
Towards Multi-Resource Fair Allocation
with Placement Constraints

Wei Wang†, Baochun Li‡, Ben Liang‡, Jun Li‡
†Hong Kong University of Science and Technology, ‡University of Toronto

weiwa@cse.ust.hk, {bli, liang, junli}@ece.utoronto.ca

ABSTRACT
Multi-resource fair schedulers have been widely implemented
in compute clusters to provide service isolation guarantees.
Existing multi-resource sharing policies, notably dominant
resource fairness (DRF) and its variants, are designed for
unconstrained jobs that can run on all machines in a cluster.
However, an increasing number of datacenter jobs specify
placement constraints and can only run on a particular class
of machines meeting specific hardware/software requirements
(e.g., GPUs or a particular kernel version). We show that
directly extending existing policies to constrained jobs either
compromises isolation guarantees or allows users to gain more
resources by deceiving the scheduler. It remains unclear how
multi-resource fair sharing is defined and achieved in the
presence of placement constraints. We address this open
problem by a new sharing policy, called task share fairness
(TSF), that provides provable isolation guarantees and is
strategy-proof against gaming the allocation policy. TSF is
shown to be envy-free and Pareto optimal as well.

1. INTRODUCTION
Datacenter jobs are characterized by a high degree of

demand diversity across multiple resource types. For ex-
ample, business analytics jobs are usually CPU-intensive;
machine learning jobs are often memory- or I/O-bound.
Multi-resource fair allocation is therefore needed to provide
predictable service isolation, where a job is guaranteed to
receive a fair share of datacenter resources, regardless of the
other jobs’ behaviors.

Dominant resource fairness (DRF) [2] is the de facto shar-
ing policy for multi-resource allocation. With DRF, jobs
receive the same share of dominant resource—defined for
each job as the one whose percentage share is the maximum
across all resources. DRF is proved to possess a number
of highly desirable sharing properties—notably sharing in-
centive and strategy-proofness—and is widely implemented
as a resource scheduler in systems like Hadoop YARN and
Apache Mesos.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMETRICS ’16 June 14-18, 2016, Antibes Juan-Les-Pins, France
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4266-7/16/06.

DOI: http://dx.doi.org/10.1145/2896377.2901493

We note that the successful application of DRF is limited
to unconstrained jobs that can run on all machines in a dat-
acenter, provided that the machine has sufficient resources
to accommodate a job. However, incompatibilities between
machine configurations and prerequisites of job execution are
frequently encountered in datacenters. As a result, an increas-
ing number of jobs specify placement constraints, restricting
them to run on a particular class of machines meeting specific
hardware/software requirements [4]. For example, a CUDA
job must run on machines with GPUs; a DNS service requires
machines with public IP addresses. It is reported in [4] that
approximately 50% of Google’s cluster jobs have simple, yet
restrictive, placement constraints. We show that directly
applying DRF and its variants to these jobs compromises
fairness guarantees. It remains unclear how multi-resource
fair allocation should be defined and achieved for jobs with
placement constraints.

In this paper, we answer this open question with a new
sharing policy, called task share fairness (TSF). We show
that TSF satisfies a number of desirable sharing properties
that are widely recognized to be most important for cluster
resource management [2, 3]. In particular, with TSF, jobs
are better off sharing the datacenter dynamically (sharing
incentive); no job can receive more resources by lying about
its demands and/or constraints (strategy-proofness); no job
would envy the allocation of another (envy-freeness); no job
can increase its allocation without decreasing that of another
(Pareto optimality). To our knowledge, TSF is the first
multi-resource allocation policy meeting all these important
properties in the presence of placement constraints.

2. DESIRABLE SHARING PROPERTIES
In this paper, we focus on hard, non-combinatorial place-

ment constraints (i.e., a job’s constraint is independ of the
other jobs’ placements). In particular, we model constraints
as a bipartite graph consisting of job vertices and machine
vertices. An edge is connected between a job vertex and a
machine vertex if the job can run on the machine. We model
a datacenter as a shared cluster consisting of a number of
machines with multiple resources, e.g., CPU, memory, etc.
Each job runs many parallel tasks. A task is characterized
by a demand vector, which specifies the amount of resources
needed during the task’s runtime.

As observed by DRF [2], there are four properties that
any datacenter scheduler should satisfy: sharing incentive,
strategy-proofness, envy-freeness, and Pareto optimality.

Sharing incentive. Consider some arbitrary original
allocation of resources where each job is given a dedicated



Table 1: Properties of DRF variants and TSF in the presence
of constraints: sharing incentive (SI), strategy-proofness (SP),
envy-freeness (EF), and Pareto optimality (PO).

Property
Per-Machine

DRF
DRFH CDRF TSF

SI X X
SP X X X
EF X X X
PO X X X

resource pool to run its tasks. Suppose now the jobs share
their resources with others. A new allocation of the shared
resources is said to provide sharing incentive, if it allows each
job to run no fewer tasks than the job would have run in its
original dedicated resource pool.

Strategy-proofness. No job can run more tasks by lying
about its resource demands and/or constraints.

