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Abstract. The throughput capacity of WLANs can be improved by a carefully
designed relay infrastructure. In this work, we propose an optimization formula-
tion based on Lagrangian relaxation and a subgradient algorithm to compute the
best placement of a fixed number of relay nodes (RNs) in a WLAN. We apply
this optimization framework to a multi-rate WLAN based on the IEEE 802.11g
standard under Rayleigh fading. We then study the expected throughput capacity
of a WLAN with relay infrastructure and investigate how the optimal placement
of RNs is affected by the number of RNs, path-loss characteristics, and the traffic
pattern. Our numerical results show that, in some network scenarios, more than
120% performance gain can be achieved when RNs are strategically installed in
the network. Furthermore, we also show that for a wide range of system param-
eters, optimally placed RNs can significantly increase the network throughput
capacity over random placement.
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1 Introduction

Wireless Local Area Networks (WLANs), which provide low-cost wireless broadband
data access for mobile Internet users, are expected to create a plethora of business op-
portunities. Currently, the most commonly implemented WLANs in North America are
based on the IEEE 802.11b/g standards, which are capable of supporting bit rates up to
11Mbps and 54Mbps respectively in the 2.4GHz spectrum. As the number of hotspot
users proliferates and the demand from wireless Internet users increases, new strategies
have to be employed to increase the throughput of future WLANs.

The multi-rate capability of modern WLAN equipments and a relay infrastructure
can work synergically to improve the throughput capacity of a WLAN. In a WLAN with
relay infrastructure, the source can either transmit its data to the destination directly, or
relay its data via a relay node (RN). If a circuitous route can result in a higher bit rate
than the direct route, the source should use the relay node to relay its data.

In this study, we investigate the optimal placement of RNs such that the throughput
capacity of a WLAN can be maximized. Toward this end, we propose an analysis and
optimization framework that exploits the multi-rate capability of the WLAN physical
layer. Our main contributions are the following:
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– Present a tractable discretized re-formulation of the problem of optimal RN place-
ment, which allow us to restrict the locations of the RNs.

– Solve the discrete version of the problem by computing an upper bound and a lower
bound of the solution that converge toward each other, through Lagrangian relax-
ation and subgradient algorithm.

– Investigate the expected throughput capacity of a WLAN with relay infrastructure
and how the optimal placement of RNs is affected by the number of RNs, path-loss
characteristics, and traffic pattern.

The rest of this paper is organized as follows. In Section 2, we review the related
work in multihop wireless networks. In Section 3, we describe the relaying architec-
ture and define the network throughput capacity. In Section 4, we cast the general RN
placement optimization problem and re-formulate it to a tractable discrete problem. We
then show how this problem can be solved by Lagrangian relaxation and a subgradi-
ent algorithm. In Section 5, we present a model for IEEE 802.11g multi-rate WLAN
under Rayleigh fading. In Section 6, we discuss the convergence time of the proposed
optimization algorithm and show effect of different system parameters on the strategic
placement of the RNs. Finally, concluding remarks are given in Section 7.

2 Related Work
There has been much research in relaying and routing through mobile nodes. Inspired
by recent advances in ad hoc networking [1], the concept of using peer mobile hosts to
relay data has been explored in the context of cellular networks [2]. In a more recent
work, the problem of joint routing, link scheduling and power control in such multi-
hop networks has been investigated [3]. Moreover, issues about frequency assignment
and frequency recycling in such multihop networks have been addressed in [4]. In the
context of multi-rate WLAN, [5] and [6] have shown that by using other mobile hosts
to perform relaying, the performance of the network can be improved under DCF and
PCF respectively.

However, the concept of using immobile relay nodes to relay traffic, which is what
we consider in this paper, has received less attention. The iCar architecture [7] is one
such example for the cellular environment. Immobile relay nodes have several advan-
tages when compared with mobile relay nodes. First, because of their sedentariness, it
is reasonable to assume that they have access to power supply. Consequently, energy is
not a constraint. Second, the fixed relay nodes can be optimally configured to maximize
their beneficial effects. The problem of fixed relay placement to maximize WLAN ca-
pacity was first studied in [8]. In [9], we proposed an efficient extension point placement
algorithm aiming at improving the network layer throughput of a rectilineal network,
using a divide-and-conquer searching algorithm. In this work, we explore the utiliza-
tion of relay infrastructure in a discrete multi-rate WLAN, and analytically derive the
optimal placement of relay nodes in such WLANs in a general network environment.

