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Decentralized Multiuser Diversity with Cooperative
Relaying in Wireless Sensor Networks

Sam Vakil and Ben Liang

Abstract— Multiuser diversity is a phenomenon caused
by channel variations among different users in a wireless
network. Cooperative relaying provides another form of
diversity due to the spatial separation of sensors. In this
work we show how the simultaneous application of these
two sources of diversity in a decentralized manner can lead
to significant throughput improvement in sensor networks.
To exploit this synergy we propose a family of protocols
termed Channel Aware Aloha with Cooperation (CAAC).
Different power allocation schemes for CAAC are consid-
ered, including Constant Power, Fixed Rate, and Optimal
Variable Rate. In each case we derive the scaling behavior
of the achievable rate. We find the optimal source and relay
transmission strategies under each scheme and show that
the overall system performance is significantly improved.
Furthermore, we show that the Constant Power scheme is
asymptotically optimal, allowing easy implementation in
simple sensors.

I. I NTRODUCTION

Distributed wireless sensor networks are commonly
characterized by small sensor nodes with limited energy
reserve and computing power. Because of the unsta-
ble nature of wireless communication links, cross-layer
scheduling techniques that account for the physical-
layer characteristics, such as multiuser diversity based
transmission, can significantly improve the performance
of sensor networks. Furthermore, because of the limited
capability of each individual sensor node, these networks
can benefit from intelligent node cooperation. In this
work, we consider the design of a decentralized coopera-
tive scheme which exploits the multiuser diversity effect
in a sensor network.

The concept ofmultiuser diversity is best demon-
strated in the work of Knopp and Humblet [1]. In
this work the authors consider the uplink of a wireless
network as a multiple-access channel1. They prove that
to maximize the sum throughput of the network, during
each time slot the user with the best channel state should
transmit, and other users should remain silent. Under
this scheme, the diversity gain is due to the fact that
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1In the multiple-access channel model, there are multiple transmit-
ters competing for access to one channel and a single receiver.

increasing the number of users gives the system a higher
chance for having a user near its peak channel state
during each time slot. However, in their setting the
authors assume that the system hascentralized access to
the uplink channel state information (CSI) from all users.
This assumption of centralized access to CSI becomes
harder to justify as the number of users increases, and
the need for a decentralized access becomes apparent.

In sensor networks, generally it is not reasonable to
assume centralized access to channel states. Telatar and
Shamai [2] have been the first to address decentralized
resource allocation and power control for the uplink. In
[3] the authors consider a variant of the ALOHA model
in which the destination can benefit from multi-packet
reception, and the sensors’ probability of transmission
is based on a control function of the channel state.
Qin and Berry in [4], [5] consider a simpler “collision
model” for the reception to find an abstraction for
the multiple-access system throughput performance in
a fading environment. The authors show that the effect
of multi-user diversity is preserved in their decentralized
Channel Aware Aloha (CAA) scheme. They evaluate the
throughput scaling behavior and show that this scheme
is asymptotically optimal in the limit of large number of
sensors.

Another type of diversity can be obtained through spa-
tial separation of sensors. The approach ofcooperative
diversity has been introduced mainly by Laneman et al
[6], [7] and Sendonaris et al [8]. In this setting each
user, besides sending its own message, can detect other
users’ messages and relay them to the destination. This
forwarding of the data can increase the achievable rate,
specifically for the cases where the source-destination
channel experiences deep fades, such that there is a
high probability that the relay destination link can help
increase the achievable rate. Hence, cooperation provides
performance improvements through the use of available
resources in the network, especially important when the
size of devices limits the number of antennas that can
be deployed in each. In sensor networks, cooperation can
lead to significant increases in the network throughput,
sensing coverage, and energy savings.

Much of the previous work concerning cooperative
diversity has been concentrated on developing physi-
cal layer protocols to exploit spatial diversity and in-
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crease point-to-point throughput. Among these protocols,
Amplify and Forward and Decode and Forward [6]
have been the subject of extensive research. Recently,
cooperative schemes have been used to mitigate the
throughput loss of random access schemes. In [9] the
authors propose a cooperative scheme to mitigate the
throughput loss inherent in ALOHA. In [10], we further
study the problem of joint MAC-PHY design from
the perspective of interference mitigation in cooperative
sensor networks.

In this work, we investigate into a joint MAC-PHY
layer design that unites decentralized multiuser diversity
and cooperative relaying. We evaluate the benefit of such
a union in the uplink of a sensor network with the
assumption of Rayleigh fading and a collision model at
the destination (i.e., the sink) and at each intermediate
relaying sensor. We study the effect of sensor coopera-
tion over the asymptotically optimal multiuser diversity
approach proposed in [4], [5] and evaluate the increase
in throughput thus obtained, through a family of proto-
cols we termChannel Aware Aloha with Cooperation
(CAAC). To the best of our knowledge, this is the first
study on the synergy between multiuser diversity and
cooperative relaying in a decentralized environment.

Our main contributions include the following.First,
through an analytical performance evaluation framework,
we derive optimal source transmission and cooperative
relaying strategies with decentralized random access in
CAAC. Second, we consider different power alloca-
tion strategies for CAAC, including Constant Power,
Fixed Rate, and Optimal Variable Rate. We observe
their scaling behavior and relative merits in comparison
with CAA and simple cooperation without considering
multiuser diversity.Third, we show that the throughput
of CAAC with constant transmission power is asymp-
totically optimal and scales asR(n log n), whereR is
the rate function andn is the number of sensors. Hence,
sensors with limited capabilities can still fully benefit
from CAAC with a simple power allocation scheme.

