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Abstract—In wireless sensor networks, clustering allows the  Various clustering protocols have been proposed, ei-
aggregation of sensor data. It is well known that leveraging the ther in the context of generic wireless ad hoc net-
correlation betw_e_en _dlfferent samples of the observed data_ will works [6][7][8][9][10][11] or wireless sensor networks
lead to better utilization of energy reserve. However, no previous . .
work has analyzed the effect of non-ideal data aggregation in [12][13]_[14][15]' These _protocols either do_not consider data
multi-hop sensor networks. In this paper, we propose a novel ana- correlation or assume ideal data aggregation, where data are
lytical framework to study how partially correlated data affect the  perfectly correlated, such that an arbitrary number of packets
performance of clustering algorithms. We analyze the behavior of within a cluster can be compressed to one packet. However, in
multi-hop routing and, by combining random geometry techniques 4 tical sensor networks, the performance of data aggregation
and rate distortion theory, predict the total energy consumption . . .
and network lifetime. We show that when a moderate amount 'S Closely related to the various levels of data correlation.
of correlation is available, the optimal probabilities that lead to  This necessitates additional study into the characteristics of
minimum energy consumption are far from optimality in terms  clustering with partially correlated data.
of network lifetime. In.addition, we stucjy .the sensitivity of the In this paper, we consider the effect of partially correlated
total energy consumption and network lifetime to the amount of ~ yat5 on the performance of clustering algorithms. As far as we
correlation and compression distortion constraint. - : .

are aware, this is the first paper that provides a comprehen-
sive analytical framework to evaluate the energy and lifetime
performance of clustering in sensor networks. The proposed
analysis is generic and can be applied to a wide array of random

Recent advances in wireless communications and rapidistering algorithms.
development in small low-cost microelectronic and micro- In particular, we apply random geometry methodologies [16]
electromechanical sensor technology along with the advantesanalyze the energy consumption for forwarding data in
in wireless sensors have made it possible to deploy largemulti-hop sensor network. Combining this result with rate
number of sensors to form a wireless sensor network. Wireledistortion theory [17], we provide a mathematical analysis
sensor networks can be used for various purposes, e.g., vehiidenework to study the energy consumption and lifetime of
tracking and habit monitoring [1][2][3]. For large scale sensa network when arbitrary amount of correlation is present.
networks to be practical, the cost and size of these sensws study the imbalance in the energy consumption of sensors
are of primary concern. As a result, they are usually equippad a function of their position, through which we then show
with small batteries. This constraint has significant effect ahe trade-off between total energy consumption and network
the network design and makes energy efficiency a major deslgetime and conclude that optimal network energy consumption
challenge. necessarily does not lead to an optimal network lifetime. In

Clustering improves the scalability of multi-hop wirelesaddition, we present numerical analysis results that illustrate the
networks. Typically, a clustering algorithm divides the networkelation between data correlation and compression distortion,
into subsets of nodes, called clusters, each with one naaled energy consumption and network lifetime.
serving as its cluster-head (CH). After the formation of clusters, The rest of this paper is organized as follows. In Section II,
nodes transmit their data to the CHs for data aggregatiame define the system model used in our analysis and simulation.
In their pioneering work, the authors of [4] have studied thiem Sections Ill, IV, V, and VI, we present our mathematical
capacity of wireless networks and proved that the capac#yalysis on data forwarding, sensor data correlation, network
per node diminishes as the network size increases. Howewarergy consumption, and network lifetime, respectively. We
recently it has been shown that, due to data correlation, largeastify our analysis via simulation and study the effect of data
scale multi-hop sensor networks are feasible [5]. Clearly, clusarrelation on energy consumption and network lifetime in
tering provides an architectural framework for exploiting dat8ection VII. In Section VIII, we describe the related work in
correlation. detail. Finally, we conclude the paper in Section IX.