3 Relaying Architecture and Design Objectives
The system under consideration is analogous to a Basic Service Set (BSS) of an IEEE
802.11 WLAN. In this network configuration, there is an AP which is connected to
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the wired network, and this access point provides wireless coverage to a local area. In
a network with no RN, MHs located within this coverage area directly communicate
with this AP. In a network with RNs, mobile hosts located at different locations are
associated with either the AP or a suitable RN. If an MH is associated with an RN, this
MH will treat the selected RN as an AP and only communicate with the RN, so that all
packets between the AP and the MH are relayed by the RN.

The AP communicates with each MH (possibly through an RN) in its coverage area
in a round robin fashion, thus dividing the time axis into time-varying packet transac-
tion cycles. In each cycle, the AP transmits a downlink packet to the chosen MH, and
the MH transmits a uplink packet to the AP. In this study, we assume the lengths of the
uplink and downlink packets may be unequal but are fixed, and the AP always has a
packet to send to each active MH and vice versa.

We assume the transmission schedule for all transmitters is decided perfectly by the
AP, and model the system as a single-channel fully-connected network. In other words,
at any given time, only one transmitter is allowed to transmit, so that no packet collision
is experienced at a receiver.

Let x be the total number of bits of an uplink and a downlink packet combined. Let
Ti represents the packet transaction time of an AP-MH pair in the ith cycle. By the Law
of Large Numbers, the throughput capacity of the network is defined as

C = lim
n→∞

nx
∑n

i=1 Ti

=
x

E[Ti]
. (1)

Therefore, in order to maximize the throughput capacity of the network, we need to
minimize E[Ti]. Thus, the design objective of our system is to minimize the expected
time that an AP-MH pair completes a single downlink-uplink packet exchange, which
we call the packet transaction time in this paper.

We further define the packet transmission time, T (l, P, x), as the expected time for
a transmitter to send an x-bit packet to a receiver, where l is the distance between the
transmitter and receiver, P is the reference power of the transmitter, and x is the size
of the packet to be transmitted. Next, we first propose an optimization method for the
placement of RNs for a generic function T (l, P, x), which can be obtained from the-
oretical models or by regression models based on site-survey results. In Section 5, we
present a case study for T (l, P, x) based on the IEEE 802.11g physical layer specifica-
tions with large-scale propagation path loss and Rayleigh fading.

4 Relay Node Placement Optimization

In this section, we first provide an analytical framework to derive the expected packet
transaction time with respect to different RN placements. This analytical framework is
then used to cast the RN placement problem as an optimization problem. We show that
the resulting optimization can be converted to a form similar to the p-median problem
[10] with an additional constraint. Finally, we present an efficient solution based on
Lagrangian relaxation and a subgradient optimization algorithm.
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RN MH
d l

– xd = downlink packet length (bits).
– xu = uplink packet length (bits).
– x = xd + xu.
– β = xd

xd+xu
= downlink proportion.

– Pa = reference power of AP.
– Pr = reference power of RN.
– Pm = reference power of MH.

Fig. 1. Single user scenario with one relay node.

4.1 RN Relaying

In the elemental scenario, we consider a single MH and one RN, on a plane where the
AP is at the origin, as shown in Fig. 1. If the MH does not use the RN, the expected
packet transaction time is

Tnorn(l) = T (l, Pa, xd) + T (l, Pm, xu). (2)

If the MH uses the RN to relay its packet, the expected packet transaction time is

Trn(l, d, θ, ϕ) =T (d, Pa, xd) + T (η, Pr, xd) + T (d, Pr, xu) + T (η, Pm, xu), (3)

where η =
√

l2 + d2 − 2ld cos |θ − ϕ|.
By using an RN, the same data packet has to be transmitted twice. As a result,

the RN may or may not be beneficial to an MH. An MH will use an RN to facilitate
its communication with the AP only if such usage result in a smaller expected packet
transaction time, i.e., if Trn(l, d, θ, ϕ) < Tnorn(l).

