
1

A Semidefinite Relaxation Approach to Mobile

Cloud Offloading with Computing Access Point

Meng-Hsi Chen†, Ben Liang†, Min Dong‡

†Dept. of Electrical and Computer Engineering, University of Toronto, Canada
‡Dept. of Electrical, Computer and Software Engineering, University of Ontario Institute of Technology, Canada

Abstract—We consider a mobile cloud computing scenario
consisting of one user with multiple independent tasks, one
computing access point (CAP), and one remote cloud server. The
CAP can either process the received tasks from the mobile user
or offload them to the cloud, providing additional computation
capability over traditional mobile cloud computing systems. We
aim to optimize the offloading decision of the user to minimize
the overall cost of energy, computation, and delay. It is shown
that the problem can be formulated as a non-convex quadratically
constrained quadratic program, which is NP-hard in general. We
propose an efficient offloading decision algorithm by semidefinite
relaxation and a novel randomization mapping method. Our
simulation results show that the proposed algorithm gives nearly
optimal performance with only a small number of randomization
iterations, and adding CAPs to the traditional dichotomy of
mobile devices and remote cloud servers can drastically improve
mobile cloud computing performance.

I. INTRODUCTION

The paradigm of mobile cloud computing extends the

capabilities of mobile devices to improve user experience.

Although abundant cloud resources can be used to help

mobile devices gather, store, and process data, the interaction

between mobile devices and the cloud introduces difficult

challenges. For example, while offloading tasks to the cloud,

the tradeoff between energy savings and the computing per-

formance affects the mobile user’s experience. In addition,

the communication delay and energy cost between mobile

users and the cloud also play important roles that cannot be

ignored. K. Kumar et al. [1] studied the general conditions

that cloud offloading will be beneficial for a mobile user. M.

Satyanarayanan et al. [2] proposed an architecture to replace

the remote cloud with nearby cloudlets to reduce transmission

latency. Cloud offloading of entire applications by a single user

was studied in [3] [4]. The multiple user scenarios were ad-

dressed in [5] [6]. In contrast to whole application offloading,

the authors of [7]–[10] considered application partitioning. In

[7], E. Cuervo et al. proposed MAUI, a system developed to

efficiently process the partitioned tasks. Clonecloud [8] and

Thinkair [9] proposed further improvements. J. Niu et al.

[10] additionally considered dynamic partitioning. In all cases,

the partitioning problem results in integer programming and

cannot be solved efficiently.

In this work, instead of conventional mobile cloud comput-

ing where only the mobile device and the cloud server can

process tasks, we consider computing access points (CAPs),

which are wireless access points or cellular base stations

This work was funded in part by a grant from the Natural Sciences and
Engineering Research Council of Canada.

that also have built-in computation capability. CAPs may

be provided by Internet service providers as a value-added

service. Mobile devices that wish to offload a task first sends

it to the CAP. The CAP may serve its conventional networking

function and forward the task to the remote cloud server,

or directly process the task by itself. The additional option

of computation by the CAP reduces the need for access to

the remote cloud server, hence decreasing the communication

delay and also potentially the overall energy and computation

cost.

However, the availability of CAP computation further com-

plicates mobile task offloading decisions, adding an extra di-

mension of variability at the CAP. Each task may be processed

locally at the mobile device, at the CAP, or at the remote

cloud server. An optimal offloading decision must take into

consideration the computation and communication energies,

computation costs, and communication and processing delays

at all three locations.

In this paper, we focus on optimizing the offloading decision

for independent tasks of a mobile user with one CAP and one

remote cloud server, to minimize a weighted sum of the costs

of energy, computation, and delay. We show that the problem

can be formulated as a non-convex quadratically constrained

quadratic program (QCQP), which is NP-hard in general.

