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Abstract— In wireless sensor networks, clustering allows the
aggregation of sensor data. It is well known that leveraging the
correlation between different samples of the observed data will
lead to better utilization of energy reserve. However, no previous
work has analyzed the effect of non-ideal data aggregation in
multi-hop sensor networks. In this paper, we propose a novel ana-
lytical framework to study how partially correlated data affect the
performance of clustering algorithms. We analyze the behavior of
multi-hop routing and, by combining random geometry techniques
and rate distortion theory, predict the total energy consumption
and network lifetime. We show that when a moderate amount
of correlation is available, the optimal probabilities that lead to
minimum energy consumption are far from optimality in terms
of network lifetime. In addition, we study the sensitivity of the
total energy consumption and network lifetime to the amount of
correlation and compression distortion constraint.

I. I NTRODUCTION

Recent advances in wireless communications and rapid
development in small low-cost microelectronic and micro-
electromechanical sensor technology along with the advances
in wireless sensors have made it possible to deploy large
number of sensors to form a wireless sensor network. Wireless
sensor networks can be used for various purposes, e.g., vehicle
tracking and habit monitoring [1][2][3]. For large scale sensor
networks to be practical, the cost and size of these sensors
are of primary concern. As a result, they are usually equipped
with small batteries. This constraint has significant effect on
the network design and makes energy efficiency a major design
challenge.

Clustering improves the scalability of multi-hop wireless
networks. Typically, a clustering algorithm divides the network
into subsets of nodes, called clusters, each with one node
serving as its cluster-head (CH). After the formation of clusters,
nodes transmit their data to the CHs for data aggregation.
In their pioneering work, the authors of [4] have studied the
capacity of wireless networks and proved that the capacity
per node diminishes as the network size increases. However,
recently it has been shown that, due to data correlation, large-
scale multi-hop sensor networks are feasible [5]. Clearly, clus-
tering provides an architectural framework for exploiting data
correlation.

Various clustering protocols have been proposed, ei-
ther in the context of generic wireless ad hoc net-
works [6][7][8][9][10][11] or wireless sensor networks
[12][13][14][15]. These protocols either do not consider data
correlation or assume ideal data aggregation, where data are
perfectly correlated, such that an arbitrary number of packets
within a cluster can be compressed to one packet. However, in
practical sensor networks, the performance of data aggregation
is closely related to the various levels of data correlation.
This necessitates additional study into the characteristics of
clustering with partially correlated data.

In this paper, we consider the effect of partially correlated
data on the performance of clustering algorithms. As far as we
are aware, this is the first paper that provides a comprehen-
sive analytical framework to evaluate the energy and lifetime
performance of clustering in sensor networks. The proposed
analysis is generic and can be applied to a wide array of random
clustering algorithms.

In particular, we apply random geometry methodologies [16]
to analyze the energy consumption for forwarding data in
a multi-hop sensor network. Combining this result with rate
distortion theory [17], we provide a mathematical analysis
framework to study the energy consumption and lifetime of
a network when arbitrary amount of correlation is present.
We study the imbalance in the energy consumption of sensors
as a function of their position, through which we then show
the trade-off between total energy consumption and network
lifetime and conclude that optimal network energy consumption
necessarily does not lead to an optimal network lifetime. In
addition, we present numerical analysis results that illustrate the
relation between data correlation and compression distortion,
and energy consumption and network lifetime.

The rest of this paper is organized as follows. In Section II,
we define the system model used in our analysis and simulation.
In Sections III, IV, V, and VI, we present our mathematical
analysis on data forwarding, sensor data correlation, network
energy consumption, and network lifetime, respectively. We
justify our analysis via simulation and study the effect of data
correlation on energy consumption and network lifetime in
Section VII. In Section VIII, we describe the related work in
detail. Finally, we conclude the paper in Section IX.



II. SYSTEM MODEL

To clarify our assumptions and network setup, we present
the system model in two subsections as follows.

A. Node Deployment and Characteristics

Our network consists of a set of sensors and one processing
center or data sink. A total ofN sensors are randomly dis-
tributed with a density ofλ in an areaA. If the areaA and
the total number of sensors is large enough, then this point
process can be approximated by a homogeneous Poisson point
process with densityλ. We assume that the processing center is
located at the center of the network and has unlimited energy
supply. We also assume that all sensors in the network as well
as the processing center are stationary. Our study also applies
to sensor networks with multiple data sinks, each in charge
of a fixed set of sensors. In this case, the performance of the
clustering can be analyzed independently for each subset of the
network surrounding a data sink.