I. INTRODUCTION



Il. SYSTEM MODEL every node selects itself as a CH with a fixed probability of

To clarify our assumptions and network setup, we preséht It can be easily shown that the CHs form a Poisson point
the system model in two subsections as follows. process with density; = p), and the subset of nodes that are
not CHs will form another Poisson point process with density

o Ao = (1 — p)\. After the CHs have been selected, each CH

A. Node Deployment and Characteristics sends a beacon that is flooded upkp hops to advertise its

Our network consists of a set of sensors and one processstafus as a CH. Every node that is not a CH will join the cluster
center or data sink. A total oV sensors are randomly dis-whose CH is the nearest (by using hop count information as
tributed with a density of\ in an areaA. If the areaA and the first approximation to distance). This process tessellates the
the total number of sensors is large enough, then this poitwork to a set of Voronoi cells.
process can be approximated by a homogeneous Poisson poidts derived in [14], one can put an upper limit &y which
process with density. We assume that the processing center &an be derived from the following formula.

located at the center of the network and has unlimited energy
supply. We also assume that all sensors in the network as well ke, = [l —.9171In (a/?)]
as the processing center are stationary. Our study also applies R PA

to sensor networks with multiple data sinks, each in charggith the specified value o, the probability that the radius of

of a fixed set of sensors. In this case, the performance of i@ minimum ball centered at the nucleus of clusters (CHs) is

clustering can be analyzed independently for each subset of Hiﬁger thark,, hops, is less than. We typically setx = 0.001

network surrounding a data sink. _ _ to ensure that most nodes can receive the beacon packet from
Sensors are aimed to be extremely small, inexpensive, gag;; corresponding nearest CH withi, hops. However, it

simple devices. Therefore, all sensors within the network & hossiple that a node doesn't receive a beacon from nearby
assumed to transmit at a fixed transmission power, and eg9fls |n this case, it will select itself as a forced CH [14].

sensor has the same radio rangeAll sensors are equipped; s easy to see that cluster formation process has a time
with a battery that has an initial amount of energy equal {gmplexity of O(k;,). After cluster formation, all CHs will
Ey. We assume that each sensor requires 0.5 units of energytfeqyle their sensors to begin communication. The exact
transmit or receive one unit of data. As will be shown later, the-pequling algorithm is out of the scope of this paper and is a
exact ratio of transmitting to receiving power will not affect oUfgpic for future research.

gnalysis. We also assume that the communication environmenyq emphasize the fact that the proposed analytical frame-
is contention- and error-free, and therefore sensors do not hgy&y joes not depend on the clustering protocol details. Other

to retransmit any data. The choice and effect of centralizgdssiple implementation include those listed in section VIII.
scheduling or distributed MAC are outside the scope of this |y our model. each node observes a sample of the measured

work. random field and sends its own sample to the assigned CH. Af-
ter the reception of all data samples from its cluster-members,
B. Underlying Routing and Clustering Protocols the CH performs data aggregation subject to a total distortion

“nod%f’ D and sends the aggregated data to the data sink through

interchangeably. To forward data to CHs, and from CHs {Bulti-hop routing over all sensor nodes. We consider the worst
the processing center, we assume that nodes use light we@ﬁe where nodes send each of their data samples with the same

Minimum Hop Routing (MHR). The advantage of MHR is twomount (_)f bits, giving a distortion aby, as i.f there Were no
fold. First, it matches well with the fixed transmission power gt99regation, and consequently aggregation is done only in CHs.

inexpensive sensors. Second, since the sensors are statiormﬁ, amount of distortion,, equals the average distortion per
MHR requires very infrequent route updating and hence much ple, which is obtained after data_ compression in CHs.
less energy consumption than other more active routing proto-In the sequ_el we present analysis on the _performance of
cols such as energy-based routing. In our approach, nodes gpsor clustering in terms of energy consumption and network
not be aware of the topology of the network, and the paths ¢ fHme.
be setup when sensor information requests are disseminated by
the data sink, similar to the approach taken in [18]. Ill. ENERGY CONSUMPTION ONDATA FORWARDING

