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Abstract—Despite the many known benefits of Federated
Learning (FL), in the wireless environment, its performance
is significantly impacted by the statistical and system hetero-
geneities among the local data sets and local clients. Therefore,
judicious sampling of clients and resource allocation among
them are of vital importance in FL. In this work, we consider
the online joint optimization of probabilistic client sampling
and power allocation to improve the training performance of
wireless FL. Our optimization is based on a new convergence
bound for non-convex loss functions under probabilistic client
sampling, which considers the different data ratios and gradient
norms among clients. We propose a new algorithm based on the
Lyapunov optimization framework, termed PCSPA, that accounts
for how the statistical and system heterogeneities affect both the
convergence rate and training time of FL, as well as the long-
term power constraints and the expected number of sampled
clients. Experiments on image classification with wireless FL
show that the proposed algorithm can substantially outperform
conventional separate optimization strategies and a state-of-the-
art joint optimization method.

I. INTRODUCTION

In Federated Learning (FL), multiple clients collaboratively
train a machine learning (ML) model without transmitting their
raw data [1]. In the typical cross-device setting, an edge server
coordinates the model training, and the clients are usually
mobile or IoT devices. Learning occurs over a sequence of
training rounds. In each round (a) the server selects a subset
of all clients and sends the current global model to them,
(b) each selected client returns an updated model based on
its local data, and (c) the server updates the global model
by aggregating all client updates. Although FL enjoys many
advantages such as data privacy and workload sharing, a main
challenge is statistical and system heterogeneity [2]–[4]. For
example, statistical heterogeneity includes different sizes of
local data and non-identical data distributions among clients,
and system heterogeneity includes time-varying communica-
tion conditions and uneven computing capabilities. If clients
are blindly chosen, both the data quality and communication
efficiency may suffer.

In the pioneering work by McMahan et al. [1], the server
uniformly randomly chooses a fraction of all clients for
participation in each round. This simple approach considers
neither statistical heterogeneity nor system heterogeneity. An
early work on client selection was presented in [5], aiming to
maximize the number of sampled clients under round time
constraints. A tier-based FL system was proposed in [6],
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which divides clients into tiers based on performance and
only selects clients of the same tier in each round. A meta
algorithm of geometrically increasing client participation to
tackle stragglers was proposed in [7]. All of the above studies
considered deterministic client sampling, leading to challeng-
ing combinatorial optimization problems.

Relaxing the binary constraint on client sampling to a
probability can lead to substantial reduction in computational
complexity. An optimal probabilistic client sampling solution
was proposed in [8], which explicitly uses the norms of the
gradients to measure the importance of the data on clients.
However, this work did not take into account system aspects of
FL such as channel conditions for communication. Probabilis-
tic sampling with consideration for wireless communications
was proposed in [9] to minimize the convergence time and
maximize the performance of FL. However, this work required
a fixed client to always be connected to the server in each
training round, which may not be realistic. A recent work [10]
proposed a method to minimize the expected wall-clock time
with constraints on convergence and sampling probabilities.
However, its computed sampling probabilities are fixed in
all training rounds, which does not capture the dynamics of
system conditions such as time-varying channels.

Furthermore, it has been recognized in the literature that
client sampling in FL is tightly coupled with communication
resource allocation among the clients. Joint FL algorithm de-
sign and wireless resource allocation was studied in [11]. How-
ever, in this work, the client sampling and resource allocation
were fixed in all training rounds, which does not capture the
dynamics of system conditions. A recent work [12] addressed
this issue by combining probabilistic client sampling and
Lyapunov optimization [13]. The authors formulated a novel
stochastic network optimization problem with time average
transmission power as constraints. However, their formulation
does not take into account different data ratios and gradient
norms of the clients, and it has no control over the number of
sampled clients, which can be important in real-world systems
that have limited communication and computation capacity.

To address these deficiencies, we employ a probabilistic
client sampling paradigm in FL and jointly optimize client
sampling and client power allocation for each training round,
with consideration for the time-varying learning progress and
communication environment. Our formulation also accounts
for heterogeneous client data ratios and gradient norms, as
well as a constraint on the number of sampled clients. Our
contributions are as follows:



• We first derive a new convergence bound for non-convex
loss functions in FL with probabilistic client sampling,
taking into account different data ratios and gradient
norms of the clients. Based on this convergence analysis,
we then formulate a general framework for online joint
optimization of probabilistic client sampling and power
allocation over the training rounds. Our objective consid-
ers both the convergence rate and the training time of FL,
subject to constraints on the long-term power usage and
the expected number of sampled clients.