4.2 Throughput Capacity Maximization with Multiple RNs

We assume that a fixed number, N , where N > 1, of relay nodes are available for
an AP in the WLAN system. Fig. 2 shows a simple example, where an AP serves the
outdoor area of a campus. There are 3 RNs available and they are placed around the
AP. The coverage area, which can be in any shape, is fitted inside a circle with radius L

and centered at the AP. A vector, d, is used to represent the displacement of RNs with
respect to the AP, and a vector ϕ is used to represent the angle between a predefined
reference base line with respect to the radial line which each RN resides. Thus, we have

d = [d1, d2, ..., dN ]T , ϕ = [ϕ1, ϕ2, ..., ϕN ]T , (4)

where 0 < di ≤ L, ∀i and 0 ≤ ϕ1 ≤ ϕ2 ≤ ··· ≤ ϕN ≤ 2π. Moreover, the locations of
RNs may be restricted due to the geographical topology. Let the set of locations where
an RN can be installed be S. For example, in Fig. 2, S may be a subset of the perimeters
of the buildings.

The MHs are distributed in the coverage area of the network with the probability
density function f(l, θ). An MH may either communicate with the AP directly or select
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Fig. 2. Multi-user two-dimensional WLAN
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Fig. 3. Discretization of the network.

the most suitable RN. Therefore, for a particular RN placement, (di, ϕi) ∈ S for i =
1, ..., N , the expected packet transaction time of the network can be computed as

Trn(d, ϕ) =

∫ 2π

0

∫ L

0+ε

lf(l, θ) min

[

Tnorn(l), min
1≤k≤N

Trn(l, dk, θ, ϕk)

]

dldθ, (5)

where ε > 0 is small. Using (5), we have the following optimization problem:

Objective: min
d,ϕ

Trn(d, ϕ)

s.t. 0 < di ≤ L, ∀i

0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕN ≤ 2π

(di, ϕi) ∈ S ∀i.

(6)

Clearly, this problem is difficult to solve directly. However, in reality, there is no
need to determine the RN placement with sub-meter granularity. Hence, we can cal-
culate the approximate value of (5) by discretizing the network into a large but finite
number of areas, where a mobile host is located at each area with a certain probability.
Then, the integral in (5) can be interpreted as a Riemann sum.

4.3 Problem Reformulation

As shown in Fig. 3, we can divide the entire network into θmax equal-size sectors, and
each sector is then divided into lmax equal-length cells.1 A mobile host is located at
the corner of each cell with a certain probability, and the area of the cell represents the
area that this mobile host occupies. Moreover, the corner of each cell also represents a
candidate site of the RN set. Each MH or RN candidate site can be uniquely identified
by its radial line number and its cell number. For example, the selected site in Fig. 3 lies
on the third cell of the first radial line. Thus, this site is indexed by (3,1). For notation

1 In our numerical analysis, the network is divided into approximate 100 thousand cells.
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purpose, we use (i, j) to describe the location of an MH, while we use (δ, τ) to represent
the location of an RN candidate site. We define the following notations:

∆θ =
2π

θmax

, ∆l =
L

lmax

, δ = (δ1, ..., δN )T , τ = (τ1, ..., τN )T ,

dk ≈ δk∆l, for 1 ≤ k ≤ N, and δk ∈ Z
+, and 1 ≤ δk ≤ lmax,

ϕk ≈ τk∆θ, for 1 ≤ k ≤ N, and τk ∈ Z
+, and 1 ≤ τk ≤ θmax,

h(a,b) =

∫ b∆θ

(b−1)∆θ

∫ a∆l

(a−1)∆l

lf(l, θ)dldθ, a ∈ [1, lmax], b ∈ [1, θmax],

S′ = M(S),

where M(·) is the mapping of a set from the continuous space to the discrete space. Fur-
thermore, for notation simplification, we let T ∆l,∆θ

rn (i, δ, j, τ) = Trn(i∆l, δ∆l, j∆θ, τ∆θ),
and T ∆l

norn(i) = Tnorn(i∆l). Then, (5) can be approximated as

Trn(d, ϕ) =

∫ 2π

0

∫ L

0+ε

lf(l, θ) min

[

Tnorn(l), min
1≤k≤N

Trn(l, dk, θ, ϕk)