The remainder of this paper is organized as follows.
Section II presents the network model, describes the
relaying protocol, and formulates the optimal design
problem. In Section III, we derive the system throughput
under different power settings for CAAC and evaluate
its scaling behavior. The performance gains obtained by
cooperation are validated in Section IV with numerical
examples and simulation.

II. M ODEL AND PROBLEM FORMULATION

A. Network Model

We consider a cooperative multiple access wire-
less sensor network withn sensors indexedM =

{1, 2, . . . , n} communicating to a single sink that is
reachable within one hop2. Sensors can cooperate in re-
laying another sensor’s message towards the destination.
The message transmission is assumed to be done in two
phases calledPhase A andPhase B.

In Phase A the active sensors can send their messages
towards the destination and other sensors if their channel
amplitude towards the destination is above a required
threshold, which is to be determined. We assume that at
time m sensori has messagexi(m), m ∈ [oL, (o+1)L]
in its buffer, whereL represents the length of a time slot
ando is the slot index. The received message by sensor
j during Phase A can be represented as

yj(m) =

N∑

i=1,i6=j

√

Hij(m)xi(m) + zj(m), (1)

whereyj(m) is the received message at sensorj ∈ M−
{i}, Hij(m) is the channel gain between theith sensor
and the potential relayj or the sink d, zj(m) is the
additive white Gaussian noise at sensorj (or the sink)
with powerZj (or Zd).

In Phase B the sensors which were not senders during
the previous phase and which have been successful in
the decoding of the message of the sender in Phase A
are potential forwarders. These sensors may implement
theDecode and Forward scheme [6], to forward the data
to the sink. This decision is dependent on the channel
amplitude of these relays towards the destination3. The
derivation of an optimal decision threshold for the chan-
nel amplitude is part of our design goal. We represent the
channel gain between thekth relay and the destination
asGkd(m). A block-fading process has been considered
for the channel gains, so form ∈ [oL, (o + 1)L], the
channel gain remains constant. We adopt the common
assumption that any pair of channel gains (Hi1j1 ,Hi2j2)
or (Gi1d,Gi2d) are independent random variables. For the
purpose of analytical simplicity we assume the channel
gain random variables to have the same distribution.
Throughout this work, for each sensor independent fad-
ing is assumed over different time slots.

The probability density function of a channel gain
Hij(m), for m ∈ [oL, (o + 1)L], is represented as
fHij

(h). We consider the symmetrical channel case,
and denote byfH(h) the source-destination coefficients,

2For clustered sensor networks, this model can be equally ap-
plied to intra-cluster communication between the sensor and the
clusterhead. The application of CAAC in a multihop sensor-to-sink
environment requires the additional consideration for complicated
routing and interference mitigation schemes [10]; it remains an
interesting open problem for future research.

3Channel dependent transmission of the relays has been recently
studied in [11], for the single source, single relay, and single
destination scenario.
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fH
′ (h

′

) the source-relay coefficients, andfG(g) the
distribution of the channel gains between the relays and
the sink. As defined in [5], a fading densityfH(h) is
well behaved iflimh→∞

F̄H(h)
hfH(h) = 0, where F̄H(h) =

1 − FH(h) represents the Compliment Cumulative Dis-
tribution Function. For example, the fading distributions
such as Rayleigh satisfy this definition.

Each sensor has access to its own CSI (toward the
sink), meaning that at the beginning of theoth slot
the channel gainHid is known by sensori and the
gain Gkd is known by the potential relayk during its
relaying phase. Note that this is the same assumption
as the one used in the distributed CSI analysis in [4],
[5]. In practice this knowledge may be estimated by
having the sink periodically broadcast a pilot signal or
directly obtained via feedback from the sink. Each sensor
also knows its own channel state distribution. Note that,
in the decentralized environment under consideration,
a sensor doesnot have access to the CSI of other
sensors. Furthermore, sensori doesnot have access to
the channel stateHij , since in a large network it becomes
unreasonable to assume that all of the sensors have
access to the state of the channel towards any other peer.

We denote byP1i(Hid) the transmission power of
sensori in Phase A andP2i(Gid) its transmission power
in Phase B. Throughout this work we consider along-
term average power constraint on the sensors meaning
that for each sensor

EHid
[P1i(Hid)] < P̄1, EGkd

[P2k(Gkd)] < P̄2. (2)

For the reception at the sink we assume a channel-
aware ALOHA type model in the fading environment
[5]. During each transmission block the destination can
only decode the message received from one sensor
successfully. Therefore, in (1) only theith sensor can
send its message. We make identical assumption as [5]
for the maximum rateR(γ) that a sensor can transmit as
a function of the sensor’s channel stateγ, where for the
ith sourceγi = P (Hid)Hid

Zd
. We normalizeZd to be equal

to one. It is also assumed thatR has zero asymptotic

elasticity [5] meaning thatlim supγ→∞
γR

′

(γ)
R(γ) = 0. As

an example, the Shannon capacity satisfies this require-
ment and has been used for our analytical results.

In the two-phase model considered in this work,
the transmission rate in the first phase is expressed as
RD(γi), while the achieved rate via cooperation ofK

sensors is expressed asRC(Φ). Since the forwarders
cooperate over sending a common message, they can
be considered as distributed antennas sending the same
message and MIMO capacity results apply in the second
phase.

Sink
 Sink


Fig. 1. Schematic of a) CAA b) CAAC.