• Under the framework of Lyapunov optimization to solve
the aforementioned stochastic optimization problem, we
derive the per-round problems and observe that they are
bi-convex. Furthermore, we utilize a separation struc-
ture to find globally optimal solutions to the per-round
problems. This leads to an iterative Probabilistic Client
Sampling and Power Allocation (PCSPA) algorithm that
dynamically adapts to the per-round norms of stochastic
gradients, without needing to know the statistics of the
training data, the gradients, or the wireless channels.

• We conduct numerical experiments on FL-based image
classification over a random wireless environment. Our
results demonstrate that PCSPA can substantially out-
perform conventional FL strategies with separate client
sampling and power allocation, as well as the state-of-
the-art joint optimization method in [12].

The rest of this paper is structured as follows. In Section
II, we define a general form of FL with probabilistic client
sampling and derive its convergence bound for non-convex
loss functions. In Section III, we describe our formulation of
online joint optimization of probabilistic client sampling and
power allocation, leading to the proposed PCSPA algorithm
and its performance bound. In Section IV, we present numeri-
cal experiment results on wireless FL for image classification.
Finally, concluding remarks are given in Section V.

II. FL WITH PROBABILISTIC SAMPLING

We consider wireless FL with one parameter server and N
clients, where each client n holds a set of training samples Dn.
We use [N ] as an abbreviation for the set {1, . . . , N}. Let Dn

be the size of Dn, and D =
∑

n∈[N ] Dn. Let pn = Dn

D , and
without loss of generality we assume pn > 0,∀n ∈ [N ]. Let
w ∈ Rd be the global model to be learned, and let fn(w)
be the local loss function given the training data at client n.
Then the global loss f(w) is a weighted sum of fn(w) and
the objective of FL is:

min
w∈Rd

f(w),where f(w) =

N∑
n=1

pnfn(w). (1)

We first formalize a more general version of FedAvg [1]
with probabilistic client sampling, by first replacing the orig-
inal uniform client sampling and then adopting a new aggre-
gation rule to compensate for the non-uniformity in sampling.
We assume that each client runs L steps of local stochastic
gradient descent (SGD) for each round of model aggregation

Algorithm 1: FEDERATED LEARNING WITH PROBA-
BILISTIC CLIENT SAMPLING
Input: local learning rate η, local steps L, global rounds

T , sampling probability {qnt }Nn=1 in each round t.
Output: {wt}T−1

t=0 .
1: Server executes:
2: initialize w0;
3: for each round t = 0, 1, . . . , T − 1 do
4: select a subset of clients St based on {qnt }Nn=1;
5: for each client n ∈ St in parallel do

wn
t,L ← ClientUpdate(n,wt);

6: end for
7: wt+1 ← wt +

∑N
n=1

pna
n
t

qnt
(wn

t,L − wt);
8: end for
9:

10: ClientUpdate(n,wt): ▷ Run on client n
11: wn

t,0 ← wt;
12: for each local step j = 0, 1, . . . , L− 1 do
13: pick a mini-batch of samples zj ∈ Dn;
14: wn

t,j+1 ← wn
t,j − ηgn(w

n
t,j ; zj);

15: end for
16: return wn

t,L to server.

at the server (i.e., a training round). We define wt as the
parameters of the global model after the t-th round and wn

t,i as
the parameters of the local model after the t-th round and the
i-th local SGD step on client n. Let T be the number of global
rounds, η be the local learning rate, and gn be a (stochastic)
gradient of local loss function fn. We further denote by qnt the
probability that client n is sampled in round t. We assume that
the server selects client n by running an independent Bernoulli
trial with qnt as the selection probability in each training round
t. Let ant be an indicator function representing whether client
n is sampled in round t.

Algorithm 1 details the general probabilistic client sampling
version of FL. It is similar to the FL with arbitrary client
sampling in [10], except that (a) their sampling probability q
is fixed over training rounds, (b) they require

∑
n∈[N ] q

n
t = 1

and obtain St by sampling N times with replacement, and (c)
they have an extra 1

N multiplicative term in the aggregation
rule.

