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Abstract—We propose an uplink over-the-air aggregation
(OAA) method for wireless federated learning (FL) that simul-
taneously trains multiple models. To maximize the multi-model
training convergence rate, we derive an upper bound on the
optimality gap of the global model update, and then, formulate an
uplink joint transmit-receive beamforming optimization problem
to minimize this upper bound. We solve this problem using the
block coordinate descent approach, which admits low-complexity
closed-form updates. Simulation results show that our proposed
multi-model FL with fast OAA substantially outperforms sequen-
tially training multiple models under the conventional single-
model approach.

I. INTRODUCTION

Federated learning (FL) [1] is a widely recognized method
for multiple devices to collaboratively train machine learning
models. However, FL in the wireless environment, usually with
a base station (BS) taking the role of a parameter server,
suffers from degraded performance due to limited wireless
resources and signal distortion. This necessitates efficient
communication design to effectively support wireless FL.

Most existing works on wireless FL have focused on train-
ing only a single model [2]–[8]. Various design schemes have
been proposed to improve the communication efficiency of
wireless FL, including transmission design of the downlink
[2], uplink [3]–[5], and combined downlink-uplink [6]–[8].
However, in practice a system often needs to train multi-
ple models. Directly using the conventional single-model FL
schemes, to train the models sequentially one at a time, can
cause substantial latency.

Simultaneously training multiple models in FL has recently
been considered in [9], [10]. Under error-free communication,
it was shown in [9] that multi-model FL can substantially
improve the training convergence rate. Later, considering noisy
downlink and uplink wireless channels, [10] proposed a multi-
group multicast beamforming method to facilitate the down-
link transmission of global models from the BS to the devices.
However, [10] used the conventional orthogonal multiple ac-
cess design for uplink model aggregation, which can consume
large bandwidth and incur high latency as the number of
devices becomes large. While over-the-air aggregation (OAA)
has recently become popular for uplink design in single-model
FL due to its bandwidth efficiency over orthogonal schemes
[3]–[5], it has not been considered in multi-model FL, due to
the substantial design challenges from additional inter-model
interference and high computational complexity.

In this paper, we propose a computationally efficient uplink
OAA method for multi-model wireless FL. Aiming to maxi-
mize the FL convergence rate, we derive an upper bound on
the optimality gap of the FL global model update, capturing
the impact of noisy transmission and inter-model interference.
We then show that the minimization of this upper bound leads
to a joint transmit-receive beamforming design to minimize
the sum of inverse received SINRs subject to some power
budget at the BS and devices. We solve this problem us-
ing block coordinate descent (BCD) and derive closed-form
solutions to each subproblem, leading to a low-complexity
design. Simulation under typical wireless network settings
shows that the proposed multi-model FL design with fast
OAA substantially outperforms the conventional single-model
approach that sequentially trains one model at a time.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Multi-Model FL System
We consider an FL system consisting of a server and

K worker devices that collaboratively train M ML models.
Let Ktot , {1, . . . ,K} denote the total set of devices and
M , {1, . . . ,M} the set of models. Let θm ∈ RDm be the
parameter vector of model m, which has Dm parameters.

Each device k holds local training datasets for all M mod-
els, with the dataset for model m being Skm , {(skm,i, vkm,i) :
1 ≤ i ≤ Skm}, where skm,i ∈ Rb is the i-th data feature vector
and vkm,i is the corresponding label. The local training loss
function representing the training error at device k for model
m is defined as F km(θm) = 1

Skm

∑Skm
i=1 Lm(θm; skm,i, v

k
m,i),

where Lm(·) is the sample-wise training loss for model
m. The global training loss function for model m is
a weighted average of F km(θm)’s, given by Fm(θm) =

1∑K
k=1 S

k
m

∑K
k=1 S

k
mF

k
m(θm). The learning objective is to find

optimal θ?m that minimizes Fm(θm) for each model m ∈M.
For multi-model FL, we consider the K devices train

the M models simultaneously, and the model updates are
exchanged with the server via multiple rounds of downlink-
uplink wireless communication. In each communication round,
each model is trained by a subset of devices. For simplicity, we
assume K/M ∈ N. We consider the round robin scheduling
approach for device-model assignment [9], [10]. Specifically,
we define a frame consisting of M communication rounds. At
the beginning of each frame, the K devices are randomly par-
titioned into M equal-sized groups, denoted by K1, . . . ,KM .



