
1

MAGIKS: Fair Multi-resource Allocation Game Induced by
Kalai-Smorodinsky Bargaining Solution

Erfan Meskar and Ben Liang, Fellow, IEEE
We study the problem of fair and efficient mechanism design for allocating multiple resources in multiple servers among a set

of users with Leontief utilities. This problem is motivated by a mobile edge computing environment where each mobile user cannot
establish a wireless connection simultaneously to multiple edge servers. Each user is a selfish utility maximizing agent that chooses a
single server for its job execution. When a server is shared by multiple users, a resource allocation rule decides the utility that each
user must receive. Our goal is to design a mechanism that always admits a Nash Equilibrium (NE), i.e., a state where no user has
incentive to change its server, that (1) can be reached in polynomial time and (2) provides fair and efficient resource allocation. We
propose the Multi-resource Allocation Game Induced by Kalai-Smorodinsky bargaining solution (MAGIKS) and prove that under
discrete resource demands it finds an NE in O (poly(n)) moves for any fixed server configuration, where n is the number of users.
Furthermore, MAGIKS satisfies envy-freeness, sharing incentive, and Pareto optimality on each server. Regarding fairness among
users in different servers, we prove that MAGIKS satisfies 2-approximate envy-freeness and maximin share guarantee. Moreover,
we show that 2-approximate envy-freeness is the best that any mechanism that satisfies local Pareto optimality can achieve at its
NEs.

Index Terms—Envy-Freeness, Fair Allocation, Maximin Share Guarantee, Nash Equilibrium

I. INTRODUCTION

THERE is a long history of mathematically rigorous
studies on fair division of resources among a set of

agents [1]–[6]. Developing a fair division mechanism is of
immense significance to guaranteeing the quality of experience
for different agents. This problem has been considered from
different perspectives in economics and computer science
and arises in various real-world settings such as auctions,
airport traffic management, spatial resource allocation, fair
scheduling, and allocation of tasks to workers.

Defining fairness is a critical point in resource allocation
mechanisms. When a single resource is shared among identical
agents, the fairest allocation is to divide the resource equally.
In more complicated settings, however, it is challenging to
define fairness. For instance, imagine sharing among a group
of n agents a heterogeneous cake, i.e., two pieces of the cake
may differ in terms of their toppings. When the agents have
different preferences over the pieces, cutting the cake into n
pieces of equal size could be far from fair.

The preferences of an agent are expressed by a utility
function. In this paper, we focus on the Leontief utility
function, which is one of the most widely used utility functions
in economic modelling. It describes an agent’s preferences
on non-interchangeable resources in a fixed proportion for
deriving a positive utility [7]–[10]. For example, in the context
of cloud computing, a server’s resources such as CPU and
memory are non-interchangeable for task execution, and the
number of tasks that a user can execute is expressed by a
Leontief function.

We consider the problem of fair resource allocation with
m servers, each containing a set of l complementary divisible
resources, among n users. Each user prefers the allocation that

This work was supported in part by a grant from the Natural Sciences and
Engineering Research Council (NSERC) of Canada.

E. Meskar and B. Liang are with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, Ontario, Canada (e-
mail: {emeskar, liang}@ece.utoronto.ca).

provides the highest number of tasks. For instance, consider a
user that requires 1 CPU core and 2GB of memory to execute
one task. By receiving an allocation of 2 CPU cores and 5GB
of memory, this user can execute min{2/1, 5/2} = 2 tasks
since the resources are complementary. Hence, the number
of tasks that a user can execute can be represented by a
Leontief utility function of the form min{x1/α1, . . . , xl/αl}.
Similar settings have been studied by economists and computer
scientists [7]–[16]. However, there are two features unique to
our setting. First, the users in our system cannot utilize more
than one server at the same time. For instance, consider a
mobile edge computing environment in which the mobile users
cannot establish a wireless connection to multiple edge nodes.
Consequently, each user must be associated with a server and
share it with other users with the same association, under
a prespecified allocation rule local to each server. Second,
each user is selfish and chooses the server that leads to the
best resource allocation for itself. Hence, the local resource
allocation rule induces a game among the users, and each user
prefers to be associated with a server that provides it with the
maximum utility given the other users’ server association.

Our goal is to design a fair and efficient mechanism for
this game. In the context of fair division of goods, fairness
and efficiency of an allocation are evaluated by observing
whether it satisfies several core properties, namely envy-
freeness, sharing incentive, and Pareto optimality [7]–[16].
Envy-freeness ensures that no agent prefers the allocation
of another agent. Sharing incentive provides performance
isolation, as it guarantees a minimum utilization for each
user irrespective of the demands of the other users, i.e., it
guarantees that each user’s outcome is no worse than 1/n of
the outcome in the hypothetical scenario where it receives all
the resources. Pareto optimality embodies efficient resource
utilization. With Pareto optimality, it is impossible to increase
the outcome of a user without decreasing that of another user.
These three criteria can be applied directly to each server. We
denote them by Local Envy-Freeness (LEF), Local Sharing

2

incentive (LSI), and Local Pareto optimality (LPO).
Furthermore, the mechanism must ensure that a Nash Equi-

librium (NE) always exists, i.e., a state of association such
that no user has any incentive to change its server. Moreover,
all possible NE associations derived by the mechanism must
guarantee fairness among users across different servers. We
consider α-approximate Envy-Freeness at NE (αEF-NE) and
MaxiMin Share guarantee at NE (MMS-NE). αEF-NE ensures
that at any NE association, the users approximately prefer their
allocation to any other user’s allocation on any other server.
MMS-NE ensures that at any NE association, no user’s utility
is worse than its utility under the well-known cut-and-choose
protocol.

The main contributions of this paper are as follows:
• We propose the Multi-resource Allocation Game In-

duced by the Kalai-Smorodinsky bargaining solution
(MAGIKS). MAGIKS uses the Kalai-Smorodinsky (KS)
bargaining solution as its local allocation rule. Starting
from any initial user-server association, MAGIKS ran-
domly picks a user that prefers to change its associated
server in each step, and moves that user accordingly.

• MAGIKS can be considered as a special case of the
vector scheduling game in which the maximum demand
of each user is equal to 1. The vector scheduling game is
known to have NEs, but there is no existing analysis to
confirm whether an NE for this game can be reached in
polynomial time. In contrast, we prove that under discrete
resource demands, MAGIKS terminates after O(poly(n))
moves for any fixed server configuration.

• We show that MAGIKS satisfies LEF, LSI, and LPO,
among users who are associated with the same server. To
show fairness of MAGIKS among users who have chosen
different servers, we prove that it satisfies 2EF-NE and
MMS-NE. Moreover, we show that 2EF-NE is the best
that any mechanism that satisfies LPO can achieve at its
NEs.

• Our simulation results further suggest that the average
number of moves for MAGIKS to convergence increases
only linearly with the number of users and servers.
Moreover, MAGIKS performs well also in terms of the
utilitarian social objective.

The organization of this paper is as follows. In Section II,
we summarize the existing fair allocation rules related to
our problem. In Section III, we describe the system model.
In Section IV, we describe the mechanism properties and
discuss the existing challenges in designing a fair and efficient
mechanism. In Section V, we present MAGIKS and analyze
its NE, fairness, and efficiency properties. In Section VI, we
further evaluate the performance of MAGIKS via simulation,
followed by concluding remarks in Section VII.

II. RELATED WORK

The problem of fair allocation of resources or goods has
been studied under various types of utility functions, including
Leontief utilities [7]–[16], additive utilities [17]–[21], and
Cobb-Douglas utilities [22]–[24]. In this section, we focus on
the works on fair allocation for Leontief utilities. Furthermore,

we review the works on the vector scheduling game, which is
closely related to MAGIKS.

A. Fair Multi-resource Allocation Rules

Ghodsi et al. studied the problem of fair multi-resource
allocation in a cloud computing server with l resources and
n users with Leontief utilities. They proposed Dominant
Resource Fairness (DRF), a non-wasteful resource allocation
policy, which can satisfy envy-freeness, sharing incentive, and
Pareto optimality, among other properties [7]. DRF can be
interpreted as a KS allocation rule [25], [26]. It finds the
lexicographic maxmin solution after a certain normalization
of utilities.

Subsequent to DRF, researchers have extended the KS
allocation rule to other problem settings. Parkes et al. mod-
ified DRF to circumvent possible zero demands for the re-
sources [8]. Ghodsi et al. extended dominant resource fairness
to fair queueing for packet processing in middleboxes [9].
Li et al. studied the KS allocation rule under more gen-
eral preferences (i.e., generalized Leontief preferences) and
proposed generalized egalitarian rules that can satisfy the
required properties [10]. Wang et al. proposed DRFH, which
extends the dominant resource fairness to the setting with
multiple heterogeneous servers [11]. For the same setting with
additional accommodations for task placement constraints,
Wang et al. proved that the KS allocation rule satisfies all
the desirable fairness and efficiency properties [12]. Meskar
et al. proposed DRF-ER, which extends DRF to mobile edge
computing environments [13].