To solve this challenging problem, we propose an efficient

heuristic algorithm based on semidefinite relaxation (SDR)

[11] and a novel randomization mapping method. We give

a numeric lower bound to the performance of the proposed

algorithm. Our simulation results further demonstrate that the

proposed algorithm gives nearly optimal performance with a

small number of randomization iterations. Furthermore, we

observe that the addition of a CAP can significantly reduce

the energy and computation costs of mobile cloud computing

over traditional systems where only the remote cloud server

is available for task offloading.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cloud access scenario with a mobile user having

N independent tasks, one CAP, and one remote cloud server,

as shown in Fig. 1. The connection between the mobile user

and the CAP is wireless, while the connection between the

CAP and the cloud is usually wired. For the CAP, instead of

just serving as a relay to always forward received tasks from

the user to the cloud, we assume it also has the capability

to process user tasks subject to its resource constraint. The

mobile user needs to decide each task to be either processed

2

wireless

wired

Cloud

Computing
 AP

Tasks

1

2

N

Mobile
 User

Fig. 1. System model

locally or offloaded. We further decide whether the CAP

should process the offloaded task itself or further offload it

to the cloud.

Denote the input and output data sizes and the application

type of each task i byDin(i),Dout(i), and App(i), respectively.
For task i being locally processed by the mobile user, denote

the corresponding energy consumption for processing by Eli

and the processing time by Tli . If the task is offloaded to

the CAP, denote the energy consumed for transmitting and

receiving by Eti and Eri respectively. Furthermore, denote

the uplink and downlink transmission times by Tti and Tri ,

respectively. Their values depend on the corresponding wire-

less link capacities, denoted by CUL and CDL, respectively,

and other possible tasks offloaded to the CAP. If the ith task

is processed by the CAP, denote its processing time by Tai
.

It depends on the CPU rate fA and the number of tasks being

processed at the CAP. If instead the task is further offloaded to

the cloud from the CAP, we denote the required transmission

time between the CAP and the cloud by Taci , and the cloud

processing time by Tci . Finally, denote by Cai
and Cci the

costs for letting the CAP and the cloud process the task i,
respectively.

The mobile user first decides whether its task i should be

processed locally or offloaded to the CAP. Denote this decision

by

xi =

{

0 task i is processed locally,

1 task i is offloaded to the CAP.

When task i is offloaded to the CAP, we need to determine

whether the task should be processed by the CAP or further

offloaded to the cloud. We denote this decision by

yi =

{

0 task i is processed at the CAP,

1 task i is offloaded to the cloud.

The total cost of the mobile user is defined as the weighted

sum of total energy consumption, costs to offload and process

all tasks, and the corresponding worst case transmission and

processing delays. We aim to minimize the worst case total

cost by optimizing the processing-offloading task decisions

{xi}, {yi}. The optimization problem is formulated as follows:

min
{xi},{yi}

N
∑

i=1

[Eli(1− xi) + EAi
xi(1− yi) + ECi

xiyi]

+ ρmax{TL, TA, TC} (1)

s.t. xi, yi ∈ {0, 1}, i = 1, . . . , N,

where EAi
, (Eti + Eri + αCai

) and ECi
, (Eti +

Eri + βCci) are the weighted transmission energy and pro-

cessing cost for task i being offloaded to the CAP or the

cloud, respectively, with α and β being the relative weights,

TL ,
∑N

i=1 Tli(1 − xi) is the processing delay at the

mobile user, TA ,
∑N

i=1((Tti + Tri)xi + Tai
xi(1− yi)) and

TC ,
∑N

i=1((Tti + Tri)xi + (Taci + Tci)xiyi) correspond to
the worst case sum transmission and processing delay at the

CAP and the cloud, respectively. In addition, ρ is the weight on
the total delay, relative to energy consumption, for the user’s

tasks. We can adjust ρ to place different emphasis on delay

and energy consumption.

III. MOBILE AND CAP OFFLOADING SOLUTION

The optimization problem (1) can be rewritten as

min
{xi},{yi},t

N
∑

i=1

[Eli(1− xi) + EAi
xi(1− yi)

+ ECi
xiyi] + ρt (2)

s.t.

N
∑

i=1

Tli(1− xi) ≤ t, (3)

N
∑

i=1

((Tti + Tri)xi + Tai
xi(1− yi)) ≤ t, (4)

N
∑

i=1

((Tti + Tri)xi + (Taci + Tci)xiyi) ≤ t, (5)

xi, yi ∈ {0, 1}, i = 1, . . . , N, (6)

where (3)-(5) are the constraints on the sum transmission and

processing delay when tasks are processed at the mobile user,

the CAP, or the cloud, respectively.

