism is of im-

mense significance to the quality of experience in MEC. To evaluate

the fairness of an allocation rule in the multi-resource computing

environment, it is common to check whether it satisfies several

core properties that are commonly considered as the most desir-

able [4, 6, 14, 17, 18]:

• Pareto Optimality (PO): increasing a user’s utility is impos-

sible without decreasing the utility of another user. This

property is critical to high resource utilization, e.g., to avoid

the trivial fairness of not allocating any resource to any user.

• Envy-Freeness (EF): no user prefers the allocation of another

user. This property avoids the user-perceived unfairness of

an allocation rule.

• Sharing Incentive (SI): the utility a user receives is at least as

much as the utility it receives from simply splitting the total

resources equally. This property ensures that the users are

motivated to participate in the resource allocation scheme.

• Strategy-Proofness (SP): the users cannot benefit by lying

about their resource demands. This property prevents users

from manipulating the scheduler.

https://doi.org/10.1145/3397166.3409144
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To achieve these fairness properties in the MEC environment

is more challenging than in those purely computing scenarios

in [4, 6, 14, 17, 18]. First, the communication resource and the

computing resources are substantially different. In particular, the

communication link is external to the computing servers residing

within an AP, while existing solutions require that there is at least

one server that has non-zero capacity in all resources. More impor-

tantly, the wireless channel quality to access different APs usually

is different, mainly due to the various distances between the users

and the APs. Thus, the link bandwidth demand of a user varies

from AP to AP. In contrast, existing solutions require fixed resource

demand regardless of computing servers. As explained in Sections 2

and 4, all of the existing fair allocation solutions fall short in the

MEC environment.

In this paper, we study the problem of fair resource allocation in

the MEC environment with multiple APs. The user tasks require

multiple computing resources and communication link bandwidth.

Moreover, the users may demand different communication link

bandwidth for different APs. Our contributions are as follows:

• We study the performance of existing allocation rules and

their direct extensions in MEC and show that they are no

longer effective. In particular, Dominant Resource Fairness

(DRF) does not ensure fairness when applied to MEC since

equalizing the users’ dominant share can violate EF. More-

over, allocation rules based on the Kalai-Smorodisky (KS) bar-

gaining solution, e.g., Task Share Fairness (TSF) andContainerized-
DRF (C-DRF), do not satisfy EF in MEC, either.

• We study the compatibility of the four core fairness proper-

ties in MEC with multiple APs. We show that EF, PO, and

SP cannot be satisfied simultaneously. Moreover, SI, PO, and

SP cannot be satisfied simultaneously, either. Hence, an allo-

cation rule that utilizes resources efficiently (i.e., satisfying
PO) can at best satisfy EF and SI.

• We propose a non-wasteful multi-resource allocation rule

for MEC with multiple APs, termed Maximum Task Product

(MTP). It is based on constrained maximization of the prod-

uct of number of tasks over all jobs. We show that it satisfies

PO, EF, and SI, which is the best result possible as explained

above.

• The performance and efficiency of MTP are further evaluated

and compared with existing allocation rules via trace-driven

simulation with Google cluster data. MTP is shown to pro-

mote efficient resource utilization and achieve superior job

completion time while maintaining user fairness.

The organization of this paper is as follows. In Sec. 2, we sum-

marize the existing multi-resource fair allocation solutions. After

describing the system model and allocation properties in Sec. 3,

we analyze the extended version of the existing allocation rules to

show how they fail in MEC in Sec. 4. In Sec. 5, first we present two

impossibility theorems to outline the limitations to multi-resource

fair allocation in MEC, and then we propose MTP for multi-APs

MEC and prove its multi-resource fairness properties. We further

evaluate the performance of MTP via trace-driven simulations in

Sec. 6 and give concluding remarks in Sec. 7.

2 RELATEDWORK
When a single resource, such as the communication bandwidth, is

shared among multiple users, max-min fairness satisfies PO, EF, SI,

and SP [6]. However, MEC is a multi-channel multi-rate environ-

ment. In general wireless communication systems, the proportional

fairness (PF) scheduling scheme has been used to provide balance

between throughput and fairness. Zhang et al. studied the applica-

tion of PF scheduling in the multi-channel multi-rate environment

in [10] and [22]. They show that PF satisfies PO and leads to equal

equivalent airtime (i.e., the weighted sum of the airtime of a user on

every channel with the weights being the “shadow price"). Several

algorithms were proposed to achieve PF allocation in multi-channel

multi-rate environments [23–25]. While these works address the

multi-rate property of the environment, they all limit the discussion

to a single type of resource (i.e., communication channel). However,

a resource allocation mechanism in MEC must assign computing

resources (e.g., CPU and memory) as well as communication link

bandwidth.

The problem of multi-resource allocation was studied by Gh-

odsi et al. [6] in the cloud computing environment. They proposed

Dominant Resource Fairness (DRF), an allocation mechanism that

describes a notion of fairness when allocating multiple types of

resources. DRF computes the share of demanded resources for each

user and finds each user’s dominant share. It then applies max-min

fairness across users’ dominant shares. Ghodsi et al. [6] proved that
DRF meets all four of the desirable properties (i.e., PO, EF, SI, and
SP) when all resources are pooled into a single server and tasks are

infinitesimally divisible. Parkes et al. [14] extended DRF and studied
the problem of indivisible tasks. They proved that no mechanism

satisfies PO, SI, and SP in that case.

While DRF and several subsequent works address the demand

heterogeneity of multiple resources, they all limit the discussion to

a simplified model where all resources are concentrated into one

server. However, in cloud computing andMEC environments, server

heterogeneity presents challenges to developing a fair resource allo-

cation mechanism. In systems with multiple heterogeneous servers,

applying DRF per server may lead to allocation with arbitrarily

low resource utilization [18]. Instead of allocating resources sepa-

rately in each server, DRF for Heterogeneous servers (DRFH) jointly

considers resource allocation across all servers [18]. It defines the

global dominant share for a user based on the aggregate of all the

resources and then computes the max-min optimal allocation re-

garding the global dominant shares. DRFH satisfies PO, EF, and

SP [18].