B. CAAC Protocol Description and Optimization Prob-
lem Formulation

The CAA protocol proposed in [5] is a variation of
ALOHA, in which the transmission decision is made
based on the channel state as opposed to the traditional
ALOHA in which sensors transmit with a predetermined
probability. In their work, the authors introduce a deci-
sion threshold for the channel state of each sensor. If the
sensor’s channel is above the threshold it will transmit
and otherwise it will remain silent. Assuming uplink
down-link duality the sink can transmit periodic pilot
signals and each sensor can estimate its own channel
independently from the other sensors.

In Channel Aware Aloha with Cooperation, sensori
transmits when its channel state to the destination is
above a thresholdhs. The arrived message at relayk
is decoded with probability Prdec which is the same
at different relays due to the assumption of symmetric
channels. A relayk will forward its decoded message to
the destination if its channel gain towards the destination
is above a thresholdgrel. The transmission and relaying
probabilities can therefore be expressed as Prs = Pr(h >

hs) = F̄H(hs) and Prrel = Pr(g > grel) = F̄G(grel),
whereF̄H(a) =

∫ ∞
a

fH(h)dh represents the compliment
of the cumulative distribution function and̄FG(·) is
similarly defined. Fig. 1 presents a schematic comparison
between CAA and CAAC.

In CAAC, the average network throughput
µ(Prs, Prrel, n) can be expressed as

E[µ(Prs, Prrel, n)] =
1

2

(
nPrs(1 − Prs)

n−1×

EH [RD(P (Hid)Hid)|Hid > hs] + EΦ[RC(Φ)]
)
,

(3)

where Φ is the received power at the sink. The first
term represents the throughput in Phase A and includes
two parts, a contention probability and a conditional
rate, which is representative of the direct transmission
throughput. The second term in the summation repre-
sents the cooperative phase (Phase B) throughput. The
expected value of this term will be evaluated conditioned
on the number of forwarder relays. We quantify the
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number of successful relays in the decoding of the
message as the relays which do not undergo collision
and outage. Based on this number, the probability mass
function (pmf) of forwarding relays will be shown to be
binomial in section III-A. The factor12 takes into account
the fact that the transmission has occurred over two time
slots of lengthL as compared to a direct transmission
over one slot. Then, the optimization problem can be
stated as

(Pr∗s, Pr∗rel) = arg max
Prs,Prrel

µ(Prs, Prrel, n). (4)

We discuss in more details the implication of (3) un-
der different power allocation settings in the following
section.

III. O PPORTUNISTICCOOPERATION: SCALING

BEHAVIOR

We consider the following three different power allo-
cation settings:

Constant Power(CAAC-CP): In this case the sensors
transmit with a constant power over each block, and the
channel state information is only used to decide when to
transmit.

Fixed Rate (CAAC-FR): The sensors use channel
inversion to allocate power, so that a fixed value of
throughput is guaranteed.

Optimal Variable Rate (CAAC-OVR): The sensors
apply optimal power allocation over the channel states.
This can be considered as a classical water-filling prob-
lem [12]. Each sensor/relay only has access to its own
channel state and performs water-filling independently
from the other sensors.

For each power allocation setting, we present through-
put analysis, parameter optimization, and the scaling
behavior for largen.

A. CAAC-CP

In this case we assume that each source transmits with
a constant powerPt1 during each slot, and the relays
which are successful in the decoding of the message
forward the decoded version of the message with power
Pt2. The long-term average power constraint results in

∫ ∞

hs

Pt1fH(h)dh = Pt1F̄H(hs) ≤ P̄1 ⇒ Pt1 ≤
P̄1

Prs
∫ ∞

hrel

Pt2fG(g)dg = Pt2F̄G(grel) ≤ P̄2 ⇒ Pt2 ≤
P̄2

Prrel

.

(5)

Since only one source can transmit successfully during
each slot due to the collision assumption in this work,
when this happens, the throughputRD is only a function

of the channel state for the single transmitting sensori.
Other sensors listen to sensori’s transmission and try to
decode it. Note that during Phase B, other sensors will
not send their own data, since this would cause another
collision.

We now quantify the set of decoding relays for a
source i which we denote asD(i). Using the same
approach as [7], for each potential relayj a message
from sensori is successfully decoded, if the mutual in-
formation betweeni andj is above a required rate, i.e., if
I(i, j) > Rth, whereI represents the mutual information
andRth is the required threshold for decoding. However,
in our case if more than one sensor sends during Phase
A a collision will happen in Phase B. Therefore, we can
write

Prdec = Pr(I(i, j) > Rth|NC(j)) × Pr(NC(j))

= Pr(log(1 +
P̄1

Prs
Hij) > Rth) × nPrs(1 − Prs)

n−1

= Pr(
P̄1

Prs
Hij > γ)nPrs(1 − Prs)

n−1,

where the thresholdγ = 2Rth − 1 andNC(j) represents
the event of having no collisions atj. Note that by
the assumption of symmetric gains the transmission
probabilities are equal for different sensors in phase A
as well as phase B and the optimization is simplified.

Prior to solving the throughput optimization prob-
lem (4), we can predict the scaling behavior of the
source transmission probability. Asn → ∞, the source
transmission probability has to follow Prs → 0, or a
collision will happen and the first term in (3) tends to
0. Therefore, asn → ∞, Pr( P̄1

Prs
Hij > γ) → 1 and

Prdec → nPrs(1−Prs)n−1. This probability is maximized
by replacing Prs = 1

n
, which results in Prdec → 1

e
.

This value for the transmission probability in Phase A
maximizes the throughput of the direct transmission term
as shown in [4]. Hence, it optimizes (4).