We now examine the transmission and processing delays

TA and TC . Note that the uplink transmission time for tasks

depends on the uplink transmission capacity CUL and the

amount of offloaded tasks. Since the worst case offloading

delay is considered, we assume the CAP starts to offload or

process offloaded tasks after receiving all of them. Therefore,

we have

N
∑

i=1

Ttixi =

∑N

i=1 Din(i)xi

CUL

.

Similarly, the downlink transmission starts after all tasks

are finished and waiting at the CAP. Thus, the downlink

transmission time for offloaded tasks
∑N

i=1 Trixi is given by

N
∑

i=1

Trixi =

∑N
i=1 Dout(i)xi

CDL

.

The CAP processing time of tasks depends the CPU processing

rate fA and the amount of tasks processed at the CAP. Thus,

we have

N
∑

i=1

Tai
xi(1− yi) =

∑N
i=1 Din(i)App(i)xi(1 − yi)

fA
.

When tasks are offloaded to the cloud, additional transmission

time
∑N

i=1 Tacixiyi =
∑N

i=1(Din(i) +Dout(i))xiyi/Rac will

3

occur, where Rac is the transmission rate. At the cloud, we

assume that the user will only be served by one virtual machine

with the CPU processing rate fC . The corresponding cloud

processing time is

N
∑

i=1

Tcixiyi =

∑N

i=1 Din(i)App(i)xiyi
fC

.

It follows that the delay constraints (4) and (5) at the CAP

and the cloud can be respectively rewritten as

∑N
i=1 Din(i)xi

CUL

+

∑N
i=1 Din(i)App(i)xi(1 − yi)

fA

+

∑N

i=1 Dout(i)xi

CDL

≤ t, (7)

and
∑N

i=1 Din(i)xi

CUL

+

∑N

i=1(Din(i) +Dout(i))xiyi
Rac

+

∑N

i=1 Din(i)App(i)xiyi
fC

+

∑N

i=1 Dout(i)xi

CDL

≤ t, (8)

The optimization problem (1) is an integer programming

problem. In order to find an efficient solution to this problem,

in the following, we first transform it into a QCQP, and then

propose an SDR approach and a novel randomization mapping

method to recover the binary offloading decisions. We name

it the Local-Access-Cloud (LAC) offloading solution.

A. Semidefinite Relaxation

To convert the optimization problem (1) into a QCQP

problem, we first replace the integer constraint (6) by

xi(xi − 1) = 0, yi(yi − 1) = 0, i = 1, . . . , N. (9)

Define w = [x1 . . . xN , y1 . . . yN , t]T , Ej = [Ej1 . . . EjN]T ,
for j = l, t, r, Ck = [Ck1

. . . CkN
]T , for k = a or c,

Ds = [Ds(1) . . .Ds(N)]T , for s = in or out, and App =
[App(1) . . .App(N)]T . Define ei and e′i as the N × 1 and

(2N +1)× 1 standard unit vectors with the ith entry being 1,
respectively. In addition, define 0 and 0′ as the N ×N zero

matrix and N × 1 zero vector, respectively. The optimization

problem (1) can now be transformed into the following QCQP

formulation:

min
w

wTA0w + bT
0 w +ET

l 1N×1 (10)

s.t. bT
l w ≤ −TT

l 1N×1, (11)

wTAaw + bT
aw ≤ 0, (12)

wTAcw+ bT
c w ≤ 0, (13)

wT diag(e′p)w − e′Tp w = 0, p = 1, . . . , 2N, (14)

where

A0 =

0 A′
0 0′

A′T
0 0 0′

0′T 0′T 0

 , A′
0 =

1

2
diag(−αCa + βCc),

Aa =

0 A′
a 0′

A′T
a 0 0′

0′T 0′T 0

 , A′
a =

−1

2fA
diag(Din)diag(App),

Ac =

0 A′
c 0′

A′T
c 0 0′

0′T 0′T 0

 ,

A′
c =

1

2

[

1

Rac

diag(Din +Dout) +
1

fC
diag(Din)diag(App)

]

,

b0 = [(−El +Et +Er + αCa)
T 0′T ρ]T ,

bl = −[TT
l 0′T 1]T ,

ba = [b′T
a 0′T − 1]T ,

b′
a =

1

CUL

Din +
1

CDL

Dout +
1

fA
diag(Din)App,

bc =

[

(
1

CUL

Din +
1

CDL

Dout)
T 0′T − 1

]T

.