The Nash Bargaining Solution (NBS) is another well-known
fair allocation rule, which maximizes the product of the users’
utility [27], [28]. Meskar et al. used NBS to fairly allocate
resources among mobile edge computing users that have mul-
tiple Leontief utility functions for each access point [14]. They
proved that NBS satisfies envy-freeness, sharing incentive,
and Pareto optimality for such settings. Khamse-Ashari et
al. proposed the notion of dominant virtual share (VDS) [15]
to address the trade-off between efficiency and fairness; they
chose to allocate resources at each server by applying the
so-called α-proportional fairness on VDS (αPF-VDS) [16].
They presented their allocation rule by formulating a game
in which the servers are the players. A server’s strategy is the
number of tasks that it allocates to each user. In the case where
α = 1, which is the only case that αPF-VDS satisfies Pareto
optimality, αPF-VDS corresponds to the NBS allocation rule.

What distinguishes our fair allocation problem from those
in [7]–[16] is that the users are the decision-makers and choose
which server they want. Our job is to design a mechanism that
allocates resources to the users based on their chosen server
association and their resource demand.

B. The Vector Scheduling Game

From the game-theoretical perspective, the works in [29],
[30] are closely related to our problem. In [29], Ye et
al. proposed the vector scheduling game for multi-dimensional
load balancing. They proved that this game always admits an
NE and proposed upper and lower bound for the price of

3

anarchy. In [30], Epstein et al. improved the results in [29]
and proved the existence of an NE for more general settings,
where a user’s job vector can have entries with the value
0. Furthermore, they improved the analysis of the price of
anarchy and presented tight bounds for it. The results in [29],
[30] can be extended to our game to prove the existence
of NEs. However, [29] and [30] does not provide analysis
on the time complexity to reach their NEs. While such time
complexity has been extensively studied for single-dimension
load balancing games [31], there is no known results for the
vector scheduling game. Moreover, [29] and [30] did not study
the fairness properties of the outcome of the game.

III. SYSTEM MODEL

Let N and R++ denote the set of natural numbers and the
set of positive real numbers, respectively. For k ∈ N, we define
[k] := {1, ..., k}.

A. Servers and Users

We consider a set of m servers each equipped with l divis-
ible resources. The servers are considered to be homogeneous
and each server has the capacity vector c = (c1, . . . , cl), where
cr > 0 denotes the capacity of resource r on each server.

Let n denote the number of users. Each user chooses
a single server for its job execution, e.g., a mobile edge
computing environment in which mobile users cannot establish
a wireless connection to multiple edge nodes. An example of
such a system is illustrated in Figure 1. We say that user j is
associated with server s if it chooses that server. Furthermore,
the users are selfish utility maximizers. Hence, each user
prefers to be associated with a server that gives it a higher
utility given the associations of the other users.

Each user requires resources in a customized proportion,
i.e., the users have Leontief utilities. For example, the re-
sources in an edge computing or cloud computing environment
are non-interchangeable and the number of tasks that a user
can execute can be expressed as a Leontief function of the
form min{x1/α1, . . . , xl/αl}, where x1, . . . , xl denote the
input of the function and α1, . . . , αl are positive constants.
Let uj(.) denote the utility function of user j. The users
report their utility functions by submitting their demands for
each resource, i.e., dj,r, per unit of utility/task. We denote the
demand vector of user j by dj = (dj,1, . . . , dj,l) and say that
the demand vector of user j is positive if dj,r > 0 for all
r ∈ [l]. Let s be the server that user j is associated with and
bj,s = (bj,s,1, . . . , bj,s,l) be the vector of allocated resources
on server s to user j. Then, the utility of user j with this
allocation will be uj(bj,s) = min

r∈[l]

{
bj,s,r
dj,r

}
.

B. Local Allocation Rule

A local allocation rule allocates the resources of a server
to its associated users, constrained by its resource capacity.
We restrict ourselves to non-wasteful allocation rules, i.e., all
resources allocated to any user must be completely utilized.
Hence, allocated resources to a user should follow the same
proportion as the user’s submitted demands, i.e., the amount

of any resource r ∈ [l] that is allocated to user j is equal to
αdj,r for some utility α ≥ 0. Therefore, for any non-wasteful
allocation rule, allocating resources is equivalent to allocating
utilities. Let λ be a local allocation rule. Given As ⊆ [n], the
set of users associated with server s, and any user j ∈ As,
we denote the utility that λ allocates to user j by λj (As).
The local allocation rules should satisfy the following capacity
constraint. ∑

j∈As

λj (As) dj,r ≤ cr, ∀r ∈ [l]. (1)

C. The Multi-resource Allocation Game

By designing the local allocation rule, a game will be
induced among the users with the servers as their strategy
set. Let ρj denote user j’s associated server. Then As =
{j | ρj = s}. User j is unhappy if it prefers to change its
association to a different server, i.e., user j is unhappy if for
some s ∈ [m],

λj
(
Aρj

)
< λj (As ∪ {j}) . (2)

Let Πm([n]) denote the set of all m-partitions of the set
of users [n]. An association A∗ = (A∗1, . . . , A

∗
m) ∈ Πm([n])

is a Nash Equilibrium (NE) if all users are happy with their
association, i.e., for all j ∈ [n] and s ∈ [m], λj(A∗ρ∗j) ≥
λj(A

∗
s ∪ {j}), where ρ∗j is the server with which user j

is associated. We refer to such an association as an NE
association.

Our goal is to design a multi-resource allocation game
that always admits an NE association. Moreover, the NE
association of the designed game should be reached in poly-
nomial time and it should provide fair and efficient resource
allocation.

IV. PRELIMINARIES: FAIRNESS PROPERTIES AND
CHALLENGES

We build upon the existing properties in the fair allocation
literature to define fairness and efficiency in our problem.

A. Local Fairness Properties

In [7]–[16], the notions of envy-freeness, sharing incen-
tive, and Pareto optimality have been used to evaluate the
performance of an allocation rule. We require the designed
mechanism to satisfy these properties locally, i.e., for each
server.

Definition 1 (Local Envy-Freeness (LEF)). A mechanism with
local allocation rule λ satisfies LEF, if for any n,m, l ∈ N,
any c ∈ Rl++, any non-empty As ⊆ [n], and any demand
profile {dj}j∈As ∈ Rn×l++ , there exists no user i ∈ As that
prefers the allocation of another user j ∈ As, i.e.,

λi(As) ≥ ui (bj,s) = min
r∈[l]

{
λj(As)dj,r

di,r

}
,

where bj,s = (λj(As)dj,1, . . . , λj(As)dj,l) is the resources
vector that is allocated to user j on server s.

4

CPU MEM BWCPU MEM BW CPU MEM BW

CPU MEM BWCPU MEM BW

User 1

10

11

Resource demand per task

CPU MEM BW

User 2

1 1

10

Resource demand per task

CPU MEM BWBW

User 3

5

10

1

Resource demand per task

CPU MEM BW

User 4

10

32

Resource demand per task

100
cores

100
GB

100
MHz

100
cores

100
GB

100
MHz

Fig. 1: Example system of 4 users, 2 servers with KS as their local allocation rule, and 3 resources.

TABLE I: Notations.

Symbol Explanation
n number of users
m number of servers
l number of resources
cr capacity of resource r on each server
c capacity vector, (c1, . . . , cl)

dj,r user j’s demand for resource r per one task execution

dj user j’s demand vector,
(
dj,1, . . . , dj,l

)
bj,s,r resource r’s allocation to user j on server s

bj,s
vector of allocated resources on server s to user j,(
bj,s,1, . . . , bj,s,l

)
uj(.)

user j’s utility function, i.e., the number of tasks that
user j can execute with its allocation (uj(bj,s) =

min
r∈[l]

{
bj,s,r
dj,r

}
)

Πm([n]) set of all m-partitions of the set of users [n]

As set of users associated with server s

A Association of users to servers, i.e., (A1, . . . , Am) ∈
Πm([n])

λj (As)
utility (i.e., number of tasks) that allocation rule λ
allocates to user j ∈ As

ρj user j’s associated server

ei,j(A) envy of user i for user j’s allocation with association A

ψj

maximum utility/task that user j can have if a server is
entirely allocated to it, i.e., min

r∈[l]
{cr/dj,r}

Definition 2 (Local Sharing Incentive (LSI)). A mechanism
with local allocation rule λ satisfies LSI, if for any n,m, l ∈ N,
any c ∈ Rl++, any non-empty As ⊆ [n], and any demand
profile {dj}j∈As ∈ Rn×l++ , the utility that each user i ∈ As
receives is at least as much as the utility it receives when it
equally shares its server with all the other users in As, i.e.,

λi(As) ≥ ui (pi,s) = min
r∈[l]

{
cr/|As|
di,r

}
, (3)

where pi,s = (c1/|As|, . . . , cl/|As|) denotes the allocation
vector that user j receives on server s in the equal share.