We assume a generic clustering algorithm where CHs areFor our analysis we use the following definitions.
selected randomly. One example of implementing a randome The sensing field is assumed to be a circular disc with
clustering algorithm is presented in [14] in which CHs are radius of K R, for some integet.
selected uniformly throughout the network. The clustering « Nodes are distributed with density.
algorithm is run everyl' units of time, wherel' generally « We define E.(r) as the conditional expected value of
depends on the type of application and initial energy supply. energy consumption of a node as a function of its distance
Each T units of time is divided intoM rounds, in each of to the processing center, i.e., if a given node is at radial
which, a CH schedules nodes within its cluster and receives distancer from the processing center, thdn.(r) is the
observed data from them. In the beginning of edthounds, expected value of energy consumption of that node.

Throughout this paper, we use the terms “sensor” and



point 7 (i.e., choosesr as the next hop) is
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1
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where N4 denotes the number of nodes {7, 7), and we
have used the fact that the probability of havimgodes in an
area of A is 242, To find A(7, 7), we make use of
the cosine law to find the anglesand o

6 - arCCOS(([@—lR) hi |?|2 — R2

R+ [P (1R
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where| 7’| denotes distance fromr’ to the data sink, and thus
« Similarly, we defineN.(r) as the expected number ofA(T,7") is given by
packets that a node at radial distamdeom the processing
center must forward including its own packet. |7 | |7 | ,sin(20)

.
Fig. 1 shows the sample topology that will be used for A@ ) = Bl R 18)° = (T R 18) 2
our analysis. If the density of nodes is sufficiently high such LaR? - grimeY) bln(QOé) )
that there are enough paths to select from, then we expect 2
the number of hops needed to reach the processing centero determine the expected total number of packets that a
to be approximately[ ] when MHR is used. This simple node at pointz’ would send, we need to calculate a recursive
observation allows us to consider the sensing field as consistiagegration. This integration is over the intersection of the
of different layers, each with a thickness of R as shown tfansmission range of and thek,;, layer, which leads to the
Fig. 1. following.
From here on, we use the terms point and node interchange-
ably. Associated with any given poin¥ we draw a circle

Fig. 1. Sensor network divided into layers a = arccos(

T L ) RH|T —AA(? -
showing its transmission range. In the example of Figzl, N(Z]) = - /
is in the second layer. Only those points which are in the LR 1 — e M(Tr)
intersection of the transmission range®@fand the third layer s )\A(T’ ))n
can be potential nodes that will sele@t as their next hop. Z Ne(r)Ado rdr,  (3)
Denote one such point”. To find the probability that this n=1
occurs (i.e., whenr selectsT as the next hop), select pointwhere
7/ as a point which is in the transmission rangerfand is in 2|2 + 2 — R
the second layer. If pointg” and 7/ are in the same layer, then Y= arCCOS(W)

from the point of view of point7, there is not considerable

distinction between points? and . As a special case, if In the above,N.(|Z’|) accounts for all of the paths that go
only points@ and 7 are present in the transmission range d¢hrough 7. We add one to the integration because we have
7, then point7 will choose one of these points with equaRssumed that every node has its own packet to send. The

probability. relationship betweeiN.(7') and E.(T) is
To generalize this idea, leF be a point in thek;, layer E(F) = No(T) — 0.5,

and within the transmission range @f, and letA(7, 7) be

the intersection of circle centered a with a radius of R where we have assumed that both transmission and reception
and the circle centered at the processing center with radifsa packet require .5 units of energy for a total of 1 unit. Every
(k — 1)R. ThereforeA(@, 7), which is denoted by the dash-node which relays a packet consumes exactly one unit of energy
shaded region in Fig. 1, shows the potential region for the nesetcept for when a node is transmitting its own packet. Clearly,
hop of point 7. Following the reasoning stated earlier, theur analysis is relatively independent of the ratio of transmitting
probability that the node at poin” sends its packet to theand receiving energy consumption.
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] R(D) = min 1(X,X), 4)
FXIX):B(d(X,X))<D

Average Energy Consumption following formula [19]
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where I(X, X) is the mutual information betweeX and X.