In [17] and [4], although not explicitly stated as such, the pro-

posed allocation rules can be considered as variants of the Kalai-

Smorodisky (KS) bargaining solution. Wang et al. [17] proposed
Task Share Fairness (TSF), and showed that it satisfies the four

properties even in the existence of task placement constraints and

heterogeneous servers. Unlike previous mechanisms, Friedman et
al. [4] directly allocated containers, which are isolated bundles of

resources. This differs from the model in [6, 17, 18] as users cannot

combine bundles. They proved that in both single-server and multi-

server systems, no deterministic mechanism allocating containers

to users could satisfy PO, SI, and SP simultaneously. Instead, Fried-

man et al. [4] propose Containerized-DRF (C-DRF), a randomized
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Figure 1: Illustrative example of system model.

mechanism, which satisfies all of the desired properties on average

(in an ex-ante sense) in multiple servers with indivisible jobs.

Although DRFH, C-DRF, and TSF consider resource allocation

across heterogeneous servers, they cannot be directly applied to

MEC. These mechanisms require a server in which every type of

resource is contained. In MEC, however, in addition to computing

resources, the wireless communication link is the resource that

exists outside the computing servers (i.e., shared by the servers). The
problem of multi-resource fair allocation in an MEC environment

with a single AP was studied in [13], where DRF with an External

Resource (DRF-ER) was proposed and shown to satisfy PO, EF, and

SP. However, DRF-ER was proposed for a single AP, and it fails to

capture the impact of multi-rate channels when there are multiple

APs. More specifically, we are interested in MEC where the users’

communication bandwidth demand differs from AP to AP. DRF and

its follow-up work are not suitable for such environments.

In Sec. 4, we will provide a more detailed discussion on the failure

of existing solutions when applied to MEC, after we present the

mathematical model of the system in the next section.

3 SYSTEM MODEL AND ALLOCATION
PROPERTIES

We consider an MEC environment with a set of APs, denoted by

E, each equipped with edge computing servers, as illustrated in

Figure 1. A set of users access the edge computing services over

the shared communication links. We denote the set of users by J

and the set of computing servers on AP e by Se . Let R be the set of

resources in the servers (e.g., CPU and memory). For server s ∈ Se ,

its capacity for resource r is denoted by ce,s,r , and its capacity pro-

file is ce,s =
(
ce,s,r

)
r ∈R . Without loss of generality, we normalize

the aggregate capacity of any computational resource r ∈ R to one

(i.e.,
∑
e ∈E

∑
s ∈S

ce,s,r = 1).
1
We denote the MEC computational capac-

ity profile in AP e by ce =
(
ce,s

)
s ∈Se and the MEC computational

capacity profile by c = (ce )e ∈E .
The wireless communication link of each AP is a dedicated re-

source that exists outside of the computing servers. All users share

this link when they upload their tasks to the servers at the AP. Let

the link bandwidth of AP e be cBWe , and
ˆR be the augmented set

of resources which is constructed by adding the external resource

(i.e., bandwidth) to the set of computational resources R. Without

loss of generality, we normalize the link bandwidth of AP e to one

1
We can achieve this by scaling the resource capacity and users’ demand.

(i.e., cBWe = 1). However, we emphasize here that the actual physi-

cal link bandwidth, when measured in Hz, of different APs in our

model usually have different values.

Users in the MEC environment require computing resources and

wireless communication bit rate in a customized proportion. For any

resource r ∈ R, user j requires dj,r share of the aggregate capacity

of resource r , and bit rate ρ j per task. To achieve this bit rate, user j

requires dBWj,e of the link bandwidth of AP e . User j may experience

different level of wireless channel quality on each AP. For instance,

consider the example in Figure 1 where the distances from User 1

to different APs are different. Hence, dBWj,e can be different for each

e ∈ E, which is a distinguishing characteristic of multi-AP MEC

that renders existing solutions ineffective (see Sec.4). We denote

the demand profile of user j by dj =
( (
dj,r

)
r ∈R ,

(
dBWj,e

)
e ∈E

)
.

Let ABW

j,e be the share of bandwidth of AP e that is allocated to

user j, and Aj,e,s,r be the share of computational resource r that
is allocated to user j in server s of AP e . We denote the resource

allocation profile of user j byAAAj where

AAAj =
( (
Aj,e,s,r

)
{r ∈R, s ∈Se , e ∈E}

,
(
ABW

j,e

)
e ∈E

)
.

Given some resource allocation profile AAAj , the number of tasks

that user j can execute in server s ∈ Se of AP e ∈ E is no more

than min

r ∈R

{
Aj,e,,s,r
dj,r

}
. Hence, the number of tasks that this user can

execute in AP e ∈ E is no more than

∑
s ∈Se

min

r ∈R

{
Aj,e,,s,r
dj,r

}
. Moreover,

the number of tasks that user j can execute in AP e ∈ E is bounded

by

ABW

j,e

dBW

j,e
. Therefore, the number of tasks that this user can execute

in AP e ∈ E is min

{
ABW

j,e

dBW

j,e
,

∑
s ∈Se

min

r ∈R

{
Aj,e,s,r
dj,r

}}
. Thus, the total

number of tasks that user j can execute is given by the following

utility function.

uj
(
AAAj

)
=

∑
e ∈E

min


ABW

j,e

dBWj,e
,
∑
s ∈Se

min

r ∈R

{
Aj,e,s,r

dj,r

} . (1)

An MEC environment E is a tuple

E =
(
E, (Se )e ∈E , ˆR, c,

(
cBWe

)
e ∈E
,J , u

)
,

where u =
(
uj

)
j ∈J is the set of utility functions, which we term the

preference profile. Let x j,e,s denote the number of tasks that user

j can execute in server s of AP e . Let xj and x denote user j’s and

all users’ task allocation profiles where xj =
( (
x j,e,s

)
s ∈Se

)
e ∈E

,

and x =
(
xj

)
j ∈J . Given the environment E, the set of feasible task

allocation is defined as

χ (E) =

{
x | x j,e,s ≥ 0,

∑
j ∈J

∑
s ∈Se

x j,e,s d
BW

j,e ≤ 1,

∑
j ∈J

x j,e,s du,r ≤ ce,s,r , j ∈ J , e ∈ E, s ∈ Se , r ∈ R

}
. (2)

Definition 1 (Resource Allocation Rule). An allocation rule is

a pair of functions (f , F ) that specifies for each environment E
a non-wasteful allocation, where f and F specify the number of
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allocated tasks and the amount of allocated resource, respectively.