Sensors are aimed to be extremely small, inexpensive, and
simple devices. Therefore, all sensors within the network are
assumed to transmit at a fixed transmission power, and each
sensor has the same radio rangeR. All sensors are equipped
with a battery that has an initial amount of energy equal to
E0. We assume that each sensor requires 0.5 units of energy to
transmit or receive one unit of data. As will be shown later, the
exact ratio of transmitting to receiving power will not affect our
analysis. We also assume that the communication environment
is contention- and error-free, and therefore sensors do not have
to retransmit any data. The choice and effect of centralized
scheduling or distributed MAC are outside the scope of this
work.

B. Underlying Routing and Clustering Protocols

Throughout this paper, we use the terms “sensor” and “node”
interchangeably. To forward data to CHs, and from CHs to
the processing center, we assume that nodes use light weight
Minimum Hop Routing (MHR). The advantage of MHR is two
fold. First, it matches well with the fixed transmission power of
inexpensive sensors. Second, since the sensors are stationary,
MHR requires very infrequent route updating and hence much
less energy consumption than other more active routing proto-
cols such as energy-based routing. In our approach, nodes may
not be aware of the topology of the network, and the paths can
be setup when sensor information requests are disseminated by
the data sink, similar to the approach taken in [18].

We assume a generic clustering algorithm where CHs are
selected randomly. One example of implementing a random
clustering algorithm is presented in [14] in which CHs are
selected uniformly throughout the network. The clustering
algorithm is run everyT units of time, whereT generally
depends on the type of application and initial energy supply.
Each T units of time is divided intoM rounds, in each of
which, a CH schedules nodes within its cluster and receives
observed data from them. In the beginning of eachT rounds,

every node selects itself as a CH with a fixed probability of
p. It can be easily shown that the CHs form a Poisson point
process with densityλ1 = pλ, and the subset of nodes that are
not CHs will form another Poisson point process with density
λ0 = (1 − p)λ. After the CHs have been selected, each CH
sends a beacon that is flooded up tokh hops to advertise its
status as a CH. Every node that is not a CH will join the cluster
whose CH is the nearest (by using hop count information as
the first approximation to distance). This process tessellates the
network to a set of Voronoi cells.

As derived in [14], one can put an upper limit onkh which
can be derived from the following formula.

kh = d 1
R

√
−.917 ln (α/7)

pλ
e.

With the specified value ofkh, the probability that the radius of
the minimum ball centered at the nucleus of clusters (CHs) is
bigger thankh hops, is less thanα. We typically setα = 0.001
to ensure that most nodes can receive the beacon packet from
their corresponding nearest CH withinkh hops. However, it
is possible that a node doesn’t receive a beacon from nearby
CHs. In this case, it will select itself as a forced CH [14].
It is easy to see that cluster formation process has a time
complexity of O(kh). After cluster formation, all CHs will
schedule their sensors to begin communication. The exact
scheduling algorithm is out of the scope of this paper and is a
topic for future research.

We emphasize the fact that the proposed analytical frame-
work does not depend on the clustering protocol details. Other
possible implementation include those listed in section VIII.

In our model, each node observes a sample of the measured
random field and sends its own sample to the assigned CH. Af-
ter the reception of all data samples from its cluster-members,
the CH performs data aggregation subject to a total distortion
of D and sends the aggregated data to the data sink through
multi-hop routing over all sensor nodes. We consider the worst
case where nodes send each of their data samples with the same
amount of bits, giving a distortion ofD0, as if there were no
aggregation, and consequently aggregation is done only in CHs.
This amount of distortion,D0, equals the average distortion per
sample, which is obtained after data compression in CHs.

In the sequel we present analysis on the performance of
sensor clustering in terms of energy consumption and network
lifetime.