The decoding event at sensorj is a Bernoulli random
variable with

I
j
dec =

{
1, with pr. Prdec

0, with pr. 1 − Prdec
. (6)

The number of successful decoding sensors can therefore
be expressed asK =

∑n
j=1,j 6=i I

j
dec. We make use of the

Chernoff bound [13] to find the number of successful
decoding relays with good precision. Using the lower

bound Pr[K < (1 − δ)Prdecn] < e−
nPrdecδ2

2 , we have

lim
n→∞

Prdec →
1

e
⇒ lim

n→∞
Pr(K < (1 − δ)

n

e
) < e−

n
e

δ2

2 .

(7)
As δ → 0 it suffices to haven > M

δ2 , whereM → ∞,
to guarantee thatlimn→∞,δ→0 Pr(K < n

e
) = 0. By the

same token, the upper bound in the Chernoff bound
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results in limn→∞,δ→0 Pr(K > n
e
) = 0. Therefore,

limn→∞ Pr(K = ⌊n
e
⌋) = 1.

For the constant power case, the expected throughput
can be expressed as
EH,Φ[µ(Prs, Prrel, n)] =

1

2

(
n(1 − Prs)

n−1

∫ ∞

hs

R(
P1

Prs
h)fH(h)dh + EΦ[RCP

C (Φ)]
)
,

where the first term represents the direct transmission
throughput conditioned on the event that one sensor
transmits and then − 1 remaining sensors are silent
and the second term represents the expected through-
put of cooperative transmission. The expected value of
the direct transmission throughput is straightforward to
obtain, since a sensor transmits only if its channel state
Hid > hs. We next elaborate on the derivation of the
cooperative throughput expressionRCP

C (Φ).
Since the transmission is slotted, the set of successful

decoding relays forward the same message in Phase
B synchronously, and the cooperative phase throughput
RCP

C (Φ) is similar to that of a multiple input single output
channel, which will be written as

RCP
C (Φ) = R(

K∑

k=1

I[Gkd > grel]Pt2Gkd), (8)

where I[Gkd > grel] is the indicator function repre-
senting the event that the relay-destination channel state
for relay k is above a determined threshold, andR is
a rate function which satisfies the asymptotic elasticity
property andPt2 = P̄2

Prrel
.

In order to find the expected value of the cooperative
phase throughput we express the throughput conditioned
on the number of forwarding relays as follows.
EΦ[RCP

C (Φ)] =

K∑

l=1

(
K

l

)

(1 − Prrel)
K−l

E
[
R(

l∑

i=1

P (Gsid)Gsid|F = s)
]

=
K∑

l=1

(
K

l

)

(1 − Prrel)
K−l

∫ ∞

grel

. . .

∫ ∞

grel
︸ ︷︷ ︸

l integrations

R(
P̄2

Prrel
(gs1d + . . . + gsld))fG(gs1

) . . . fG(gsl
)dgs1

. . . dgsl
,

(9)

wheres = {s1, . . . , sl}, represents a subset of potential
relays with cardinalityl chosen fromK relays successful
in decoding, andF is the set of forwarding relays during
Phase B. The term(1 − Prrel)

K−l in (9) reflects the
probability thatK − l relays remain silent and do not
forward. The second term is the expected cooperative
throughput conditioned on the event thatl relays are
forwarding the message to the sink. This result is also

a special case of Theorem 1 in [3], where we have
used a binary type transmission control by using the
notion ofgrel as the relaying threshold instead of general
transmission control, which is a function of the channel
state.

We further evaluate the scaling behavior of the above
throughput expression in the following proposition.

Proposition 1: As n → ∞ the integral term
∫ ∞

grel

. . .

∫ ∞

grel

R(
P̄2

Prrel

l∑

i=1

gsid)fG(g1) . . . fG(gl)dg1 . . . dgl,

in the limit approaches Prl
relR(

P̄2

Prrel
lgrel).

Proof: Refer to Appendix I.
By replacing the result of Proposition 1 in (9) in the

limit of large n we have

lim
n→∞

EΦ[RCP
C (Φ)] =

⌊n

e
⌋

∑

l=1

(
⌊n

e
⌋

l

)

(1 − Prrel)
⌊n

e
⌋−lPrlrelR(

P̄2

Prrel
lgrel),

(10)

where we have replacedK by ⌊n
e
⌋ in the limit as

we showed by use of the Chernoff bound. The next
proposition quantifies the optimal relaying probability as
n → ∞.

Proposition 2: The optimal relaying probability
scales as Pr∗rel = β(n)

n
as n → ∞, where β(n) is a

constant.
Proof: Refer to Appendix II for the proof.

We are now ready to compute the overall scaling behav-
ior of the throughputµ(Pr∗s, Pr∗rel, n). As a special case
of Proposition 1 withl = 1 it can be shown that

lim
n→∞

∫ ∞

hs

R(
P1

Prs
h)fH(h)dh = PrsR(

P̄1

Prs
hs). (11)

The overall throughput can, therefore, be written as

lim
n→∞

E[µ(Prs, Prrel, n)] =

1

2

(
lim

n→∞
nPrs(1 − Prs)

n−1R(
P̄1

Prs
hs) + EΦ[RCP

C (Φ)]
)
.

(12)

Corollary 1: The direct term throughput is maximized
by choosing Prs = α(n)

n
, wherelimn→∞ α(n) = 1.