Envy-freeness. Assume job i can run ni tasks with its
own allocation and can run ni↔j tasks after exchanging its
allocation with another job j. We have ni ≥ wi

wj
ni↔j for all

i and j, where wi and wj are the weights of two jobs. The
weight of a job can be computed from its original dedicated
resource pool as defined in the sharing incentive property.

Pareto optimality. Any attempt to launch more tasks
for a job results in fewer tasks for another.

It is worth mentioning that our requirement of sharing
incentive generalizes that of existing work as the dedicated
resource pools given to jobs can be arbitrary, while existing
work only considers equal partitioning [1, 2, 5] (each of N
jobs is given 1/N of the total resources). In addition, jobs
now have two-dimensional strategies, one for demand and
another for constraints. Existing work, however, can only
handle one-dimensional strategies, where jobs either game
the demands [1, 2, 5] or the constraints [3], but not both.

Can the four properties be satisfied using existing sharing
policies? To answer this question, we start with CMMF
allocation [3] that generalizes max-min fairness to constrained
jobs for single-resource sharing. However, because CMMF
is a market-based allocation [3], it is not strategy-proof in
the multi-resource environment [2]. We next turn to three
DRF variants that generalize DRF to a compute cluster
consisting of multiple heterogeneous machines: Per-Machine
DRF [1,5], DRFH [5], and CDRF [1]. Table 1 summarizes
their properties. We see that none of them retains all the
required properties in the presence of placement constraints.

3. TASK SHARE FAIRNESS
We propose a new multi-resource sharing policy, called task

share fairness (TSF), that retains all the properties described
in §2 for constrained jobs (see Table 1). TSF computes the
task share for each job, defined as the ratio between the
number of tasks allocated and the maximum number of tasks
the job can run if we remove its constraints and allocate it
the entire datacenter. One can interpret task share as the job
slowdown due to resource sharing and placement constraints.
TSF simply applies max-min fair allocation with respect to
the jobs’ task share.

A toy example of TSF. We consider a 3-node clus-
ter shown in Fig. 1, where machines m1 and m3 have the
same configuration of 〈9 CPUs, 12 GB RAM〉, while m2 has
〈3 CPUs, 4 GB RAM〉. There are three jobs. The task of
j1 demands 〈1 CPU, 2 GB〉 and can be executed on all ma-

m1

j1 j2

〈1, 2〉 〈3, 1〉

m2

6

0

1

j3

m3

〈9, 12〉 〈3, 4〉 〈9, 12〉

0

0
3

〈1, 4〉

Figure 1: An example of a TSF allocation.

chines but m3; the task of j2 demands 〈3 CPUs, 1 GB〉 and
can run on m2 only; the task of j3 demands 〈1 CPU, 4 GB〉
and can run on all machines. Suppose that we have allocated
6 tasks to j1 on m1, 1 to j2 on m2, and 3 to j3 on m3. We
compute the task shares of these three jobs as follows.

• For j1, we remove its constraints and let it monopolize
the entire cluster. In this hypothetical scenario, j1
can run 14 tasks: 6 on m1, 2 on m2, and 6 on m3.
Therefore, the task share of j1 is 6

14
= 3

7
.

• For j2, we remove its constraints and let it monopolize
the cluster. This allows j2 to run 7 tasks: 3 on m1, 1
on m2, and 3 on m3. The task share of j2 is 1

7
.

• For j3, its tasks can be executed on all machines. If
monopolizing the cluster, j3 can run 7 tasks: 3 on m1,
1 on m2, and 3 on m3. The task share of j3 is 3

7
.

To see that the allocation above realizes TSF, we first show
that the minimum task share (i.e., 1

7
for j2) is maximized.

This is because j2 is allocated the entire m2—the only ma-
chine j2 can run tasks on—so that its task share cannot be
further increased. We next see that the second lowest task
share is also maximized, because both j1 and j3 receive the
same share 3

7
, and no more task can be allocated.

We may generalize TSF to weighted jobs. In particular,
an allocation is said to achieve weighted TSF if any attempt
to allocate more tasks to a user would result in fewer tasks
allocated to another with an equal or lower weighted task
share, defined for each job as the task share normalized by
its weight. The following theorem states that weighted TSF
retains all the required properties described in §2.

Theorem 1. Assume originally each job i is given a ded-
icated resource pool and can run ki tasks in it. If jobs instead
share their resources and re-allocate them using TSF with
weight wi = ki/hi for job i, the allocation is strategy-proof,
envy-free, Pareto optimal, and provides sharing incentive.

4. REFERENCES
[1] E. Friedman, A. Ghodsi, and C.-A. Psomas. Strategyproof

allocation of discrete jobs on multiple machines. In ACM EC,
2014.

[2] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness: Fair
allocation of multiple resource types. In USENIX NSDI, 2011.

[3] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Choosy:
Max-min fair sharing for datacenter jobs with constraints. In
ACM EuroSys, 2013.

[4] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and
C. R. Das. Modeling and synthesizing task placement
constraints in google compute clusters. In ACM SoCC, 2011.

[5] W. Wang, B. Liang, and B. Li. Multi-resource fair allocation
in heterogeneous cloud computing systems. IEEE Trans.
Parallel Distrib. Syst., 26(10):2822–2835, 2015.