III. E NERGY CONSUMPTION ONDATA FORWARDING

For our analysis we use the following definitions.
• The sensing field is assumed to be a circular disc with

radius ofKR, for some integerK.
• Nodes are distributed with densityλ.
• We define Ec(r) as the conditional expected value of

energy consumption of a node as a function of its distance
to the processing center, i.e., if a given node is at radial
distancer from the processing center, thenEc(r) is the
expected value of energy consumption of that node.



Fig. 1. Sensor network divided into layers

• Similarly, we defineNc(r) as the expected number of
packets that a node at radial distancer from the processing
center must forward including its own packet.

Fig. 1 shows the sample topology that will be used for
our analysis. If the density of nodes is sufficiently high such
that there are enough paths to select from, then we expect
the number of hops needed to reach the processing center
to be approximatelyd r

Re when MHR is used. This simple
observation allows us to consider the sensing field as consisting
of different layers, each with a thickness of R as shown in
Fig. 1.

From here on, we use the terms point and node interchange-
ably. Associated with any given point−→x we draw a circle
showing its transmission range. In the example of Fig. 1,−→x
is in the second layer. Only those points which are in the
intersection of the transmission range of−→x and the third layer
can be potential nodes that will select−→x as their next hop.
Denote one such point−→r . To find the probability that this
occurs (i.e., when−→r selects−→x as the next hop), select point
−→y as a point which is in the transmission range of−→r and is in
the second layer. If points−→x and−→y are in the same layer, then
from the point of view of point−→r , there is not considerable
distinction between points−→x and −→y . As a special case, if
only points−→x and−→y are present in the transmission range of
−→r , then point−→r will choose one of these points with equal
probability.

To generalize this idea, let−→r be a point in thekth layer
and within the transmission range of−→x , and letA(−→x ,−→r ) be
the intersection of circle centered at−→r with a radius ofR
and the circle centered at the processing center with radius
(k − 1)R. ThereforeA(−→x ,−→r ), which is denoted by the dash-
shaded region in Fig. 1, shows the potential region for the next
hop of point−→r . Following the reasoning stated earlier, the
probability that the node at point−→r sends its packet to the

point −→x (i.e., chooses−→x as the next hop) is

p(−→x ,−→r ) =
∞∑

n=1

1
n

Pr(NA(−→x ,−→r ) = n|NA(−→x ,−→r ) ≥ 1)

=
∞∑

n=1

e−λA(−→x ,−→r )

1− e−λA(−→x ,−→r )

(λA(−→x ,−→r ))n

n!n
, (1)

whereNA denotes the number of nodes inA(−→x ,−→r ), and we
have used the fact that the probability of havingn nodes in an
area ofA is (λA)n

n! e−λA. To find A(−→x ,−→r ), we make use of
the cosine law to find the anglesβ andα

β = arccos(
(d |−→x |R eR)2 + |−→r |2 −R2

2|−→r |(d |−→x |R eR)
)

α = arccos(
R2 + |−→r |2 − (d |−→x |R eR)2

2R|−→r | ),

where|−→x | denotes distance from−→x to the data sink, and thus
A(−→x ,−→r ) is given by

A(−→x ,−→r ) = β(d |
−→x |
R
eR)2 − (d |

−→x |
R
eR)2

sin(2β)
2

+αR2 −R2 sin(2α)
2

. (2)

To determine the expected total number of packets that a
node at point−→x would send, we need to calculate a recursive
integration. This integration is over the intersection of the
transmission range of−→x and thekth layer, which leads to the
following.

Nc(|−→x |) = 1 +
∫ R+|−→x |
d |
−→x |
R eR

∫ γ

−γ

e−λA(−→x ,r)

1− e−λA(−→x ,r)

(
∞∑

n=1

(λA(−→x , r))n

n!n
) Nc(r)λdθ rdr, (3)

where

γ = arccos(
|−→x |2 + r2 −R2

2r|−→x | ).

In the above,Nc(|−→x |) accounts for all of the paths that go
through−→x . We add one to the integration because we have
assumed that every node has its own packet to send. The
relationship betweenNc(−→x ) andEc(−→x ) is

Ec(−→x ) = Nc(−→x )− 0.5,

where we have assumed that both transmission and reception
of a packet require .5 units of energy for a total of 1 unit. Every
node which relays a packet consumes exactly one unit of energy
except for when a node is transmitting its own packet. Clearly,
our analysis is relatively independent of the ratio of transmitting
and receiving energy consumption.
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Fig. 2. Energy consumption of nodes as a function of distance

To confirm the above analysis results, we have simulated
a network with a diameter of5R and node density100πR2 . We
run the simulation for 200 different networks with randomly
distributed nodes and take their average. Fig. 2 shows that the
analysis matches the results obtained via simulation.