These device groups remain unchanged within a frame. For
each communication round t within the frame, each device
group i is assigned to train model m̂(i, t), given by

m̂(i, t) = [(M + i− [t mod M ]− 1) mod M ] + 1. (1)

Fig. 1 shows an example of the round-robin device-model
assignment within a frame of three communication rounds for
M = 3 models.

The iterative multi-model FL training procedure in round t,
which is in frame n = bt/Mc, is as follows:
• Downlink broadcast: The server broadcasts the current M

global model parameter vectors θm,t’s to their respective
assigned device group.

• Local model update: Device k ∈ Ki performs local training
of its assigned model m̂(i, t) using the corresponding local
dataset Skm̂(i,t). Suppose m̂(i, t) = µ. Device k divides
Skµ into mini-batches, and applies the standard mini-batch
stochastic gradient descent (SGD) algorithm with J iter-
ations to generate the updated local model based on the
received version of the global model θ̂kµ,t. In particular, let
θk,τµ,t denote the local model update by device k ∈ Ki at
iteration τ ∈ {0, . . . , J − 1}, with θk,0µ,t = θ̂kµ,t, and let
Bk,τµ,t ⊆ Skµ denote the mini-batch used at iteration τ . The
local model update is given by

θk,τ+1
µ,t = θk,τµ,t −

ηn

|Bk,τµ,t |

∑
(s,v)∈Bk,τµ,t

∇Lµ(θk,τµ,t ; s, v) (2)

where ηn is the learning rate in frame n, and ∇Lµ is the
gradient of the sample-wise training loss function for model
µ w.r.t. θk,τµ,t .

• Uplink aggregation: The K devices send their updated
local models θk,Jm,t’s to the server using the uplink trans-
mission. The server aggregates θk,Jm,t, k ∈ Ki, received from
device group i to generate the global model θm,t+1 for each
m ∈M for the next round t+ 1.

B. Wireless Communication Model

We consider a practical wireless communication system
where the server is hosted by a BS. Assume the BS is equipped
with N antennas, and each device has a single antenna.

We assume downlink broadcast of M models to their
respective device groups uses orthogonal channels among
groups. The BS uses the multicast beamforming technique
[11], [12] to send the model update θm̂(i,t),t to its assigned
device group i. Device k in group i then obtains an estimate
of θm̂(i,t),t [10]:

θ̂km̂(i,t),t = θm̂(i,t),t + ndl
k,t (3)

where ndl
k,t ∼ N (0, σ2

d I) is the post-processed receiver noise
due to the noisy downlink channel.

For uplink transmission and local model aggregation, we
consider OAA to conserve system bandwidth. In particular,
the K devices send their local model updates θk,Jm,t’s to the BS
simultaneously over a common uplink channel. The BS uses
receive beamforming to aggregate the local models θk,Jm̂(i,t),t,
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Fig. 1. Device-model round robin scheduling for M = 3 models.

k ∈ Ki, received from device group i, for i = 1, . . . ,M . Due
to the analog nature of OAA, the devices must send the values
of θk,Jm,t’s directly under their transmit power budget.

In this paper, we focus on the uplink OAA design via
joint transmit-receiver beamforming, aiming to maximize the
learning performance of multi-model wireless FL in terms of
the training convergence rate. Note that the downlink received
models are noisy versions of θm,t’s due to the noisy wireless
channel, while the uplink received models are also distorted
versions of θk,Jm,t’s due to the noisy wireless channels and the
inter-group interference. These errors further propagate in the
model updates over the subsequent communication rounds,
degrading the learning performance. Thus, an effective uplink
OAA design must capture such errors generated in the complex
interaction between learning and communication.