Definition 3 (Local Pareto Optimality (LPO)). A mecha-
nism with local allocation rule λ satisfies LPO, if for any
n,m, l ∈ N, any c ∈ Rl++, any non-empty As ⊆ [n], and
any demand profile {dj}j∈As ∈ Rn×l++ , it is impossible to
reallocate resources of server s and strictly increase the utility
of some user i ∈ As without strictly decreasing the utility of
the other users in As.

B. Fairness Across Servers

With LEF and LSI, a mechanism provides absolute envy-
freeness and performance isolation between any two users that
are associated with the same server. When m > 1, we require
similar properties for users that are associated with different
servers under an NE associations.

Inspired by the study in [21], we consider the notion of
envy among any two users at the NE associations of the game
induced by the allocation rule λ. Given an NE association
A∗ = (A∗1, . . . , A

∗
m), the envy of user i for user j is

ei,j(A∗) =
ui

(
bj,ρ∗j

)
λi(A∗ρ∗i

)
=

min
r∈[l]

{
λj(A

∗
ρ∗
j
)dj,r

di,r

}
λi(A∗ρ∗i

)
, (4)

where bj,ρ∗j =
(
λj(Aρ∗j)dj,1, . . . , λj(Aρ∗j)dj,l

)
is the re-

source vector that is allocated to user j on server ρ∗j . User
i does not envy user j under association A∗ if and only if
ei,j(A∗) ≤ 1.

In an absolute envy-free allocation no user envies another
user’s allocation. However, Example 1 shows that total envy-
freeness is incompatible with LPO at the NEs of any mecha-
nism.

Example 1 (Incompatibility of absolute envy-freeness with
LPO and NE). Consider an environment with 3 identical users
and 2 identical servers. At NEs of any mechanism that satisfies
LPO, one of the users receives a server entirely to itself and
the other two users share the other server. In this allocation,
there always exists a user on the second server that does not
receive more than half of a server and envies the allocation
of the first user. Therefore, it is impossible to always satisfy
absolute envy-freeness at the NEs of a mechanism that satisfies
LPO.

5

Since absolute envy-freeness at NEs is not compatible with
LPO, we propose α-approximate envy-freeness which ensures
that ei,j(A∗) ≤ α for any i and j.

Definition 4 (α-Approximate Envy-Free at NEs (αEF-NE)). A
mechanism with local allocation rule λ that always admits an
NE association satisfies αEF-NE, if for any n,m, l > 0, any
demand profile {dj}j∈[n] ∈ Rn×l++ , and any NE association
A∗ = (A∗1, . . . , A

∗
m) ∈ Πm([n]), the envy between any two

arbitrary users i, j ∈ [n] is no more than α, i.e., ei,j(A∗) ≤ α.

Inspired by the notion of maximin share in fair allocation
of goods [17]–[20], we propose MaxiMin Share Guarantee
at NEs (MMS-NE), which is a straightforward generalization
of the popular cut-and-choose protocol in the cake-cutting
problem. Suppose we ask a user j to partition the resources
into n bundles, one bundle for each user, with the condition
that the other n−1 users get to choose a resource bundle before
it. In the worst case, user j receives its least preferred bundle.
Consequently, user j will choose a partition to maximize the
utility of its least preferred bundle. This maximum possible
value is called user j’s maximin share value. In our model, it
is easy to show that user j’s maximin share value is equal
to 1
dn/memin

r∈[l]

{
cr
dj,r

}
. Therefore, we propose the following

property.

Definition 5 (MaxiMin Share Guarantee at NEs (MMS-NE)).
A mechanism with local allocation rule λ that always admits
an NE association satisfies MMS-NE, if for any n,m, l ∈ N,
any c ∈ Rl++, any demand profile {dj}j∈[n] ∈ Rn×l++ , and any
NE association A∗ = (A∗1, . . . , A

∗
m) ∈ Πm([n]), the utility

that each user receives is at least as much as its maximin
share value, i.e., for any s ∈ [m] and any j ∈ [n],

λj(A
∗
ρ∗j

) ≥ 1

dn/me
min
r∈[l]

{
cr
dj,r

}
. (5)

C. Challenges in Designing a Fair Mechanism

It is easy to satisfy the properties mentioned above in a
single-resource allocation problem by associating a balanced
number of users (i.e., bn/mc or dn/me) to each server
and equally splitting the resource of each server among its
associated users. However, designing a mechanism that always
admits an NE while satisfying the local properties is an
intricate task in the multi-resource allocation problem. Here
we discuss several well-known allocation rules and explain
why they fail.

Consider the simplest local allocation rule that equally
splits resources among the users, i.e., any user j receives
1/|Aρj | of its associated server. Hence, any association A =
(A1, . . . , Am) such that bn/mc ≤ |As| ≤ dn/me for all
s ∈ [m] is an NE association. Furthermore, with this allocation
rule, the users that are associated with the same server receive
the exact same allocation. Hence, it satisfies LEF. Moreover,
it is trivial that this mechanism satisfies LSI, MMS-NE, and
dn/me
bn/mcEF-NE. However, it is obvious that this mechanism is
highly inefficient in multi-resource environments and violates
LPO.

Competitive Equilibrium from Equal Income (CEEI) [3],
[32], Proportionally Fair (PF) allocation [33], and Nash Bar-
gaining Solution (NBS) [27] are three other widely used al-
location rules that are known to satisfy envy-freeness, sharing
incentive, and Pareto optimality in a single-server environ-
ment [7]. Thus, with them as the local allocation rule we can
satisfy LEF, LSI, and LPO. In our system model, these three
allocation rules are equivalent to each other and maximize the
product of the users’ utilities. Unfortunately, these allocation
rules fail to provide a mechanism that guarantees the existence
of an NE association. For instance, consider an environment
with 4 users, 2 servers, and 3 resources with capacity 1. Let
the users’ demand vectors be as follows.

d1 = (1.0, 0.1, 0.1) , d2 = (0.1, 1.0, 0.1) ,

d3 = (0.5, 0.1, 1.0) , d4 = (1.0, 0.2, 0.3) .

With CEEI, PF, or NBS as the local allocation rule, whenever
user 2 or 3 are on user 4’s server, they can improve their
utility by changing their server association. Moreover, when
users 2 and 3 are on the same server, and users 1 and 4 are
on the other server, user 4 can improve its utility by moving
to the other server. Furthermore, when users 1, 2, and 3 are
on the same server and user 4 is on the other server, user 1
is willing to change its server and increase its utility. Hence,
in all associations, there exists at least one user who wants to
change its server. Therefore, in this environment, there exists
no NE association for mechanisms that use CEEI, PF, or NSB
as their local allocation rule.

Even dropping the notion of NE does not yield a straightfor-
ward mechanism design for satisfying the fairness properties
altogether. For instance, the naive extension of KS (resp. NBS)
that first associates a balanced number of users to each server
and then uses KS (resp. NBS) as the local allocation rule fails
to guarantee a good approximation for envy-freeness. Consider
m = 2 servers and l > 1 resources. Let ∆k denote the demand
vector of a user whose demand for resource k is 1 and its
demand for all other resources is δ > 0. Consider l + 2 users
with demand vector ∆1, and l− 1 users with demand vectors
∆2,∆3, . . . ,∆l. A valid balanced association that naive KS
and NBS may end up with is associating l + 1 users with
demand ∆1 to the first server and the other l users to the
other server. It is easy to show that max

i,j∈[n]
ei,j = l+1

1+δ(l−1)

for this association. Therfore, the envy between the users can
grow to l + 1 as δ goes to zero.

V. THE MULTI-RESOURCE ALLOCATION GAME INDUCED
BY KALAI-SMORODINSKY BARGAINING SOLUTION

In this section, we present the proposed MAGIKS mech-
anism. MAGIKS always admits an NE association. Fur-
thermore, we prove that under discrete resource demands,
MAGIKS finds an NE association in polynomial time for any
fixed server configuration. We prove that the allocation derived
by MAGIKS always satisfies LEF, LSI, LPO, 2EF-NE, and
MMS-NE. It is worth mentioning that MAGIKS always has
an NE association and satisfies these properties even with non-
discrete resource demands.

6

A. MAGIKS’s Design

The KS allocation rule, which we denote by µ in this paper,
is an egalitarian rule that finds the lexicographic maxmin fair
solution after a certain normalization of utilities. Let ψj denote
the maximum utility that user j can have if a server is entirely
allocated to it, i.e.,

ψj = min
r∈[l]
{cr/dj,r} . (6)

Note that the servers are homogeneous and ψj is independent
of the server identity. The KS allocation rule would normalize
each user’s utility with respect to its maximum utility. It maxi-
mizes these normalized utilities while keeping them equal. Let
As be the set of users associated with server s. The solution
of problem (7) gives the utilities that users in As receive with
the KS allocation rule.

max
g, xj

g (7a)

s.t.
xj
ψj

= g, ∀j ∈ As, (7b)∑
j∈As

xjdj,r ≤ cr, ∀r ∈ [l]. (7c)

The value of the equalized normalized utility is represented
by g in problem (7).