From Fig. 2, we observe that there are very sharp peaks in
the energy consumption curve, which emphasizes the fact that
nodes at particular distances will die first even though they are
farther away from the processing center than other nodes in
the network. This discontinuity is a unique feature of minimum
hop routing and it may seem counterintuitive initially. In fact,
nodes that are close to the outer edge of each layer are seen by
more nodes in the next layer. Consequently, these nodes have
a greater chance to be selected as relays compared with the
nodes that are within the same layer but are closer to the inner
edge of that layer.

For this reason, it can be advantageous to have heterogenous
nodes in terms of initial energy supply, whoseE0 is a function
of distance to the data sink such that it is proportional to the
expected energy consumption as in Fig. 2. That will result in a
flat profile for the residual energy of all nodes. This approach
can be useful especially when the network has a small diameter.
The high peak to average ratio of the energy consumption curve
means that we need to place few nodes with highE0 at the
edge of each layer. Alternatively, nodes with equalE0 can
be deployed non-uniformly according to the obtained energy
consumption curve to achieve a flat energy profile.

IV. SENSORDATA CORRELATION

Let X = {xi, i = 1, 2, .., n} be a vector ofn samples of
the measured random field returned by then sensors within
a cluster. LetX̂ be a representation ofX, andd(X̂,X) be a
distortion measure. It has been shown that the minimum number
of bits required to representX subject to a bound on the total
distortion, i.e.,E(d(X̂,X)) ≤ D, can be computed by the

following formula [19]

R(D) = min
f(X̂|X):E(d(X,X̂))≤D

I(X, X̂), (4)

whereI(X, X̂) is the mutual information betweenX and X̂.
When the distortion measure is mean square error (MSE),
i.e., d(X, X̂) = ‖X − X̂‖2, a Gaussian source is the worst
case and needs most bits to be represented compared with the
other sources [5]. Therefore for the purpose of illustration, we
consider the case whereX is a multivariate Gaussian random
vector, i.e.,X ∼ N (M, Σ). We assume that the correlation
between two samples is a decreasing function of the Euclidian
distance between the sensors where the samples are taken. It
has been shown that, for MSE as the distortion measure and a
constraint on the total amount of distortion

E(‖X− X̂‖2) ≤ D,

the minimum number of bits required to represent data for a
Gaussian source,X in our case, is [17]

R(D) =
N∑

n=1

1
2

log
λn

Dn
, (5)

where λ1 ≥ λ2... ≥ λN are the ordered eigenvalues of the
correlation matrixΣ and

N∑
n=1

Dn = D,

Dn =
{

θ, if θ < λn

λn, otherwise,

or equivalentlyθ is chosen such that

N∑
n=1

min(θ, λn) = D. (6)

From (6) it can be easily shown that for reasonable amounts of
distortion D where

∑N
n=1 λn ≥ D, there exitsn0 ≤ N such

that

θ =
D −∑N

n=n0+1 λn

n0
,

λn0+1 ≤ θ < λn0 .

Also, (5) shows that the rate distortion in the case of a Gaussian
random field is only a function of the eigenvalues of the
correlation matrix. This result is well known as “reverse water-
filling.”

Later in our analysis, we need to know the amount of
compression as a function of the number of samples available.
Although it is possible to derive some asymptotic results for
R(D) in a random topology [5], these asymptotic results are
not sufficient for our purposes, especially when the number of
samples is not high enough. Therefore, we have used the Monte
Carlo method whose input is the random node locations subject
to node densityλ. For a given number of nodesN , we consider
a disk with an area ofA =

(
N
λ

)
and distribute nodes randomly

in it. We derive the number of bits according to (5) and find
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Fig. 3. Compression factor forλ = 6.25 m−2

its mean value over different scenarios. The results are shown
as the compression factor in Fig. 3. As an example, we have
considered the case where the correlation falls as a Gaussian
function which can be converted tof(pi, pj) = σ2W ‖pi−pj‖2 ,
wherepi andpj are two points in the 2D plane, and‖pi−pj‖ is
their Euclidean distance.W is the representative of the amount
of correlation between spatial samples and should be less than
one such thatΣ is a semi-positive definite matrix. Hereσ2

is a constant and denotes the variance of each sample of the
measured field. We chooseσ2 = 1 for brevity.