Proof: This is a direct result of Proposition 4 of
[4] and considering the fact thatnPrs(1−Prs)n−1 attains
its maximum for Prs = 1

n
. The rate term is a decreasing

function of Prs. Therefore0 < α < 1. As n increases the
scaling of the rate becomes independent ofα, therefore,
Ps = 1

n
is the optimal value.
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Replacing the optimal probabilities in (12) we have

lim
n→∞

E[µ(Prs, Prrel, n)] =
1

2
lim

n→∞
[
1

e
R(P̄1n log n)

+

⌊n

e
⌋

∑

l=1

(
⌊n

e
⌋

l

)

(1 −
β

⌊n
e
⌋
)n−l(

β

⌊n
e
⌋
)lR(P̄2

⌊n
e
⌋

β
log

⌊n
e
⌋

β
)],

(13)

where we have assumed Rayleigh fading to derivegrel =
F̄−1

G (βe
n

) = log n
βe

. Based on our reasoning in Appendix
II the scaling behavior of rate termR does not depend
on β and we can assignβ = l and take the rate term
out of the summation. Therefore, the above expression
scales as12(1 + 1

e
)R(n log n).

B. CAAC-FR

For applications with the requirement of a fixed data
rate the sensors can exploit the channel state information
and perform power control to attain a constant rate, while
the channel state is changing. In this section we will
quantify the throughput whenn → ∞. While the scaling
behavior of the throughput has been addressed for direct
transmission in [4], the question that arises is “Can
throughput increases be obtained by using cooperation
compared to the direct transmission in this setting?”

For the case of direct transmission each sensor per-
forms channel inversion to maintain a constant bit-rate.
Therefore, the expected throughput constraint can be
written as

∫ ∞
hs

Pt1fH(h)dh ≤ P̄1, where Pt1 = Pr

h
,

andPr is the received constant power at the destination.
This translates to the requirementPr ≤ P̄1

R

∞

hs

1

h
fH(h)dh

.

We now evaluate the network throughput performance
under this setting and show that cooperation in this case
deteriorates the performance.

The overall throughput for the two phase transmission
is

E[µ(Prs, Prrel, n)] =

1

2

(
nPrs(1 − Prs)

n−1R(Pr) + EΦ[RFR
C (Φ)]

)
,

whereEΦ(RFR
C (Φ)) represents the cooperative through-

put for the fixed rate setting. During Phase A sensori

sends its message towards the destination and performs
power control to maintain a constant bit rateR(Pr) as
a function of the required received power at the desti-
nation. In this phase the maximum possible transmitted
power is Pt1 = Pr

Hid
≤ P̄1

Hid

R

∞

hs

1

h
fH(h)dh

. We can write

the correct decoding probability at sensorj, when only
sensori is transmitting as

Prdec = Pr(NC(j))Pr(Pt1Hij > γ|NC(j)) =

Pr(NC(j))Pr(
P̄1

Hid

∫ ∞
hs

1
h
fH(h)dh

Hij > γ).
(14)

We consider the special case of Rayleigh fading channel
with meanh0 to obtain a closed form expression for the
decoding probability. In this case we have

Prdec = Pr(NC(j))Pr(Hij ≥
Hid

A
) =

Pr(NC(j))

∫ ∞

hs

F̄H(
hid

A
)fH(hid)dhid =

nPrs(1 − Prs)
n−1

∫ ∞

hs

e
−

hid
h0A

e
−hid

h0

h0
dhid =

A

A + 1
e
−hs(

A+1

h0A
)
,

whereA = P̄1

γ
R

∞

hs

fH (h)

h
dh

.

The direct term throughput in this case isnPrs(1 −
Prs)n−1R(Pr). It is maximized by Prs,opt =

1
n

asn → ∞
and approaches1

e
R(Pr). Since this value of transmission

probability also minimizes the collision probability at the
relays, it is indeed the optimal value. We are interested in
evaluating the scaling behavior of the throughput, so we
evaluate the decoding probability asn → ∞. To this end
we need to findlimn→∞ A. For h > hs, we can write
fH(h)

h
<

fH(h)
hs

. In Appendix I of [5] it is proved that for

well behaved densities
∫ ∞
hs

fH(h)
hs

dh → F̄H(hs)
hs

, asn →
∞ and hs increases. Therefore, we havelimn→∞ A =

P̄1

γ
R

∞

hs

fh(h)

hs
dh

= P̄1hs

γPrs
. Replacing the optimal transmission

probability, sincehs = F̄−1
H (Prs) = h0 log( 1

Prs
), for the

case of Rayleigh fading, we deduce that asn → ∞,
A → ∞. Therefore, the decoding probability in the limit
scales as

lim
n→∞

Prdec =
1

e
lim

A→∞

A

A + 1
e
−hs(

A+1

h0A
)
=

1

e
e
−hs

h0 =
1

e
Prs.

(15)

Therefore, the decoding probability Prdec scales as1
n

.
Similar to CAAC-CP, the number of successful decoding
relays,K, is a binomial random variable. However, in
this case the Chernoff bound is no longer tight since
nPrdec → 1.

The number of successful decoding relays is

Pr(K = c) =

(
n − 1

c

)

(
1

ne
)c(1 −

1

ne
)n−1−c.

Hence, for the fixed rate allocation setting, the pmf ofK

decreases rapidly. In fact, the expected value ofK is 1
e
,

showing that on average less than 1 relay is successful in
decoding!. Therefore, the number of successful decoding
relays does not scale with the number of the sensors in
the network and only the first few terms of Pr(K = c)
affect the cooperative phase throughput.