When the distortion measure is mean square error (MSE),
ie., d(X,X) = |X — X||2, a Gaussian source is the worst
case and needs most bits to be represented compared with the
other sources [5]. Therefore for the purpose of illustration, we
consider the case whei¢ is a multivariate Gaussian random
vector, i.e.,X ~ N(M,¥). We assume that the correlation
between two samples is a decreasing function of the Euclidian

/ distance between the sensors where the samples are taken. It
" = has been shown that, for MSE as the distortion measure and a

2 3 4 5 6

Distance from the Data Sink constraint on the total amount of distortion
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Average Energy Consumption

E(|X - X|*) < D,

Fig. 2. Energy consumption of nodes as a function of distance

the minimum number of bits required to represent data for a

] ) ) Gaussian sourceX in our case, is [17]
To confirm the above analysis results, we have simulated

a network with a diameter o5& and node density:%. We R(D) — i Liog 2 (5)
run the simulation for 200 different networks with randomly o 2 & D,’
distributed nodes and take their average. Fig. 2 shows that the

analysis matches the results obtained via simulation. where A; > Xp... > Ay are the ordered eigenvalues of the

From Fig. 2, we observe that there are very sharp peaksSf"élation matrbx: and

n=1

the energy consumption curve, which emphasizes the fact that N

nodes at particular distances will die first even though they are Z D, = D,

farther away from the processing center than other nodes in n=1 ]

the network. This discontinuity is a unique feature of minimum D = { 0, ifFo<X,
hop routing and it may seem counterintuitive initially. In fact, " An, Otherwise

nodes that are close to the outer edge of each layer are seegbyquivalentlyd is chosen such that
more nodes in the next layer. Consequently, these nodes have N
a greater chance to be selected as relays compared with the Zmin(e A) =D
nodes that are within the same layer but are closer to the inner — o '
edge of that layer. et
For this reason, it can be advantageous to have heteroge
nodes in terms of initial energy supply, whoEg is a function
of distance to the data sink such that it is proportional to tﬁlaat

(6)

aem (6) it can be easily shown that for reasonable amounts of
istortion D where ZnN:1 A, > D, there exitsng < N such

expected energy consumption as in Fig. 2. That will result in a D — Zfl\;no“ An
flat profile for the residual energy of all nodes. This approach 0= no )
can be useful especially when the network has a small diameter. Mgl <0< Ay

The high peak to average ratio of the energy consumption curve ) o )
means that we need to place few nodes with highat the AISO, (5) shows that the rate distortion in the case of a Gaussian
edge of each layer. Alternatively, nodes with equa can random field is only a function of the eigenvalues of the

be deployed non-uniformly according to the obtained energfarrelation matrix. This result is well known as “reverse water-

consumption curve to achieve a flat energy profile. illing.” ) _
Later in our analysis, we need to know the amount of

compression as a function of the number of samples available.
IV. SENSORDATA CORRELATION Although it is possible to derive some asymptotic results for
R(D) in a random topology [5], these asymptotic results are
Let X = {z;, ¢ = 1,2,..,n} be a vector ofn samples of not sufficient for our purposes, especially when the number of
the measured random field returned by thesensors within samples is not high enough. Therefore, we have used the Monte
a cluster. LetX be a representation ok, and d(X,X) be a Carlo method whose input is the random node locations subject
distortion measure. It has been shown that the minimum numiiemnode density\. For a given number of nodé€g, we consider
of bits required to represeiX subject to a bound on the totala disk with an area oft = (%) and distribute nodes randomly
distortion, i.e.,E(d(X,X)) < D, can be computed by thein it. We derive the number of bits according to (5) and find