As Fig. 3 shows, asW decreases the correlation also
decreases, which means a lower amount of compression can be
achieved. Also it can be seen that the compression factor tends
to be a constant as the number of nodes is increased. This is an
intuitive result, because as we increase the number of samples,
samples that are really far apart have very low correlation, and
effectively they can be considered as independent data.

V. TOTAL ENERGY CONSUMPTION

To study the total energy consumption we need to know 1)
the average amount of total energy needed to communicate with
the CHs and 2) the average amount of total energy that the CHs
need to communicate with the data sink.

As a first approximation to the routing performance, we need
to know the average value ofd r

Re as the average number of
hops to the CHs or the average number of hops from the CHs
to the processing center. LetC0 represent a typical Voronoi cell
whose nucleus is located at the origin,Π0 represent the Poisson
point process associated with the non-CH nodes, andxi be a
member ofΠ0, we can define a functionf(xi) as a property
of xi, e.g., its distance to the CH, andSf as the summation of
that property over all cluster-members, i.e.,

Sf =
∑

xi∈
∏

0

f(xi)1{xi ∈ C0}, (7)

where1{.} is the indicator function. From [16] we can compute
the expected value ofSf , ESf , as follows

ESf = λ0

∫
f(x) exp(−λ1π|x|2)dx. (8)

In our casef(x) is a function from the 2-D plane to a real
number which isd r

Re. Using (8) and assuming thatRnet is the
network radius we have

ESd r
R e = λ0

∫
d r

R
e exp−λ1π|r|2 rdrdθ

' λ0

λ1

[ b
Rnet

R c∑

k=0

exp(−λ1π(kR)2)−

(bRnet

R
c+ 1) exp(−λ1π(R2

net))
]

' λ0

λ1

bRnet
R c∑

k=0

exp(−λ1π(kR)2). (9)

We denote byC1 the total energy needed to communicate with
the CHs. We compute the expected value ofC1 by conditioning
it by the number of clusters in the network which leads to

E(C1) = E[E(C1|n = n0)] = E(n0ESd r
R e)

' Np
λ0

λ1

bRnet
R c∑

k=0

exp(−λ1π(kR)2). (10)

We denote byC2 the amount of total energy consumed by the
CHs to communicate with the data sink. Letnc be a random
variable representing the number of CHs,ri be the distance
from the ith CH to the data sink,ci be the ith cluster, and
RD(ci) be the number of bits required to represent all the data
samples within theith cluster, normalized to the number of bits
that a sensor needs to represent its data with a distortion ofD0,
i.e., RD(ci) = R(Di)

0.5 log 1
D0

, we have

E(C2) = E(
nc∑

i=1

dri

R
eRD(ci))

= E[ncE(dri

R
e)E(RD(ci))]

= E(nc)E(dri

R
e)E(RD(ci))

= NpE(dri

R
e)E(RD(ci)), (11)

where

E(dri

R
e) =

∫

A

1
A
d
√

x2 + y2

R
edA.

For each cluster we assume a total distortion ofDi = NiD0,
where Ni represents the number of nodes in the clusterci.
Therefore,0.5 log 1

D0
is one unit of data in our setup. The

E(d ri

R e) term depends on the geometry of the network and can
be numerically computed.E(RD(ci)) depends on the specific
type of correlation function and the joint pdf of random samples
whose characteristics have been shown earlier.