Note that the aggregation rule of local models in
FedAvg [1] has been modified in Algorithm 1 to make sure
that each aggregation results in an unbiased estimator of the
weighted sum of all local results:

wt+1 = wt +

N∑
n=1

pna
n
t

qnt
(wn

t,L − wt). (2)

It is not hard to check that E[wt+1] =
∑N

n=1 pnw
n
t,L by the

linearity of expectation and the fact that E[ant ] = qnt for any
n and t as any ant is one with probability qnt .

As far as we are aware, there is no existing convergence
analysis on FL in the form of Algorithm 1. In [10], the



convergence bound considers the different data ratios and
different gradient norms among clients, but it only applies
to smooth and strongly-convex loss functions. In [12], the
convergence bound applies to smooth and non-convex loss
functions but without the aforementioned consideration on
heterogeneity. Here we provide a new convergence bound that
combines the advantages of the prior analyses. We require
the following assumptions, which are common in the ML
literature [14].

Assumption 1 (Smoothness). Each fn is β-smooth:

∥∇fn(x)−∇fn(y)∥ ≤ β∥x− y∥, ∀x, y ∈ dom(fn). (3)

Remark 1. Assumption 1 implies the global loss f(x) is also
β-smooth, which can be proved by Jensen’s inequality.

Assumption 2 (Unbiased local stochastic gradient). The
stochastic gradient gn is an unbiased estimator of the true
gradient for any local loss function fn:

E[gn(w)] = ∇fn(w), ∀w ∈ dom(fn). (4)

Remark 2. This assumption is standard in the analysis of
SGD or mini-batch SGD in ML [14].

Assumption 3 (Bounded stochastic gradients). There exists
Gn > 0 such that

E[∥gn(w)∥2] ≤ G2
n (5)

holds for all w ∈ dom(fn) and n ∈ [N ], where gn is a
stochastic gradient of fn.

Based on these assumptions, we are able to derive a con-
vergence bound for any non-convex loss functions, which is
stated in Theorem 1.

Theorem 1. Suppose Assumptions 1-3 hold, we have

1

T

T−1∑
t=0

E[∥∇f(wt)∥2] ≤
2(f(w0)− f∗)

ηTL

+
η2β2(L− 1)(2L− 1)

6T

T−1∑
t=0

N∑
n=1

pnG
2
n

+
βη

T

T−1∑
t=0

N∑
n=1

pn
qnt

L−1∑
i=0

E[∥gn(wn
t,i)∥2],

(6)

where w0 is the initial model at the beginning of training and
f∗ is the optimal solution of (1).

Proof. We only provide a proof sketch here due to the page
limit. The first step is to derive an upper bound between
the difference of the expectation of f(wt+1) and the actual
f(wt), by considering the local SGD updates, the aggregation
rule, and β-smoothness of global loss f . Then, we further
upper bound the two terms in the upper bound of the first
step, leveraging the independence between client sampling and
the randomness in data sampling of SGD, as well as tools
including Jensen’s inequality and Young’s inequality. Finally,

we sum the inequality from the previous step over t from 0
to T − 1, take total expectation, and rearrange terms to obtain
the stated result.

III. JOINT PROBABILISTIC CLIENT SAMPLING AND
POWER ALLOCATION

Besides the convergence bound in Theorem 1, the perfor-
mance of FL also depends on the communication overhead
between the server and clients. Without loss of generality, let
us model the uplink transmission rate rnt of client n in training
round t by the Shannon bound:

rnt = B log2

(
1 +

hn
t P

n
t

N0

)
, (7)

where B is the bandwidth between the clients and the server,
N0 is the noise power, hn

t is the channel power gain of client
n, and Pn

t is the allocated transmission power of client n.
Then the communication time of client n in training round t
is

Tn
comm,t =

M

rnt
, (8)

where M is the size of the transmitted model. Therefore, the
expected total communication time by all clients in round t is

E[Ttotal,t] = E{qnt }N
n=1

[
N∑

n=1

ant T
n
comm,t

]
(9)

=

N∑
n=1

qnt

(
M

B log2(1 +
hn
t P

n
t

N0
)

)
, (10)

A. Optimization Formulation

Our optimization objective considers both the convergence
rate as shown in Theorem 1 and the expected round time.
We observe that only the third term of the upper bound
in (6) depends on the sampling probabilities pnt . Let Gn

t =
E[
∑L−1

i=0 ∥gn(wn
t,i)∥2]. Furthermore, the downlink communi-

cation time is fixed since the server simply broadcasts the
global model, and the computation time is independent of
client sampling. Therefore, we only need to consider the uplink
communication time in (10). Thus, our objective contains a
trade-off between the convergence bound and the communi-
cation time similarly to [12]. Specifically, we define

y0(t) =

N∑
n=1

(
pn
qnt

(Gn
t )