We denote the number of tasks allocated to user j in server s of
AP e by fj,e,s (E). The share of computational resource r that is

allocated to user j in server s of AP e is denoted by Fj,e,s,r (E), and
the share of bandwidth of AP e that is allocated to user j is denoted
by FBWj,e (E).

The resource allocation profile of user j derived by rule (f , F ) is
denoted by

FFF j (E) =
( (
Fj,e,s,r (E)

)
{r ∈R, s ∈Se , e ∈E}

,
(
FBWj,e (E)

)
e ∈E

)
.

Definition 2 (Non-wasteful Resource Allocation Rule). To

avoid waste, redundant resources should not be allocated. Allo-

cation rule (f , F ) is non-wasteful if

Fj,e,s,r (E) = fj,e,s (E) dj,r , (3)

FBWj,e (E) =
∑
s ∈Se

fj,e,s (E) d
BW

j,e . (4)

for any j ∈ J , e ∈ E, s ∈ Se , and r ∈ R. Thus, allocating resource

and task are equivalent in a non-wasteful allocation rule.

We are interested in non-wasteful allocation rules with efficient

MEC resource utilization. To that end, we define Pareto optimality

as follows:

Definition 3 (Pareto Optimality (PO)). Allocation rule (f , F ) is
Pareto optimum, if for any environment E, there exists no feasible

allocation y ∈ χ (E) such that

∑
e ∈E

∑
s ∈Se

yi,e,s ≥
∑
e ∈E

∑
s ∈Se

fi,e,s (E)

for all i ∈ J , and

∑
e ∈E

∑
s ∈Se

yj,e,s >
∑
e ∈E

∑
s ∈Se

fj,e,s (E) for some

j ∈ J .

The fairness-related properties, i.e., envy-freeness and sharing

incentive, are very familiar in the literature (see Sec. 1). First, we

define envy-freeness for the MEC environment which embodies

the basic meaning of fairness in the sense that no user envies the

allocation of another.

Definition 4 (Envy-Freeness (EF)). Allocation rule (f , F ) is envy-
free, if for any environment E, no user prefers the allocation of

another user, i.e., uj (FFF i (E)) ≤ uj
(
FFF j (E)

)
for any environment E

and users i, j ∈ J .

In a multi-resource system in which all resources are pooled into

a single server, an allocation satisfies sharing incentive if no user

receives utility less than what it can receive under equal division of

resources [6]. However, there can be many possible equal division

of resources when there are more than one server in the system. In

this paper, we focus on the case when each server is equally divided

among all users.

Definition 5 (Sharing Incentive (SI)). Allocation rule (f , F ) sat-
isfies sharing incentive, if for any environment E, the total number

of tasks each user is allowed to process is at least as much as the

total number of tasks the user would be allowed to process if each

server were equally divided among the users.

Finally, to prevent users from gaming the allocation mechanism

we consider strategy-proofness.

Definition 6 (Strategy-Proofness (SP)). Let

E =
(
E, (Se )e ∈E , ˆR, c,

(
cBWe

)
e ∈E
,J , u

)
be an arbitrary environment in which user j reports its true demand,

i.e., dj,r , for all resources in ˆR. Moreover, let

E ′ =
(
E, (Se )e ∈E , ˆR, c,

(
cBWe

)
e ∈E
,J , u′

)
be the environment in which user j reports fake demand d′j , where
d′j , dj . Allocation rule (f , F ) satisfies SP if no user benefits from

reporting fake demand, i.e., uj
(
FFF j (E

′)
)
≤ uj

(
FFF j (E)

)
.

To satisfy these fairness properties, existing allocation rules in

the fair multi-resource allocation literature all make the assumption

that a user demands a fixed amount of a resource across different

servers [4, 6, 13, 14, 17, 18]. However, in the multi-AP MEC en-

vironment, a user’s channel bandwidth demand is not fixed, and

in Sec. 4 we will show that existing allocation rules are no longer

effective. Our objective is to develop a multi-resource fair allocation

scheme for this unique MEC environment, which retains the most

important fairness properties. However, in Sec. 5 we show that it is

impossible to attain all four properties altogether. Hence, we then

focus on designing an allocation rule that is efficient and fair, i.e.,
one that satisfies PO, EF, and SI.

4 FAILURE OF EXISTING ALLOCATION
RULES

In this section, we study the existing allocation rules in the literature.

We show that directly extending these allocation rules to MEC

cannot satisfy the required properties even in some simple cases.

4.1 Equal Division
We start with the simplest allocation rule, namely Equal Division

(EQ), which equally divides all the resources among the users. EQ

is guaranteed to satisfy EF and SI since all users receive the same

allocation. Moreover, EQ does not depend on the users’ reported

demands, so it satisfies SP as well. However, it is easy to see that

EQ generally is not Pareto optimum. In Sec. 6, we show resources

are utilized poorly under EQ in realistic scenarios.

4.2 Dominant Resource Fairness
Ghodsi et al. [6] proposed DRF, an allocation mechanism that de-

scribes a notion of fairness when allocating multiple types of re-

sources in a single computing server. DRF and its extensions (e.g.,
DRFH [18] and DRF-ER [13]) find the most demanding resource of

a user (i.e., dominant resource) and compute the share of dominant

resource for each user (i.e., dominant share). Max-min fairness is

applied across the users’ dominant shares. Ghodsi et al. proved that
DRF meets the four desirable properties (i.e., PO, EF, SI, and SP)

when tasks are infinitesimally divisible.