III. UPLINK OAA FOR MULTI-MODEL FL

A. Uplink Aggregation Framework

We propose an uplink aggregation framework where the
devices simultaneously send the multiple local model updates
θk,Jm,t’s to the BS via the common uplink channel. Recall
that θk,Jm,t ∈ RDm . For efficient transmission, we convert
θk,Jm,t into an equivalent complex vector representation θ̃k,Jm,t,
whose real and imaginary parts respectively contain the first
and second halves of the elements in θk,Jm,t. That is, θ̃k,Jm,t =

θ̃k,Jre
m,t + jθ̃k,J im

m,t ∈ C
Dm
2 , where θ̃k,Jre

m,t contains the first Dm
2

elements in θk,Jm,t and θ̃k,J im
m,t contains the rest Dm

2 elements.
We assume the uplink channels remain unchanged within

one frame. Let hk,n ∈ CN denote the channel from device k
to the BS in frame n, which is assumed known perfectly at
the BS. Let ak,n ∈ C be the transmit beamforming weight at
device k in frame n for sending its local model update. Let
Dmax , maxm∈MDm. Under perfect synchronization, all K
devices simultaneously send their respective normalized com-

plex model updates,
θ̃k,Jm,t

‖θ̃k,Jm,t‖
’s, to the BS using Dmax

2 channel

uses in round t. For model m̂(i, t) = m with Dm < Dmax, a
random position is set for all k ∈ Ki. Each device k ∈ Ki uses
this position for θ̃k,Jm,t within Dmax

2 channel uses and applies zero
padding to the rest of positions. Thus, the equivalent signal
vector at this device k is θ̄k,Jm,t = [0H , (θ̃k,Jm,t)

H ,0H ]H with
length Dmax

2 . The received signal vector vl,t ∈ CN at the BS
in channel use l is given by

vl,t =

M∑
i=1

∑
k∈Ki

hk,nak,n
θ̄k,Jml,t

‖θ̃k,Jm,t‖
+ uul

l,t, l = 1, . . . ,
Dmax

2

where uul
l,t ∼ CN (0, σ2

u I) is the receiver noise vector with
i.i.d. zero mean and variance σ2

u .



The BS applies receive beamforming to vl,t’s for over-the-
air aggregation of θ̃k,Jm,t, k ∈ Ki, from each group i. Let wul

i,n ∈
CN be the unit-norm receive beamforming vector at the BS for
group i in frame n, with ‖wul

i,n‖2 = 1. For device k ∈ Ki, and
assume m̂(i, t) = m, its effective channel after the BS receive
beamforming is given by αul

k,t ,
(wul

i,n)
Hhk,nak,n

‖θ̃k,Jm,t‖
. Thus, the

corresponding post-processed received signal vector for θ̃k,Jm,t
over the Dm

2 channel uses is given by

zm,t=
∑
k∈Ki

αul
k,tθ̃

k,J
m,t+

∑
j 6=i

∑
q∈Kj

(wul
i,n)

Hhq,naq,n
θ̄
′q,J
m̂(j,t),t

‖θ̃q,Jm̂(j,t),t‖
+nul

m,t.

where θ̄
′q,J
m̂(j,t),t ∈ C

Dm
2 is the portion of other (zero-padded)

model θ̄q,Jm̂(j,t),t sent by device q ∈ Kj that aligns with the
location of θ̃k,Jm,t in θ̄k,Jm,t, and nul

m,t is the post-processed
receiver noise with the l-th element being (wul

i,n)Huul
l,t, for

l = 1, . . . , Dm2 .
We consider uplink joint transmit-receive beamforming,

where {ak,n}k∈Ki and wul
i,n are designed jointly for each

device group i in frame n. For OAA to be effective, the
local models θ̃k,Jm,t’s need to be added coherently. Thus, the
transmit and receive beamforming design should ensure that
the resulting effective channels αul

k,t’s, for k ∈ Ki in group
i, are phase aligned. Thus, we set the transmit beamforming
weight ak,n =

√
pk,n

hHk,nw
ul
i,n

|hHk,nw
ul
i,n|

, for k ∈ Ki, where pk,n is the
transmit power of this device. The effective channels of all
devices in group i are then phase aligned to 0 after receive
beamforming as

αul
k,t =

(wul
i,n)Hhk,nak,n

‖θ̃k,Jm,t‖
=

√
pk,n|hHk,nwul

i,n|
‖θ̃k,Jm,t‖

, k ∈ Ki.