We now evaluate the cooperative phase throughput
EΦ[RFR

C (Φ)] conditioned on the event thatc relays have
decoded the message of Phase A successfully. The
number of sensors that relay the message is a binomial
random variableQ, with the distribution Pr(Q = q) =
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(
c
q

)
Prqrel(1−Prrel)

c−q. For q relays sending the message
to the destination the power of the received signal is

P C
r =

q
∑

i=1

Pr,si
=

q
∑

i=1

Pt2(Gsid)Gsid, (16)

where s is again a subset of relays with cardinality
q, Pr,si

represents the power received from relaysi

at the destination andP C
r is the total received power

of the cooperative phase at the destination. The relays
employ channel inversion to maintain a fixed bit rate.
Therefore, the average power constraint for each relay
follows the same format as the power constraint for the
source in the direct transmission phase and we have
Pr,si

≤ P̄2
R

∞

grel

1

g
fG(g)dg

, ∀ 1 < i < q. The overall

received power during the cooperative phase is constraint
as P C

r ≤ qP̄2
R

∞

grel

1

g
fG(g)dg

. Based on the assumption of

distributed antennas sending the same message we can
again expressR(·) as a function of the received power
at the destination and write its expected value as

EΦ(RFR
C (Φ))

=

n−1∑

c=1

Pr(K = c)

c∑

q=1

Pr(Q = q)R(
qP̄2

∫ ∞
grel

1
g
fG(g)dg

).

(17)

Obtaining a closed form expression for Prrel in this
case follows from setting the derivative of (17) equal
to zero and is intractable. Instead, we will evaluate the
throughput performance in our numerical results. Intu-
itively, since only very few sensors on average decode
the message correctly, cooperation does not increase
the spatial diversity. The maximum decoding probability
occurs when we have one successful relay and equals
Pr(K = 1) ≃ 0.25, which represents the throughput
loss compared to a direct transmission. We next address
the throughput performance under the optimal power
allocation assumption.

C. CAAC-OVR

Under this setting we assumed that each sen-
sor performs optimal power allocation to maximize
the sum-rate, under the long term power constraint.
To find the decoding probability in this case, we
first need to find the sensor transmission power as
a function of its channel state. This issue is ad-
dressed in [5] and the optimization problem, which has
a “Water-filling” [12] power allocation, is expressed
as max

∫ ∞
hs

log(1 + P (hid)hid)fH(hid)dhid, subject to
∫ ∞

hs
P (hid)fH(hid)dhid = P̄1. We will only use the

solution of this problemPt1(hid) = ( 1
λp

− 1
hid

)+, where

λp =
Prs

P̄1 +
∫ ∞
hs

fH(h)
h

dh
. Then the successful decoding

probability for the message sent to sensorj from sensor
i in Phase A can be written as
Prdec = Pr(Pt1(Hid)Hij > γ|Hid > Hrel)Pr(NC(j)) =

Pr
(
(
P̄1 +

∫ ∞
hs

fH(h)
h

dh

Prs
−

1

Hid
)Hij > γ|Hid > hs

)
×

Pr(NC(j)).
(18)

As n → ∞, since Prs → 0 and limn→∞ hs =
limn→∞ F̄−1

H (Prs) = ∞, we have
∫ ∞
hs

fH(h)
h

dh ≤
R

∞

hs
fH(h)dh

hrel
= Prs

hs
→ 0. Since the channel between the

source and the destinationHid > hs, it tends to∞. In
contrast, the source-relay channelHij is an unconditional
random variable, and sincelimh

′→∞ FH
′ (h

′

) = 1, it
is limited with probability 1. Hence, we conclude that
limn→∞

Hij

Hid
= 0 with probability 1, and the decoding

probability has the form

lim
n→∞

Prdec = Pr
( P̄1

Prs
Hij > γ

)
Pr(NC(j)). (19)

Interestingly, this expression is the same as the decoding
probability for the case ofconstant power addressed in
Section III-A. Along the same lines of reasoning, the
decoding probability tends to1

e
in this case, and by

using the Chernoff bound we conclude that the number
of decoding relayslimn→∞ K = ⌊n

e
⌋.

We can use (8) by replacing the constant power
term by the optimal allocation. Then the instantaneous
cooperative throughput term is

ROVR
C (Φ) = R(

K∑

k=1

I[Gkd > grel]Pt2(Gkd)Gkd). (20)

Since each relay employs water-filling independently
from the other relays, the power allocation for relayk

has the same solution as water-filling for the source and

can be written asPt2(Gkd) =
P̄2 +

∫ ∞
grel

fG(g)
g

dg

Prrel

− 1
Gkd

.

Therefore, conditioned on the event thatl relays of the
subsets = {s1, . . . , sl} are currently transmitting, the
rate delivered obeys

ROVR
C (Φ) = R(

P̄2 +
∫ ∞
grel

fG(g)
g

dg

Prrel

l∑

i=1

Gsid − l). (21)

Following the same lines as (9), and replacing the
result of (21) for the cooperative throughput expression,
the expected value of cooperative throughput can be
written as

EΦ(ROVR
C (Φ)) =

K∑

l=1

(
K

l

)

(1 − Prrel)
K−l

∫ ∞

grel

. . .

∫ ∞

grel
︸ ︷︷ ︸

l integrations

R(
P̄2 +

∫ ∞
grel

fG(g)
g

dg

Prrel

l∑

i=1

gsid − l)
l∏

i=1

(fG(gsi
)dgsi

).

(22)
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Using the same first order expansion that we
used in the proof of Appendix I, the integral part
can be approximated in the limit of largen as

PrlrelR(
P̄2 +

∫ ∞
gs

fG(g)
g

dg

Prrel
lgrel − l). Since the proof fol-

lows along the lines of Proposition 1, we omit it due to
the space limit.