Comparing the optimization problems (10) and (2), constraints

(11)-(13) correspond to the processing delay constraints (3)-

(5), and constraint (14) represents the integer constraint (9).

We further define zT = [wT 1]T . After dropping the

constant term ET
l 1N×1 in the objective of (10), we can

homogenize the optimization problem (10) as

min
z

zTG0z (15)

s.t. zTGlz ≤ −TT
l 1N×1,

zTGaz ≤ 0,

zTGcz ≤ 0,

zTGpz = 0, p = 1, . . . , 2N,

where

G0 =

[

A0
1
2b0

1
2b

T
0 0

]

,

Gl =

[

0(2N+1)×(2N+1)
1
2bl

1
2b

T
l 0

]

,

Ga =

[

Aa
1
2ba

1
2b

T
a 0

]

,

Gc =

[

Ac
1
2bc

1
2b

T
c 0

]

,

Gp =

[

diag(e′p) − 1
2e

′
p

− 1
2e

′T
p 0

]

, p = 1, . . . , 2N.

Note that the optimization problem (15) is a non-convex

QCQP problem, which is NP-hard in general. To solve it,

we apply the SDR approach to relax it into a semidefinite

programming (SDP) problem. Define X = zzT . By dropping

the rank constraint rank(X) = 1, we have the following SDP
problem:

min
X

Tr(G0X) (16)

s.t. Tr(GlX) ≤ −TT
l 1N×1,

Tr(GaX) ≤ 0,

Tr(GcX) ≤ 0,

Tr(GpX) = 0, p = 1, . . . , 2N,

X(2N + 2, 2N + 2) = 1, X � 0.

The above SDP problem can be solved efficiently in polyno-

mial time using a standard SDP software, such as SeDuMi

[12].

4

0 0.2 0.4 0.6 0.8 1

x 10
−6

200

400

600

800

1000

1200

1400

α (J/bit)

to
ts

l
c
o

s
t

(J
)

local processing

cloud processing

LC 100

LAC 100

lower bound of optimum

random mapping 100

Fig. 2. The total system cost vs. α (J/bit).

DenoteX∗ as the optimal solution of the SDP problem (16).

We need to recover a rank-1 solution of the original problem

(1) from X∗. In the following, we propose a randomization

method to obtain our binary offloading decisions.

B. Binary Offloading Decisions via Randomization

A common approach [11] to obtain a feasible solution of

the original problem (1) is to randomly generate vectors from

the Gaussian distribution with zero mean and covariance X∗

for L times, and then map them to the feasible set {0, 1}2N

by using the sign of each element in these vectors. Among

the generated vectors, the one that yields the best objective

value of the original problem (1) will be chosen as the desired

solution. However, the above randomization procedure does

not fully utilize the information provided in X∗, because only

the sign of each element in the randomly generated vectors is

used to obtain the feasible solution. Instead, we propose the

following improved method.

Define v = [x1, . . . , xN , y1, . . . , yN]T . Notice that, first,

only the upper-left 2N×2N sub-matrix ofX∗, denote byX′∗,

is needed to recover the solution v. Second, each diagonal term

in X′∗ is always between 0 and 1, corresponding to the proba-
bility that each element in v is 1. Denote u = [u1, . . . , u2N]T ,
where uj = X ′∗

jj is the jth diagonal term of X′∗, and

Σ = X′∗ − uuT . It can be shown that Σ is always positive

semidefinite by using a property of the Schur complement.

We omit the details due to page limitation. We generate L
i.i.d. random vectors ṽ(l) ∼ N (u,Σ), l = 1, . . . , L, and map

each element ṽ
(l)
j of ṽ(l) to 1 with probability uj by using the

inverse Q-function, to arrive at a feasible solution v(l). We

then choose the one among these feasible solutions that gives

the minimum objective value of the optimization problem (1)

as vo.