Each device is subject to the transmit power budget. Let
DmaxP

ul
k be the total transmit power budget for sending

the entire normalized local model in Dmax
2 channel uses at

device k, where 2P ul
k denotes the average transmit power

budget per channel use for sending two elements. Then, for

transmitting
θ̃k,Jm,t

‖θ̃k,Jm,t‖
, we have the transmit power constraint

pk,n ≤ DmaxP
ul
k .

After receive beamforming, the BS further scales zm,t to
obtain the complex equivalent global model update θ̃m,t+1

for the next round t+ 1, where m = m̂(i, t):

θ̃m,t+1 =
zm,t∑
k∈Ki α

ul
k,t

=
∑
k∈Ki

ρk,tθ̃
k,J
m,t + ñul

m,t

+
1∑

k∈Kiα
ul
k,t

∑
j 6=i

∑
q∈Kj

hHq,nw
ul
j,n(wul

i,n)Hhq,n

|hHq,nwul
j,n|

·
√
pq,nθ̄

′q,J
m̂(j,t),t

‖θ̃q,Jm̂(j,t),t‖
(4)

where ρk,t ,
αul
k,t∑

q∈Ki
αul
q,t

is the weight with
∑
k∈Ki ρk,t = 1,

and ñul
m,t ,

nul
m,t∑

k∈Ki
αul
k,t

is the post-processed receiver noise at
the BS. The weight ρk,t represents the uplink processing effect
including the device transmission and BS receiver processing.

Let θ̃m,t and ñdl
k,t denote the equivalent complex represen-

tations of θm,t and ndl
k,t in (3), respectively, for m = m̂(i, t).

For local model update in (2), ∆θ̃km,t , θ̃k,Jm,t − θ̃k,0m,t is
the equivalent complex representation of the local model
difference after the local training at device k ∈ Ki in round t.
Using (3) and (4), we obtain the global model update θ̃m,t+1

from θ̃m,t as

θ̃m,t+1 = θ̃m,t +
∑
k∈Ki

ρk,t∆θ̃km,t +
∑
k∈Ki

ρk,tñ
dl
k,t + ñul

m,t

+
1∑

k∈Kiα
ul
k,t

∑
j 6=i

∑
q∈Kj

hHq,nw
ul
j,n(wul

i,n)Hhq,n

|hHq,nwul
j,n|

·
√
pq,nθ̄

′q,J
m̂(j,t),t

‖θ̃q,Jm̂(j,t),t‖
(5)

Finally, the real-valued global model update θm,t+1 can
be recovered from its complex version as θm,t+1 =
[Re{θ̃m,t+1}T, Im{θ̃m,t+1}T ]T .

B. Multi-Model FL Convergence Analysis under Uplink OAA

Our objective is to design uplink joint transmit-receive
beamforming to minimize the maximum expected optimality
gap to θ?m among all M models after S frames, subject to the
transmitter power budget. In particular, let S , {0, . . . , S−1}.
Let pn , [pT1,n, . . . ,p

T
M,n]T , with pi,n ∈ RK

M being the
power vector containing pk,n, k ∈ Ki of group i in frame
n. Also, let wul

n , [(wul
1,n)H , . . . , (wul

M,n)H ]H ∈ CMN denote
the BS receive beamforming vector for all M groups in frame
n. Our optimization problem can be formulated as

Po : min
{wul

n,pn}
S−1
n=0

max
m∈M

E[‖θm,SM − θ?m‖2]

s.t. pk,n ≤ DmaxP
ul
k , k ∈ Ktot, n ∈ S,

‖wul
i,n‖2 = 1, i ∈M, n ∈ S

where E[·] is taken w.r.t. receiver noise and mini-batch local
data samples at each device. Problem Po is a stochastic
optimization problem with a min-max objective. To tackle this
challenging problem, we develop a more tractable upper bound
on E[‖θm,SM − θ?m‖2] by analyzing the convergence rate of
the global model update.