By the assumption of a well behaved distribution for
the channel gain, we havelimn→∞

∫ ∞
grel

fG(g)
g

dg ≤ Prrel

grel

[5]. Replacing this result in (22) and considering that
the performance of optimal power allocation is at least
as good as the constant power case, we have the same
cooperative throughput as (10).

Hence, we conclude that the optimal power allocation
results in the same scaling performance as that of the
constant power allocation and does not give extra bene-
fits in the limit of large number of sensors. However, for
smaller values ofn the relaying threshold will decrease
and the optimal power allocation can help increase the
throughput since the power is allocated optimally for
the poor (small) channel states. The partial throughput
increase of CAAC-OVR compared with CAAC-CP will
be validated in our simulation results.

IV. N UMERICAL EXAMPLES AND SIMULATION

In this section numerical comparison between different
power settings of the decentralized cooperative scheme
is presented. We also compare the results withChannel
Aware Aloha without cooperation and a simpleAloha-
C cooperative scheme in which the sensors transmit
independently from their channel state.

A. Simulation

We consider a network of 100 sensors with the power
constraintP̄1 = 1 for the transmission phase and̄P2 =
0.1 for the cooperation phase. The decoding threshold is
set toγ = 1, and the sensors are assumed to undergo
normalized Rayleigh fading during each time slot.

For different power settings of CAAC, Fig. 2 presents
the throughput performance for different source trans-
mission probabilities Prs, while we have considered the
relaying probability to be fixed and equal to its optimal
value. As we have shown in Section III, the scaling
behavior of CP and OVR is the same, and we have
used the same analytical results in Fig. 2 (a). Fig. 2 (b)
presents the simulation results. These results are close
to the analytical expressions. The partial throughput
increase of OVR compared to CP is due to the fact
that the number of sensors is limited for the simulations.
Therefore, in this case the transmission threshold, which
is of the order oflog n is small. This results in the sensors
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Fig. 2. Network throughput vs. source transmission probability for
100 sensors.
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Fig. 3. Network throughput vs. relaying probability for 100 sensors.

with smaller channel states to be allowed to transmit.
Hence optimal power allocation can partially benefit
these sensors with poor channel conditions, improving
the overall throughput compared to CP.

Fig. 3 demonstrates the throughput vs. the relaying
probability, while the source transmission probability is
fixed and equal to its optimal value. It can be seen that
the optimal relaying probability follows the result of
Proposition 2. However, in this case as we move further
from the optimal value, the throughput does not decrease
dramatically. This can be explained by cooperation be-
tween the sensors. The higher the relaying probability
is, the more cooperative sensors are probable to relay.
Although the multiuser diversity effect as a result of
the choice of optimal threshold decreases, having more
potential relays to some extent compensates for this
shortage. In Fig. 3 (b) the partial increase in the the
throughput obtained in OVR scheme compared to CP
in the simulation results can again be seen. The slight
difference between the analysis and simulation results
stems from our approximations in proving Propositions
1 and 2, which become precise asn → ∞.

B. Comparison with CAA and Aloha-C

It is clear from Fig. 2 and 3 that the CAAC-CP
and CAAC-OVR schemes outperform CAA due to the
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spatial reuse gain obtained by cooperation. This is further
confirmed in Fig. 4(a), where we plot the throughput
vs. the number of sensors. Note, however, that CAAC-
FR results in deteriorated performance. This is due to
the lack of cooperation. As explained in Section III-B,
the decoding probability in this case decreases as1

ne
.

Therefore, the cooperative phase throughput is less than
CAA, and hence the overall throughput is below that of
CAA.

For further comparison, we also consider a naive
cooperative scheme with pure Aloha, termed Aloha-C,
in which the sensors do not base their transmission
probability on the state of the channel. Sensors transmit
their message with probability1

n
during Phase A and

the successful decoding relays transmit with powerP̄2

in Phase B. The cooperative phase throughput can be
expressed asRC(Φ) = log2(1+P̄2

∑K
k=1 Gkd), whereK

is the number of successful decoding relays in the coop-
erative phase. For this setting, the correct decoding prob-
ability is Pr(NC(j))Pr(P̄1Hij > γ) = 1

e
F̄−1

H
′ ( γ

P̄1
). Using

Jensen’s inequality we haveEG[RC(Φ)] = EG[log2(1+
P̄2

∑K
k=1 Gkd)] ≤ log2(1 + P̄2E[K]E[Gkd]) = log2(1 +

P̄2E[K]), whereE[K] = n
e
F̄−1

H
′ ( γ

P̄1
). As n → ∞ the

overall throughput of this scheme is upper-bounded by
1
2e

(log2(1 + P1) + log2(1 + P̄2
n
e
F̄−1

H
′ ( γ

P̄1
))). This bound

has been plotted in Fig. 4(a). The significant throughput
increase obtained by CAAC-CP and CAAC-OVR can be
seen.

C. Scaling Behavior

Fig. 4 (a) further illustrate that increasing the number
of sensors results in a higher level of diversity and
leads to further increase in the network throughput. This
increase is justified by (13), which predicts that the
throughput scales as12(1+ 1

e
)R(n log n) for large values

of n. Furthermore, in [4] it has been shown that the
throughput of CAA scales as1

e
R(n log n). Fig. 4 (a)

confirms the1+e
2 asymptotic performance gain of CAAC

over CAA.
The scaling behavior of the optimal transmission prob-

ability and optimal relaying probability is depicted in
Fig. 4 (b). The log-scale plot of the probabilities con-
firms that the optimal source transmission and relaying
probabilities are decreasing with a scaling behavior of1

n

while we increase the number of sensors as explained in
Section III.