Therefore the average total energy consumption is

E(Ct) = E(C1) + E(C2)

' Np
λ0

λ1

bRnet
R c∑

k=0

exp(−λ1π(kR)2)

+ NpE(dri

R
e)E(RD(ci)). (12)

VI. N ETWORK L IFETIME

Network lifetime, which is tightly coupled with energy
consumption of nodes in the network, can be defined as the
time elapsed until the first (or the last) node depletes its energy
reserve [15]. To study the behavior of network lifetime as the
time that the first node dies we use the results obtained in
Section III. Although there are other definitions of lifetime, we
believe that for the given network model our definition is a
reasonable indicator of network lifetime. Given that traffic is
uniformly distributed in the network (over the long run), nodes
that have the same radial distance from the processing center
will deplete their energy supply approximately at the same time.
From Section III, it is clear that the nodes within the first layer
will run out of energy first. Furthermore, the portion of nodes
that are in the first layer is small (approximately1

R2
net

). Clearly
if there is no node in the first layer then the network will fail and
cannot deliver information to the data sink anymore. Therefore,
the lifetime of the first node to die in the first layer is closely
related to the network lifetime.

With our analysis in Sections III and V, we are able to predict
the peaks of energy consumption in the network. Every node
has two components of energy consumption which contribute
to the total energy consumption,et, of that node. The first part,
ein, is the average energy consumption due to being in a cluster
either as a CH or cluster-member. This is the same for all nodes
in the network, because each node is selected as a CH with the
same probability (we neglect the edge effects, and clearly by
CH updating, the load of being a CH is rotated periodically).
The second part,eout(r), is the average energy consumption
due to routing data toward the data sink, which is dependent
on the distance,r, from the data sink as shown previously.
Clearly,ein, is the total amount of energy consumption within
a cluster divided by the total number of nodes,nin, in a typical
cluster. As a first order approximation,

ein '
ESd r

R e
E(nin)

.

From [16] we have

E(nin) ' λ0

λ1
+ 1 =

1
p
.

Combining the above with (9), we have

ein ' p
λ0

λ1

bRnet
R c∑

k=0

exp(−λ1π(kR)2)

= (1− p)
bRnet

R c∑

k=0

exp(−λ1π(kR)2). (13)

In the analysis of Section III, we have assumed that every
node generates a new sensed data packet in each time unit with
probability one. Clearly, if all nodes generate a packet with a
probability p0, then their average energy consumption will be
scaled by a factor ofp0.

In our clustering model, the second component of energy
consumption comes from forwarding the compressed data orig-
inated from the CHs. Since the point density of CHs ispλ, and
each CH hasE(RD(ci)) bits to send, the effective density of
data ispλE(RD(ci)). This means that the energy consumption
curve will be scaled by a factor ofpE(RD(ci)). Consequently,
we have

eout(r) = pE(RD(ci))Ec(r). (14)

We combine (13) and (14) to obtain

et(r) = ein + eout(r)

' (1− p)
bRnet

R c∑

k=0

exp(−λ1π(kR)2)

+ pE(RD(ci))Ec(r).
(15)

As can be seen from (15), given the characteristics of the
correlation matrix we can compute the averageE(RD(ci)) and
thenet(r). As we have mentioned earlier, the critical nodes are
at the verge of the first layer wherer = 1. By definition, the
network lifetime is proportional to the inverse of the maximum
of energy consumption, i.e.,

E(Lifetime) ∝ min(
1
et

)

=
1

et(1)
. (16)

We define (16) as thelifetime factor. By computing (12) and
(16) we can depict the total energy consumption versus network
lifetime.

VII. N UMERICAL ANALYSIS AND SIMULATION

In this section, we provide simulation results as well as
numerical analysis based on the the previous sections. In
addition to comparing simulation results, we demonstrate the
inherent trade-off between network lifetime and the total energy
consumption. We also study the effect of data correlation and
the amount of distortion on total energy consumption and
network lifetime.

Our simulation environment consists of a square area of
20R× 20R in which a total ofN = 2500 nodes are uniformly
distributed. We also setD0 = 0.01 unless otherwise stated. We
present results from both analysis and simulation for various
values of parameterW , which is a representative of the amount
of data correlation. Since very low values ofp will result in
too few clusters, we have limitedp to be within an interval of
[0.002,0.5].
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A. Comparison with Simulation Results

Fig. 4 shows the network lifetime as a function ofp. It
can be seen that our analysis accurately predicts the behavior
of network lifetime. Here our analysis is compared with the
simulation results of clustering with MHR. The main reason of
the good match between simulation and analysis in terms of
network lifetime is that, from the point of view of nodes in the
first few layers, the number of packets that should be relayed
by them determines their energy depletion rate. Therefore,
inaccuracies in the path lengths do not drastically influence the
energy consumption analysis of the first or the second layer
nodes.