Compression Factor vs. No. of Samples wherel{.} is the indicator function. From [16] we can compute

0.8

— w05 the expected value of;, ESy, as follows
e ES; = Ao/f(:z:) exp(—i7|z|?)dz. )
%05 | In our casef(x) is a function from the 2-D plane to a real
Tk number which ig/ 1. Using (8) and assuming tha,.. is the
3 o ] network radius we have
(O]
E‘oa , ” — —Aiw|r|?
§ : ESiz, AO/(R] exp rdrdf
ozl Ao [ Enet |
b ~ )\—[ Z exp(—M\i7(kR)?) —
e e e 1 k=0
oO 5‘0 1(110 1&0 2(;0 2&‘30 360 3.’;0 400 450 500 Rnet 2
No. of Samples (l—%— R ] +1)exp(— )‘17T(Rnet))]
. . _ | Enet |
Fig. 3. Compression factor fox = 6.25 m 2 by L
~ )\—(1) Z exp(=\m(kR)?). 9)
k=0

its mean value over different scenarios. The results are shoWg denote byC; the total energy needed to communicate with

as the compression factor in Fig. 3. As an example, we haite CHs. We compute the expected valu€pfoy conditioning

considered the case where the correlation falls as a Gaussidsy the number of clusters in the network which leads to

function which can be converted tt(p;, p;) = o2Wllpi—»sll*,

wherep; andp; are two points in the 2D plane, afig; —p,|| is E(CY)

their Euclidean distancéV is the representative of the amount !

of correlation between spatial samples and should be less than

one such thaft is a semi-positive definite matrix. Here?

is a constant and denotes the variance of each sample of the

measured field. We choose¢ = 1 for brevity. We denote by’ the amount of total energy consumed by the
As Fig. 3 shows, asiW decreases the correlation alsdCHs to communicate with the data sink. Let be a random

decreases, which means a lower amount of compression carvéable representing the number of CHs,be the distance

achieved. Also it can be seen that the compression factor tefrggn the i;, CH to the data sinkg; be theiy, cluster, and

to be a constant as the number of nodes is increased. This isfan(c;) be the number of bits required to represent all the data

intuitive result, because as we increase the number of sampssnples within thé,;, cluster, normalized to the number of bits

samples that are really far apart have very low correlation, atitht a sensor needs to represent its data with a distortidn, of

effectively they can be considered as independent data.  i.e., Rp(¢;) = %, we have

E[E(Cyln =mno)] = E(HOES%W)

L5t )

AO Z exp(—\m(kR)?).  (10)

R

Ne

V. TOTAL ENERGY CONSUMPTION E(Cy) = E(Z(%}Rp(ci))

To study the total energy consumption we need to know 1) =t

ri
the average amount of total energy needed to communicate with = EnE([LDE(RD(ci))]

the CHs and 2) the average amount of total energy that the CHs T
need to comm)unicate Witgh the data sink. ¥ - E(nC)EUEDE(RD(Ci))
As a first approximation to the routing performance, we need - NpE([ﬂ})E(RD(ci)), (11)
to know the average value df; | as the average number of R
hops to the CHs or the average number of hops from the CHbere
to the processing center. L&t represent a typical Voronoi cell - 1 72 + 12
whose nucleus is located at the oridify represent the Poisson E([E]) = " A [TWA-

point process associated with the non-CH nodes, sgnde a

member ofIl,, we can define a functiorf(z;) as a property
of z;, e.g., its distance to the CH, aift} as the summation of
that property over all cluster-members, i.e.,

For each cluster we assume a total distortionpf= N, Dy,
where N; represents the number of nodes in the cluster
Therefore, 0. 510g is one unit of data in our setup. The
E([%]) term depends on the geometry of the network and can
be numerlcally computed?(Rp(c;)) depends on the specific

> flri){w € Col, (7)  type of correlation function and the joint pdf of random samples
zi€]], whose characteristics have been shown earlier.



