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Abstract
This work addresses the trade-off between convergence and the

overall delay in heterogeneous distributed learning systems, where

the devices encounter diverse and dynamic communication con-

ditions. We propose to apply adaptive sparsification across the

devices and over iterations, formulating an optimization problem

to minimize the overall delay while ensuring a specified level of

convergence. The resultant stochastic optimization problem cannot

be handled by conventional Lyapunov optimization techniques due

to the dependency of the per-iteration objective function on the

previous iterations. To overcome this challenge, we propose AdaS-

parse, an online algorithm with a novel per-slot problem that can

be solved optimally by searching over a finite discrete space. We

further introduce a low-complexity approximation of AdaSparse,

termed LC-AdaSparse, which features linear computational com-

plexity and diminishing approximation error. We show that AdaS-

parse offers strong performance guarantees, simultaneously achiev-

ing sub-linear dynamic regret in terms of delay and the optimal

rate in terms of convergence. Numerical experiments on classifica-

tion tasks using standard datasets and various models demonstrate

that our approach effectively reduces the communication delay

compared with existing benchmarks, to achieve the same levels of

learning accuracy.
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1 Introduction
Distributed learning techniques such as distributed stochastic gra-

dient descent (DSGD) [27] rely on frequent parameter exchange
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between the server and the devices. With the advent of massive

deep neural networks (DNNs) comprising millions to billions of pa-

rameters, distributed learning imposes a significant communication

burden on the network. To reduce the volume of data exchanged,

sparsification—a prominent compression technique—has been pro-

posed, wherein each device transmits only a selected subset of gra-

dient vector entries to the server [1, 3, 19, 20]. This approach can

significantly speed up the training process by lowering per-iteration

communication delays. However, its lossy nature can negatively im-

pact training performance. Thus, an effective sparsification strategy

must balance the trade-off between convergence and the overall

communication delay.

Furthermore, in a heterogeneous system, the devices experience

diverse and dynamic environments, e.g., edge devices in a federated

learning (FL) setting may face different wireless channel conditions.

Assigning a uniform sparsification level to all devices is inefficient

since the devices with slower communication capabilities would

cause greater delays, potentially increasing the overall delay signif-

icantly. Therefore, the compression design should take the system

heterogeneity into account. In addition, during model training, both

the changing communication environment and the gradient con-

vergence introduce variation in the optimal sparsification level over

time. This leads to a challenging online optimization problem to

achieve dynamic adaptation both across the devices and throughout
the model training iterations.

While various studies aim to improve the convergence [5, 10,

14, 18, 23] of sparsification methods, the explicit trade-off between

convergence and the overall communication delay remains largely

under-explored, particularly in dynamic and heterogeneous en-

vironments where the devices’ communication conditions vary

during training (see further details in Section 2). In this work, we

aim to bridge this gap by addressing the aforementioned trade-off.

We consider sparsification in a distributed learning system where

the per-coordinate transmission delay varies across devices and

iterations. Our approach is to minimize the overall communication

delay required to achieve a certain level of convergence for the loss

function, by adaptively designing individualized and time-varying

sparsification levels for each device. To the best of our knowledge,

none of the existing schemes for sparsification directly addresses

the trade-off between convergence and delay.

This paper makes the following contributions:

• We propose an adaptive sparsification method, referred to as

AdaSparse, to enhance communication efficiency in DSGD.

We formulate an optimization problem with a long-term ob-

jective function that accounts for the system’s overall delay

over an arbitrary number of training iterations while impos-

ing a constraint to ensure a specified level of convergence
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for the loss function. We further derive a sufficient condi-

tion for convergence and reformulate the problem using this

condition as a surrogate convergence constraint.

• The reformulated problem involves both a long-term ob-

jective function and a long-term constraint, rendering it

challenging to solve. Furthermore, we observe an implicit

dependency of the per-iteration objective function on opti-

mization variables from previous iterations, so that standard

Lyapunov optimization techniques cannot be applied. Never-

theless, using a virtual queue approach we develop an online

algorithm for designing the sparsification levels. We further

propose LC-AdaSparse, a low-complexity variant of AdaS-

parse with linear computational complexity and diminishing

approximation gap.

• We analyze AdaSparse and establish an upper bound for its

dynamic regret, defined as the difference between the delay

achieved by the proposed algorithm and that of an algorithm

solving the per-iteration problem optimally. We demonstrate

that, under the assumption of bounded per-coordinate delay,

AdaSparse achieves O(𝑇
3−𝜇

2 ) dynamic regret, where𝑇 is the

number of training iterations and 𝜇 is a tunable parameter.

Furthermore, we show that when 𝜇 ≤ 2 AdaSparse recovers

the O( 1√
𝑇
) convergence rate for standard DSGD without

sparsification. Therefore, for 1 < 𝜇 ≤ 2, AdaSparse achieves

both sub-linear dynamic regret in terms of delay and the

optimal rate in terms of convergence.

• We conduct numerical experiments on distributed learning

with common classification tasks. Our results show that both

AdaSparse and LC-AdaSparse outperform several existing al-

ternatives, substantially reducing the overall communication

delay to achieve the same level of accuracy.

2 Related Work
2.1 Fixed Sparsification
In the standard sparsification approach, only a subset of the entries

from the local stochastic gradient, along with their indices, are

transmitted. Well-known vanilla sparsification approaches include

Top-𝑘 [1], which selects the 𝑘 entries with the highest magnitudes

for transmission, and the threshold-𝜈 method [19], which chooses

entries whose absolute values exceed a threshold 𝜈 .

These vanilla sparsification approaches are usually combined

with other techniques to enhance convergence. For example, the

error-feedback mechanism stores the error introduced by sparsifi-

cation, which is then added to the gradient in the next iteration to

improve convergence [3, 20]. As another example, Deep Gradient

Compression (DGC) [14] enhances training performance by incor-

porating momentum correction, local gradient clipping, momentum

factor masking, and warm-up training. Several approaches aim to

further improve the convergence of the Top-𝑘 method by approxi-

mating the global Top-𝑘 entries, which are the 𝑘 entries with the

largest magnitudes in the sum of all local gradients [5, 10, 18]. All of

these sparsification approaches apply a fixed sparsification scheme

(e.g., fixed 𝑘 in Top-𝑘) across devices and iterations, ignoring the

heterogeneous and dynamic conditions of the network.

2.2 Adaptive Sparsification
Several works have proposed adaptive schemes that adjust the

sparsification levels over the training iterations [8, 15, 21, 23]. An

unbiased sparse coding method was proposed in [23] to minimize

the expected number of entries sent by each device while con-

straining the variance of the sparsified gradient to improve the

convergence rate. To minimize the overall training time, [8] adap-

tively adjusts 𝑘 in Top-𝑘 across iterations. The work in [15] jointly

optimizes the sparsification and quantization levels of devices to

minimize their total energy consumption. The work in [21] aims to

adjust 𝑘 in Top-𝑘 across iterations to minimize a per-iteration cost

that reflects both training performance and communication cost.

However, the design objectives in these works differ from ours, as

they do not explicitly explore the trade-off between convergence

and the overall communication delay, a critical aspect in dynamic

and heterogeneous environments where the devices’ communica-

tion conditions vary during training. In comparison, we propose

an online optimization design to address this trade-off.

2.3 Other Compression Methods
Beyond sparsification, general compression techniques are also used

to alleviate the communication bottleneck in distributed learning.

For example, post-sparsification filtering was proposed in [22], and

the importance of different neural network layers was considered

in [26]. Furthermore, quantization reduces the number of bits to

represent each entry of the gradient vector (e.g., [2]). The low-rank

approach decomposes the gradient vector into low-rank matrices

before transmission (e.g., [25]). Our work is orthogonal to these

compression techniques, and often can be combined with them in

the same system to further improve communication efficiency (e.g.,

[4, 7, 24]). Such hybrid solutions are outside the scope of this work.