The following example shows that applying max-min fairness

across the users’ dominant shares is not enough to satisfy PO or EF

inMECwithmultiple APs, even in the simplified case with demands

on only the bandwidth resource. Consider an MEC environment

that consists of two users (i.e. user i and user j) with an unlimited

number of tasks and two APs, a and b. Let the users’ demands be



Fair Multi-resource Allocation in Mobile Edge Computing with Multiple Access Points Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

dBWi,a = 1, dBWi,b = 1/10, and dBWj,a = 1/10, dBWj,b = 1. There is an

infinite number of resource allocation realizations with the max-

min fair dominant shares (i.e., 1/2 for each user). Unfortunately, DRF
is unable to differentiate between these realizations. For instance,

consider the following resource allocation realizations. The first

assigns AP a to user i and AP b to user j, and the second assigns

AP b to user i and AP a to user j. Both of these realizations satisfy

max-min fairness of dominant shares. However, the first one is

neither Pareto optimum nor envy-free, while the second one is

Pareto optimum and envy-free.

4.3 Relative Task Fairness
In the case of cloud computing environemnts with a single server

and divisible jobs, DRF can be interpreted as the KS bargaining so-

lution [5, 8]. Notice that user j’s dominant share (i.e., x jmax

r ∈R

{
dj,r

}
)

is equal to the ratio of allocated jobs to user j divided by the num-

ber of potential jobs for user j if it had the entire server to itself

(i.e., x j
1/max

r ∈R
{dj,r }

). Hence, DRF applies max-min fairness across the

users’ relative number of tasks, which is the KS bargaining solution.

This interpretation is adopted in C-DRF and TSF to allocate

resources in cloud computing environments with heterogeneous

servers [4, 17]. C-DRF specializes in indivisible tasks. In the case of

divisible tasks with placement constraints, Wang et al. show that

the KS bargaining solution derived by TSF satisfies PO, EF, SI, and

SP. However, the following example shows that the KS bargaining

solution fails to satisfy EF or SP in MEC environments, even in the

simplified case with demands on only the bandwidth resource.

Consider an MEC environment with two APs, namely a and b.
Let the link bandwidth demands of users i , j, and k be as follows:

dBWi,a = 1, dBWj,a = 6/20, dBWk,a = 13/20,

dBWi,b = 1/160, dBWj,b = 3/20, dBWk,b = 7/20.

Figure 2(a) shows users’ share derived from a resource allocation

rule based on the KS bargaining solution, using TSF as an example.

This allocation rule satisfies PO (the proof is similar to the proof

for DRF) and SI (maximizing the equalized relative number of tasks

guarantees each user’s utility to be better than that of the equal

share). However, this resource allocation is not envy-free since user

i benefits from exchanging allocation with user j.
More generally, in Sec. 5, Theorem 2 states that there exists

no allocation rule that satisfies PO, SI , and SP altogether in MEC

with multiple APs. Hence, the resource allocation rule based on the

KS bargaining solution (e.g., either C-DRF or TSF) cannot satisfy
SP. Figure 2(b) depicts the KS bargaining solution when user i
misreports its demand on AP b as d ′BWi,b = 0.5. This figure shows

that the KS bargaining solution is not immune to the strategic

behavior since user i could benefit from reporting a fake demand.

5 FAIR MULTI-RESOURCE ALLOCATION
WITH MAXIMUM TASK PRODUCT

In MEC with multiple APs, user demand for communication band-

width is not fixed and depends on the AP. In this section, we first

prove the impossibility of satisfying the four properties, PO, EF,

SI, and SP, altogether. To be more specific, a resource allocation

(a) TSF with true de-

mands

(b) TSF with fake de-

mands

Figure 2: TSF allocation. (a) All users report their real de-
mand. User i benefits from exchanging allocation with user
j. (b) User i increases its number of tasks by reporting fake
demand.

rule that satisfies PO and EF (or PO and SI) violates SP, necessarily.

Hence, we propose a non-wasteful fair multi-resource allocation

rule, termed Maximum Task Product, and prove that it satisfies PO,

EF, and SI for any number of APs.

5.1 Impossibility Results
First, we present the following three lemmas that concern an envy-

free and Pareto optimal allocation in a simplified MEC environment

with two APs. These lemmas will be used in to prove Theorems 1

and 2 where we address general MEC environment with more APs.

Lemma 1. Consider an MEC environment E with E = {e1, e2},
ˆR = {BW}, and J = {i, j}. If

dBWi,e2

dBWi,e1

<
dBWj,e2

dBWj,e1

< 1, (5)

an allocation rule (f , F ) that satisfies PO and EF must have

FBWi,e1 (E) = 1 − FBWj,e1 (E) = 0, FBWi,e2 (E) = 1 − FBWj,e2 (E) = β,

where β is restricted by the following constraint:

1

2

(
1 +

dBWi,e2

dBWi,e1

)
≤ β ≤

1

2

(
1 +

dBWj,e2

dBWj,e1

)
. (6)

Proof. The allocation rule (f , F ) that satisfies PO must utilize

the bandwidth resource entirely. Hence, we have FBWi,e1 (E) = 1 −

FBWj,e1 (E) = α and FBWi,e2 (E) = 1 − FBWj,e2 (E) = β , for some 0 ≤ α , β ≤ 1.

We study the four possible cases for α and β , and show that only

the case (α = 0, 0 < β < 1) with constraint (6) can satisfy both PO

and EF.

Case 1.I (α = 0, β = 0). In this case, user i envies user j. Hence,
(f , F ) cannot satisfy EF in this case.

Case 1.II (0 ≤ α ≤ 1, β = 1). It is easy to show that user j envies
user i , for all 0 ≤ α ≤ 1. Thus, (f , F ) cannot satisfy EF in this case.

Case 1.III (0 < α ≤ 1, 0 ≤ β < 1). We construct the new allocation

profilesAAAi andAAAj from FFF i and FFF j by having user i giving away ϵ
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on e1 and recieving ϵ
dBW

i,e
2

dBW

i,e
1

on e2, where ϵ = min

{
α ,

dBW

i,e
1

dBW

i,e
2

(1 − β)

}
.