We make the following assumptions on the local loss
functions, the local model updates, and the divergence of the
global and local loss gradients. They are commonly used in
the convergence analysis of FL training [2], [6], [9].
Assumption 1. The local loss function F km(·) is L-smooth
and λ-strongly convex, ∀m ∈M, ∀k ∈ Ktot.

Assumption 2. Bounded local model parameters: ‖θ̃k,Jm,t‖2 ≤
r, for some r > 0, ∀m ∈M, ∀k ∈ Ktot, ∀t.

Assumption 3. Bounded gradient divergence of loss func-
tions: E[‖∇Fm(θm,t) −

∑K
k=1 ck∇F km(θk,τm,t)‖2] ≤ φ and

E[‖∇F km(θk,τm,t) − ∇F km(θk,τm,t,B
k,τ
m,t)‖2] ≤ δ for some φ ≥ 0,

δ ≥ 0, 0 ≤ ck ≤ 1, ∀m ∈M, ∀k ∈ Ktot, ∀τ , ∀t.
Based on (5), we first obtain the per-model global update

equation over frames. Let device group î be the group that
trains model m in communication round t in frame n. The



device-model assignment between î and m is given in (1).
Summing both sides of (5) over M rounds in frame n, and
subtracting the optimal θ̃?m (complex version of θ?m) from both
sides, we obtain

θ̃m,(n+1)M−θ̃?m= θ̃m,nM−θ̃?m +

(n+1)M−1∑
t=nM

∑
k∈Kî

ρk,t∆θ̃km,t+ẽm,n

where ẽm,n is the accumulated error term in (5) over M
rounds in frame n, given by

ẽm,n ,
(n+1)M−1∑
t=nM

∑
k∈Kî

ρk,tñ
dl
k,t +

(n+1)M−1∑
t=nM

ñul
m,t

+

(n+1)M−1∑
t=nM

∑
j 6=î

∑
q∈Kj

hHq,nw
ul
j,n(wul

î,n
)Hhq,n

|hHq,nwul
j,n|
∑
k∈Kî

αul
k,t

·
√
pq,nθ̄

′q,J
m̂(j,t),t

‖θ̃q,Jm̂(j,t),t‖
.

By Assumption 2, we can further bound E[‖ẽm,n‖2] as

E
[
‖ẽm,n‖2

]
≤ rMK

M∑
i=1

∑
j 6=i
∑
q∈Kj pq,n|h

H
q,nw

ul
i,n|2 + σ̃2

u

(
∑
k∈Ki

√
pk,n|hHk,nwul

i,n|)2

+ 2Kσ̃2
d (6)

where σ̃2
d , σ2

dDmax/2 and σ̃2
u , σ2

uDmax/2.
Using the above, we obtain an upper bound on E[‖θm,SM−

θ?m‖2] below. The proof is omitted due to space limitation.

Proposition 1. Under Assumptions 1–3 and for ηn < 1
λ , ∀n,

the expected optimality gap after S frames is bounded by

E[‖θm,SM − θ?m‖2]≤Γm

S−1∏
n=0

Gn+ Λ+

S−2∑
n=0

H(wul
n ,pn)

S−1∏
s=n+1

Gs

+H(wul
S−1,pS−1), m ∈M (7)

where Γm , E[‖θm,0 − θ?m‖2], Gn , 4(1 − ηnλ)2JM , Λ ,∑S−2
n=0 Cn

(∏S−1
s=n+1Gs

)
+ CS−1 with Cn , 4η2nJ

2(M2φ +
K2δ) + 8Kσ̃2

d , and

H(wul
n ,pn),4rMK

M∑
i=1

∑
j 6=i
∑
q∈Kj pq,n|h

H
q,nw

ul
i,n|2+σ̃2

u

(
∑
k∈Ki

√
pk,n|hHk,nwul

i,n|)2
.