3 Preliminaries
3.1 Distributed Learning System Model
We consider a distributed learning system consisting of𝑀 devices.

Each device𝑚 ∈ {1, . . . , 𝑀} is associated with a local loss function

𝑓𝑚 (w), where w ∈ R𝑛
denotes the decision vector. The objective

is to minimize, in a distributed manner, the global loss function,

defined as

𝑓 (w) = 1

𝑀

𝑀∑︁
𝑚=1

𝑓𝑚 (w) . (1)

The optimal decision vector that minimizes the global loss function

is denoted by w★
.

A prominent example of the above problem is federated learning,

where the devices collaboratively train a machine learning model

w on distributed data across all devices, such that it accurately

predicts the true labels of feature vectors for all devices. In this

setting, the local loss function of device𝑚 is defined as

𝑓𝑚 (w) ≜ E𝑥𝑚∼𝑝𝑚 𝑙𝑚 (w;𝑥𝑚), (2)

where the expectation is taken over data points 𝑥𝑚 sampled from

the local data distribution of device𝑚, denoted by 𝑝𝑚 , and 𝑙𝑚 (·)
denotes the sample-wise loss function of device𝑚.
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DSGD is a standard approach to solve this problem. At each

iteration, each device computes a stochastic gradient using a mini-

batch of its local data as an estimate of the local gradient. These

local gradients are then sent to a central server for aggregation,

to update the global model parameters. This process is repeated

iteratively until convergence. While DSGD effectively leverages the

computational power of multiple devices, it can lead to substantial

communication overhead, especially since the number of model

parameters, 𝑛, is usually large in machine learning applications.

3.2 Communication Model
Each device applies a sparsification method to its computed sto-

chastic gradient before transmission to reduce the communication

overhead. The sparse signal transmitted by device𝑚 in iteration 𝑡

is denoted by g̃𝑚,𝑡 ∈ R𝑛
. The number of bits required to transmit

the values of non-zero entries of g̃𝑚,𝑡 is proportional to their count,

as each non-zero entry must be encoded using a specific number

of bits. Additionally, the index of each non-zero entry can be en-

coded using log
2
(𝑛) bits. Thus, the delay incurred by each device

for transmitting its sparse vector is proportional to the number of

non-zero entries, ∥g̃𝑚,𝑡 ∥0, where ∥ · ∥0 represents the ℓ0 norm.

We define 𝑑𝑚,𝑡 as the delay incurred by device𝑚 in iteration 𝑡

for transmitting a single coordinate of the gradient along with its

index, computed as the ratio between the number of bits required

to transmit each entry and the device data rate. Therefore, the total

delay caused by device𝑚 is given by

𝜏𝑚,𝑡 ≜ 𝑑𝑚,𝑡 ∥g̃𝑚,𝑡 ∥0 . (3)

As explained in Section 1, an important feature of this work is that

𝑑𝑚,𝑡 can vary among the devices and across training iterations and

is unknown prior to the start of the 𝑡-th iteration.
1

We consider a shared communication bandwidth among the de-

vices, which is a prominent characteristic of wireless systems and it

is also applicable to some wired systems with shared input/output

ports. Without loss of generality, we assume a time-division mul-

tiple access scheme. Thus, the total communication delay for the

system in iteration 𝑡 is the summation of delays across all devices,

expressed as

𝜏𝑡 ≜
𝑀∑︁

𝑚=1

𝜏𝑚,𝑡 =

𝑀∑︁
𝑚=1

𝑑𝑚,𝑡 ∥g̃𝑚,𝑡 ∥0 . (4)

We note that the above delay model is applicable also in the case of

frequency division multiple access, by standard conversion between

time and frequency.

4 Framework for Distributed Learning with
Adaptive Sparsification

Distributed learning that incorporates threshold-based sparsifica-

tion with a fixed threshold across devices and iterations was studied

in [19]. Here, we describe an adaptive version of the threshold-based

sparsification method, where the sparsification threshold can vary

across devices and iterations of the algorithm to account for device

heterogeneity and the varying conditions during training. Later,

1
For example, in wireless systems, the dynamic nature of channel conditions results

in uncertain delays across iterations.

in Section 5, we present a strategy for adaptively adjusting the

threshold values to minimize the overall communication delay.

The devices execute the DSGD algorithm with individualized

and time-varying sparsification to minimize the global loss function.

Specifically, during iteration 𝑡 of the algorithm, the following steps

are performed:

(1) Stochastic gradient computation: Each device indexed by

𝑚, computes an unbiased stochastic gradient on a minibatch

of data sampled from its local training dataset:

g𝑚,𝑡 = ∇𝑓𝑚 (w𝑡 ) + z𝑚,𝑡 , E[z𝑚,𝑡 |w𝑡 ] = 0, (5)

where z𝑚,𝑡 is a zero-mean noise that arises from stochastic

sampling.

(2) Error feedback: Each device scales a stored error vector

e𝑚,𝑡 by the learning rate 𝛾𝑡 , and aggregates it with the sto-

chastic gradient as follows:

ĝ𝑚,𝑡 = g𝑚,𝑡 +
e𝑚,𝑡

𝛾𝑡
. (6)

Initially, the error vectors are set to zero, i.e., e𝑚,0 = 0,∀𝑚.

(3) Sparsification: Each device applies sparsification on ĝ𝑚,𝑡 :

g̃𝑚,𝑡 = S𝜆𝑚,𝑡
(ĝ𝑚,𝑡 ). (7)

where S𝜆𝑚,𝑡
: R𝑛 → R𝑛

is the sparsification operation, i.e.,

𝑔𝑖𝑚,𝑡 =

{
𝑔𝑖𝑚,𝑡 , if |𝑔𝑖𝑚,𝑡 | > 𝜆𝑚,𝑡 ,

0, otherwise,
(8)

where 𝑔𝑖𝑚,𝑡 and 𝑔
𝑖
𝑚,𝑡 represent the 𝑖-th entry of ĝ𝑚,𝑡 and g̃𝑚,𝑡

respectively.

(4) Error update: Each device updates its error vector based

on the difference between ĝ𝑚,𝑡 and g̃𝑚,𝑡 as

e𝑚,𝑡+1 = 𝛾𝑡 (ĝ𝑚,𝑡 − g̃𝑚,𝑡 ) . (9)

(5) Averaging: The server computes the average of received

sparse vectors g̃𝑚,𝑡 , across devices as

𝚫𝑡 =
1

𝑀

𝑀∑︁
𝑚=1

g̃𝑚,𝑡 . (10)

(6) Model update and broadcast: The severe updates the

model based on the average of sparse vectors, i.e.,

w𝑡+1 = w𝑡 − 𝛾𝑡𝚫𝑡 , (11)

and broadcasts the updated model to all devices.

This procedure is summarized in Algorithm 1.

5 Adaptive Sparsification Design
Although aggressive sparsification, i.e., setting the sparsification

thresholds {𝜆𝑚,𝑡 } to high values, results in low delay in each itera-

tion, it degrades convergence by introducing significant deviation

from the true gradient during model updates. Conversely, lighter

sparsification can improve convergence but leads to higher per-

iteration delay. In this section, we present an online optimization

solution to design the sparsification thresholds {𝜆𝑚,𝑡 } to address
this trade-off.
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Algorithm 1 DSGD with Adaptive Sparsification

Inputs: w0, {𝛾𝑡 }, {𝜆𝑚,𝑡 }
Output: {w𝑡 }
Initialization: e𝑚,0 = 0,∀𝑚.