The details of the above-mentioned LAC offloading algo-

rithm are described in Algorithm 1, in which Q−1(uj) is the
inverse Q-function with the parameter uj . We observe from

simulation results that a small number of randomization trials

(e.g., L = 100) is enough to give system performance very

close to the optimal one.

IV. SIMULATION RESULTS

In this section, we provide computer simulations to show

the near-optimal performance of our proposed LAC offloading

solution under different parameter settings. In the following,

we describe the default parameter values, unless otherwise

Algorithm 1 LAC Offloading Algorithm

1: Obtain optimal solution X∗ of the SDP problem (16).

Extract the upper-left 2N ×2N sub-matrix X′∗ from X∗.

Set the number of randomization trials as L.
2: Compute u = [u1, . . . , u2N]T , where uj = X ′∗

jj , and Σ =
X′∗ − uuT .

3: for l = 1, ..., L do
4: Generate ṽ(l) ∼ N (u,Σ);
5: for j = 1, ..., 2N do

6: γj = Q−1(uj)
√

Σjj + uj;

7: v
(l)
j = (sgn(ṽ

(l)
j − γj) + 1)/2;

8: end for

9: Form the lth feasible solution v(l) = [v
(l)
1 , . . . , v

(l)
2N]T

of the original problem (1).

10: end for

11: Choose among v(1), . . . ,v(L) the one that yields the

minimum objective value of the original problem (1); Set

it as vo.

12: Compare vo with the solutions from local processing only

and cloud processing only. Set the best one among them

as the solution vs.

13: Output: the proposed offloading solution vs =
[xs

1, . . . , x
s
N , ys1, . . . , y

s
N]T .

0 0.2 0.4 0.6 0.8 1

x 10
−6

400

600

800

1000

1200

1400

1600

1800

2000

2200

β (J/bit)

to
ta

l
c
o

s
t
(J

)

local processing

cloud processing

LC 100

LAC 100

lower bound of optimum

random mapping 100

Fig. 3. The total system cost vs. β (J/bit).

indicated later. We adopt the mobile device characteristics

from [13], which is based on Nokia N900, and set the

number of tasks as N = 10. According to Table 1 and 3

in [13], the mobile user has CPU rate 500× 106 cycles/s and
processing energy consumption 1

730×106 J/cycle, and the local

computation time 4.75×10−7 s/bit and local processing energy

consumption 3.25× 10−7 J/bit are calculated when the x264

CBR encode application (1900 cycles/byte) is considered as

App(i) in our simulations. We set both uplink and downlink

transmission capacities at 72.2 Mbps (e.g., IEEE 802.11n)

between the mobile user and the CAP, and the transmission

and receiving energy consumptions of the mobile user are both

1.42× 10−7 J/bit as indicated in Table 2 in [13].

The input and output data sizes of each task are assumed

to be uniformly distributed from 10 to 30MB and from 1 to

3MB, respectively. The CPU rates of the CAP and the Cloud

are 5 × 109 cycle/s and 10× 109 cycle/s, respectively. When

tasks are offloaded to the cloud, the transmission rate Rac is

15Mpbs. Also, we set the values of cost Cai
and Cci to be the

5

2 4 6 8 10 12 14 16 18 20
500

1000

1500

2000

2500

3000

R
ac

 (Mbps)

to
ta

l
c
o

s
t

(J
)

local processing

cloud processing

LC 100

LAC 100

lower bound of optimum

random mapping 100

Fig. 4. The total system cost versus transmission rate Rac (Mbps).

same as that of the input data size Din(i), and α = 2× 10−7

J/bit and β = 5 × 10−7 J/bit. The weight of the maximum

delay to process all tasks ρ is 1 J/s.