]

dldθ

≈

lmax
∑

i=1

θmax
∑

j=1

min

[

T ∆l
norn(i), min

1≤k≤N
T ∆l,∆θ

rn (i, δk, j, τk)

]

h(i,j)

= Trn(δ, τ )

(7)

To facilitate the minimization of Trn(δ, τ ), we define two sets of decision variables, X
and Y. X(δ,τ) = 1 if an RN is placed in position (δ, τ); otherwise, X(δ,τ) = 0. More-
over, Y(i,j),(δ,τ) = 1 if the MH (i, j) is served by RN (δ, τ); otherwise, Y(i,j),(δ,τ) = 0.

Note that X(0,0) = 1 because the access point is always present. Moreover, since
X(0,0) = 1, we have Y(i,j),(0,0) = 1 only if the MH at (i, j) is served directly by the
AP. Thus, (6) can be reformulated as

min
X,Y

:

lmax
∑

i=1

θmax
∑

j=1

[

h(i,j)T
∆l
norn(i)Y(i,j),(0,0) +

lmax
∑

δ=1

θmax
∑

τ=1

h(i,j)T
∆l,∆θ
rn (i, δ, j, τ )Y(i,j),(δ,τ)

]

(8)

s.t. Y(i,j),(0,0) +

lmax
∑

δ=1

θmax
∑

τ=1

Y(i,j),(δ,τ) = 1 ∀ (i, j) (9)

lmax
∑

δ=1

θmax
∑

τ=1

X(δ,τ) = N (10)

X(0,0) = 1 (11)

Y(i,j),(δ,τ) − X(δ,τ) ≤ 0 ∀ (i, j), (δ, τ ) (12)

X(δ,τ) = 0 ∀ (δ, τ ) /∈ S′ (13)

Objective (8) minimizes the expected minimum packet transaction time of all MHs
in the network. Constraint (9) requires each MH to be assigned to exactly one RN or
the AP. Constraint (10) states that exactly N RNs are to be located. Constraint (11)
states that the AP is always present. Constraint (12) requires that the MH at (i, j) can
be assigned to an RN at (δ, τ) only if an RN is installed at location (δ, τ). Constraint
(13) required that the RNs are not located in the infeasible sites.
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4.4 An Optimization-Based Lagrangian Relaxation Iterative Algorithm

Lagrangian relaxation with subgradient optimization can be used to provide approxi-
mate solution to many NP-hard problems efficiently. Thus, noting the distinctive char-
acteristics of our RN placement formulation, we propose to solve our optimization prob-
lem in (8) as follows.

Step 1: Setting up. We relax constraint (9) and obtain (14), where λ(i,j) are the
Lagrange multipliers. In our numerical analysis below, all λ(i,j) values are initialized to
5000.

max
λ

min
X,Y

lmax
∑

i=1

θmax
∑

j=1

λ(i,j)

[

1 − Y(i,j),(0,0) −

lmax
∑

δ=1

θmax
∑

τ=1

Y(i,j),(δ,τ)

]

+

lmax
∑

i=1

θmax
∑

j=1

[

h(i,j)T
∆l
norn(i)Y(i,j),(0,0) +

lmax
∑

δ=1

θmax
∑

τ=1

h(i,j)T
∆l,∆θ
rn (i, δ, j, τ )Y(i,j),(δ,τ)

]

=

lmax
∑

i=1

θmax
∑

j=1

λ(i,j) +

lmax
∑

i=1

θmax
∑

j=1

[

(h(i,j)T
∆l
norn(i) − λ(i,j))Y(i,j),(0,0) +

lmax
∑

δ=1

θmax
∑

τ=1

(h(i,j)T
∆l,∆θ
rn (i, δ, j, τ ) − λ(i,j))Y(i,j),(δ,τ)

]

(14)

s.t. (10), (11), (12), (13) are satisfied .