1: for 𝑡 ∈ {0, ...,𝑇 − 1} do

2: Each device𝑚 in parallel do:

3: Computation of stochastic gradient g𝑚,𝑡 .

4: ĝ𝑚,𝑡 = g𝑚,𝑡 + e𝑚,𝑡

𝛾𝑡
⊲ Error feedback

5: g̃𝑚,𝑡 = S𝜆𝑚,𝑡
(ĝ𝑚,𝑡 ) ⊲ Sparsification

6: e𝑚,𝑡+1 = 𝛾𝑡 (ĝ𝑚,𝑡 − g̃𝑚,𝑡 ) ⊲ Error update

7: Send g̃𝑚,𝑡 to the server.

8: The server does:

9: 𝚫𝑡 =
1

𝑀

∑𝑀
𝑚=1

g̃𝑚,𝑡 . ⊲ Averaging

10: w𝑡+1 = w𝑡 − 𝛾𝑡𝚫𝑡 ⊲ Model update and broadcast

11: end for

5.1 Adaptive Optimization of Sparsification
Threshold

We formulate an optimization problem, where the objective is to

minimize the total delay after a predetermined number of training

iterations, 𝑇 , while ensuring a certain level of convergence of the

model to a stationary point of the global loss function:

min

{𝜆𝑚,𝑡 }

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝜏𝑚,𝑡 (12a)

s.t.

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝑓 (w𝑡 )∥2 ≤ 𝛿, (12b)

where the E[·] is on the randomness of the stochastic gradients, i.e.,

{z𝑚,𝑡 }. In this formulation, the objective function (12a) represents

the total system delay over𝑇 iterations. The constraint (12b) ensures

that the system achieves 𝛿-convergence to a stationary point of

the global loss function 𝑓 (w). We note that bounding the left-hand

side (LHS) of (12b) implies a bound on min0≤𝑡≤𝑇−1 E∥∇𝑓 (w𝑡 )∥2
,

which guarantees that at least a model among {w𝑡 } during the

training process will be sufficiently close to a stationary point if 𝛿

is chosen to be small enough.

Solving (12) presents significant challenges because the con-

straint involves the gradient of the global loss function, which

is not an explicit function of the optimization variables. Also, the

global loss function is typically not quantifiable, as it depends on the

local data distributions {𝑝𝑚}, which are unknown to the devices. To
proceed, we analyze the convergence of DSGD with sparsification

and substitute (12b) with a more manageable surrogate constraint.

5.2 Problem Reformulation via Training
Convergence Analysis

5.2.1 Convergence Analysis. We consider the following four as-

sumptions on the loss function, which are common in the literature

of distributed learning [3, 19]:

A1. Smoothness: The local loss function of each device 𝑚 is

𝐿-smooth, i.e., ∀w,w′ ∈ R𝑛
,

𝑓𝑚 (w) ≤ 𝑓𝑚 (w′) +
〈
∇𝑓𝑚 (w′),w −w′〉 + 𝐿

2

∥w −w′∥2 . (13)

A2. Global minimum: There exists w★ ∈ R𝑛
such that

𝑓 (w★) = 𝑓 ★ ≤ 𝑓 (w), ∀w ∈ R𝑛 . (14)

A3. Bounded noise: For every stochastic noise z𝑚,𝑡 , there exist

𝐴, 𝜎2 ≥ 0, such that

E[∥z𝑚,𝑡 ∥2 |w𝑡 ] ≤ 𝐴∥∇𝑓𝑚 (w𝑡 )∥2 + 𝜎2, ∀w𝑡 ∈ R𝑛 . (15)

A4. Bounded similarity: The variance of gradient among de-

vices is bounded, i.e., there exist constants, 𝐶, 𝜁 ≥ 0 such

that, ∀w ∈ R𝑛
,

1

𝑀

𝑀∑︁
𝑚=1

∥∇𝑓𝑚 (w) − ∇𝑓 (w)∥2 ≤ 𝐶 ∥∇𝑓 (w)∥2 + 𝜁 2 . (16)

In the following proposition, we provide a convergence bound

for adaptive sparsification where the threshold values vary across

iterations and devices.

Proposition 1. Assuming that conditions A1-A4 hold and the
learning rate is constant and bounded, i.e., 𝛾𝑡 = 𝛾 such that 𝛾 ≤

𝑀
2𝐿 (𝐴(𝐶+1)+𝑀 ) , the sequence {w𝑡 } generated by Algorithm 1 satisfies
the following:

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝑓 (w𝑡 )∥2 ≤ 4

𝛾𝑇

(
𝑓 (w0) − 𝑓 ★

)
+ 2𝛾𝐿

𝑀

(
𝐴𝜁 2 + 𝜎2

)
+ 2𝑛𝐿2𝛾2

𝑀𝑇

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝜆2

𝑚,𝑡 . (17)

Proof. Define w̃𝑡 ≜ w𝑡 − 1

𝑀

∑𝑀
𝑚=1

e𝑚,𝑡 . We have

E[𝑓 (w̃𝑡+1)]
(𝑎)
≤ E[𝑓 (w̃𝑡 )] −

𝛾

4

E∥∇𝑓 (w𝑡 )∥2

+ 𝛾2𝐿(𝐴𝜁 2 + 𝜎2)
2𝑀

+ 𝛾𝐿2

2𝑀

𝑀∑︁
𝑚=1

E∥e𝑚,𝑡 ∥2

(𝑏 )
≤ E[𝑓 (w̃𝑡 )] −

𝛾

4

E∥∇𝑓 (w𝑡 )∥2

+ 𝛾2𝐿(𝐴𝜁 2 + 𝜎2)
2𝑀

+ 𝛾3𝐿2𝑛

2𝑀

𝑀∑︁
𝑚=1

𝜆2

𝑚,𝑡 , (18)

where (a) is due to [19, Lemma 13], and (b) follows from the bound

on the error norm as ∥e𝑚,𝑡 ∥2 ≤ 𝑛𝛾2𝜆2

𝑚,𝑡 ,∀𝑚,∀𝑡, which holds be-

cause the entries of the error vector e𝑚,𝑡 are always less than or

equal to 𝛾𝜆𝑚,𝑡 . Summing both sides of (18) from iteration 0 to𝑇 − 1,

rearranging the terms, and dividing by 𝛾𝑇 completes the proof. □

Note that the first two terms of the upper bound in (17) are

constant since they do not depend on the decision variables {𝜆𝑚,𝑡 }.
For simplicity, we define these terms as

𝜙 ≜
4

𝛾𝑇
(𝑓 (w0) − 𝑓 ★) + 2𝛾𝐿(𝐴𝜁 2 + 𝜎2)

𝑀
. (19)
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5.2.2 Problem Reformulation. We leverage the result in Proposi-

tion 1 to replace the LHS of (12b) with its upper bound. To ensure

that
1

𝑇

∑𝑇−1

𝑡=0
∥∇𝑓 (w𝑡 )∥2

is bounded by 𝛿 , it suffices to bound the

right-hand side (RHS) of (17) by the same amount. Since the first two

terms of RHS of (17) are constant, restricting it by 𝛿 implies a bound

on the third term
1

𝑀𝑇

∑𝑇−1

𝑡=0

∑𝑀
𝑚=1

𝜆2

𝑚,𝑡 by 𝜖 , where 𝜖 =
𝛿−𝜙

2𝑛𝐿2𝛾2
.
2

Therefore, we reformulate problem (12) as

min

{𝜆𝑚,𝑡 }

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝜏𝑚,𝑡 (20a)

s.t.