As could be expected, increasingW increases the lifetime
of network by more than an order of magnitude. This has been
indicated but not analyzed in the past literature. Also, increasing
cluster sizes can increase the network lifetime but as Fig. 4
suggests, after a point the curves are effectively flat and there is
no more gain. The discrepancy between analysis and simulation
when p is small is due to the finite size of the network and
inadequate experimental data when there are few clusters.

In Fig. 5 an ideal routing scheme is considered, where a
node that is at distancer from a destination needsd r

Re hops to
send its packets. Although this assumption may not be practical,
it has been used as a guideline in the past literature especially
when analyzing energy consumption [14]. As can be seen from
the results, our analysis matches very well with simulation.
In extreme cases wherep is less than 0.005 or when it is
near 0.5, the discrepancy is pronounced because of various
approximations that we have made. For example, in either case,
d r

Re is not an accurate estimation. Also, when the clusters are
large, the finite size of our network can affect the analysis.

Fig. 5 also compares our analysis with the simulation of
clustering with MHR. As can be seen, the general behavior is
the same except for approximately a15% scaling factor. This
is becaused r

Re is a lower bound to the number of hops to
reach the destination and we expect longer paths for MHR as
the density of nodes decreases. Despite the fact that there is
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a scaling factor between two curves, the optimal cluster-head
probabilities match very well.

B. Trade-off between Total Energy Consumption and Network
Lifetime

Fig. 6 plots the total energy consumption against network
lifetime for various values ofp andW . Since the analysis and
simulation match well, we show only the analysis results. This
figure shows that we can trade-off the total energy consumption
for the network lifetime. Clearly, in applications where sensors
with non-renewable batteries are used, the latter is much more
important than the former.

In all cases the behavior for all values ofW is similar,
but the optimal cluster-head probability and the performance
gain are functions ofW . For example, whenW = 0.99,
decreasingp from 0.05 to 0.005 will lead to more than 3 times
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TABLE I

OPTIMAL PARAMETERS FOR THE CLUSTERING ALGORITHM

D0 = 0.0001 D0 = 0.001 D0 = 0.01 D0 = 0.1
W

0.99 0.04 0.04 0.06 0.06
0.95 0.03 0.03 0.05 0.06
0.9 0.02 0.03 0.05 0.06
0.8 0.02 0.03 0.04 0.05
0.7 0.02 0.04 0.04 0.05
0.5 0.03 0.04 0.04 0.05
0.1 0.06 0.06 0.07 0.08

improvement in the network lifetime while it increases the total
energy consumption by a factor of less than 2. In contrast, for
W = 0.5, the similar lifetime gain is less than80% while the
energy consumption is increased by a factor of about70%.

C. The Effect of Data correlation and Compression Distortion

Fig. 7 and Fig. 8 show the effect ofW and D0 on the
performance of clustering. Note that to compare the energy
consumption and lifetime of the network for different values
of D0, we need to scale (12) and (15) by0.5 log( 1

D0
).

Clearly, a low level of data correlation leads to inefficient
clustering. These figures further suggest that the efficiency of
clustering, as reflected by the minimal total energy consumption
and asymptotic lifetime factor, increases withW at faster than
exponential rate.

These figures also show that as the required amount of
accuracy increases, i.e.,D0 decreases, the total energy con-
sumption increases and the network lifetime decreases. This is
an intuitive result, because increasing accuracy requires more
bits used to represent the aggregated data. Furthermore, despite
the different values ofD0, the general behavior is similar. In
fact, in log scale the different curves are biased approximately
by a constant value. This suggests that energy and lifetime are
directly affected by the choice ofD0.
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Table I shows the optimal cluster-head probability, which
corresponds to the optimal cluster size, in terms of minimal
total energy consumption for different values ofW andD0. It
can be observed that, within a certain range, asW decreases and
D0 is fixed, the optimal cluster-head probability first decreases,
which means that to gain from data correlation we need more
nodes in a cluster. WhenW is decreased further, to maintain
a reasonable rate of compression, we need many samples or
equivalently very large cluster sizes. However, large cluster
sizes force the packets to travel long paths toward the CH,
possibly away from the data sink, and at the same time because
of inefficient compression, a large amount of packets need to be
forwarded by the CHs. Therefore, many data will be forwarded
through longer routes compared with the case where smaller
clusters are used, which may negate the advantage of data
compression. Consequently, the optimal cluster sizes decrease,
and the optimal cluster-head probability increases.