It is easy to check that AAAi and AAAj are feasible allocation profiles.

Then, we have

ui (AAAi ) =
α − ϵ

dBWi,e1

+

β + ϵ
dBW

i,e
2

dBW

i,e
1

dBWi,e2

= ui (FFF i (E)),

uj (AAAj ) =
1 − α + ϵ

dBWj,e1

+

1 − β − ϵ
dBW

i,e
2

dBW

i,e
1

dBWj,e2

= uj (FFF j (E)) +
ϵ

dBWj,e1

−

ϵ
dBW

i,e
2

dBW

i,e
1

dBWj,e2

.

(7)

Equations (5) and (7) imply that uj (AAAj ) > uj (FFF j (E)). Hence, (f , F )
cannot satisy PO in this case.

Case 1.IV (α = 0, 0 < β < 1). Consider a feasible allocation

ABW

i,e1
= 1 − ABW

j,e1
= θ and ABW

i,e2
= 1 − ABW

j,e2
= γ , where ui (AAAi ) ≥

ui (FFF i (E)) and uj (AAAj ) ≥ uj (FFF j (E)).

ui (AAAi ) ≥ ui (FFF i (E)) ⇒
θ

dBWi,e1

+
γ

dBWi,e2

≥
β

dBWi,e2

⇒ θ
dBWi,e2

dBWi,e1

≥ β − γ (8)

uj (AAAj ) ≥ uj (FFF j (E)) ⇒
1 − θ

dBWj,e1

+
1 − γ

dBWj,e2

≥
1

dBWj,e1

+
1 − β

dBWj,e2

⇒ β − γ ≥ θ
dBWj,e2

dBWj,e1

(9)

Equations (5), (8), and (9) are at odds unless θ = 0 and γ = β . Con-
sequently, AAAi = FFF i (E) and AAAj = FFF j (E). Hence, ui (AAAi ) ≥ ui (FFF i (E))
and uj (AAAj ) ≥ uj (FFF j (E)) imply ui (AAAi ) = ui (FFF i (E)) and uj (AAAj ) =

uj (FFF j (E)), for all 0 < β < 1. Thus, (f , F ) satisfies PO in this case.

Moreover, to satisfy EF we must have

ui (FFF i (E)) ≥ ui (FFF j (E)) ⇒
β

dBWi,e2

≥
1

dBWi,e1

+
1 − β

dBWi,e2

⇒ β ≥
1

2

(
dBWi,e2

dBWi,e1

+ 1

)
, (10)

uj (FFF j (E)) ≥ uj (FFF i (E)) ⇒
1

dBWj,e1

+
1 − β

dBWj,e2

≥
β

dBWj,e2

⇒
1

2

(
dBWj,e2

dBWj,e1

+ 1

)
≥ β . (11)

Equations (10) and (11) imply (6). □

Lemma 2. Consider an MEC environment E with E = {e1, e2},
ˆR = {BW}, and J = {i, j}. If

1 <
dBWi,e2

dBWi,e1

<
dBWj,e2

dBWj,e1

, (12)

an allocation rule (f , F ) that satisfies EF and PO must have

FBWi,e1 (E) = 1 − FBWj,e1 (E) = α , FBWi,e2 (E) = 1 − FBWj,e2 (E) = 1,

where α is restricted by the following constraint:

1

2

(
1 −

dBWi,e1

dBWi,e2

)
≤ α ≤

1

2

(
1 −

dBWj,e1

dBWj,e2

)
. (13)

Proof. Lemma 1 is equivalent to Lemma 2 if we swap users and

APs and set α = 1 − β . □

Lemma 3. Consider an MEC environment E with E = {e1, e2},
ˆR = {BW}, and J = {i, j}. If

dBWi,e2

dBWi,e1

< 1 <
dBWj,e2

dBWj,e1

, (14)

an allocation rule (f , F ) that satisfies PO and EF must have

FBWi,e1 (E) = 1 − FBWj,e1 (E) = 0, FBWi,e2 (E) = 1 − FBWj,e2 (E) = β, (15)

or

FBWi,e1 (E) = 1 − FBWj,e1 (E) = α , FBWi,e2 (E) = 1 − FBWj,e2 (E) = 1, (16)

where α and β are restricted by the following constraints:

1

2

(
1 +

dBWi,e2

dBWi,e1

)
≤ β ≤ 1, 0 ≤ α ≤

1

2

(
1 −

dBWj,e1

dBWj,e2

)
(17)

Proof. The proof outline of Lemma 3 is similar to that of Lemma 1

and is omitted due to space constraint. □

Now we can prove that PO, EF, and SP are not compatible in an

MEC environment with multiple APs.

Theorem 1. There exists no allocation rule (f , F ) that can satisfy

PO, EF, and SP altogether for MEC environments with |E | > 1.

Proof. It suffices to construct a counter-example for MEC en-

vironments for each of |E | > 1. Let the allocation rule (f , F ) be
PO and EF. We first consider the case for |E | = 2 and construct

an environment such that there is always a user who can benefit

from lying. Consider an MEC environment E with E = {e1, e2},
ˆR = {BW}, and J = {i, j}, where (14) holds. Lemma 3 suggests

two possible scenarios.

Scenario 1.I (Allocations are given by (15), and β is constrained by

(17)). The number of tasks that user i can execute is
β

dBW

i,e
2

. Suppose

user i reports fake demand profile ddd ′i such that 1 <
d ′BW
i,e

2

d ′BW
i,e

1

<
dBW

j,e
2

dBW

j,e
1

.

We denote the new environment in which user i reports the fake
demand ddd ′i by E ′. By Lemma 2, ui (FFF i (E

′)) = α
dBW

i,e
1

+ 1

dBW

i,e
2

, where

1

2

(
1 −

d ′BWi,e1

d ′BWi,e2

)
≤ α ≤

1

2

(
1 −

dBWj,e1

dBWj,e2

)
.