Step 2: Solving the simplified problem. For fixed values of the Lagrange multi-
pliers, we want to minimize the objective function (14). Since the values of λ(i,j) are
fixed, the first term in the objective function, which is just the sum of all Lagrangian
multipliers, is a constant. To minimize (14), we begin by computing the value of

V(δ,τ) =

lmax
∑

i=1

θmax
∑

j=1

min(0, [h(i,j)T
∆l,∆θ
rn (i, δ, j, τ) − λ(i,j)]) ∀(δ, τ) ∈ S′ (15)

We then find the N smallest values of V(δ,τ) and set the corresponding values of X(δ,τ) =

1 and all other values of X(δ,τ) = 0. We then set Y(i,j)(δ,τ) = 1 if h(i,j)T
∆l,∆θ
rn (i, δ, j, τ)−

λ(i,j) < 0 and X(δ,τ) = 1. Moreover, since X(0,0) = 1, we set Y(i,j)(0,0) = 1 if
h(i,j)T

∆l
norn(i) − λ(i,j) < 0. All other Y ’s are set to zero.

Step 3: Updating the lower and upper bounds. For each iteration of this pro-
cess, an upper bound and lower bound of the original objective function (8) need to be
determined. From Step 2, N RN candidate sites are selected. The expected minimum
packet transaction time with this particular placement can be calculated by using (7).
This value is an upper bound of (8). The lower bound for the current iteration is simply
the objective function (14) with the values of X and Y found in Step 2 [11].

Step 4: Modifying the Lagrange multipliers. The Lagrange multipliers are revised
using a standard subgradient optimization procedure [11]. At the nth iteration of the
Lagrangian procedure, we first compute the step size by

tn =
An(UB − Ln)

∑lmax

i=1

∑θmax

j=1

[

Y n
(i,j),(0,0)

+
∑lmax

δ=1

∑θmax

τ=1 Y n
(i,j),(δ,τ)

− 1
]2

,
(16)
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where UB and Ln are the upper and lower bounds found from Step 3, Y n
(i,j),(δ,τ) is the

optimal value of Y(i,j),(δ,τ) at the nth iteration, and An is a constant updated as follows.
We begin with A1 ≤ 2 an arbitrary small positive number. At each iteration, the value
of An is halved if Ln has not increased in cA consecutive iterations. In our numerical
analysis, we use A1 = 2 and cA = 4. Then, the Lagrangian multipliers are updated by

λn+1
(i,j) = max

[

0, λn
(i,j) − tn

(

Y n
(i,j),(0,0) +

lmax
∑

δ=1

θmax
∑

τ=1

Y n
(i,j),(δ,τ) − 1

)]

. (17)

Step 5: Iteration and termination. The algorithm terminates when any one of the
following conditions is true:

1. A predefined number of iterations are completed.
2. The upper bound equals or is close enough to the lower bound.
3. An is small, such that the changes in λ(δ,τ) becomes too small. Such small changes

are not likely to help solve the problem.

Otherwise, we repeat from Step 2.

5 IEEE 802.11 Model and Packet Transmission Time

In this section, as a sample case study, we derive the expected packet transmission time
based on the IEEE 802.11g bit rate model. Suppose there are M data rates, denoted
r1, r2, ..., rM , supported by the physical layer. Reliable communication by using rate
rm can be realized only if the signal strength at the receiver is above a certain thresh-
old, say ηm. Consequently, for the set of M data rates, there is a set of M thresholds,
η1, ..., ηM . We further define η0 = 0 and ηM+1 = ∞.2

We study the case where the following large-scale propagation model is applicable:
P2 = P1

dα
2

, where P1 is the reference signal power measured at one meter away from the
transmitter, P2 is the signal power measured at d2 meters away from the transmitter, and
α is a positive constant representing the path loss roll off factor. The reference power
P1 can be obtained via field measurement or calculated using the free space path loss
formula in [12].