Let the vector d̃j =
(
d̃j,1, . . . , d̃j,l

)
be the scaled demand

vector of user j in which each resource demand is scaled with
respect to the resource capacity (i.e., d̃j,r = dj,r/cr for all
r ∈ [l]). Thus, d̃j represents what portion of each server’s
resource is required per unit of utility. In other words, d̃j,r
represents how much user j is bottlenecked by resource r.
Let d̄j =

(
d̄j,1, . . . , d̄j,l

)
be the normalized demand vector of

user j, where

d̄j,r =
d̃j,r

max
r′∈[l]

{
d̃j,r′

} =
dj,r/cr

max
r′∈[l]

{dj,r′/cr′}
. (8)

Therefore, the elements in d̄j follow the same proportion as
the elements in d̃j and are scaled so that the maximum element
in d̄j is 1.

With simple algebraic manipulation of problem (7), we can
show that the utility that user j receives with the KS allocation
rule, i.e., µj(As), is

µj(As) =
ψj
l(As)

, ∀j ∈ As, (9)

where l(As) is given by

l(As) = max
r∈[l]

{∑
i∈As

d̄i,r

}
, (10)

and we refer to it as the load induced by As.
In MAGIKS, we use the KS allocation rule as the local

allocation rule of each server. At first, each user randomly
chooses a server. The servers use equation (9) to feedback
to the users the utility they receive based on their server
choice. After each move, each user inquires of the utility it
can receive if it changes its association to another server. Let

ρkj denote user j’s server association after move k and Aks
denote the set of users associated with server s after move k.
Let Ak =

(
Ak1 , . . . , A

k
m

)
be the association after move k. In

each move k, one randomly chosen unhappy user changes its
server association to some server s that gives it better utility,
i.e.,

µj

(
Akρkj

)
< µj

(
Aks ∪ {j}

)
. (11)

Note that each time a user moves, some new unhappy users
could be created on the moving user’s new server and some
old unhappy users on its old server may become happy. The
users repeat this process until they reach an NE association.

Before proving the existence of an NE association and
presenting the convergence time analysis of MAGIKS, we
make the following observations on the load function l(As)
and its relation to the utility that a user receives by the KS
allocation rule.

Observation 1. A user can increase its utility by changing its
server association from s to s′ if and only if the current load
on server s is strictly greater than the load on server s′ after
moving the user to server s′.

µj (As′ ∪ {j}) > µj (As) ⇐⇒ l (As′ ∪ {j}) < l (As) .

Observation 2. Since the demand vectors are assumed to
be positive (i.e., dj,r > 0 for all j ∈ [n] and r ∈ [l]), the
server load is a monotonically increasing function, i.e., for
any S, T ⊆ [n] such that S ⊂ T ,

l (S) < l (T) .

Observation 3. Observations 1 and 2 imply that if user j
could increase its utility by moving from server s to s′, then
the original load on server s must have been strictly larger
than that of server s′, i.e.,

µj (As′ ∪ {j}) > µj (As)⇒ l (As′) < l (As) .

B. NE Existence and Convergence Time Analysis

It is easy to show that MAGIKS is not a potential game.
Therefore, it is non-trivial to study its NE and convergence
properties.

MAGIKS is closely related to the vector scheduling game
in [29]. In a vector scheduling game, each selfish job wants to
submit its multi-dimensional load vector to a server that gives
it the minimum cost. The cost of a server is the maximum
element in the sum of load vectors on it. By Observation 1,
MAGIKS can be interpreted as a vector scheduling game in
which a job’s load vector is equal to a user’s normalized
demand vector and a job’s cost function is equal to the load
of a user’s associated server.

Let us denote the sorted load vector after the kth move
by lksorted =

(
l(Ak

δk1
), . . . , l(Akδkm

)
)

, where
(
δki , . . . , δ

k
m

)
is a

permutation of [m] such that l(Ak
δk1

) ≥ . . . ≥ l(Akδkm
). In

the following lemma, we show that the sorted load vector
is lexicographically reduced after each move in MAGIKS.
A similar claim for the vector scheduling game was proved
in [29]. The interested reader may refer to that work for the
proof.

7

Lemma 1. (Corollary of Theorem 1 in [29]) There is a
lexicographical reduction in the sorted load vector after each
move in MAGIKS, i.e., there exists some p ∈ [m] such that
l(Ak+1

δk+1
q

) ≤ l(Akδkq) for all q ≤ p and l(Ak+1

δk+1
p

) < l(Akδkp
).

Theorem 1. For any n,m, l ∈ N, any c ∈ Rl++, and any
demand profile {dj}j∈As ∈ Rn×l++ , MAGIKS always admits an
NE association and it can be reached after a finite number of
moves.

Proof. By Lemma 1, lksorted is lexicographically greater than
lk+1
sorted. Since the number of possible sorted load vectors is

finite, this game always converges after a finite number of
moves. At convergence, the users no longer wish to change
their server association, which implies that the game converges
to an NE association.

The question of convergence time to an NE remained open
for the vector scheduling game [29], [30]. In this work,
we present a time complexity analysis of finding an NE in
MAGIKS. Under assumptions that each resource r has some
hr ∈ N equal levels, and the users are restricted to choosing
one of these levels as their demands for resource r, we prove
that for any fixed server configuration, MAGIKS converges
to an NE association after O (poly(n)) moves. Note that this
assumption holds for real-world cluster managers such as
SLURM [34] and BORG [35].

First, we prove the claim for the case m = 2 in Lemma 2.
Next, in Theorem 2, we prove the claim for any m ∈ N by
induction on m.

Lemma 2. Fix an environment with m = 2 servers and
some l ∈ N resources and some c ∈ Rl++ such that each
resource r has some hr ∈ N equal levels. Let n ∈ N be
any arbitrary number of users and (dj)j∈[n] ∈ Rn×l++ be any
arbitrary feasible demand profile (i.e., 0 < dj,r ≤ cr) such
that each users can choose one of the hr levels of resource r
as their demand for resource r. MAGIKS converges to an NE
association after O (n) moves.

Proof. Without loss of generality, we can scale the servers’
resource capacity, and the users’ demands accordingly, to make
cr = hr and dj,r ∈ {1, . . . , hr}. Suppose in move k + 1, a
user j improves its utility by changing its server from s to s′.
Since the demands are non-zero, each move changes the load
on both of the servers. Moreover, by Lemma 1, we have that
lksorted is lexicographically greater than lk+1

sorted. Therefore, each
move reduces the value of the maximum load (i.e., l(Ak+1

δk+1
1

) <

l(Ak
δk1

)).
Now, we find a lower bound for the reduction in the value

of the maximum load that is independent of the value of n
and demands. By (10) and (8), we have

l(Akδk1
)− l(Ak+1

δk+1
1

)

= max
r∈[l]


∑
i∈Ak

δk1

d̄i,r

−max
r∈[l]


∑

j∈Ak+1

δ
k+1
1

d̄j,r

 (12)

=
∑
i∈Ak

δk1

di,r1/hr1
max
r′∈[l]

{di,r′/hr′}
−

∑
j∈Ak+1

δ
k+1
1

dj,r2/hr2
max
r′∈[l]

{dj,r′/hr′}
, (13)

where r1 and r2 are the maximizers of the two terms in (12).
Note that dj,r ≤ hr, and dj,r, hr ∈ N for any j ∈ [n] and

r ∈ [l]. Therefore, we can always rewrite (13) as

l(Akδk1
)− l(Ak+1

δk+1
1

) =
∑
i∈Ak

δk1

ai
a′i
−

∑
j∈Ak+1

δ
k+1
1

fj
f ′j
, (14)

for some ai, a′i, fj , f
′
j ∈ N such that ai < a′i and fj < f ′j ,

and a′i, f
′
j ≤ max

r,r′∈[l]
{(hr − 1)hr′} = γ1 for all i ∈ Ak

δk1
and

j ∈ Ak+1

δk+1
1

. Note that γ1 is a constant.
All the terms in (14) are rational numbers. Hence, the final

value must be a rational number which we denote by u
v with

u ∈ Z, v ∈ N, and v is no more than the least common
multiple of all a′i’s and f ′j’s. Hence, v is no more than the
least common multiple of all numbers from 1 to γ1, which we
denote by γ2. Furthermore, we have that l(Ak

δk1
)− l(Ak+1

δk+1
1

) =
u
v > 0. Hence, u ≥ 1 and l(Ak

δk1
)− l(Ak+1

δk+1
1

) ≥ 1
γ2

.
Finally, since the value of the maximum load is at most n

and at least 0, the number of improvement moves is no more
than γ2n. Note that γ2 is a constant and independent of the
value of n and demands. Therefore, MAGIKS converges to an
NE association after O (n) number of moves.

Theorem 2. Fix an environment with some m, l ∈ N and
some c ∈ Rl++ such that each resource r has some hr ∈ N
equal levels. Let n ∈ N be any arbitrary number of users and
(dj)j∈[n] ∈ Rn×l++ be any arbitrary feasible demand profile
(i.e., 0 < dj,r ≤ cr) such that each user can choose one of the
hr levels of resource r as its demand for resource r. MAGIKS
converges to an NE association after O

(
nm−1

)
number of

moves.