1

𝑀𝑇

𝑇−1∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝜆2

𝑚,𝑡 ≤ 𝜖, (20b)

where 𝜖 replaces 𝛿 as the hyperparameter to tune the trade-off

between convergence and the overall delay.

The above problem is still difficult to handle for the following

reasons: (i) Tackling the long-term objective and constraints is

challenging because the per-coordinate delay values, {𝑑𝑚,𝑡 ; 1 ≤
𝑚 ≤ 𝑀}, are unknown prior to the start of the 𝑡-th iteration and

only become available at its onset. (ii) 𝜏𝑚,𝑡 is a function of ĝ𝑚,𝑡 ,

which cannot be determined before the start of the 𝑡-th iteration.

(iii) Global information about {ĝ𝑚,𝑡 } is unavailable across devices,
as only their sparse versions, {g̃𝑚,𝑡 }, are transmitted by the devices.

We note that even though problem (20) has a standard long-term

constraint, the conventional Lyapunov optimization framework

[17] is not an applicable solution. In Lyapunov optimization, the

per-iteration objective function and constraint in iteration 𝑡 should

depend only on the current decision variables, i.e., {𝜆𝑚,𝑡 ; 1 ≤ 𝑚 ≤
𝑀}, and the current randomness of the system, i.e., {𝑑𝑚,𝑡 ; 1 ≤
𝑚 ≤ 𝑀}. In contrast, in problem (20), the per-iteration objective

function

∑𝑀
𝑚=1

𝜏𝑚,𝑡 depends on the decision variable of current and

previous iterations, i.e., {𝜆𝑚,𝑐 ; 1 ≤ 𝑚 ≤ 𝑀,𝑐 ≤ 𝑡}. This is due to
the dependence of 𝜏𝑚,𝑡 on ĝ𝑚,𝑡 based on (3) and (7), which itself

depends on the gradients computed at w𝑡 , i.e., g𝑚,𝑡 based on (6). In

turn, w𝑡 is updated in the previous iteration, making it dependent

on the decision variables from all earlier iterations.

Instead, we propose a new algorithm to solve the problem in an

online manner and provide bounds for both the constraint violation

and the dynamic regret.

5.3 AdaSparse Algorithm
To keep track of the constraint violation, we define a virtual queue

for each device𝑚 denoted by 𝑞𝑚𝑡 with 𝑞𝑚
0

= 0,∀𝑚. In each iteration

𝑡 , each device updates its virtual queue as

𝑞𝑚𝑡+1
= max

{
𝑞𝑚𝑡 + 𝜆2

𝑚,𝑡 − 𝜖, 0

}
,∀𝑚. (21)

In departure from Lyapunov optimization, which is not applica-
ble to our problem as explained above, we consider a different form

of the per-slot optimization as follows. In iteration 𝑡 , each device𝑚

solves an optimization problem to design its sparsification level as

min

𝜆𝑚,𝑡

𝑉𝜏𝑚,𝑡 + 𝑞𝑚𝑡 𝜆2

𝑚,𝑡 +
1

2

𝜆4

𝑚,𝑡 , (22)

2
Note that 𝜙 decreases as𝑇 increases when 𝛾 ∝ 𝑇𝜓

, for −1 < 𝜓 < 0. Thus, 𝜙 can be

made arbitrarily small by setting𝑇 large, to avoid 𝛿 − 𝜙 becoming negative.

where 𝑉 ∈ R+
is a predefined constant. Note that 𝜏𝑚,𝑡 depends on

𝜆𝑚,𝑡 via (3) and (7).

Although (22) is a single-variable unconstrained problem, it is

challenging to solve because it is non-convex and non-differentiable,

as 𝜏𝑚,𝑡 involves the ℓ0 norm, which is non-differentiable. However,

the following proposition simplifies solving it by providing a finite

set of candidate optimal solutions.

Proposition 2. The optimal value of 𝜆𝑚,𝑡 for (22) belongs to the
following finite set:

J =

{
0, |𝑔 (1)𝑚,𝑡 |, |𝑔

(2)
𝑚,𝑡 |, ..., |𝑔

(𝑛)
𝑚,𝑡 |

}
, (23)

where |𝑔 (𝑖 )𝑚,𝑡 | is the 𝑖-th largest entry of ĝ𝑚,𝑡 in terms of magnitude,

i.e.,|𝑔 (1)𝑚,𝑡 | ≤ |𝑔 (2)𝑚,𝑡 | ≤ ... ≤ |𝑔 (𝑛)𝑚,𝑡 |.

Proof. The proof is by contradiction. Assume that an optimal

solution for (22), denoted by 𝜆★𝑚,𝑡 , does not belong to J . Then, one

of the following three cases must hold: (i) 0 < 𝜆★𝑚,𝑡 < |𝑔 (1)𝑚,𝑡 |, (ii)
|𝑔 ( 𝑗 )𝑚,𝑡 | < 𝜆★𝑚,𝑡 < |𝑔 ( 𝑗+1)

𝑚,𝑡 | for some 1 ≤ 𝑗 ≤ 𝑛 − 1, or (iii) 𝑔 (𝑛)𝑚,𝑡 < 𝜆★𝑚,𝑡 .

In the following, we show that 𝜆★𝑚,𝑡 cannot be an optimal solution

in any of these cases.

Suppose case (ii) holds. Then, we can introduce a new variable

𝜆
†
𝑚,𝑡 = |𝑔 ( 𝑗 )𝑚,𝑡 |, which achieves a lower value of the objective function
in (22). This is because the value of the first term in the objective

function, 𝜏𝑚,𝑡 , remains the same under both 𝜆
†
𝑚,𝑡 and 𝜆★𝑚,𝑡 , as it

only depends the number of elements in ĝ𝑚,𝑡 greater than the

sparsification threshold, which in both cases is 𝑛 − 𝑗 . However, the

last two terms of the objective function are increasing functions

of 𝜆𝑚,𝑡 , and since 𝜆
†
𝑚,𝑡 is smaller than 𝜆★𝑚,𝑡 , the overall value of

the objective function is smaller under 𝜆
†
𝑚,𝑡 . This contradicts the

definition of 𝜆★𝑚,𝑡 as an optimal solution for (22).

By similar reasoning, we can show that the optimal solution

cannot satisfy cases (i) and (iii) either. The details are omitted due

to the page limit. Hence, the optimal solution must lie within the

discrete set J . □

Proposition 2 identifies the candidate optimal solutions for (22).

By evaluating the objective function for each value within J and

selecting the one that yields the minimum value, we can deter-

mine the optimal solution. The computational complexity of this

procedure is O(𝑛 log𝑛), as it involves sorting 𝑛 + 1 values.

Substituting the optimal {𝜆𝑚,𝑡 } into Algorithm 1, we obtain the

proposed AdaSparse algorithm.

5.4 Low-Complexity AdaSparse
Noting that 𝑛 can be large in many machine learning applica-

tions, to further reduce the complexity of AdaSparse, we propose

a low-complexity version called Low-Complexity AdaSparse (LC-
AdaSparse). The most computationally demanding part of AdaS-

parse is solving (22) optimally, which requires sorting the 𝑛 can-

didate values in the set J . In practice, however, an approximate

solution to (22) can significantly lower the computational complex-

ity. Specifically, for the entries of the gradient vector in the set J
whose absolute values are close together, the last two terms in (22)

remain relatively unchanged. Thus, the first term can be minimized

by considering only the largest element among these values.
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Based on this observation, we divide the range of values in J ,

i.e.,

[
0, |𝑔 (𝑛)𝑚,𝑡 |

]
, into 𝐵 intervals, each of length 𝑙 ≜

|𝑔 (𝑛)𝑚,𝑡 |
𝐵

. Next,

we count the number of elements in J that fall within each 𝑖-th

interval, defined as

(
(𝑖 − 1)𝑙, 𝑖𝑙

]
. This yields a count vector v𝑐 ∈ R𝐵

,

where each entry represents the number of elements in J within

the corresponding interval. We then consider the upper bound of

each interval, 𝑖𝑙 for 1 ≤ 𝑖 ≤ 𝐵, as a candidate threshold for all the

elements inside that interval. Let
˜J =

{
𝑖𝑙 | 1 ≤ 𝑖 ≤ 𝐵

}
. Using the

counts in v𝑐 , we evaluate the objective function of (22) at the values

in
˜J and select the one that minimizes the objective function.