In addition to large scale propagation, multipath fading may have a prominent ef-
fect on reliable communication. Under Rayleigh fading, the instantaneous power, γ, is
exponentially distributed with the probability density function p(γ) = 1

Pr
e

−γ
Pr , where

Pr is the average power of γ. Consequently, the probability that a transmitter with
reference power P can transmit at rate rm, to a receiver at distance l, where l > 1,
is p(rm, l, P ) =

∫ ηm+1

ηm

lα

P
e

−γlα

P dγ , where m = 1, 2, ..., M . Furthermore, in some in-
stances, the receiver can be located in a deep-fade area, i.e., is experiencing bad channel
condition. The probability of these instances, where the transmitter cannot transmit in
any data rate, is pf (l, P ) =

∫ η1

η0

lα

P
e

−γlα

P dγ , while the probability that the transmitter

can transmit successfully is ps(l, P ) = 1 − pf (l, P ) =
∑M

m=1 p(rm, l, P ) .

2 In IEEE 802.11g, there are 11 different bit rates, and the minimal threshold for each bit rate is
specified by the standard.
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Fig. 4. Example convergence of the Lagrangian relaxation iterative algorithm.

In this discrete-rate model with fading, the transmitter needs a small channel prob-
ing time, denoted Tprob, to test the channel and decide the transmission rate before the
actual data transmission can take place. If the transmitter determines that the channel
condition does not allow it to transmit at any rate, it will give up its transmit opportu-
nity, and prob the channel again later. The wasted channel probing time adds to the total
packet transmission time.

Let Tg(l, P, x) be a random variable that represents the packet transmission time
of an x-bit packet, and let S and F be the events of “good” and “bad” channel states
respectively. The expected value of this packet transmission time is

E[Tg(l, P, x)]

= E[Tg(l, P, x)|F ]pf (l, P ) + E[Tg(l, P, x)|S]ps(l, P )

=

(

E[Tg(l, P, x)] + Tprob

)

pf (l, P ) +

( M
∑

m=1

p(rm, l, P )

ps(l, P )

[

x

rm

+ Tprob

])

ps(l, P ).

(18)

Rearranging the above, we have the expected packet transmission time

T (l, P, x) = E[Tg(l, P, x)] =
Tprob

ps(l, P )
+

M
∑

m=1

p(rm, l, P )

ps(l, P )

x

rm

. (19)

6 Numerical Analysis

In this section, we present numerical results from the proposed optimization methods
and evaluate the capacity improvement from using wireless relay nodes in an urban
WLAN. Unless otherwise stated, the system parameters such as bit rate power thresh-
olds, antenna gains, and transmitter powers are taken from the CISCO Aironet 1100
Series Access Point and mobile network interface card specifications [13]. The other
system parameters are selected based on a typical urban environment.

6.1 Convergence of Lagrangian Iteration

In Fig. 4, we show the convergence of the algorithm in two typical network scenarios.
For both scenarios, the network provides a coverage area of 400 meters in radius, and
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16 RNs are available to be placed in this network without restriction. MHs are uni-
formly distributed in the network coverage area. Both the AP and RN are equipped
with a 10dBm transmitter, while the mobile hosts use a 5dBm transmitter. The com-
bined length of a uplink and a downlink packet is set to 2k bytes, and 70% of downlink
traffic is assumed. By default, the network is discretized into 100 thousand cells, corre-
sponding to approximately 5 square meters per cell on average.

As shown in Fig. 4, for both channel roll-off factors, α = 2.2 and α = 2.6, the
difference between the upper bound and the lower bound converges to less than 2% of
the lower bound value in less than 40 iterations.