Since α > 0, user i could benefit from lying.

Scenario 1.II (Allocations are given by (16), and α is constrained by

(17)). The number of tasks that user j can execute is
1−α
dBW

j,e
1

. Suppose

user j reports fake demand profile ddd ′j such that

dBW

i,e
2

dBW

i,e
1

<
d ′BW
j,e

2

d ′BW
j,e

1

< 1.
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We denote the new environment in which user i reports the fake

demand ddd ′j by E ′. By Lemma 1, uj
(
FFF j (E

′)
)
= 1

dBW

j,e
1

+
1−β
dBW

j,e
2

, where

1

2

(
1 +

dBWi,e2

dBWi,e1

)
≤ β ≤

1

2

(
1 +

d ′BWj,e2

d ′BWj,e1

)
.

Since β < 1, user j could benefit from lying.

Consequently, PO, EF, and SP are not compatible for MEC envi-

ronments with |E | = 2.

For the case of more than two APs, consider as counter example

an MEC environment E with |E | > 2,
ˆR = {BW}, and J = {i, j}.

Furthermore, consider the scenario where the set of access points

is partitioned into two arbitrary non-empty disjoint sets E1 and E2

(i.e., E1 ∪ E2 = E and E1 ∩ E2 = ∅) and a user have equal demands

on all APs in a partition, i.e., for any AP in E1, the demands of

user i and j are dBWi,E1

and dBWj,E1

, respectively, and for any AP in

E2, the demands of user i and j are dBWi,E2

and dBWi,E2

, respectively.

This example is similar to an environment of two APs where the

demands of users for APs 1 and 2 are normalized by |E1 | and |E1 |,

respectively. Let the allocation rule (f , F ) be PO and EF. Analogous

to the case of |E | = 2 above, we can show that there exists a user

who can benefit from lying when

dBWi,a2/|E2 |

dBWi,a1/|E1 |
< 1 <

dBWj,a2/|E2 |

dBWj,a1/|E1 |
,

thus completing the construction of a counter-example for |E | >

2. □

Theorem 2. There exists no allocation rule (f , F ) that can satisfy

PO, SI, and SP altogether for MEC environments with |E | > 1.

Proof. We will reuse the counter examples in the proof of The-

orem 1. First we show that SI implies EF for any MEC environemnt

E with |E | > 1,
ˆR = {BW}, and J = {i, j}. Suppose the allocation

rule (f , F ) satisfies SI. Then

ui (FFF i (E)) ≥
∑
e ∈E

1/2

dBWi,e
. (18)

Moreover, given any allocation rule (f , F ) and the environment E
as described above, we have

ui (FFF i (E)) + ui
(
FFF j (E)

)
≤

∑
e ∈E

1

dBWi,e
. (19)

Equations (18) and (19) indicate that user i cannot envy user j’s
allocation. Similarly, user j does not envy user i’s allocation. Hence,
the non-wasteful allocation rule (f , F ) satisfies EF. Since we have
already shown in Theorem 1 that PO, EF, and SP are incompatible,

there cannot exist any allocation rule that satisfies PO, SI, and SP

altogether for this couter-example. □

5.2 MTP and Properties
Theorems 1 and 2 indicate that one has to be less strict with the

allocation properties. In this section, we present a non-wasteful

fair multi-resource allocation for MEC environments, termed MTP,

which satisfies PO, EF, and SI.

We represent this allocation rule by (λ,Λ), where λ, and Λ corre-

spond to f and F in Definitions 1 and 2, respectively. It is based on

the following convex optimization problem, which can be solved

efficiently by well-known numerical methods.

maximize

x j,e,s

∑
j ∈J

log

∑
e ∈E

∑
s ∈Se

x j,e,s (20a)

subject to∑
j ∈J

x j,e,s dj,r ≤ ce,s,r , e ∈ E, s ∈ Se , r ∈ R, (20b)∑
j ∈J

∑
s ∈Se

x j,e,s d
BW

j,e ≤ cBWe , e ∈ E . (20c)

Let x∗j,e,s be the optimizer of problem (20). Then the number of

tasks allocated by function λ is set to

λj,e,s (E) = x∗j,e,s ,

and the resource allocation function Λ follows (3) and (4). The

term MTP reflects the fact that the sum of log terms in (20a) is

equivalent to the product of number of tasks over all jobs. We note

here that although (20a) has the form of PF, as explained in Sec. 2,

existing solutions based on PF cannot be applied to multi-resource

schedule in the MEC environment. In the following, we show that

the proposed non-wasteful allocation rule (λ,Λ) satisfies PO, EF,
and SI.

Theorem 3. The non-wasteful allocation rule (λ,Λ) is Pareto op-

timal.

Proof. Let us assume by way of contradiction that there exists

an environment E such that the allocation derived by rule (λ,Λ)
does not satisfy PO. Then, there exists some task allocation profile

yyy ∈ χ (E) that Pareto dominates λλλ(E). Therefore,∑
e ∈E

∑
s ∈Se

yj,e,s ≥
∑
e ∈E

∑
s ∈Se

λj,e,s (E),

for all j ∈ J , and there exists some i ∈ J such that,∑
e ∈E

∑
s ∈Se

yi,e,s >
∑
e ∈E

∑
s ∈Se

λi,e,s (E).

Consequently,∑
j ∈J

log

∑
e ∈E

∑
s ∈Se

yj,e,s >
∑
j ∈J

log

∑
e ∈E

∑
s ∈Se

λj,e,s (E)

=
∑
j ∈J

log

∑
e ∈E

∑
s ∈Se

x∗j,e,s .

This contradicts the fact that x∗j,e,s is the optimal solution to prob-

lem (20). □

Theorem 4. The non-wasteful allocation rule (λ,Λ) is envy-free.