LC-AdaSparse avoids sorting 𝑛 candidate values to achieve a

lower computational complexity than AdaSparse. Computing the

count vector requires O(𝑛) operations, achieved by dividing each

element of J by the interval length 𝑙 and indexing the correspond-

ing interval. Given v𝑐 , evaluating the objective function at each

value in
˜J and finding the minimum requires an additional O(𝐵)

operations. Thus, the overall computational complexity is O(𝑛 +𝐵).
Since 𝐵 does not depend on 𝑛, the complexity of LC-AdaSparse is

linear in 𝑛, matching the order of complexity of other conventional

sparsification methods. For example, the complexity of Top-𝑘 spar-

sification is O(𝑛 log𝑘), while both threshold-based sparsification

and the VarReduced method in [23] have a complexity of O(𝑛).
Next, we investigate the approximation gap for LC-AdaSparse.

Let 𝑂★
be the minimum of the objective in (22), and 𝑂̃ be the

objective value achieved by LC-AdaSparse.

Proposition 3. The approximation gap of LC-AdaSparse is upper-
bounded by

𝑂̃ −𝑂★ ≤ 𝑙2𝑞𝑚𝑡 (2𝐵 − 1) + 𝑙4

2

(
4𝐵3 − 6𝐵2 + 4𝐵 − 1

)
. (24)

Proof. Suppose the optimal solution 𝜆★ to problem (22) lies in

the 𝑗-th interval, i.e., ( 𝑗 − 1)𝑙 < 𝜆★ ≤ 𝑗𝑙 . Since LC-AdaSparse se-

lects the interval upper bound that minimizes the objective function

across all intervals, 𝑂̃ is less than or equal to the value of the objec-

tive function at 𝜆𝑚,𝑡 = 𝑗𝑙 . Thus, the difference between 𝑂̃ and𝑂★
is

upper-bounded as 𝑂̃ −𝑂★ ≤ 𝑉 (𝜏 ( 𝑗 )𝑚,𝑡 − 𝜏★𝑚,𝑡 ) + 𝑞𝑚𝑡
(
𝑗2𝑙2 − (𝜆★)2

)
+

1

2

(
𝑗4𝑙4 − (𝜆★)4

)
, where 𝜏

( 𝑗 )
𝑚,𝑡 is the delay achieved when 𝜆𝑚,𝑡 = 𝑗𝑙 ,

and 𝜏★𝑚,𝑡 is the delay under 𝜆★.

Since 𝜆★ ≤ 𝑗𝑙 , 𝜏
( 𝑗 )
𝑚,𝑡 ≤ 𝜏★𝑚,𝑡 , and we have

𝑂̃ −𝑂★ ≤ 𝑞𝑚𝑡

(
𝑗2𝑙2 − (𝜆★)2

)
+ 1

2

(
𝑗4𝑙4 − (𝜆★)4

)
(𝑎)
≤ 𝑞𝑚𝑡 𝑙

2

(
𝑗2 − ( 𝑗 − 1)2

)
+ 𝑙4

2

(
𝑗4 − ( 𝑗 − 1)4

)
(𝑏 )
= 𝑙2𝑞𝑚𝑡 (2 𝑗 − 1) + 𝑙4

2

(
4 𝑗3 − 6 𝑗2 + 4 𝑗 − 1

)
(𝑐 )
≤ 𝑙2𝑞𝑚𝑡 (2𝐵 − 1) + 𝑙4

2

(
4𝐵3 − 6𝐵2 + 4𝐵 − 1

)
, (25)

where (a) holds because ( 𝑗 − 1)𝑙 < 𝜆★, (b) follows from simpli-

fying the terms, and (c) results from substituting 𝐵 for 𝑗 , noting

monotonicity in 𝑗 . □

Remark 1. Substituting 𝑙 =
|𝑔 (𝑛)𝑚,𝑡 |
𝐵

into (24) provides a bound for

the gap as 𝑂̃ −𝑂★ ≤ O
(

1

𝐵

)
. This demonstrates that, for sufficiently

large 𝐵, the approximation gap of LC-AdaSparse is negligible. This
observation is further substantiated in Section 7.

6 Theoretical Performance Analysis
Here, we analyze the performance of AdaSparse. We note that

although our analysis uses the familiar notion of drift, it is substan-

tially different from the conventional Lyapunov stability analysis,

and it leads to novel constraint violation and dynamic regret bounds.

To begin, let
ˆ𝜆𝑚,𝑡 denote the sparsification threshold of device𝑚

in iteration 𝑡 obtained using AdaSparse, and let 𝜏𝑚,𝑡 represent the

corresponding delay caused by applying this threshold.

6.1 Upper Bound on Global 𝑅-Slot Drift
For any positive integer 𝑅 ≤ 𝑇 , define the 𝑅-slot drift for each

device𝑚 as

Δ𝑚𝑅 (𝑡) ≜ 1

2

(𝑞𝑚𝑡+𝑅)
2 − 1

2

(𝑞𝑚𝑡 )2 . (26)

Then, the global 𝑅-slot drift is the summation of 𝑅-slot drifts over

all devices:

Δ𝑅 (𝑡) ≜
𝑀∑︁

𝑚=1

Δ𝑚𝑅 (𝑡) = 1

2

𝑀∑︁
𝑚=1

(𝑞𝑚𝑡+𝑅)
2 − 1

2

𝑀∑︁
𝑚=1

(𝑞𝑚𝑡 )2 . (27)

Moreover, based on (27), the global 𝑅-slot drift could be equivalently

written as the aggregation of the global one-slot drifts:

Δ𝑅 (𝑡) =
𝑡+𝑅−1∑︁
𝑐=𝑡

Δ1 (𝑐) . (28)

Using (27) and noting that the initial values of the queues are set

to zero, we can rewrite the global 𝑅-slot drift at time 𝑡 = 0 as

Δ𝑅 (0) = 1

2

∑𝑀
𝑚=1

(𝑞𝑚
𝑅
)2, which implies an upper bound on 𝑞𝑚

𝑅
as

𝑞𝑚𝑅 ≤
√︁

2Δ𝑅 (0),∀𝑚. (29)

The following lemma establishes an upper bound on the one-slot

drift for each device.

Lemma 1. Under AdaSparse, the one-slot drift for device𝑚 is upper
bounded by

Δ𝑚
1
(𝑡) ≤ ˆ𝜆2

𝑚,𝑡𝑞
𝑚
𝑡 + 1

2

ˆ𝜆4

𝑚,𝑡 +
1

2

𝜖2 . (30)

Proof. Based on the queue update equation in (21), we have

𝑞𝑚
𝑡+1

≤
��𝑞𝑚𝑡 + ˆ𝜆2

𝑚,𝑡 − 𝜖
��
. Squaring both sides of this inequality gives

(𝑞𝑚𝑡+1
)2 ≤ (𝑞𝑚𝑡 )2 + 2𝑞𝑚𝑡

(
ˆ𝜆2

𝑚,𝑡 − 𝜖
)
+

(
ˆ𝜆2

𝑚,𝑡 − 𝜖
)
2

. (31)

Rearranging the terms in (31), we have

Δ𝑚
1
(𝑡) ≤ ˆ𝜆2

𝑚,𝑡

(
𝑞𝑚𝑡 − 𝜖

)
+ 1

2

ˆ𝜆4

𝑚,𝑡 +
1

2

𝜖2 − 𝜖𝑞𝑚𝑡 , (32)

where further upper bounding by disregarding the negative terms

leads to the upper bound given in (30). □

To make an upper bound on the global 𝑅-slot drift, Δ𝑅 (0), we
sum both sides of (30) across all devices and over 𝑡 from 0 to 𝑅 − 1.