C. Uplink Joint Transmit-Receive Beamforming Design

We now replace the objective function in Po with the more
tractable upper bound in (7). Omitting the first two constant
terms in (7) that do not depend on the beamforming design,
we arrive at the following equivalent optimization problem:

P1 : min
{wul

n,pn}
S−1
n=0

S−2∑
n=0

H(wul
n ,pn)

S−1∏
s=n+1

Gs +H(wul
S−1,pS−1)

s.t. pk,n ≤ DmaxP
ul
k , k ∈ Ktot, n ∈ S,

‖wul
i,n‖2 = 1, i ∈M, n ∈ S.

By Proposition 1, for ηn < 1
λ , we have Gn > 0, ∀n. Thus, P1

can be decomposed into S subproblems, one for each frame
n, given by

P2,n : min
wul
n,pn

M∑
i=1

∑
j 6=i
∑
q∈Kj pq,n|h

H
q,nw

ul
i,n|2 + σ̃2

u

(
∑
k∈Ki

√
pk,n|hHk,nwul

i,n|)2

s.t. pk,n ≤ DmaxP
ul
k , k ∈ Ktot,

‖wul
i,n‖2 = 1, i ∈M.

Problem P2,n is a multi-user joint uplink transmit power
allocation and receive beamforming problem with a compli-
cated objective function of {wul

n ,pn}. To make the prob-
lem amenable for a solution, we consider an upper bound
of the objective function. Let fk,n , hk,n/σ̃u. Since
(
∑
k∈Ki

√
pk,n|fHk,nwul

i,n|)2 ≥
∑
k∈Ki pk,n|f

H
k,nw

ul
i,n|2, we re-

place the objective function in P2,n by an upper bound and
arrive at the following problem:

P3,n : min
wul
n,pn

M∑
i=1

∑
j 6=i
∑
q∈Kj pq,n|f

H
q,nw

ul
i,n|2 + 1∑

k∈Ki pk,n|f
H
k,nw

ul
i,n|2

s.t. pk,n ≤ DmaxP
ul
k , k ∈ Ktot,

‖wul
i,n‖2 = 1, i ∈M.

We note that in the objective function, the ith term in the
summation is the inverse of SINR for the aggregated local
models received from group i, and the objective function is
the sum of inverse SINRs of all M groups. For this jointly
non-convex problem P3,n, we apply BCD to solve it, i.e.,
alternatingly updates the BS receive beamforming wul

n and the
device powers in pn. The two subproblems are given below:

1) Updating wul
n : Given pn, P3,n can be further decomposed

into M subproblems, one for each beamformer wul
i,n as

Pwsub
3,n,i : min

wul
i,n

(wul
i,n)H

(∑
j 6=i
∑
q∈Kj pq,nfq,nf

H
q,n + I

)
wul
i,n

(wul
i,n)H

(∑
k∈Ki pk,nfk,nf

H
k,n

)
wul
i,n

s.t. ‖wul
i,n‖2 = 1,

which is a generalized eigenvalue problem. The optimal solu-
tion wul

i,n can be obtained in closed-form, which is the gen-
eralized eigenvector corresponding to the smallest generalized
eigenvalue. We omit the detail due to space limitation.

2) Updating pn: Let gij,n be a K
M × 1 vector containing

{giq,n , |fHq,nwul
i,n|2, q ∈ Kj} of group j ∈M. Given {wul

i,n},
we can rewrite P3,n as

Ppsub
3,n : min

{pi,n}Mi=1

M∑
i=1

∑
j 6=i g

T
ij,npj,n + 1

gTii,npi,n

s.t. pk,n ≤ DmaxP
ul
k , k ∈ Ktot.

We propose to update p1,n, . . . ,pM,n sequentially using BCD.
Given pj,n, ∀j ∈ M, j 6= i, Ppsub

3,n is convex w.r.t. pi,n
for group i, for which the optimal pi,n can be obtained in
closed-form via the KKT conditions. Specifically, let p̄ul

i be
the vector containing {DmaxP

ul
k , k ∈ Ki} of group i. Let

amin
i,n , mink∈Ki

(∑
j 6=i g

T
ij,npj,n+1∑

j 6=i
gjk,n

gT
jj,n

pj,n

gik,n

)1/2
and let k′ ∈ Ki

be the corresponding index that achieves amin
i,n . Thus, the

optimal pi,n is given by

pk,n =

DmaxP
ul
k for k ∈ Ki, k 6= k′

DmaxP
ul
k′ −

[
gTii,np̄

ul
i − amin

i,n

]+
gik′,n for k = k′



where [a]+ = max{a, 0}. Thus, pi,n is updated sequentially
using the above solution.