Proof. By way of contradiction, suppose user u envies user v .
Then, for all r ∈ R∑

e ∈E

∑
s ∈Se

dv,r λv,e,s (E) >
∑
e ∈E

∑
s ∈Se

du,r λu,e,s (E), (21)

and ∑
e ∈E

∑
s ∈Se

dBWv,e

dBWu,e
λv,e,s (E) >

∑
e ∈E

∑
s ∈Se

λu,e,s (E). (22)
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Since problem (20) is convex with affine constraints, λj,e,s (E) =

x∗j,e,s is optimal if and only if there exists a set of multipliers, µ,γBW,

and ρ, such that the KKT conditions are satisfied [1]. Therefore, for

any e ′ ∈ E and s ′ ∈ Se ′ , we have

1∑
e ∈E

∑
s ∈Se

λu,e,s (E)
=

∑
r ∈R

µe ′,s ′,rdu,r + γ
BW

e ′ dBWu,e ′ − ρu,e ′,s ′ .

(23)

This implies that

1 ≤
∑
r ∈R

µe ′,s ′,r
∑
e ∈E

∑
s ∈Se

du,r λu,e,s (E)

+ γBWe ′
∑
e ∈E

∑
s ∈Se

dBWu,e ′λu,e,s (E)

(a)
<

∑
r ∈R

µe ′,s ′,r
∑
e ∈E

∑
s ∈Se

dv,r λv,e,s (E)

+ γBWe ′
∑
e ∈E

∑
s ∈Se

dBWv,e ′λv,e,s (E)

− γBWe ′

[ ∑
e ∈E

∑
s ∈Se

dBWv,e ′λv,e,s (E) −
∑
e ∈E

∑
s ∈Se

dBWu,e ′λu,e,s (E)

]
, (24)

where (a) is due to (21).

Let E+v and S+v,e be

E+v =
{
e ∈ E |

∑
s ∈Se

λv,e,s (E) > 0

}
,

S+v,e =
{
s ∈ Se | λv,e,s (E) > 0

}
.

For any e+ ∈ E+v and s+ ∈ S+v,e+ , λv,e+,s+ (E) > 0. Hence,∑
r ∈R

µe+,s+,r
∑
e ∈E

∑
s ∈Se

dv,r λv,e,s (E)+

γBWe+
∑
e ∈E

∑
s ∈Se

dBWv,e+λv,e,s (E) = 1. (25)

Equations (24) and (25) imply that∑
e ∈E

∑
e ∈Se

dBWv,e+λv,e,s (E) −
∑
e ∈E

∑
s ∈Se

dBWu,e+λu,e,s (E) < 0.

Thus,

dBWv,e+

dBWu,e+
<

∑
e ∈E

∑
s ∈Se

λu,e,s (E)∑
e ∈E

∑
s ∈Se

λv,e,s (E)
.

From this, we have∑
e ∈E

∑
s ∈Se

dBWv,e

dBWu,e
λv,e,s (E) =

∑
e+∈E+v

∑
s+∈S+

v,e+

dBWv,e+

dBWu,e+
λv,e+,s+ (E)

<

∑
e ∈E

∑
s ∈Se

λu,e,s (E)∑
e ∈E

∑
s ∈Se

λv,e,s (E)

∑
e+∈E+v

∑
s+∈S+

v,e+

λv,e+,s+

=

∑
e ∈E

∑
s ∈Se

λu,e,s (E)∑
e ∈E

∑
s ∈Se

λv,e,s (E)

∑
e ∈E

∑
s ∈Se

λv,e,s .

Hence, ∑
e ∈E

∑
s ∈Se

dBWv,e

dBWu,e
λv,e,s (E) <

∑
e ∈E

∑
s ∈Se

λu,e,s (E).

This contradicts (22), which is the supposition that user u envies

userv . Thus, the non-wasteful allocation rule (λ,Λ) satisfies EF. □

Now, let us define

ψi,e,s = min

r ∈R

{
ce,s,r
di,r

}
×min


cBWe
dBW

i,e∑
s ∈Se

min

r ∈R

{
ce,s,r
di,r

} , 1 .
Note that∑

e ∈E

∑
s ∈Se

ψi,e,s =
∑
e ∈E

min


cBWe

dBWi,e
,
∑
s ∈Se

min

r ∈R

{
ce,s,r
di,r

}
is the maximum number of tasks that user i can execute by monop-

olizing all resources in an MEC environment. Next, we show that

the non-wasteful allocation rule (λ,Λ) satisfies SI, i.e.,∑
e ∈E

∑
s ∈Se

λi,e,s (E) ≥

∑
e ∈E

∑
s ∈Se

ψi,e,s

|J |
, (26)

for any environment E and any user i ∈ J .

Theorem 5. The non-wasteful allocation rule (λ,Λ) satisfies SI.

Proof. Equation (23) implies that for any u ∈ J ,

ψu,e,s∑
e ∈E

∑
s ∈Se

λu,e,s (E)
≤

∑
r ∈R

µe,s,rdu,rψu,e,s

+ γBWe dBWu,eψu,e,s

≤
∑
r ∈R

µe,s,r ce,s,r + γ
BW

e dBWu,eψu,e,s .

Thus, ∑
e ∈E

∑
s ∈Se

ψu,e,s∑
e ∈E

∑
s ∈Se

λu,e,s (E)
≤

∑
e ∈E

∑
s ∈Se

∑
r ∈R

µe,s,r ce,s,r+∑
e ∈E

γBWe dBWu,e

∑
s ∈Se

ψu,e,s

≤
∑
e ∈E

∑
s ∈Se

∑
r ∈R

µe,s,r ce,s,r +
∑
e ∈E

γBWe cBWe . (27)

For all u ∈ J , e ∈ E, and s ∈ Se , λu,e,s (E)ρu,e,s = 0. Hence, by

multiplying (23) by λu,e,s (E) we have

λu,e,s (E)∑
e ∈E

∑
s ∈Se

λu,e,s (E)
=

∑
r ∈R

µe,s,r λu,e,s (E)du,r + γ
BW

e λu,e,s (E)d
BW

u,e .