Proof. When there are more than two servers in the environ-
ment, even though each improvement move lexicographically
reduces the sorted load vector, not all improvement moves
necessarily reduce the maximum load value. Therefore, in the
proof of this theorem, we have to take into account the number
of moves that do not reduce the maximum load value.

We prove this theorem by induction. Analogous to the proof
of Lemma 2, without loss of generality, we scale the servers’
resource capacity, and the users’ demands accordingly, to make
cr = hr and dj,r ∈ {1, . . . , hr}. By Lemma 2, the claim holds
for the base case m = 2. We assume that the claim is true for
m = t− 1, and we prove it for m = t.

The following is an outline of the proof of the induction
step. We claim that if the value of the maximum load does
not change through moves k to k′, there exists a server with
the maximum value load that has never lost or received a user
through moves k to k′. Further, we use this claim together with
the hypothesis of the induction to prove that the number of
moves in between two consecutive maximum load reducing
moves (MLR-moves) is no more than O(nt−2). Finally, we
propose a lower bound for the maximum load value reduction
which is independent of t and demands in order to find the
maximum number of possible MLR-moves.

8

Now we are ready to present the proof details.

Claim 1. Let the maximum load remain unchanged from move
k to k′ (i.e., l(Ak

′−1
δk
′−1

1

) = . . . = l(Ak
δk1

)). Let Sv denote the set
of servers with maximum load value right after the vth move.
We claim that none of the servers in Sk

′−1 have participated
in any move between k and k′, i.e., for all s ∈ Sk′−1,

Avs = Aks , ∀k ≤ v < k′.

Proof of claim. Let Sv = arg max
s∈[m]

{l(Avs)} be the set of

servers with maximum load value right after the vth move.
It is impossible for the servers in Sk to receive a new user at
some move without losing one of its own users prior to that
move. Otherwise, there would be lexicographical increase on
the sorted load vector, which contradicts the improving nature
of the move. Let s ∈ Sk be any arbitrary server that loses a
user for the first time after some move. We claim that server
s will never again gain enough load to become a server with
maximum load. By Observation 1, whenever server s receives
some user from a server with larger load α, its new load will
be strictly less than α. Hence, the new load on server s will
always remain less than the maximum load value, which is
unchanged from move k to k′. Consequently, any server in Sk

that lost or received a user at some moves between k and k′,
is not a member of Sk

′−1. Similarly, we can show that those
users who were not a member of Sk cannot gain enough load
to become a member of Sk

′−1. Therefore, Sk
′−1 ⊆ . . . ⊆ Sk,

and the user association on any server s ∈ Sk
′−1 remained

unchanged through moves k to k′ − 1.

Claim 2. Let k and k′ be two consecutive MLR-moves with
k′ > k. There always exists a server that has not been part
of any moves between moves k and k′, while attaining the
maximum load value among all servers.

Proof of claim. Since k and k′ are two consecutive MLR-
moves, the maximum load value must have remained un-
changed between these moves, i.e., l(Ak

′−1
δk
′−1

1

) = . . . = l(Ak
δk1

).
Let Sv denote the set of servers with maximum load value
right after the vth move. We must have |Sk′−1| = 1, since
otherwise the k′th move cannot be an MLR-move. Moreover,
By claim 1, the server in Sk

′−1 that always had the maximum
load value between moves k and k′ did not participate in any
move.

Claim 3. The maximum number of moves in between two
consecutive MLR-moves is in O(nt−2).

Proof of claim. Let k and k′ be two consecutive MLR-moves
with k′ > k. By Claim 2, there exists a server s that has
not been part of any moves between k and k′, while attaining
the maximum load value after move k′ − 1. Hence, the game
was being played by users in [n]\{Ak′−1s } over the servers in
[t]\{s}. By the induction hypothesis, after at most O(nt−2)
moves, we would reach an NE association for this subgame,
i.e., no user in [n]\Ak′−1s can improve by moving to any server
in [t]\{s}, and we must have the MLR-move in which a user
in Ak

′−1
s leaves server s. Hence, there are at most O(nt−2)

moves between two consecutive MLR-moves.

The proofs of the following two claims are similar to that
of Claim 3 and are omitted.

Claim 4. If MAGIKS converges to an NE association without
the occurrence of any MLR-move, the total number of moves
must be O(nt−2).

Claim 5. The number of moves before the first MLR-move
and after the last MLR-move is O(nt−2).

Claim 6. There can be at most O(n) MLR-moves.

Proof of claim. By following the same approach used in the
proof of Lemma 2, we can show that the amount of reduction
in the value of the maximum load after each MLR-move is no
less that 1

ζ , where ζ is some constant and independent of the
value of n and demands. Since the value of maximum load is
no more than n and no less than 0, there are at most O(n)
MLR-moves.

Together, Claims 3, 4, 5, and 6 imply that MAGIKS
converges to an NE association after O(nt−1) moves when
m = t, which completes the induction claim.

C. Desired Fairness Properties

Since MAGIKS uses the KS local allocation rule, it is easy
to show that it satisfies the three local properties.

Theorem 3. MAGIKS satisfies LEF, LSI, and LPO.

Proof. In a single-server environment, Ghodsi et al. proved
that the KS allocation rule is envy-free, provides sharing
incentive, and is Pareto optimal [7]. This directly implies that
MSGIKS satisfies LEF, LSI, and LPO.

The properties αEF-NE and MMS-NE evaluate envy-
freeness and performance isolation among users that are
associated with different servers at the NE. In the follow-
ing theorems, we show that MAGIKS satisfies 2EF-NE and
MMS-NE. Moreover, we show that 2EF-NE is the best that
any mechanism that satisfies LPO can achieve at its NE.

Theorem 4. i) MAGIKS satisfies 2EF-NE. ii) 2EF-NE is the
best that any NE guaranteeing mechanism that satisfies LPO
can achieve.

Proof. i) Let A∗ = (A∗1, . . . , A
∗
m) ∈ Πm([n]) be any arbitrary

NE association. If n ≤ m, each user would get one server
entirely to itself. Hence, i, j ∈ [n], ei,j(A∗) = 1 ≤ 2. If
n > m, all servers are occupied by at least one user. Therefore,
the load on each server is no less than 1. For any two arbitrary
users i and j that are associated with the same server, since
the KS local allocation rule, µ, satisfies LSI, we would have
ei,j(A∗) ≤ 1. Let s, s′ ∈ [n] be two arbitrary different servers
and i, j ∈ [n] be two arbitrary users such that i ∈ A∗s and

9

j ∈ A∗s′ . Let us start with the relationship between envy and
servers’ load. By definition of ei,j(A∗) in (4),

ei,j(A∗) =

min
r∈[l]

{
µj(A

∗
s′)dj,r
di,r

}
µi(A∗s)

=

ψj
l(A∗

s′)
min
r∈[l]

{
dj,r
di,r

}
ψi
l(A∗s)

(a)
=

l(A∗s)

l(A∗s′)

min
r∈[l]
{cr/dj,r}

min
r∈[l]
{cr/di,r}

min
r∈[l]

{
dj,r/cr
di,r/cr

}
,

where (a) is due to the definition of ψj in (6). Let r∗ be the
minimizer of min

r∈[l]
{cr/di,r}. Since min

r∈[l]
{cr/dj,r} ≤ cr∗/dj,r∗

and min
r∈[l]

{
dj,r/cr
di,r/cr

}
≤ dj,r∗/cr∗

di,r∗/cr∗
, we have

ei,j(A∗) ≤
l(A∗s)

l(A∗s′)

cr∗/dj,r∗

cr∗/di,r∗

dj,r∗/cr∗

di,r∗/cr∗
=
l(A∗s)

l(A∗s′)
. (15)

Now we show that l(A∗s) ≤ l(A∗s′) + 1. Since A∗ is
an NE association, we have µi(A

∗
s) ≥ µi(A

∗
s′ ∪ {i}) and

Observation 1 implies that l(A∗s) ≤ l(A∗s′ ∪ {i}). Therefore,

l(A∗s) ≤ l(A∗s′ ∪ {i}) = max
r∈[l]

 ∑
k∈A∗

s′∪{i}

d̄k,r


≤ max

r∈[l]

 ∑
k∈A∗

s′

d̄k,r

+ max
r∈[l]

{
d̄i,r
}

(b)

≤ l(A∗s′) + 1, (16)

where (b) is due to d̄i,r =
d̃i,r

max
r′∈[l]
{d̃i,r′} ≤ 1. Equa-

tions (15) and (16) imply that ei,j(A∗) ≤
l(A∗

s′)+1

l(A∗
s′)

≤ 2.
Hence, MAGIKS satisfies 2EF-NE.

ii) We prove this part by using a counter example. Consider
an environment with m servers and m + 1 identical users.
Any NE guaranteeing mechanism that satisfies LPO would
associate two users with one server and one user with each of
the remaining m−1 servers. Due to LPO, each user on the last
m−1 servers receives the entire server. Moreover, there always
exists a user on the first server with an allocation no mare than
half of a server. Thus, it is impossible to achieve better than
2-approximate envy-freeness together with NE guarantee and
LPO.