2 + λqnt
M

B log2(1 +
hn
t P

n
t

N0
)

)
, (11)

where λ is a hyperparameter.
We have two transmission power constraints. All clients

have maximum power Pmax, as well as a long-term average
power constraint P̄n, which reflects the need for energy conser-
vation in devices with limited battery capacity. We also require
the expected number of sampled clients to be bounded by
some m. Thus, we obtain the following stochastic optimization
problem:

P1: minimize
{qnt },{Pn

t }
lim

T→∞

1

T

T−1∑
t=0

y0(t) (12)



subject to lim
T→∞

1/T
∑

t∈{0,...,T−1}

Pn
t q

n
t ≤ P̄n,∀n ∈ [N ]

(13)
0 ≤ Pn

t ≤ Pmax, ∀n ∈ [N ] (14)
N∑

n=1

qnt ≤ m, (15)

0 ≤ qnt ≤ 1, ∀n ∈ [N ], (16)

where (12) is a time average of y0(t), (13) and (14) are the
constraints on client power, (15) bounds the expected number
of sampled clients, and (16) ensures that qnt is a probability.
Note that the time average in (13) is on Pn

t q
n
t , which is the

expectation of actual power usage under probabilistic client
sampling, i.e., E[Pn

t a
n
t ].

B. Per-round Subproblems and Solutions

We begin to solve the optimization problem in P1 under
the general min drift-plus-penalty framework [13]. We first
transform the long-term power constraints into queue stability.
Let

yn(t) = Pn
t q

n
t − P̄n, ∀n ∈ [N ]. (17)

Define virtual queues

Zn(t+ 1) = max{Zn(t) + yn(t), 0}. (18)

For convenience, we use Θ(t) to represent all the queue
backlogs at time t by stacking them into one vector. We use
the following standard Lyapunov function:

L(Θ(t)) =
1

2

N∑
n=1

Zn(t)
2. (19)

Then, the Lyapunov drift is:

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|L(Θ(t))}. (20)

The drift-plus-penalty expression is defined as

∆(Θ(t)) + V E{y0(t)|Θ(t)}, (21)

where V ∈ R+ balances the trade-off between the Lyapunov
drift of the Lyapunov function and minimizing the objective
functions. By [13, Lemma 4.6], we have the following upper
bound on the drift-plus-penalty expression:

∆(Θ(t)) + V E{y0(t)|Θ(t)} ≤ B0 + V E{y0(t)|Θ(t)}

+

N∑
n=1

Zn(t)E{yn(t)|Θ(t)}, (22)

where B0 is a positive constant. This leads to the following
per-round problem:

P2: minimize
{qnt }N

n=1,{Pn
t }N

n=1

V y0(t) +

N∑
n=1

Zn(t)yn(t) (23)

subject to (14), (15), (16).

We observe that the optimization problem P2 is non-
convex in general. Also, we cannot directly separate it into N

subproblems, one for each client n, as we have a constraint
on the sum of sampling probabilities in (15) which coalesces
different clients. However, we observe the following special
structure that enables an efficient solution to this problem:

• For any feasible {qnt }Nn=1, the objective and constraints
are convex in {Pn

t }Nn=1. Also, {qnt }Nn=1 can be exactly
factored out of this subproblem, so the optimal values of
{Pn

t }Nn=1 in the subproblem are unrelated to {qnt }Nn=1;
• If {Pn

t }Nn=1 are fixed, the objective and constraints are
convex in {qnt }Nn=1.

Hence, the following two-step approach suffices to find a
globally optimal solution: we first fix {qnt }Nn=1 to solve for
{Pn

t }Nn=1; then based on the solutions of {Pn
t }Nn=1, we solve

for {qnt }Nn=1.
For the first step, we derive a closed-form solution for the

optimal {Pn
t }Nn=1. For any feasible {qnt }Nn=1, the subproblem

of {Pn
t }Nn=1 is

minimize
{Pn

t }N
n=1

V

N∑
n=1

λqnt

(
M

B log2(1 +
hn
t P

n
t

N0
)

)
+ Zn(t)P

n
t q

n
t

(24)
subject to 0 ≤ Pn

t ≤ Pmax, ∀n ∈ [N ]. (25)

This problem can be solved by separate optimization of each
Pn
t , and we observe that the qnt terms in the objective can be

eliminated:

minimize
Pn

t

V λ

(
M

B log2(1 +
hn
t P

n
t

N0
)

)
+ Zn(t)P

n
t (26)

subject to 0 ≤ Pn
t ≤ Pmax. (27)

The optimization problem in (26)-(27) is a single-variable
convex optimization problem with a convex objective and a
box constraint.