For comparison, we also consider the following methods: 1)

the local processing only method where all tasks are processed

by the mobile user, 2) the cloud processing only method where

all tasks are offloaded to the cloud, 3) the Local-Cloud (LC)

offloadingmethod where the same approximation procedure as

the LAC method is applied except that there is no CAP, and 4)

the random mapping method where all xi and yi are chosen
i.i.d. with equal probability. In addition, we also plot a lower

bound of the minimum cost. It is obtained from the optimal

objective value of the SDR problem (16). In the following

figures, we use “LAC 100,” “LC 100,” and “random mapping

100” to indicate that L = 100 for the randomization trials in

these methods, respectively. Our simulation shows that L =
100 is sufficient for LAC to provide near-optimal performance,

despite the 3N decision space of the optimization problem.

Finally, all simulation results are obtained by averaging over

100 realizations of the input and output data sizes of each task.

In Figs. 2 and 3, we show the system cost vs. the weights α
and β on the CAP processing cost and cloud processing cost,

respectively. Since α is the weight on the CAP processing cost,

the costs of the LAC method and optimal solution increase as

α increases. When α becomes large, no tasks will be processed

at the CAP, and the performance converges to that of the LC

method. When β becomes large, all tasks are more likely to

be processed by either the mobile user or the CAP. The LC

method in this case converges to the local processing method.

When a task is offloaded to the cloud, additional transmis-

sion time Taci will occur, which is inversely proportional to

the transmission rate Rac between the CAP and the cloud. In

Fig. 4, we plots the total system cost vs. Rac. As expected,

Rac mainly affects the cloud processing method and the LC

method. In Fig. 5, we study the system cost under various

values of the weight ρ on the processing delay. We observe

that with the help of the CAP, our LAC method outperforms

all other methods. In addition, in all figures, we observe that

it provides near-optimal performance when compared with the

lower bound of the minimum cost.

V. CONCLUSION

A mobile cloud computing system consisting of one user

with multiple tasks, one CAP, and one remote cloud server has

been considered. We aim to minimize a weighted total cost of

0 0.5 1 1.5 2
400

600

800

1000

1200

1400

1600

1800

2000

2200

ρ (J/s)

to
ts

l
c
o

s
t

(J
)

local processing

cloud processing

LC 100

LAC 100

lower bound of optimum

random mapping 100

Fig. 5. The total cost under different policies versus ρ (J/s).

energy, computation, and delay through optimal tasks offload-

ing by the mobile user. The optimization problem resulted

in a non-convex QCQP. We have thus proposed an efficient

heuristic algorithm to solve this problem using SDR and a new

randomization mapping method. Simulation results suggest

that the proposed algorithm gives nearly optimal performance,

thus enabling the often substantial benefit of using a CAP

between the mobile users and the remote cloud server.

REFERENCES

[1] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, pp. 51–56,
2010.

[2] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, pp. 14–23, 2009.

[3] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Computation offloading
for mobile cloud computing based on wide cross-layer optimization,”
in Proc. Future Network and Mobile Summit (FutureNetworkSummit),
2013, pp. 1–10.

[4] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, pp. 4569–
4581, 2013.

[5] S. Ren and M. van der Schaar, “Efficient resource provisioning and rate
selection for stream mining in a community cloud,” IEEE Transactions
on Multimedia, vol. 15, pp. 723–734, 2013.

[6] O. Munoz, A. Pascual Iserte, J. Vidal, and M. Molina, “Energy-
latency trade-off for multiuser wireless computation offloading,” in Proc.
IEEE Wireless Communications and Networking Conference (WCNC)
Workshops, 2014, pp. 29–33.

[7] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2010, pp. 49–62.

[8] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proc. ACM
Conference on Computer Systems (EuroSys), 2011, pp. 301–314.

[9] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. IEEE International Conference on
Computer Communications (INFOCOM), 2012, pp. 945–953.

[10] J. Niu, W. Song, L. Shu, and M. Atiquzzaman, “Bandwidth-adaptive
application partitioning for execution time and energy optimization,” in
Proc. IEEE International Conference on Communications (ICC), 2013,
pp. 3660–3665.

[11] Z.-Q. Luo, W.-K. Ma, A.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Processing
Magazine, vol. 27, pp. 20–34, 2010.

[12] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined
convex programming,” 2009. [Online]. Available: http://cvxr.com/cvx/

[13] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. the 2nd USENIX Conference on Hot Topics
in Cloud Computing (HotCloud), 2010.