Theorem 5. MAGIKS satisfies MMS-NE.

Proof. Let A∗ = (A∗1, . . . , A
∗
m) ∈ Πm([n]) be any arbitrary

NE association. We show that the MMS-NE inequality (5) is
satisfied for all users in any of the following cases.

Case 1 (dn/me = 1): It is easy to verify that the MMS-NE
satisfying inequality (5) is satisfied with equality, since each
server receives at most one user and allocates the entire server
to it, i.e., , the utility of each user j ∈ [n] is ψj .

Case 2 (dn/me = n/m = k > 1): When n ≥ m, all servers
are occupied by at least one user, otherwise there would exist
a user who can increase its utility by moving to the empty
server which contradicts the fact that A∗ is an NE association.
Hence, |A∗s| ≥ 1 for all s ∈ [m].

Consider any user in any server s with |A∗s| ≤ k. Since
the KS allocation rule, µ, satisfies LSI, the user must satisfy
the inequality (3) which implies the MMS-NE inequality (5)
when |A∗s| ≤ k.

We next show that the MMS-NE inequality (5) is satisfied
by any user j in any arbitrary server t with |A∗t | ≥ k + 1.
Since |A∗s| ≥ 1 for all s ∈ [m], if |A∗t | ≥ k + 1, there should
exists some server t′ such that |A∗t′ | ≤ k − 1. Since A∗ is an
NE association, user j cannot increase its utility by moving to
server t′. Thus, µj(A∗t) ≥ µj(A∗t′∪{j}). By LSI inequality (3),
we have µj(A∗t′ ∪ {j}) ≥ min

r∈[l]

{
cr/|A∗t′∪{j}|

di,r

}
≥ min
r∈[l]

{
cr/k
di,r

}
.

Case 3 (dn/me > n/m > 1): Analogous to Case 2, any
arbitrary user in any server s with |A∗s| ≤ dn/me satisfies the
MMS-NE inequality (5). Similar to Case 2, we can show that
all users in any arbitrary server t with |A∗t | > dn/me satisfy
the MMS-NE inequality (5) due to the existence of a server t′

with |A∗t′ | ≤ dn/me−1, the fact that A∗ is an NE association,
and the LSI property of the KS allocation rule.

D. Implementation Remarks

It is worth mentioning that MAGIKS can be implemented
in a distributed fashion, and users are not required to reveal
their sensitive information (e.g., demand vector and server as-
sociation) to each other. Instead, each user reports its demand
vector to the servers to inquire about the number of tasks it
could receive if it moves to that server. We assume that the
users are truthful and do not game the system by reporting fake
demand vectors. The servers respond to this query based on
their currently associated users’ demand vector. Each unhappy
user waits for a random time before sending out a small pilot
signal indicating that it wants to move. The first user that sends
out this pilot signal will be the one who is allowed to change
its server association. Hence, this implementation of MAGIKS
requires the users to see each other’s pilot signals. However,
the pilot signals do not contain any information regarding the
identity of the users, their demand vectors, or their server
assocaition. We refer to this implementation as MAGIKS with
Random Improvement Move (MAGIKS-RIM). Alternatively,
servers can implement MAGIKS in a centralized fashion
such that in each iteration, they pick the unhappy user who
would benefit most from changing its association. We refer
to this implementation as MAGIKS with Best Improvement
Move (MAGIKS-BIM). By Theorem 2, MAGIKS converges
to an NE association in polynomial number of moves for
any fixed server configuration, regardless of its improvement
move strategy. Hence, both MAGIKS-RIM and MAGIKS-BIM
converge to an NE in a polynomial number of moves for any
fixed server configuration.

VI. SIMULATION RESULTS

In addition to proving the NE and fairness properties of
MAGIKS in Section V, we further evaluate its performance
with both a synthetic dataset and a real-world dataset. Our
simulation engine is constructed in Python with packages
CVXPY [36], [37] and MOSEK. We choose four benchmark
algorithms for resource allocation in our environment:

10

n = 50 n = 100 n = 150 n = 200 n = 250
0

50

100

N
um

be
r
of

m
ov
es

MAGIKS-RIM

MAGIKS-BIM

Average

Median

(a) m is set to 10.

m = 2 m = 6 m = 10 m = 14 m = 18
0

50

100

N
um

be
r
of

m
ov
es

MAGIKS-RIM

MAGIKS-BIM

Average

Median

(b) n is set to 150.

Fig. 2: Number of moves by MAGIKS with Alibaba cluster trace dataset.

l = 2 l = 3 l = 4 l = 5 l = 6
0

50

100

150

N
um

be
r
of

m
ov
es

MAGIKS-RIM

MAGIKS-BIM

Average

Median

(a) hr is set to 50000.

hr = 10000 hr = 30000 hr = 50000 hr = 70000 hr = 90000
0

50

100

150

N
um

be
r
of

m
ov
es

MAGIKS-RIM

MAGIKS-BIM

Average

Median

(b) l is set to 4.

Fig. 3: Number of moves by MAGIKS with synthesized dataset. The number of users, n, and the number of servers, m, are
set to 150 and 10, respectively.

• UBOUND: It maximizes the Normalized Utilitarian So-
cial Function (NUSF), i.e.,

∑
j

µj(Aρj)

mψj
, after relaxing this

problem by aggregating all servers’ resources into a single
server.

• BKS: We naively extend the DRF/KS-based allocation
rules by proposing Balanced KS (BKS) that randomly
associates a balanced number of users (bn/mc or dn/me)
to the servers and uses KS as the local allocation rule.

• BNBS: Like BKS, Balanced Nash Bargaining Solution
(BNBS) naively extends the NBS-based allocation rules
by randomly associating a balanced number of users and
using NBS as the local allocation rule.

• BEQ: Balanced Equal Division (BEQ) randomly balances
the server association and uses equal division of resources
as its local allocation rule.

Finding an association that maximizes NUSF is a non-convex
and time-consuming problem. Therefore, we study UBOUND,
which relaxes this problem and provides an upper bound for
the optimal NUSF. BKS, BNBS, and BEQ represent naive
extensions of the existing allocation rules. Although BKS
and BNBS’s association are not necessarily NE associations,
these allocation rules are notable for satisfying a subset of
the fairness properties. In particular, BKS and BNBS satisfy

LEF, LSI, and LPO, and they guarantee the maximin share
to users. However, as previously mentioned in Section IV-C,
they fail to guarantee a good approximation for envy-freeness,
and the envy between two users can be as large as l+ 1 with
BKS and BNBS. On the other hand, BEQ’s association is an
NE association and it satisfies LEF and LSI and guarantees
the maximin share to users together with (1 + 1/ bm/nc)
approximate envy-freeness. However, this mechanism is highly
inefficient in multi-resource environments and violates LPO.
In particular, it provides the minimum NUSF (i.e., 1) among
the allocation rules above.

Given any n and m, we generate 100K random realizations
where dj’s are uniformly sampled from the jobs’ demand
vector in the Alibaba cluster trace dataset. Each job in the
Alibaba cluster trace dataset requires resources (i.e., CPU,
memory, GPU) in a customized proportion to execute a task.
The jobs’ demand vectors are included in the trace. We con-
sider each job in the trace as a distinct user in our simulation
setting. Like [38]–[41], we synthesize users’ required bit rate
by assuming that dj,CPUfCPU = Xdj,bps, where dj,CPU is the
CPU demand of user j, fCPU is the CPU frequency of the
servers, dj,bps is the required bit rate of user j, and X is a
random variable with Gamma distribution. We consider the
CPU frequency to be 2.6GHz and follow the method of [38]

11

50 100 150 200 250
n

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

A
ve
ra
ge

no
rm

al
iz
ed

ut
ili
ta
ri
an

so
ci
al

fu
nc
ti
on

MAGIKS-RIM

MAGIKS-BIM

UBOUND

BKS

BNBS

BEQ

(a) m is set to 10.

2 6 10 14 18
m

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

A
ve
ra
ge

no
rm

al
iz
ed

ut
ili
ta
ri
an

so
ci
al

fu
nc
ti
on

MAGIKS-RIM

MAGIKS-BIM

UBOUND

BKS

BNBS

BEQ

(b) n is set to 150.

Fig. 4: Average NUSF versus n and m with Alibaba cluster trace dataset.

2 3 4 5 6
l

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

A
ve
ra
ge

no
rm

al
iz
ed

ut
ili
ta
ri
an

so
ci
al

fu
nc
ti
on

MAGIKS-RIM

MAGIKS-BIM

UBOUND

BKS

BNBS

BEQ

(a) hr is set to 50000.

10000 30000 50000 70000 90000
hr

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

A
ve
ra
ge

no
rm

al
iz
ed

ut
ili
ta
ri
an

so
ci
al

fu
nc
ti
on

MAGIKS-RIM

MAGIKS-BIM

UBOUND

BKS

BNBS

BEQ

(b) l is set to 4.