In the following we derive a closed-form solution to the
above problem. For simplicity, let A1 = V λM log (2)/B,
A2 = hn

t /N0, and A3 = Zn(t). The convex objective becomes
A1

log(1+A2Pn
t ) +A3P

n
t . Setting its derivative to zero, we have

(1 +A2P
n
t )(log (1 +A2P

n
t ))

2 =
A1A2

A3
. (28)

Let x =
log (1+A2P

n
t )

2 . Plugging x into (28), we obtain

x exp (x) =
√

A1A2

4A3
. Therefore x = W0(

√
A1A2

4A3
), where

W0 is the principal branch of the Lambert W function. Since√
A1A2

4A3
≥ 0, x is non-negative and unique. Then we can

recover Pn
t from x. If this Pn

t falls within the range [0, Pmax],
it is the optimal power. Otherwise, the optimal power is Pmax.
Summarizing the above, we have

Pn
t =

{
N0

hn
t

(
exp (2W0(

√
A/2))− 1

)
, if Pn

t ≤ Pmax,

Pmax, otherwise,

where A =
V λM log (2)hn

t

BZn(t)N0
.

For the second step, with fixed {Pn
t }Nn=1, the optimization

problem becomes



minimize
{qnt }N

n=1

V

N∑
n=1

(
pn
qnt

(Gn
t )

2 + λqnt

(
M

B log2(1 +
hn
t P

n
t

N0
)

))

+

N∑
n=1

Pn
t q

n
t Zn(t) (29)

subject to
N∑

n=1

qnt ≤ m, (30)

0 ≤ qnt ≤ 1, ∀n ∈ [N ]. (31)

This is a convex optimization problem as the objective is
convex and the constraints are affine in {qnt }Nn=1. We can use a
standard convex optimization solver to find an optimal solution
in polynomial time [15].

C. PCSPA Algorithm

With the sampling probabilities and power allocation for
each round t, obtained as the solution to the above per-round
problems, we can extend Algorithm 1 to construct our PCSPA
algorithm, which is summarized in Algorithm 2. We note
that in each round t, the server sends not only the current
global model wt but also the calculated power allocation Pn

t

to the sampled clients. Furthermore, before the actual sampling
of clients in each round, all clients need to perform local
computation to determine the actual norm of local stochastic
gradients and transmit these norms to the server on a control
channel. This transmission can be efficiently performed piggy-
back on the standard channel estimation procedure between the
server and clients.

Finally, we remark that since the per-round optimization
problems in PCSPA can be efficiently solved as detailed in
Section III-B, PCSPA is computationally efficient. Further-
more, since the per-round optimization solution can achieve
an arbitrary precision of optimality, from [13, Theorem 4.8],
PCSPA provides the following performance guarantee:

lim sup
T→∞

1

T

T−1∑
t=0

E[y0(t)] ≤ yopt
0 +

B0

V
, (32)

where yopt
0 is the optimal objective of problem (12)-(16),

while it is guaranteed that PCSPA satisfies all time average
constraints.

IV. NUMERICAL EVALUATION

We conduct numerical experiments using JAX [16] and
FedJAX [17] for the learning framework and CVXPY [18] for
convex optimization. We perform FL for image classification
on the Fashion-MNIST dataset [19] under two scenarios of
data distribution: IID and non-IID. In the IID case, all clients
have equal-size training datasets that are drawn from all 10
classes of Fashion-MNIST. In the non-IID case, each client
holds only one class of training data, and the number of
samples on client n is 100n. The learning model is a fully-
connected neural network with two hidden layers of 300 and
100 neurons each. There are 266, 610 trainable parameters,

Algorithm 2: JOINT PROBABILISTIC CLIENT SAM-
PLING AND POWER ALLOCATION (PCSPA)
Input: learning rate η, local epochs L, global rounds T .
Output: {wt}Tt=1.