6.2 Effect of System Parameters on RN Placement and Performance Gain

In this subsection, we discuss the benefit of the strategically placed RNs with respect
to different system parameters. The system that we investigated has three system pa-
rameters: roll off factor (α), proportion of downlink data (β), and the number of RNs
(N ). For each set of parameters, our analysis and optimization procedure produces an
optimal placement of RNs. Moreover, as defined in (1), we can calculate the through-
put capacity of the network without relay nodes, Cnorn and with relay nodes optimally
placed, Crn. Hence, Cnorn and Crn are defined as x

Tnorn
and x

Trn(d∗,ϕ∗)
respectively,

where (d∗, ϕ∗) represents the optimal RN location(s) calculated by the Lagrangian re-
laxation iterative algorithm. We define the performance gain of utilizing the RNs as
Gain = 100 × Crn−Cnorn

Cnorn
. In the following, the relationship among the three system

parameters with respect to the optimal RN placement and performance gain will be dis-
cussed. Moreover, we also compare the optimal performance gain with the performance
gains resulting from random placements of RNs.3

We study the effect of the roll off factor, α, and the number of RNs, N , in Fig. 5 and
Fig. 6. Except N and α, the same set of system parameters from subsection 6.1 are used.
Fig. 5 and Fig. 6 show the performance gains and optimal RN placements with respect
to different roll off factors respectively. When there are 4, 8 or 12 RNs, the solution
calculated by the Lagrangian algorithm converges to a single-tier configuration, where
the RNs are uniformly distributed around and with a displacement d1 meters away from
the AP. When there are 16 or 20 RNs available, the Lagrangian algorithm converges to
a two-tier configuration, where two equal-size rings of RNs with radius d1 and d2 are
formed surrounding the AP.

From these figures, we make three main observations. First, the performance gain
is high when the pathloss roll-off factor is high. The roll off factor determines how fast
the signal decays when it travels through a distance. Therefore, as the roll off factor
increases, the benefits of the RNs become more significant. Second, the performance
gain difference between optimal and random placement of the RNs is substantial when
the number of RN is small to moderate. Third, in all cases, the effect of diminishing
return is observed as the number of RNs increases. These observations suggest that
when the number of RN is high, the marginal gain of each addition RN is small.

3 For each set of system parameters, 100 different random RN placements were generated, and
we report the average performance gain of relaying using randomly place RNs.
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Fig. 5. Performance gain with respect to dif-
ferent roll-off factors and number of RNs.
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Fig. 6. Optimal placement of RNs with re-
spect to different roll-off factors and number
of RNs.
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Fig. 7. Performance gain with respect to dif-
ferent proportion of downlink data and num-
ber of RNs.
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Fig. 8. Optimal placement of RNs with re-
spect to different proportion of downlink
data and number of RNs.

We study the effect of the proportion of downlink data (β) and the number of RNs
(N ) on an urban network in Fig. 7 and Fig. 8. The system parameters are the same
as before, except the roll off factor is set to 2.6. Again, the combined length of a up-
link and a downlink packet is set to 2k bytes. Thus, the downlink and uplink packet
lengths are 2βk bytes and 2(1− β)k bytes respectively. When there are 4 or 8 RNs, the
Lagrangian algorithm converges to an single-tier configuration regardless of the pro-
portion of downlink data. When there are 12, 16 or 20 RNs, the algorithm converges to
a two-tier configuration, similar to the previous subsection.

Two main observations can be seen from these figures. First, the performance gain
increases as the proportion of uplink data, (1− β), increases. This is because the MH’s
transmitter has less power compared with that of the AP and RNs. As the amount of
data needed to be transmitted by the MH’s transmitter increases, the benefit of the RN
becomes more significant. Second, relaying with optimally placed RNs performs sig-
nificantly better than that of random placement regardless of traffic pattern.



12

7 Conclusions

In this work, we have investigated the strategic placement of wireless relay nodes to en-
hance the throughput capacity of an urban wireless local area network. We have devel-
oped an analytical model for performance evaluation and RN placement optimization.
We propose a Lagrangian relaxation iterative algorithm to solve a discrete version of
the RN placement problem. The proposed framework can be generalized to fit differ-
ent channel models, network configurations, and user behaviors. In particular, we have
investigated the RN placement problem in an IEEE 802.11g multi-rate WLAN under
Rayleigh fading. Using the proposed numerical analysis framework, we have showed
that in most cases, by using strategically placed RNs, the network capacity can be sig-
nificantly improved. Given a set of network parameters, the proposed algorithm can be
used by network designers to compute the optimal placement of RNs and justify the
tradeoff between additional hardware cost and system performance gain.
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