Fig. 5: Average NUSF versus l and h with synthesized dataset. The number of users, n, and the number of servers, m, are
set to 150, 10, respectively.

and set the shape and rate parameter of X to 4 and 200,
respectively. We consider a general mobile edge computing
system with frequency division multiple access with spectral
efficiency of C = 3.5 and find user j’s demand for the wireless
communication bandwidth as dj,BW = dj,bps/C. Furthermore,
in each realization, we uniformly sample one server from the
set of servers in the Alibaba cluster trace dataset and set it
as the capacity vector c of the m servers in our simulation.
The wireless communication bandwidth capacity of the access
points is randomly selected from 50, 100, 150, 200, and
250MHz in each realization.

To study the impact of l and hr, we set n and m to 150
and 10, respectively, and synthesize 100K random realizations
where dj,r’s are uniformly sampled integers in the interval
[1, hr], and l is uniformly sampled from {2, 3, 4, 5, 6}. For
simplicity, we use the same hr for all resources. To study the
impact of l and hr on the performance of MAGIKS, we set
the other parameter to its default value and changes the value
of the parameter under consideration. The default value of l
and hr are 4 and 50000, respectively.

A. Number of Moves to Converge to an NE

In Figure 2, we illustrate the number of moves taken by
MAGIKS-RIM and MAGIKS-BIM to reach an NE versus the
number of users and servers in the 100K generated realizations
based on the Alibaba cluster trace dataset. Each box represents
the interquartile range (IQR), i.e., the distance between the
upper and lower quartiles. The whisker represents the largest
(resp. smallest) observed point in the range of 1.5×IQR from
above (resp. below) the upper (resp. lower) quartile. The
whiskers are good approximations for 3 standard deviations
of the mean for the normal distribution. Any data point lower
(resp. greater) than the lower (resp. upper) bound is repre-
sented with a cross. The red bars and red stars represent the
median and average value of the data, respectively. Figures 2a
and 2b suggest that the average number of moves grows
roughly linearly with the number of users and servers. Note
that MAGIKS-BIM may require more moves to find an NE
in some cases than MAGIKS-RIM. However, our simulation
result suggests that, on average, MAGIKS-BIM finds an NE
association twice as fast as MAGIKS-RIM.

In Figure 3, we illustrate the number of moves taken by

12

50 100 150 200 250
n

1.0

1.5

2.0

2.5

3.0

3.5

m
ax i,
j

e i
,j

MAGIKS-RIM

MAGIKS-BIM

BKS

BNBS

BEQ

(a) m is set to 10.

2 6 10 14 18
m

1.0

1.5

2.0

2.5

3.0

3.5

m
ax i,
j

e i
,j

MAGIKS-RIM

MAGIKS-BIM

BKS

BNBS

BEQ

(b) n is set to 150.

Fig. 6: Maximum envy versus n and m with Alibaba cluster trace dataset.

2 3 4 5 6
l

1.0

1.5

2.0

2.5

3.0

3.5

m
ax i,
j

e i
,j

MAGIKS-RIM

MAGIKS-BIM

BKS

BNBS

BEQ

(a) hr is set to 50000.

10000 30000 50000 70000 90000
hr

1.0

1.5

2.0

2.5

3.0

3.5

m
ax i,
j

e i
,j

MAGIKS-RIM

MAGIKS-BIM

BKS

BNBS

BEQ

(b) l is set to 4.

Fig. 7: Maximum envy versus l and h with synthesized dataset. The number of users, n, and the number of servers, m, are
set to 150, 10, respectively.

MAGIKS-RIM and MAGIKS-BIM to reach an NE versus
the number of resources and hr in the 100K synthesized
realizations with 150 users and 10 servers. Introducing more
resources to the system reduces the probability of users being
bottlenecked on the same resource. Hence, the users will be
compatible with each other more often and less willing to
change their server association. Thus, the average number of
moves shown in Figure 3a becomes insensitive to l for l ≥ 5.
Furthermore, Figure 3b shows that the value of hr does not
impact the average number of moves taken by MAGIKS-RIM
and MAGIKS-BIM.

B. Normalized Utilitarian Social Function

In Figures 4 and 5, we evaluate the performance of
MAGIKS in terms of NUSF, i.e.,

∑
j

µj(Aρj)

mψj
. In Figure 4a, the

Alibaba trace-based simulation results show that MAGIKS’s
average NUSF is better than 50% of the loose upper bound
of the optimal NUSF (i.e., UBOUND). Furthermore, our
simulation results suggest that the distributed implementation
of MAGIKS does not damage its performance in terms of
NUSF compared to its centralized implementation. Since each

user’s utility is normalized with respect to the sum of the
maximum number of tasks that it can execute on each server
(i.e., mψj), changing the number of servers does not have any
impact on the average NUSF.

Increasing the number of resources reduces the conflicts
between users and makes it easier for them to compensate
for each other’s bottleneck. Thus, the average NUSF of
MAGIKS increases with the number of resources as shown
in Figure 5a. Finally, Figure 5b shows that the average NUSF
is not impacted by the value of hr.

Simulation results show that the naive extension of NBS
outperforms MAGIKS in terms of utilization. However, this
allocation rule fails to guarantee a good approximation for
envy-freeness (see Section VI-C). Moreover, its balanced as-
sociation is not necessarily an NE association. Unfortunately,
unlike KS, NBS cannot be used as a local allocation rule in
our multi-resource allocation game, since there exist cases in
which no association is an NE association with this allocation
rule (see Section IV-C).

13

C. Envy Between Users

In Figures 6 and 7, we study the maximum envy across
the users by recording the maximum observed envy during
our 100K random realization of each setting. BEQ finds the
most balanced distribution of resource allocation by randomly
choosing a balanced association and equally splitting the
servers across their associated users. Hence, it guarantees
dn/me
bn/mcEF-NE, which is the best that any allocation rule that
provides maximin share guarantee can achieve. However,
as our simulation results in the previous section show, this
envy-freeness is achieved through sacrificing the utilization.
Furthermore, Figures 6 and 7 confirm our theoretical analysis
in Section IV-C and show that BNBS and BKS perform poorly
in terms of providing approximate envy-freeness in practice.

VII. CONCLUSION AND DISCUSSION

In this paper, we propose a fair and efficient mechanism
for a multi-server environment to allocate multiple resources
to multiple users. Each user is a selfish utility-maximizing
agent that chooses a single server for its job execution. To
the best of our knowledge, this paper is the first to study
algorithmic fairness and efficiency of mechanisms that jointly
match the servers to the users and share their resources. We
propose MAGIKS, which uses KS as its local allocation rule
and induces a multi-resource allocation game among the users.
Moreover, MAGIKS satisfies local and cross-server fairness
properties including LEF, LSI, LPO, 2EF-NE, and MMS-NE.
Notably, 2EF-NE is the best approximate envy-freeness that
any mechanism that satisfies LPO can achieve. However, these
properties rely on a set of assumptions worth discussing.

First, we assume users play truthfully and report their true
demand vectors. A mechanism is said to be strategy-proof if
no user has an incentive to misrepresent its true preferences
(i.e., its true demand vectors). Unfortunately, in our numerical
experiments, we have observed that MAGIKS does not satisfy
strategy-proofness. However, it satisfies scale-invariance, a
weaker version of strategy-proofness, which guarantees no
user benefits from reporting a scaled demand vector (i.e., αdj)
instead of its true demand vector (i.e., dj). An interesting
direction for future work is to study the possibility of satisfying
strategy-proofness together with the other properties.

Second, we assume that the servers are homogeneous, and
relaxing this assumption is a natural direction for future work.
In particular, it is not known whether extending MAGIKS
to the heterogeneous-server environments would result in a
game that always admits an NE association since Lemma 1
does not hold anymore. Furthermore, satisfying MMS seems
to be a non-trivial task in heterogeneous-server environments.
It would be interesting to study whether such environments
always admit an MMS allocation.

Third, in Theorem 2, we prove that under discrete resource
demands, MAGIKS finds an NE in O

(
nm−1

)
moves, which is

polynomial in n for any fixed server configuration (i.e., m and
hr for each resource r are some constants and independent of
the value of n). Nonetheless, Theorems 1, 3, 4, and 5 indicate
that MAGIKS converges to an NE association after a finite
number of moves and satisfies LEF, LSI, LPO, 2EF-NE, and

MMS-NE even without the assumptions of discrete resource
demands and/or fixed server configuration. To the best of our
knowledge, this paper is the first to study the time complexity
to reach an NE in the vector scheduling game. An interesting
direction for future work is to study the tightness of the bound
presented in Theorem 2. Our simulation results suggest that
the average number of moves of MAGIKS grows roughly
linearly with the number of users and servers, and it performs
well in terms of the utilitarian social objective. An interesting
direction for future work may be lower-bound analysis of
MAGIKS’s performance in terms of the utilitarian social
objective.