Therefore the average total energy consumption is In the analysis of Section Ill, we have assumed that every
node generates a new sensed data packet in each time unit with

E(C) = B(&) Lj;ft(JCQ) probability one. Clearly, if all nodes generate a packet with a
i probability py, then their average energy consumption will be
~ NP/\% Z exp(—Mim(kR)?) scaled by a factor ofy.
T’?ZO In our clustering model, the second component of energy
+ NpE([=1)E(Rp(ci)). (12) consumption comes from forwarding the compressed data orig-
R inated from the CHs. Since the point density of CHgAs and
VI. NETWORKLIFETIME each CH hasi(Rp(c;)) bits to send, the effective density of

Network lifetime, which is tightly coupled with energydata ispAE(Rp(c;)). This means that the energy consumption
consumption of nodes in the network, can be defined as tve will be scaled by a factor @ff(Rp(c;)). Consequently,
time elapsed until the first (or the last) node depletes its enenyg have
reserve [15]. To study the behavior of network lifetime as the
time that the first node dies we use the results obtained in Cout(r) = PE(Rp(ci)) Ee(r). (14)
Section lll. Although there are other definitions of lifetime, weye combine (13) and (14) to obtain
believe that for the given network model our definition is a

reasonable indicator of network lifetime. Given that traffic is e(r) = e+ eour(r)

uniformly distributed in the network (over the long run), nodes | Bnet |

that have the same radial distance from the processing center ~ (1-p) Z exp(—=Am(kR)?)

will deplete their energy supply approximately at the same time. =0

From Section Ill, it is clear that the nodes within the first layer + pE(Rp(ci))Ee(r).

will run out of energy first. Furthermore, the portion of nodes (15)

that are in the first layer is small (approximate%%). Clearly

if there is no node in the first layer then the network will fail and As can be seen from (15), given the characteristics of the

cannot deliver information to the data sink anymore. Thereforegrrelation matrix we can compute the averdgegr(c;)) and

the lifetime of the first node to die in the first layer is closelghene;(r). As we have mentioned earlier, the critical nodes are

related to the network lifetime. at the verge of the first layer where= 1. By definition, the
With our analysis in Sections Ill and V, we are able to predictetwork lifetime is proportional to the inverse of the maximum

the peaks of energy consumption in the network. Every nodéenergy consumption, i.e.,

has two components of energy consumption which contribute

to the total energy consumptiosy, of that node. The first part,

ein, is the average energy consumption due to being in a cluster E(Lifetime) oc min(;)
either as a CH or cluster-member. This is the same for all nodes 1
in the network, because each node is selected as a CH with the = —=- (16)

same probability (we neglect the edge effects, and clearly by e(1)

CH updating, the load of being a CH is rotated periodically). We define (16) as thifetime factor By computing (12) and
The second partg,.(r), is the average energy consumptiof16) we can depict the total energy consumption versus network
due to routing data toward the data sink, which is dependdifgtime.

on the distancer, from the data sink as shown previously.

Clearly, e;,,, is the total amount of energy consumption within VIl. NUMERICAL ANALYSIS AND SIMULATION

a cluster divided by the total number of nodes,, in a typical

- . - In this section, we provide simulation results as well as
cluster. As a first order approximation, P

numerical analysis based on the the previous sections. In

o~ ES[%W addition to comparing simulation results, we demonstrate the
m — . . . .
E(nin) inherent trade-off between network lifetime and the total energy
From [16] we have consumption. We also study the effect of data correlation and
A 1 the amount of distortion on total energy consumption and
0 . e
E(nn) ~ N +1= e network lifetime.