By incorporating (28), we obtain

Δ𝑅 (0) ≤
1

2

𝑅−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

ˆ𝜆4

𝑚,𝑡 +
𝑅−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

ˆ𝜆2

𝑚,𝑡𝑞
𝑚
𝑡 + 𝑀𝑅𝜖2

2

. (33)
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6.2 Upper Bound on Virtual Queues
Lemma 2. Under AdaSparse, the virtual queues are upper bounded

by

𝑞𝑚𝑡 ≤ 𝑄max

𝑇
, 1 ≤ 𝑡 ≤ 𝑇,∀𝑚, (34)

where 𝑄max

𝑇
≜

(
2𝑛𝑉

∑𝑇−1

𝑡=0

∑𝑀
𝑚=1

𝑑𝑚,𝑡 +𝑀𝑇𝜖2

) 1

2 .

Proof. From (33), we have

𝑉

𝑅−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝜏𝑚,𝑡 + Δ𝑅 (0) ≤ 𝑉

𝑅−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝜏𝑚,𝑡 +
1

2

𝑅−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

ˆ𝜆4

𝑚,𝑡

+
𝑅−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

ˆ𝜆2

𝑚,𝑡𝑞
𝑚
𝑡 + 𝑀𝑅𝜖2

2

. (35)

Since each device under AdaSparse is able to solve (22) optimally,

and the RHS of (35) is the summation of the objective function of

(22) (up to a constant) over iterations and across devices, AdaSparse

achieves the minimum value of the RHS of (35). Thus, plugging

in any other values of 𝜆𝑚,𝑡 and the resultant delay on the RHS of

(35), instead of
ˆ𝜆𝑚,𝑡 , leads to an upper bound for the LHS of (35).

In particular, considering 𝜆𝑚,𝑡 = 0,∀𝑚, 𝑡 , we obtain

𝑉

𝑅−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝜏𝑚,𝑡 + Δ𝑅 (0) ≤ 𝑛𝑉

𝑅−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝑑𝑚,𝑡 +
𝑀𝑅𝜖2

2

, (36)

since the number of non-zero entries is bounded by the number of

entries 𝑛. Since both terms on the LHS of (36) are non-negative, we

have

Δ𝑅 (0) ≤ 𝑛𝑉

𝑅−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝑑𝑚,𝑡 +
𝑀𝑅𝜖2

2

, 1 ≤ 𝑅 ≤ 𝑇 . (37)

Using (29) together with (37), we can provide an upper bound on

the queues as

𝑞𝑚𝑅 ≤
(
2𝑛𝑉

𝑅−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝑑𝑚,𝑡 +𝑀𝑅𝜖2

) 1

2 (𝑎)
≤ 𝑄max

𝑇 , 1 ≤ 𝑅 ≤ 𝑇,∀𝑚, (38)

where (a) follows from

(
2𝑛𝑉

∑𝑅−1

𝑡=0

∑𝑀
𝑚=1

𝑑𝑚,𝑡 +𝑀𝑅𝜖2

) 1

2 ≤ 𝑄max

𝑇

for 1 ≤ 𝑅 ≤ 𝑇 . □

6.3 Constraint Violation Bound
The following proposition provides an upper bound on the amount

of violation with respect to the constraint (20b).

Proposition 4. The constraint violation of AdaSparse is upper
bounded as

1

𝑀𝑇

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

ˆ𝜆2

𝑚,𝑡 − 𝜖 ≤
𝑄max

𝑇

𝑇
. (39)

Proof. We have

1

𝑀𝑇

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

ˆ𝜆2

𝑚,𝑡 − 𝜖
(a)
≤ 1

𝑀𝑇

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

(𝑞𝑚𝑡+1
− 𝑞𝑚𝑡 + 𝜖) − 𝜖

(b)
=

1

𝑀𝑇

𝑀∑︁
𝑚=1

𝑞𝑚𝑇

(c)
≤ 1

𝑀𝑇

𝑀∑︁
𝑚=1

𝑄max

𝑇
=
𝑄max

𝑇

𝑇
, (40)

where (a) follows from 𝑞𝑚𝑡 + ˆ𝜆2

𝑚,𝑡 − 𝜖 ≤ 𝑞𝑚
𝑡+1

based on the queue

update equation in (21), (b) is derived after simplifying the terms

inside the summation, and (c) is derived using the virtual queue

upper bound provided by Lemma 2. □

6.4 Dynamic Regret Bound
Here, we aim to derive an upper bound on the difference between

the overall delay under AdaSparse and that of a per-iteration opti-

mal solution.

We first consider a reduced version of (20) by decomposing

the long-term objective function and constraint into per-iteration

components:

min

{𝜆𝑚,𝑡 }

𝑀∑︁
𝑚=1

𝜏𝑚,𝑡 s.t.

1

𝑀

𝑀∑︁
𝑚=1

𝜆2

𝑚,𝑡 ≤ 𝜖. (41)

The solution to (41) is feasible for (20). However, it is impossible

to solve (41) in practice. It would require global information about

{ĝ𝑚,𝑡 }, which are not obtainable, as the devices only transmit their

sparse versions {g̃𝑚,𝑡 }. We refer to problem (41) as the per-iteration

problem and use the optimal solution to this problem, denoted by

{ ¯𝜆𝑚,𝑡 }, as a benchmark to compare against the solution achieved

by AdaSparse for deriving the dynamic regret bound.

The following proposition provides an upper bound on the dy-

namic regret of AdaSparse which is defined as the gap between

the achieved overall delay by AdaSparse and the overall delay by

the optimal solution of the per-iteration problem defined in (41),

denoted by

∑𝑇−1

𝑡=0

∑𝑀
𝑚=1

𝜏𝑚,𝑡 .

Proposition 5. The dynamic regret of AdaSparse is bounded as

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

(𝜏𝑚,𝑡 − 𝜏𝑚,𝑡 ) ≤
𝜖𝑀2𝑇𝑄max

𝑇

𝑉
+ 𝑀𝑇𝜖2 (𝑀2 + 1)

2𝑉
. (42)

Proof. We use a similar argument as in the proof of Lemma 2.