Last, we assume that the resources are divisible and the
users accept fractional utilities. Under resource indivisibility
or integer utilities, LEF, LSI, and 2-EF are no longer sat-
isfiable. An interesting direction for future work is to study
the possibility of satisfying the approximate version of these
properties under indivisible resources or integer utilities.

REFERENCES

[1] H. Steihaus, “The problem of fair division,” Econometrica, vol. 16, pp.
101–104, 1948.

[2] D. K. Foley, “Resource allocation and the public sector,” Yale economic
essays, vol. 7, no. 1, pp. 45–98, 1967.

[3] H. R. Varian, “Equity, envy, and efficiency,” Journal of Economic
Theory, vol. 9, no. 1, pp. 63–91, 1974.

[4] J. H. Reijnierse and J. A. Potters, “On finding an envy-free pareto-
optimal division,” Mathematical Programming, vol. 83, no. 1, pp. 291–
311, 1998.

[5] S. J. Brams, S. J. Brams, and A. D. Taylor, Fair Division: From cake-
cutting to dispute resolution. Cambridge University Press, 1996.

[6] J. Robertson and W. Webb, Cake-cutting algorithms: Be fair if you can.
CRC Press, 1998.

[7] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types.” in Proc. USENIX Conference on Networked Systems
Design and Implementation, 2011.

[8] D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond dominant resource
fairness: Extensions, limitations, and indivisibilities,” ACM Trans. on
Economics and Computation, vol. 3, no. 1, pp. 3:1–3:22, Mar. 2015.

[9] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” in Proc. ACM SIGCOMM Conference
on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, 2012.

[10] J. Li and J. Xue, “Egalitarian division under Leontief preferences,”
Economic Theory, vol. 54, no. 3, pp. 597–622, Nov. 2013.

[11] W. Wang, B. Liang, and B. Li, “Multi-resource fair allocation in
heterogeneous cloud computing systems,” IEEE Trans. on Parallel and
Distributed Systems, vol. 26, no. 10, pp. 2822–2835, Oct. 2015.

[12] W. Wang, B. Li, B. Liang, and J. Li, “Multi-resource fair sharing
for datacenter jobs with placement constraints,” in Proc. ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2016.

[13] E. Meskar and B. Liang, “Fair multi-resource allocation with external
resource for mobile edge computing,” in Proc. IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), Apr.
2018.

[14] ——, “Fair multi-resource allocation in mobile edge computing with
multiple access points,” in Proc. ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc), 2020, pp. 241–
250.

[15] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y. Q.
Zhao, “Per-server dominant-share fairness (PS-DSF): A multi-resource
fair allocation mechanism for heterogeneous servers,” in Proc. IEEE
International Conference on Communications (ICC), May 2017.

[16] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y. Zhao,
“An efficient and fair multi-resource allocation mechanism for heteroge-
neous servers,” IEEE Trans. on Parallel and Distributed Systems, vol. 29,
no. 12, pp. 2686–2699, 2018.

14

[17] D. Kurokawa, A. D. Procaccia, and J. Wang, “Fair enough: Guaranteeing
approximate maximin shares,” J. ACM, vol. 65, no. 2, Feb. 2018.

[18] G. Amanatidis, E. Markakis, A. Nikzad, and A. Saberi, “Approximation
algorithms for computing maximin share allocations,” ACM Trans.
Algorithms, vol. 13, no. 4, Dec. 2017.

[19] M. Ghodsi, M. Hajiaghayi, M. Seddighin, S. Seddighin, and H. Yami,
“Fair allocation of indivisible goods: Improvements and generalizations,”
in Proc. ACM Conference on Economics and Computation (EC), 2018,
pp. 539–556.

[20] J. Garg and S. Taki, “An improved approximation algorithm for maximin
shares,” in Proc. ACM Conference on Economics and Computation (EC),
2020, pp. 379–380.

[21] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi, “On approximately
fair allocations of indivisible goods,” in Proc. of the fifth ACM Confer-
ence on Electronic Commerce, 2004, pp. 125–131.

[22] K. Hashimoto, “Strategy-proofness versus efficiency on the Cobb-
Douglas domain of exchange economies,” Social Choice and Welfare,
vol. 31, no. 3, pp. 457–473, Oct. 2008.

[23] S. M. Zahedi and B. C. Lee, “REF: Resource elasticity fairness with
sharing incentives for multiprocessors,” ACM SIGARCH Computer Ar-
chitecture News, vol. 42, no. 1, pp. 145–160, Feb. 2014.

[24] ——, “Sharing incentives and fair division for multiprocessors,” IEEE
Micro, vol. 35, no. 3, pp. 92–100, 2015.

[25] E. Kalai and M. Smorodinsky, “Other solutions to Nash’s bargaining
problem,” Econometrica, vol. 43, no. 3, pp. 513–518, 1975.

[26] H. Imai, “Individual monotonicity and lexicographic maxmin solution,”
Econometrica, vol. 51, no. 2, pp. 389–401, 1983.

[27] J. Nash, “The Bargaining Problem,” Econometrica, vol. 18, no. 2, pp.
155–162, Apr. 1950.

[28] A. Muthoo, Bargaining theory with applications. Cambridge University
Press, 1999.

[29] D. Ye and J. Chen, “Non-cooperative games on multidimensional
resource allocation,” Future Generation Computer Systems, vol. 29,
no. 6, pp. 1345–1352, 2013.

[30] L. Epstein and E. Kleiman, “Scheduling selfish jobs on multidimensional
parallel machines,” Theoretical Computer Science, vol. 694, pp. 42–59,
2017.

[31] L. Libman and A. Orda, “Atomic resource sharing in noncooperative
networks,” Telecommunication Systems, vol. 17, no. 4, pp. 385–409,
Aug. 2001.

[32] H. Moulin, Fair division and collective welfare. MIT Press, 2004.
[33] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for com-

munication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, vol. 49, no. 3, pp. 237–252,
1998.

[34] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel
Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60.

[35] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with BORG,”
in Proc. of the Tenth European Conference on Computer Systems
(EuroSys), 2015.

[36] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-

guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[37] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting
system for convex optimization problems,” Journal of Control and
Decision, vol. 5, no. 1, pp. 42–60, 2018.

[38] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
Optimal Mobile Cloud Computing under Stochastic Wireless Channel,”
IEEE Trans. on Wireless Communications, vol. 12, no. 9, pp. 4569–4581,
Sep. 2013.

[39] W. Yuan and K. Nahrstedt, “Energy-efficient CPU scheduling for multi-
media applications,” ACM Trans. Computer Systems, vol. 24, no. 3, pp.
292–331, Aug. 2006.

[40] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling
algorithms with PACE,” in Proc. ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, June
2001.

[41] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU schedul-
ing for mobile multimedia systems,” in Proc. ACM Symposium on
Operating Systems Principles, Oct. 2003.

Erfan Meskar received the B.Sc. degree in Elec-
trical Engineering from Amirkabir University of
Technology, Tehran, Iran, in 2013, and the M.A.Sc.
degree in Electrical and Computer Engineering from
McMaster University, Hamilton, Ontario, Canada, in
2015. He is currently a Ph.D. student at the De-
partment of Electrical and Computer Engineering at
the University of Toronto, Toronto, Ontario, Canada.
His current research interests are in algorithmic
fairness, algorithmic game theory, and mobile edge
computing.

Ben Liang received honors-simultaneous B.Sc.
(valedictorian) and M.Sc. degrees in Electrical En-
gineering from Polytechnic University (now the en-
gineering school of New York University) in 1997
and the Ph.D. degree in Electrical Engineering with a
minor in Computer Science from Cornell University
in 2001. He was a visiting lecturer and post-doctoral
research associate at Cornell University in the 2001
- 2002 academic year. He joined the Department of
Electrical and Computer Engineering at the Univer-
sity of Toronto in 2002, where he is now Professor

and L. Lau Chair in Electrical and Computer Engineering. His current research
interests are in networked systems and mobile communications. He is an
associate editor for the IEEE Transactions on Mobile Computing and has
served on the editorial boards of the IEEE Transactions on Communications,
the IEEE Transactions on Wireless Communications, and the Wiley Security
and Communication Networks. He regularly serves on the organizational and
technical committees of a number of conferences. He is a Fellow of IEEE
and a member of ACM and Tau Beta Pi.

	Introduction
	Related work
	Fair Multi-resource Allocation Rules
	The Vector Scheduling Game

	System Model
	Servers and Users
	Local Allocation Rule
	The Multi-resource Allocation Game

	Preliminaries: Fairness Properties and Challenges
	Local Fairness Properties
	Fairness Across Servers
	Challenges in Designing a Fair Mechanism

	The Multi-resource Allocation Game Induced by Kalai-Smorodinsky Bargaining Solution
	MAGIKS's Design
	NE Existence and Convergence Time Analysis
	Desired Fairness Properties
	Implementation Remarks

	Simulation Results
	Number of Moves to Converge to an NE
	Normalized Utilitarian Social Function
	Envy Between Users

	Conclusion and Discussion
	References
	Biographies
	Erfan Meskar
	Ben Liang