Our simulation environment consists of a square area of

Combining the above with (9), we have 20R x 20R in which a total of N = 2500 nodes are uniformly

A\ | Bpet distributed. We also sdb, = 0.01 unless otherwise stated. We
ein ~ p2 Z exp(—M\im(kR)?) present results from both analysis and simulation for various
M k=0 values of parametdi’, which is a representative of the amount
| Bzt | of data correlation. Since very low values pfwill result in
= (1-p) Z exp(—Ai7m(kR)?). (13) too few clusters, we have limiteglto be within an interval of

prt [0.002,0.5].
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A. Comparison with Simulation Results s ‘ ‘ ‘ ‘ p———
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Fig. 4 shows the network lifetime as a function of It v
. . . 2F o5 H
can be seen that our analysis accurately predicts the behavior = Weos
. . . . . o
of network lifetime. Here our analysis is compared with the & *sf 1
simulation results of clustering with MHR. The main reason of % L6l |
the good match between simulation and analysis in terms of §
. . . . . . 141 [ i
network lifetime is that, from the point of view of nodes in the > ! o N
first few layers, the number of packets that should be relayed o ** ! ! 1
by them determines their energy depletion rate. Therefore, T“: W /P i
inaccuracies in the path lengths do not drastically influence the 5 g < A/ In e direction of |
energy consumption analysis of the first or the second layer '
nodes. osr 1
As could be expected, increasinfj increases the lifetime 0al - As - - - - 3
of network by more than an order of magnitude. This has been Lifetime Factor

indicated but not analyzed in the past literature. Also, increasing
cluster sizes can increase the network lifetime but as Fig.Fi§. 6. Trade-off between energy consumption and lifetime. Each point
suggests, afera point he curves are effecively lat and her fSesponts o 2 e o il 592 008 07 o3 a7 0 ot o6 6 o7
no more gain. The discrepancy between analysis and simulatignrows. HereDo = 0.01.
when p is small is due to the finite size of the network and
inadequate experimental data when there are few clusters.
In Fig. 5 an ideal routing scheme is considered, whereaascaling factor between two curves, the optimal cluster-head
node that is at distancefrom a destination needs;; | hops to  probabilities match very well.
send its packets. Although this assumption may not be practical,
it has been used as a guideline in the past literature especially
when analyzing energy consumption [14]. As can be seen fram |
the results, our analysis matches very well with simulatiofr€time
In extreme cases wherg is less than 0.005 or when it is Fig. 6 plots the total energy consumption against network
near 0.5, the discrepancy is pronounced because of varidifetime for various values op and W. Since the analysis and
approximations that we have made. For example, in either casi@ulation match well, we show only the analysis results. This
[ %1 is not an accurate estimation. Also, when the clusters digure shows that we can trade-off the total energy consumption
large, the finite size of our network can affect the analysis. for the network lifetime. Clearly, in applications where sensors
Fig. 5 also compares our analysis with the simulation e¥ith non-renewable batteries are used, the latter is much more
clustering with MHR. As can be seen, the general behaviorimmportant than the former.
the same except for approximatelyla% scaling factor. This  In all cases the behavior for all values & is similar,
is because] ;| is a lower bound to the number of hops tdut the optimal cluster-head probability and the performance
reach the destination and we expect longer paths for MHR gain are functions ofl¥. For example, wherl’/ = 0.99,
the density of nodes decreases. Despite the fact that therelésreasing from 0.05 to 0.005 will lead to more than 3 times

Trade-off between Total Energy Consumption and Network
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TABLE |

OPTIMAL PARAMETERS FOR THE CLUSTERING ALGORITHM Table | shows the optimal cluster-head probability, which

corresponds to the optimal cluster size, in terms of minimal

Do =0.0001 | Do =0.001 | Do =001} Do =01 total energy consumption for different values1df and D. It
w L :
595 508 504 505 505 can be observed that, within a certain rangdj}adecreases and
0.95 0.03 003 0.05 0.06 D, is fixed, the optimal cluster-head probability first decreases,
0.9 0.02 0.03 0.05 0.06 which means that to gain from data correlation we need more
0.8 0.02 0.03 0.04 0.05 nodes in a cluster. WheW is decreased further, to maintain
8-; 8-8; g-gj 8-83 8-82 a reasonable rate of compression, we need many samples or
01 0.06 006 007 008 equivalently very large cluster sizes. However, large cluster