V. CONCLUSION

We have studied the decentralized union of coop-
erative relaying and multiuser diversity in the context
of sensor networks, using the proposed Channel Aware
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Fig. 4. a) Throughput vs. number of sensors. b) Relaying and source
transmission probabilities vs. the number of sensors.

Aloha with Cooperation scheme. We propose an an-
alytical performance evaluation framework considering
Rayleigh fading and a collision-based reception model.
We studied three power allocation schemes, Constant
Power, Fixed Rate, and Optimal Variable Rate, and
derived their asymptotic performance. Both analytical
and simulation results demonstrate the throughput im-
provement obtained by CAAC in comparison with CAA
without cooperation, or cooperative relaying without
considering multiuser diversity. Furthermore, we show
that CAAC with constant power allocation is asymptot-
ically optimal, which suggests a low complexity means
for achieving significant throughput increases even with
simple sensors.

APPENDIX I
PROOF OFPROPOSITIONI

It suffices to prove that

lim
n→∞

∫ ∞
grel

. . .
∫ ∞
grel

R( P̄2

Prrel
(
∑l

i=1 gsid))
∏l

i=1 fG(gsid
)dgsid

PrlrelR( P̄2

Prrel
lgrel)

= 1

To evaluate an upper-bound on the integral in the
numerator at each step, we only consider integration
over one of the variablesgsid and assume the other
variables to be fixed. SinceR is assumed to be a concave
function, using the first order expansion ofR(.), as
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a function of gsid and assumingG =
∑l

j=1,j 6=i gsjd

we haveR( P̄2

Prrel
(G + gsid)) ≤ R( P̄2

Prrel
(G + grel)) +

P̄2

Prrel
R

′

( P̄2

Prrel
(G + grel))(gsid − grel). Using an approach

which is similar to the one used in [5] for integration
with respect to each variable, we can write

lim
n→∞

∫ ∞
grel

R( P2

Prrel
(G + gsid))fG(gsid)dgsid

PrrelR( P̄2

Prrel
(G + grel))

≤

lim
n→∞

∫ ∞
grel

[R( P̄2

Prrel
(G + grel))fG(gsid)dgsid

PrrelR( P̄2

Prrel
(G + grel))

+

∫ ∞
grel

P̄2

Prrel
R

′

( P̄2

Prrel
(G + grel))(gsid − grel)fG(gsid)dgsid]

PrrelR( P̄2

Prrel
(G + grel))

= 1 + lim
n→∞

P̄2

Prrel
R

′

( P̄2

Prrel
(G + grel))

R( P̄2

Prrel
(G + grel))

×

( ∫ ∞
grel

gsidfG(gsid)dgsid − grelPrrel

)

Prrel

.

We multiply the first term byG + grel and divide the
second term by the same value. Pr∗

rel tends to 0 as
n increases as we show in Proposition 2. Therefore,
limn→∞ grel = F̄−1(Prrel) = ∞. We can then use
the asymptotic elasticity property ofR to deduce that

limn→∞

P̄2
Prrel

(G+grel)R
′

(
P̄2

Prrel
(G+grel))

R(
P̄2

Prrel
(G+grel))

= 0. The second

term
R

∞

grel
gsidfG(gsid)dgsid

(G+grel)F̄G(gsid)
− grel

grel+G
tends to 0, which can

be shown by using Hoptial’s rule (both the numerator
and denominator tend to 0) similar to [5]. Therefore,
when we perform the integration with respect to another
variablegsjd, we can use the denominator as an upper-
bound for the numerator and take the integral with
respect togsjd. Using the same reasoningl times, and in
each step definingG as the sum of variables over which
the integration is not performed yet, the integral in the
numerator of equation can be shown to be upper-bounded
by PrlrelR( P̄2

Prrel
lgrel). It is clear that the denominator

is also a lower-bound for the numerator. Therefore, the
result holds.

APPENDIX II
PROOF OFPROPOSITIONII

We first show that the optimal probability has to
decrease inversely proportional ton and then evaluate
β. The optimal relay probability decreases as a function
of the number of sensors (due to the multiuser diver-
sity effect) and can be written as Prrel = β(K)

Kd for
0 < d < ∞. Taking the derivative of each term in
(
K
l

)
Prlrel(1−Prrel)

K−l, we see that its maximum occurs
at Prrel = l

K
. For thelth component of the summation

the throughput termR(.) scales asR(K log(K
l
)), where

we have used the fact that for a channel with normalized
Rayleigh fading Prrel = e

−
grel
g0 , grel = g0 log( 1

Prrel
). For

any Prrel = 1
Kd , if d < 1, the first term is smaller than

the value found by replacing the optimal Prrel = l
K

,
and also the rate term scales asR(Kd log(Kd

l
)), which

is smaller thanR(K log(K
l
)). Therefored cannot be

smaller than 1. Ford > 1,
(
K
l

)
1

Kdl approaches 0, and
scales like 1

K(d−1)l , while the rate termR(.) has increased
by a multiplicative factord compared to the case where
d = 1. Therefore, the maximum is attained ford = 1. So
far, we have derived the optimal probability which attains
the maximum value for each term. SinceR(K log(K

l
))

can be written asR(K) + R(log(K
l
)), assuming thatR

has a logarithmic form, it is clear that the first term is
dominant which is not dependent onl. Therefore, it can
be taken out of the summation and the choice of the
constantβ will not lead to a change in terms of the
scaling behavior.
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