Using (35) with𝑅 = 𝑇 , and considering 𝜆𝑚,𝑡 = ¯𝜆𝑚,𝑡 ,∀𝑚, 𝑡 , we obtain

𝑉

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝜏𝑚,𝑡 + Δ𝑇 (0)

≤ 𝑉

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝜏𝑚,𝑡 +
1

2

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

¯𝜆4

𝑚,𝑡 +
𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

¯𝜆2

𝑚,𝑡𝑞
𝑚
𝑡 + 𝑀𝑇𝜖2

2

(𝑎)
≤ 𝑉

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝜏𝑚,𝑡 +
1

2

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝑀2𝜖2 +
𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝜖𝑀𝑄max

𝑇 + 𝑀𝑇𝜖2

2

(𝑏 )
= 𝑉

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

𝜏𝑚,𝑡 + 𝜖𝑀2𝑇𝑄max

𝑇
+ 𝑀𝑇𝜖2

2

(𝑀2 + 1), (43)

where (a) follows from the fact that
¯𝜆𝑚,𝑡 belongs to the feasible set

of problem (41), and thus
¯𝜆2

𝑚,𝑡 ≤ 𝜖𝑀,∀𝑚,∀𝑡 , and also, 𝑞𝑚𝑡 ≤ 𝑄max

𝑇
based on Lemma 2; and (b) is obtained by simplifying the summation

terms. Dividing both sides of (43) by 𝑉 and noting that Δ𝑇 (0) ≥ 0

completes the proof. □

6.5 Optimality of AdaSparse
Define 𝐷𝑇 ≜ 2𝑛

∑𝑇−1

𝑡=0

∑𝑀
𝑚=1

𝑑𝑚,𝑡 . The next corollary simplifies the

bounds in Propositions 4 and 5.
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Corollary 1. Assuming the per-coordinate delay is bounded
above, i.e., 𝑑𝑚,𝑡 ≤ 𝑑,∀𝑚,∀𝑡 , the constraint violation bound in Propo-
sition 4 and the dynamic regret bound in Proposition 5 reduce to:

1

𝑀𝑇

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

ˆ𝜆2

𝑚,𝑡 − 𝜖 ≤
√︁
𝑀 (2𝑛𝑑𝑉 + 𝜖2)

√
𝑇

, (44a)

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

(𝜏𝑚,𝑡 − 𝜏𝑚,𝑡 ) ≤
𝜖𝑀2𝑇

𝑉

√︃
𝑀𝑇

(
2𝑛𝑑𝑉 + 𝜖2

)
+ 𝑀𝑇𝜖2

2𝑉
(𝑀2 + 1) . (44b)

Proof. Replacing 𝐷𝑇 with its upper bound 𝐷𝑇 ≤ 2𝑛𝑑𝑀𝑇 in

Propositions 4 and 5 results in (44a) and (44b) respectively. □

Corollary 2. For any arbitrary 𝜇 > 0, AdaSparse achieves the fol-
lowing trade-off between its constraint violation and dynamic regret:

1

𝑀𝑇

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

ˆ𝜆2

𝑚,𝑡 − 𝜖 ≤ O(𝑇
𝜇−1

2 ), (45a)

𝑇−1∑︁
𝑡=0

𝑀∑︁
𝑚=1

(𝜏𝑚,𝑡 − 𝜏𝑚,𝑡 ) ≤ O
(
𝑇

3−𝜇
2

)
. (45b)

Proof. Setting 𝑉 ∝ 𝑇 𝜇 , 𝜇 > 0, the bounds in Corollary 1 reduce

to (45a) and (45b). □

Finally, the following corollary states that AdaSparse recovers

the same asymptotic convergence rate of O( 1√
𝑇
) as the standard

DSGD algorithm without sparsification [19].

Corollary 3. With a constant learning rate 𝛾 = O
(

1√
𝑇

)
and

𝑉 ∝ 𝑇 𝜇 for 𝜇 ≤ 2, AdaSparse achieves an asymptotic rate of O
(

1√
𝑇

)
for model convergence to a stationary point of the global loss function,
matching the asymptotic convergence rate of standard DSGD.

Proof. Utilizing the constraint violation bound (45a) fromCorol-

lary 2 and substituting𝛾 = 1√
𝑇
into (17) in Proposition 1, we observe

that the first two terms on the RHS are O( 1√
𝑇
), while the third

term is also 𝑂 ( 1√
𝑇
) for 𝜇 ≤ 2. This yields

1

𝑇

∑𝑇−1

𝑡=0
E∥∇𝑓 (w𝑡 )∥2 ≤

O
(

1√
𝑇

)
, which completes the proof. □

Remark 2. We note that the long-term constraint (20b) is estab-
lished solely to ensure training convergence. Therefore, unlike most
works on online optimization in the literature, in this work we are less
concerned about the constraint violation expressed in (45a) than the
convergence rate given in Corollary 3. In particular, we observe from
(45b) that 𝜇 > 1 suffices for AdaSparse to have sub-linear dynamic
regret, i.e., the time-averaged regret approaches zero as 𝑇 increases.
Thus, as long as we choose 𝜇 such that 1 < 𝜇 ≤ 2, AdaSparse achieves
both sub-linear dynamic regret in terms of delay and the optimal rate
in terms of convergence.

7 Numerical Experiments
We evaluate the efficacy of AdaSparse and LC-AdaSparse for clas-

sification task on MNIST [13], CIFAR-10 [12], and ImageNette (a

10-class subset of ImageNet [6]).

For comparison, we consider the following benchmarks:

• Top-𝑘 [1]: All devices send 𝑘 entries with the largest mag-

nitudes and use standard error feedback.

• UniSparse [19]: All devices use a common, fixed threshold

for sparsification, with the standard error-feedback mech-

anism. This approach can be viewed as a special case of

AdaSparse with a constant threshold, i.e., 𝜆𝑚,𝑡 = 𝜆,∀𝑚,∀𝑡 .
We refer to this approach as Uniform Sparsification.

• VarReduced [23]: This approach designs the sparsification

by minimizing the expected number of entries sent by each

device while limiting the sparsification variance.

Given that the problem formulation in (12) minimizes the overall

delay while ensuring a certain level of convergence for the global

loss function, we consider different levels of target accuracy as

a measure for convergence, and compare the delay incurred by

different methods when their test accuracy reaches the target level.

Specifically, the delay is computed by

∑𝑇★−1

𝑡=0

∑𝑀
𝑚=1

𝜏𝑚,𝑡 , where 𝑇
★

is the iteration at which the test accuracy reaches the target level.

For each target accuracy, we conduct hyperparameter tuning

to select the optimal parameters for each approach that minimize

the delay while achieving the target accuracy. Specifically, for Top-

𝑘 , 𝑘 is tuned, for UniSparse, 𝜆 is tuned, and for VarReduced, a

parameter 𝜅 is tuned. For both AdaSparse and LC-AdaSparse, the

parameter𝑉 is tuned. The best parameter values for each algorithm

and target accuracy are provided in the GitHub repository of our

implementation.
3

7.1 Performance under Various Datasets
We consider 𝑀 = 10 devices and assume the delay per coordi-

nate is sampled from a uniform distribution, i.e., 𝑑𝑚,𝑡 = 𝑑max𝑐𝑚,𝑡 ,

where 𝑐𝑚,𝑡 ∼ 𝑈 [0, 1] and 𝑑max = 10
−4

sec is the maximum delay

for sending a coordinate. For LC-AdaSparse, we set 𝐵 = 25 in all

experiments.

7.1.1 MNIST Dataset. InMNIST, each sample is a grey-scaled hand-

written digit image of size R28 × R28
pixels, with a label indicating

its class. There are 60, 000 training and 10, 000 test samples. We

consider training a multinomial logistic regression classifier with

cross-entropy loss. The model for each class consists of 784 weights

and a bias term, resulting in an overall model size of 7850.

An equal number of data samples from different classes are

uniformly and randomly distributed among the devices. The batch

size is set to 500. A training epoch is defined as one complete pass

over the entire training dataset by all devices. In this setup, each

epoch comprises 12 communication iterations, as the local data

sets are 12 times larger than the batch size. We set the number of

training epochs to 50 and thus the number of iterations is 𝑇 = 600.

The learning rate is constant during training and set to 𝛾𝑡 = 𝛾 = 0.5.

The SGD optimizer with a weight decay of 10
−4

is used for training.

We consider five target accuracy percentage values: 70, 75, 80,

85, and 90. For both AdaSparse and LC-AdaSparse, 𝜖 is set to 2.