IV. SIMULATION RESULTS

We consider image classification under the current cellular
system setting with 10 MHz bandwidth and 2 GHz carrier fre-
quency. The maximum transmit powers at the BS and devices
are 47 dBm and 23 dBm, respectively. We assume the devices
use 1 MHz bandwidth for uplink transmission. Each channel
is generated as hk,t =

√
Gkh̄k,t, where h̄k,t ∼ CN (0, I),

and the path gain Gk[dB] = −136.3− 35 log10 dk − ψk, with
the BS-device distance dk ∈ (0.02, 0.5) in kilometers and the
shadowing random variable ψk having the standard deviation
8 dB. Noise power spectral density is −174 dBm/Hz, and we
assume noise figure NF = 8 dB and 2 dB at the device and
BS receivers, respectively. We set N = 64 and K = 12.

We use the MNIST dataset for the multi-model training and
testing. It consists of 60, 000 training samples and 10, 000
test samples. We train three types of convolutional neural
networks: i) Model A: an 8 × 3 × 3 ReLU convolutional
layer, a 2 × 2 max pooling layer, and a softmax output layer
with 13, 610 parameters. ii) Model B: a 6 × 4 × 4 ReLU
convolutional layer, a 2× 2 max pooling layer, a ReLU fully-
connected layer with 22 units, and a softmax output layer
with 19, 362 parameters. ii) Model C: an 8 × 3 × 3 ReLU
convolutional layer, a 2× 2 max pooling layer, a ReLU fully-
connected layer with 20 units, and a softmax output layer with
27, 350 parameters. We use the 10, 000 test samples to measure
the test accuracy of each global model update θm,t at round
t. The training samples are randomly and evenly distributed
across devices, with the local dataset size Sk = 60, 000/K
samples at device k. For the local training using SGD, we
set J = 100, the mini-batch size |Bkτm,t| = 600/K,∀k, τ,m, t,
and the learning rate ηn = 0.1, ∀n. All results are obtained
by taking the current best test accuracy and averaging over 20
channel realizations.

We denote our proposed method as MultiModel. We also
consider two schemes for comparison: i) Ideal: Multi-model
FL via (5) with error-free downlink and uplink. It serves as
a performance upper bound for all schemes. ii) SeqnModel:
Sequentially train each model using the single-model FL
with all K devices by the uplink beamforming scheme that
maximizes the aggregated SNR provided in [8]. Fig. 2-Top
Left shows the test accuracy vs. M models, after T = 30
rounds, where all models are from Model A. We see that
MultiModel substantially outperforms the sequential model
training for all M values. We also consider mixed model
types. We set M = 3, one from each of Models A, B, and C.
Fig. 2-Top Right, Bottom Left, and Bottom Right show the test
accuracy over round t for Models A, B, and C, respectively.
We see that MultiModel outperforms the sequential training
using the single-model-based scheme for all models.

V. CONCLUSION

This paper considers uplink transmission design for multi-
model wireless FL. We design uplink beamforming for send-
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Fig. 2. Top Left: Test accuracy vs. M (Model A). Rest of figures: Test
accuracy vs. communication round t: Top Right – Model A; Bottom Left –
Model B; Bottom Right – Model C (90% confidence intervals are shown).

ing multiple models simultaneously to the BS via OAA to
maximize the FL training performance. We utilize an upper
bound on the optimality gap of the global multi-model update
to formulate the joint uplink transmit-receive beamforming
problem and apply BCD to solve it with closed-form iteration
updates. Simulation results demonstrate substantial perfor-
mance advantage of the proposed multi-model scheme over
the conventional single-model sequential training.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Statist., Apr. 2017, pp. 1273–1282.
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