This implies that

1 =
∑
r ∈R

∑
e ∈E

∑
s ∈Se

µe,s,r λu,e,s (E)du,r +
∑
e ∈E

γBWe

∑
s ∈Se

λu,e,s (E)d
BW

u,e .

Therefore,

|J | =
∑
r ∈R

∑
e ∈E

∑
s ∈Se

µe,s,r
∑
u ∈J

λu,e,s (E)du,r+
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∑
e ∈E

γBWe

∑
u ∈J

©­«
∑
s ∈Se

λu,e,s (E)
ª®¬dBWu,e .

Hence,

|J | =
∑
r ∈R

∑
e ∈E

∑
s ∈Se

µe,s,r ce,s,r +
∑
e ∈E

γBWe cBWe . (28)

Equations (27) and (28) imply (26). □

6 TRACE-DRIVEN SIMULATION RESULT
In Sec. 5, we have studied the desirable fairness properties of MTP.

In this section, we further evaluate its performance in resource

utilization and compare it with TSF and EQ. The former is the best

known fair multi-resource allocation rule for multiple servers, and

the latter provides strict multi-resource fairness by sacrificing re-

source utilization. It is worth mentioning that TSF is not directly

applicable to our problem, and we extend it by using (1) to find the

max-min fair allocation in terms of the users’ relative number of

tasks. We evaluate the performance of MTP in a realistic setting

via large-scale simulation using Google cluster traces [15], which

reports the resource usage for computing tasks from Google engi-

neers and services. Other publicly available traces, such as those

from Yahoo or Facebook [2], do not provide information on the

usage of different resources [16], so we cannot use those traces.

6.1 Experimental Setup
In Google cluster traces, jobs each consisting of multiple tasks are

submitted to the servers. The arrival time, duration, and resources

demand (CPU and memory) of the tasks are available in the traces.

Unfortunately, the wireless communication link bandwidth demand

is not provided by any of the publicly available traces. To model the

required bandwidth of the tasks, we assumed that dj,CPU fCPU =
Xρ j , where dj,CPU is the CPU demand of user j, fCPU is the CPU

frequency of the server, ρ j is the required bit rate of user j and
X is a random variable with Gamma distribution [11, 19–21]. In

this paper, we adopt the parameter settings of [21] and use shape

parameter α = 4 and rate parameter β = 200 to generate X . We

consider a general MEC system with frequency division multiple

access (FDMA) and estimate dBWj,e , the demanded link bandwidth

of user j on AP e , based on ρ j . The demanded link bandwidth of

user j on AP e is uniformly picked between

0.9ρ j
3.5W and

9ρ j
3.5W . Note

that the link bandwidth demands are normalized by the channels’

bandwidth, which is set to 20 MHz. We take the 7-hour computing

demand data from the Google traces and simulate their processing

on a smaller MEC environment with 5 APs. Table 1 shows the server

configuration at each AP. We randomly picked 10 percent of the

task submissions of jobs with completion time of less than two

hours to create a suitable task arrival data set for this MEC server

configuration.

6.2 Resource Utilization and Pareto Optimality
Since it is difficult to directly illustrate Pareto optimality, we use

resource utilization as a proxy. Figure 3 compares the resource

utilization of MTP, TSF, and EQ. This figure illustrates that MTP

and TSF outperform EQ in the utilization of all resources. This is

mainly because the latter relinquishes Pareto optimality to satisfy

Table 1: Server configuration. To show the relative capacity
of different servers, the resource demand and capacity are re-
normalized so that the maximum capacity of each resource
is 1.

Server 1 Server 2

CPU core GB memory CPU core GB memory

AP 1 0.25 1 - -

AP 2 0.25 0.75 0.75 0.25

AP 3 0.25 1 1 1

AP 4 1 1 0.5 0.75

AP 5 0.25 1 0.75 0.5
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Figure 3: Time series of resource utilization. The average re-
source utilization is denoted by µ.

strategy-proofness. Although TSF does not satisfy envy-freeness

as opposed to MTP, Figure 3 shows that TSF also has no advantage

over MTP in terms of resource utilization.

6.3 Fairness Properties
To study the performance of an allocation rule in terms of envy-

freeness, we present a notion of enviousness. The enviousness of

user i over j, denoted by ηi, j , is defined as the percentage increase

in the number of tasks when user i swaps its allocation with user j .
The maximum enviousness is η = max

i, j ∈J

{
ηi, j

}
. Figure 4 illustrates

the time series of maximum enviousness for the three allocation

rules. Since MTP and EQ satisfy EF, η always equal zero. However,

we observe that for more than 95% of the simulation duration, EF

was violated by TSF. Moreover, the enviousness of users in TSF is

substantial.

We remark that the three allocation rules satisfy SI, TSF by max-

imizing the equalized relative number of tasks which guarantees
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Figure 4: Time series of maximum enviousness.

each user’s utility to be better than that of the equal share; EQ by

equally sharing all resources; and MTP by Theorem 5. Therefore

we omit the experimental results on SI to avoid redundancy.
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Figure 5: Cumulative distribution function of job comple-
tion time. The average and standard deviation are repre-
sented by µ and σ , respectively.

6.4 Overall Job Completion Time
Figure 5 compares the cumulative distribution function of the job

completion time for the three allocation rules. The job completion

time of EQ is 30 minutes greater than that of MTP and TSF on aver-

age. Moreover, MTP provides a similar completion time distribution

as TSF, even though it guarantees EF while TSF does not.

7 CONCLUSION
In this paper, we consider a system where mobile users run their

tasks on MEC servers through multiple MEC-capable APs. Each

task requires a specific amount of computing resources and commu-

nication data. Since the wireless communication link exists outside

the computing servers, we cannot directly apply the conventional

multi-resource fair allocation mechanisms. Moreover, a user’s de-

mand for the link bandwidth differs among different APs. We show

that PO, EF, and SI are no longer compatible with SP in MEC with

multiple APs. For this environment, we have proposed the MTP

allocation rule, and shown that it satisfies PO, EF, and SI. Simulation

driven by Google cluster traces further shows that MTP improves

resource utilization while achieving these fairness guarantees.
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