3
https://github.com/faezemoradik/AdaSparse.git
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Figure 1: Delay vs. test accuracy for MNIST (i.i.d. data).

Figure 1 illustrates the delay incurred by each approach over the

test accuracy. The results are averaged over three realizations, with

the shaded area around each curve representing the 95% confidence

intervals. As shown, the delay achieved by LC-AdaSparse is close

to that of AdaSparse, and both methods achieve the same accuracy

with significantly less delay than the benchmarks. Notably, at 90%

accuracy, both LC-AdaSparse and AdaSparse reduce the delay by

more than 10-fold compared with the minimum delay achieved

among the benchmarks. Additionally, across other target accuracies,

they result in a delay reduction of more than 2.5 times compared

with the best-performing benchmark.

7.1.2 CIFAR-10 Dataset. In CIFAR-10, each data sample consists

of a colored image of size R3 × R32 × R32
and a label indicating

the class of the image. There are 50, 000 training and 10, 000 test

samples. We train a Residual Network (ResNet-9 [11] with about 2.5

million parameters) model with the Mish activation function [16]

and group normalization instead of batch normalization [11]. We

use the cross-entropy loss function.

To evaluate the effectiveness of the proposed methods under the

non-i.i.d. data distribution, we distribute CIFAR-10 across devices

such that each device contains data from only two classes and holds

5000 samples. We set the batch size to 50 and train for 60 epochs,

resulting in 𝑇 = 6000. We use the Nesterov-Adam optimizer with

(𝛽1, 𝛽2) = (0.9, 0.999) and learning rate 𝛾 = 10
−4
.

We consider four target accuracy levels: 60%, 65%, 70%, and 75%,

and set 𝜖 = 15 for both AdaSparse and LC-AdaSparse. Figure 2

presents the delay incurred by each approach versus the test accu-

racy. Both AdaSparse and LC-AdaSparse reduce the delay by more

than 1.8-fold, 2-fold, 3-fold, and 4-fold for accuracies of 60%, 65%,

70%, and 75%, respectively. These results indicate that the proposed

methods significantly reduce the communication latency.

7.1.3 ImageNette Dataset. In ImageNette, each sample consists of

a colored image of size R3 × R160 × R160
. It contains 9, 468 train-

ing samples and 3, 925 test samples. We use the same ResNet-9

architecture as in Section 7.1.2 with the cross-entropy loss function.

The training data samples are distributed evenly across devices.

We set the batch size to 50 and perform training over 60 epochs,

resulting in 𝑇 = 1080. We use the Nesterov-Adam optimizer with

(𝛽1, 𝛽2) = (0.9, 0.999), and set the learning rate to 𝛾 = 10
−4
.

We consider five levels of target percentage accuracy: 55, 60, 65,

70, and 75. For both AdaSparse and LC-AdaSparse, we set 𝜖 = 15.
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Figure 2: Delay vs. test accuracy for CIFAR-10 (non-i.i.d. data).
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Figure 3: Delay vs. test accuracy for ImageNette (i.i.d. data).

Figure 3 illustrates the delay incurred by each approach against

the test accuracy. Again, we observe that both AdaSparse and LC-

AdaSparse achieve significantly reduced delay for the same accuracy

levels. Specifically, they reduce the delay compared with the best-

performing benchmark, Top-𝑘 , by 29%, 37%, 30%, 17%, and 30% at

accuracies of 55%, 60%, 65%, 70%, and 75%, respectively.

7.2 Impact of System Heterogeneity
To further investigate the effect of system heterogeneity on the

performance of the proposed algorithms, we use the same setting as

in Section 7.1, except that the delay per coordinate,𝑑𝑚,𝑡 = 𝑑max𝑐𝑚,𝑡 ,

is sampled from a Beta distribution with parameters 𝛽 = 𝛼 , i.e.,

𝑐𝑚,𝑡 ∼ Beta(𝛼, 𝛼), where 𝛼 ≥ 0. Under this setting, the mean of

𝑑𝑚,𝑡 is
𝑑max

2
, and the variance is

𝑑2

max

4(2𝛼+1) . Therefore, decreasing
the value of 𝛼 increases the variance, which in turn amplifies the

heterogeneity of the system. In the special case, where 𝛼 = 1,

Beta(𝛼, 𝛼) reduces to U[0, 1] which is the same as the setting in

the previous subsections. We evaluate the performance of different

approaches under various values of 𝛼 .

We train ResNet-20 [9] with approximately 200, 000 parameters

using the cross-entropy loss. The CIFAR-10 data is distributed across

devices in an i.i.d. manner, with each device containing 5000 sam-

ples. The batch size is set to 50, and the training is conducted over

45 epochs, resulting in𝑇 = 4500. The learning rate is set to 𝛾 = 0.01,

and the SGD optimizer with a momentum of 0.9 and a weight decay

of 10
−4

is used for training. We consider a target accuracy of 70%

and set 𝜖 = 2 for both AdaSparse and LC-AdaSparse.
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Table 1: Delay vs. 𝛼 values for CIFAR-10 with i.i.d. data.

Average delay in sec. for reaching accuracy of 70%

Methods 𝛼 = 0.2 𝛼 = 0.5 𝛼 = 0.8

Top-𝑘 47.38 ± 0.14 47.46 ± 0.08 47.62 ± 0.09

UniSparse 81.88 ± 1.83 81.93 ± 1.66 82.18 ± 1.75

VarReduced 2446.80 ± 8.27 2449.17 ± 3.38 2457.02 ± 4.29

AdaSparse 1.86 ± 0.06 20.28 ± 0.45 31.09 ± 1.52

LC-AdaSparse 1.95 ± 0.17 21.21 ± 0.61 31.75 ± 0.93

Table 1 shows the delay incurred by each approach versus the 𝛼

value. The results are averaged over three realizations, with 95%

confidence intervals. As shown, as the heterogeneity among de-

vices increases (lower values of 𝛼), the delay incurred by both

AdaSparse and LC-AdaSparse decreases. This is because they place

less emphasis on slow devices with high per-coordinate delays by

setting a high sparsification threshold for them, reducing the num-

ber of entries transmitted from their signal. Conversely, for faster

devices with low 𝑑𝑚,𝑡 , it assigns a lower sparsification threshold,

allowing them to transmit more entries. Specifically, when 𝛼 = 0.2,

AdaSparse and LC-AdaSparse reduce the delay by more than 25

times, while for 𝛼 = 0.5 and 𝛼 = 0.8, the delay is reduced by more

than 2 times and 1.5 times, respectively, compared with the best-

performing benchmark. In contrast, we observe that the delay for

other benchmark approaches remains approximately constant as

𝛼 varies. This is because these benchmarks do not account for the

heterogeneous per-coordinate delay values of devices during train-

ing. Instead, their performance depends only on the mean value of

𝑑𝑚,𝑡 , which is constant and equal to
𝑑max

2
across all three settings.

8 Conclusion
In this work, we have investigated the adaptive design of sparsifica-

tion in a distributed learning system with dynamic communication

conditions among devices. Unlike previous works, we explicitly aim

to minimize the overall communication delay while ensuring a spec-

ified level of convergence for the loss function. The optimization

problem depends on unknown future information, which necessi-

tates an online solution.We propose AdaSparse, a distributed online

algorithm, and its low-complexity approximation, LC-AdaSparse,

which features linear computational complexity. Through novel

drift bounding techniques, we show AdaSparse can achieve both

sub-linear dynamic regret in delay and optimal rate of convergence.

Numerical experiments on image classification tasks using vari-

ous models and datasets have shown that our approach effectively

reduces communication delay comparedwith the benchmarks, with-

out compromising the learning performance.
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