sizes force the packets to travel long paths toward the CH,
possibly away from the data sink, and at the same time because
of inefficient compression, a large amount of packets need to be
improvement in the network lifetime while it increases the totébrwarded by the CHs. Therefore, many data will be forwarded
energy consumption by a factor of less than 2. In contrast, filrough longer routes compared with the case where smaller
W = 0.5, the similar lifetime gain is less tha#0% while the clusters are used, which may negate the advantage of data
energy consumption is increased by a factor of alyodt. compression. Consequently, the optimal cluster sizes decrease,
and the optimal cluster-head probability increases.
_ _ _ . Finally, for a fixed value oV, as D, decreases, the optimal
C. The Effect of Data correlation and Compression Distortiogygter.head probability decreases. This suggests that the more

Fig. 7 and Fig. 8 show the effect dfV and D, on the stringent is the accuracy requirement, the larger is the optimal
performance of clustering. Note that to compare the energhuster size. Our numerical results indicate that the optimal
consumption and lifetime of the network for different valuesluster-head probability is approximately proportional to the
of Dy, we need to scale (12) and (15) by IOg(D%)- logarithm of the distortion value.

Clearly, a low level of data correlation leads to inefficient
clustering. These figures further suggest that the efficiency of
clustering, as reflected by the minimal total energy consumption
and asymptotic lifetime factor, increases with at faster than ~ Many clustering algorithms and protocols have been pro-
exponential rate. posed in the past to improve the scalability of multi-hop

These figures also show that as the required amount vafeless networks. They include single-hop clustering, first
accuracy increases, i.e[)y decreases, the total energy conintroduced in [6] and [7], and multi-hop clustering, for example
sumption increases and the network lifetime decreases. Thig8sand [9]. Most of these algorithms do not consider energy
an intuitive result, because increasing accuracy requires moomsumption or network lifetime. With few exceptions, energy-
bits used to represent the aggregated data. Furthermore, despitgre clustering algorithms have been proposed mostly in the
the different values o)y, the general behavior is similar. Incontext of wireless sensor networking. They include [20], [21],
fact, in log scale the different curves are biased approximat¢h0], [11], [12], [13], [14], and [15]. Particularly, in [12][14], it
by a constant value. This suggests that energy and lifetime &es been noted that there exists an optimal number of clusters
directly affected by the choice ab,. that minimizes total energy consumption. In [22] and [23],

VIIl. RELATED WORK



the optimal number of databases, which correspond to clustef-the cluster-head probability to balance this trade-off based
heads, and their optimal arrangements have been derived dorapplication demands and hardware characteristics, as well
location and resource management. However, none of thesethe cost of sensor battery replacement.
algorithms consider the performance of data aggregation baseth addition, we have studied the dependency of energy
on various data correlation levels. consumption and network lifetime on the amount of data
Various distributed signal estimation protocols have be@orrelation and compression distortion. It has been concluded
proposed for sensor networks. In [24], a distributed estimatitimat data correlation affects the optimal energy consumption
algorithm is proposed for a subclass of periodic aggregatiand asymptotic network lifetime faster than exponentially,
problems in which the result of aggregation is determinezhd that compression distortion affects the optimal cluster-
by the values of a few nodes. In [25], a distributed andead probability logarithmically. In general, the lower is the
adaptive signal processing algorithm is used to reduce ttlata correlation, the less sensitive is the clustering algorithm
energy consumption. In [26], data funneling is proposed, performance, and the less is the requirement on compression
which border nodes of a queried region do the data aggregatamturacy, the smaller is the optimal cluster size to achieve
and forward data to the sink. None of these works studiggnimum total energy consumption.
clustering or its effect on signal estimation.
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