Finally, for a fixed value ofW , asD0 decreases, the optimal
cluster-head probability decreases. This suggests that the more
stringent is the accuracy requirement, the larger is the optimal
cluster size. Our numerical results indicate that the optimal
cluster-head probability is approximately proportional to the
logarithm of the distortion value.

VIII. R ELATED WORK

Many clustering algorithms and protocols have been pro-
posed in the past to improve the scalability of multi-hop
wireless networks. They include single-hop clustering, first
introduced in [6] and [7], and multi-hop clustering, for example
[8] and [9]. Most of these algorithms do not consider energy
consumption or network lifetime. With few exceptions, energy-
aware clustering algorithms have been proposed mostly in the
context of wireless sensor networking. They include [20], [21],
[10], [11], [12], [13], [14], and [15]. Particularly, in [12][14], it
has been noted that there exists an optimal number of clusters
that minimizes total energy consumption. In [22] and [23],



the optimal number of databases, which correspond to cluster-
heads, and their optimal arrangements have been derived for
location and resource management. However, none of these
algorithms consider the performance of data aggregation based
on various data correlation levels.

Various distributed signal estimation protocols have been
proposed for sensor networks. In [24], a distributed estimation
algorithm is proposed for a subclass of periodic aggregation
problems in which the result of aggregation is determined
by the values of a few nodes. In [25], a distributed and
adaptive signal processing algorithm is used to reduce the
energy consumption. In [26], data funneling is proposed, in
which border nodes of a queried region do the data aggregation
and forward data to the sink. None of these works studies
clustering or its effect on signal estimation.

In [27], the lifetime of a heterogeneous single-hop clustered
network is analyzed, where the cluster-heads are high-capacity
nodes that communicate directly with the data sink. In our
work, we consider a flat network architecture, where all nodes
have the same transmission power and communicate through
multi-hop routing.

All clustering protocols discussed so far either do not con-
sider data correlation or assume ideal aggregation, where an
arbitrary number of packets within a cluster can be compressed
into one packet. The ideal aggregation assumption is not valid
in most applications. Except for the case of averaging or taking
extrema, typically we need to observe data samples over an
entire measured signal field. In this case, the objective is to
provide a reasonable estimate of the signal field at any arbitrary
point in the network.

In this work, we provide a novel framework to analyze
the energy and lifetime performance of clustering algorithms,
with a realistic routing protocol, under general data correlation
functions and arbitrary compression distortion constraints. To
the best our knowledge no previous work has presented similar
mathematical analysis on the effects of non-ideal aggregation
on clustering in multi-hop sensor networks.

IX. CONCLUSIONS

In this paper, we have investigated the effect of partially
correlated data on the performance of clustering algorithms.
Using results from random geometry theory, we have studied
the behavior of data forwarding with Minimum Hop Routing
and demonstrated the fact that energy consumption is highly
dependent on sensor location. Furthermore, such dependency
is irregular, such that some nodes consume more energy even
when they are farther away from the data sink than the others.
To analyze network energy consumption, we have applied rate
distortion theory to obtain lower bounds on the number of bits
required to represent data within a cluster. We have further
analyzed the network lifetime. We have shown that there exists
a trade-off between total energy consumption and network life-
time, and that, in general, minimizing total energy consumption
is far from optimality in terms of network lifetime. Our analysis
framework provides a means to determine the optimal tuning

of the cluster-head probability to balance this trade-off based
on application demands and hardware characteristics, as well
as the cost of sensor battery replacement.

In addition, we have studied the dependency of energy
consumption and network lifetime on the amount of data
correlation and compression distortion. It has been concluded
that data correlation affects the optimal energy consumption
and asymptotic network lifetime faster than exponentially,
and that compression distortion affects the optimal cluster-
head probability logarithmically. In general, the lower is the
data correlation, the less sensitive is the clustering algorithm
performance, and the less is the requirement on compression
accuracy, the smaller is the optimal cluster size to achieve
minimum total energy consumption.
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