1: Server initializes w0 and virtue queues {Zn(0)}.
2: for each round t = 0, 1, . . . , T − 1 do
3: Server broadcasts the current model wt to all clients.
4: for each client n do
5: run L steps of training with learning rate η.
6: send Gn

t back to the server.
7: end for
8: Server calculates {qnt }Nn=1 and {Pn

t }Nn=1.
9: Server selects clients St based on {qnt }Nn=1.

10: Server broadcasts Pn
t to client n ∈ St.

11: for each client n ∈ St do
12: send the local model wn

t,L back to the server.
13: end for
14: Server aggregates the local models via (2).
15: Server updates the virtual queues via (18).
16: end for

which are of size 8, 531, 520 bits using the default single
precision float number representation. The training lasts for
T = 1000 rounds. For each local step, a client samples a
mini-batch of size 2 from its local dataset to update its local
model by SGD with learning rate 0.01.

We consider an FL system of one server and N = 10
clients. We assume bandwidth B = 22 MHz, noise power
N0 = 2 × 10−8 W, and the Rayleigh fading channel from
each client to the server that result in hn

t following an expo-
nential distribution with mean 2×10−5. The long-term power
constraints P̄n = 0.01 W and maximum power Pmax = 1 W.
We set λ = 1 and V = 1.

A. Comparison Benchmarks

We consider the following three benchmarks.
• Separate uniform: For sampling, in each round t solve

minimize
{qnt }N

n=1

N∑
n=1

1

qnt
(33)

subject to
N∑

n=1

qnt ≤ m and 0 ≤ qnt ≤ 1, ∀n ∈ [N ].

Note that the solution to (33) is qnt = m
N , i.e., each client

receives the same sampling probability. It corresponds to
the probabilistic client sampling version of the vanilla
FedAvg [1], i.e., Algorithm 1 with qnt = m

N . To satisfy
the long-term power constraints, each sampled client
transmits with power P̄n

qnt
in round t.

• Separate gradient-based: For sampling, in each round t
solve

minimize
{qnt }N

n=1

N∑
n=1

pn(G
n
t )

2

qnt
(34)



Fig. 1. Accuracy and loss in the IID scenario for m = 8.

Fig. 2. Accuracy and loss in the non-IID scenario for m = 8.

subject to
N∑

n=1

qnt ≤ m and 0 ≤ qnt ≤ 1, ∀n ∈ [N ].

This benchmark uses the same power allocation method
as separate uniform. It further considers the data ratio
and the actual norms of the gradients, which is inspired
by [8], [10].

• Joint optimization method in [12]. Since [12] does
not support our constraint on the expected number of
sampled clients, we modify it as follows. For any result-
ing sampling probability vector with

∑N
n=1 q

n
t > m, we

sequentially set the lowest among qnt to 0 until the sum
of qnt no longer exceeds m.

B. IID Scenario

In Fig. 1, for the scenario where all clients have the same
data distribution, we plot the test accuracy and loss over time
for m = 8. We observe PCSPA requires substantially less
time to achieve the same learning performance as the other
methods. Also, in this IID scenario, since each client has same
the distribution, the model performance does not differ much
for the two benchmarks that use separate optimization.

C. Non-IID Scenario

In Fig. 2, for the scenario where each client holds only
one class of data samples, we plot the test accuracy and loss
over time for m = 8. As each client holds a different data
distribution, the curves are noisier than in the IID scenario.
Therefore, we use an exponential moving average to smooth
the curves. We observe that the performance gain of PCSPA
is even more pronounced in this scenario. In particular, the
method in [12] and both of the separate optimization methods
experience substantial performance degradation due to data
heterogeneity, as indicated by their slower decrease in loss and
slower increase in accuracy. In contrast, PCSPA retains much
of its rate of improvement over time as in the IID scenario.

V. CONCLUSION

We consider online joint optimization of probabilistic client
sampling and power allocation over the training rounds of

wireless FL. The optimization objective is based on a new
convergence bound that takes into account the statistical
heterogeneity and real-time learning dynamics. The proposed
PCSPA algorithm accommodates heterogeneous and time-
varying communication channels, constraints on the long-term
power usage of clients, and a limit on the expected number of
sampled clients in each round. It is computationally efficient
and provides provable performance guarantee. Our numerical
experiments with image classification examples demonstrate
that PCSPA can substantially outperform the state-of-the-art
method in [12] and other alternatives, especially when the
clients hold training datesets with heterogeneous distributions.
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