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Abstract—Computational offloading systems, where computational tasks can be processed locally or offloaded to a remote cloud, have

become prevalent since the advent of cloud computing. The task scheduler in a computational offloading system decides both the

selection of tasks to be offloaded to the remote cloud and the scheduling of tasks on the local processors. In this work, we consider

the problem of minimizing a weighted sum of the makespan of the tasks and the offloading cost at the remote cloud. In contrast to

prior works, we do not assume that the task processing times are known a priori. We show that the original problem can be solved by

algorithms designed toward minimizing the maximum between the makespan and the weighted offloading cost, only with doubling of the

competitive ratio. Furthermore, when the remote cloud is much faster than the local processors, the latter problem can be equivalently

transformed into a makespan minimization problem with unrelated processors. For this case, we propose a Greedy-One-Restart (GOR)

algorithm based on online estimation of the unknown processing times, and one-time cancellation and rescheduling of tasks that turn

out to require long processing times. Given m local processors, we show that GOR has O(
√
m) competitive ratio, which is a substantial

improvement over the best known algorithms in the literature. For the general case of arbitrary speed at the remote cloud, we extend

GOR to a Greedy-Two-Restart (GTR) algorithm and show that it is O(
√
m)-competitive. Furthermore, where tasks arrive dynamically

with unknown arrival times, we extend GOR and GTR to Dynamic-GOR (DGOR) and Dynamic-GTR (DGTR), respectively, and find

their competitive ratios. Finally, we discuss how GOR can be extended to accommodate multiple remote processors. In addition to

performance bounding by competitive ratios, our simulation results demonstrate that the proposed algorithms are favorable also in

terms of average performance, in comparison with the well-known list scheduling algorithm and other alternatives.

Index Terms—Computational offloading, edge computing, mobile cloud computing, hybrid cloud, offloading cost, semi-online algorithms

✦

1 INTRODUCTION

Cloud computing has emerged as a vital technology
used by many enterprises and individuals. The cloud in-
frastructure has paved way to computational offloading
systems where computational tasks can be processed lo-
cally or offloaded to a remote cloud. Typical examples
of computational offloading systems include hybrid cloud,
Mobile Cloud Computing (MCC) systems, and Mobile Edge
Computing (MEC) systems. In a hybrid cloud [2], tasks
may be processed on local computing cluster owned by an
enterprise or can be offloaded to reserved VMs in a public
cloud. In an MCC system [3], tasks may be processed on
the processor cores of a local device (e.g. smartphone, tablet
etc.) or offloaded to remote servers. An MEC system [4], [5]
is a special case of an MCC system where tasks are offloaded
to MEC servers deployed by a cellular service provider.

Joint scheduling and offloading of tasks in a compu-
tational offloading system is an important and non-trivial
problem. In this work, we consider the computational of-
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floading system model presented in Figure 1. The m local
processors are identical, and may model parallel CPU cores
in a local device or processors in a local computing cluster
of an enterprise. Tasks arrive at a scheduler residing in the
local device or enterprise. They may be scheduled locally or
offloaded to a more powerful remote cloud, which executes
each task with a ρ fraction of the run time required by a local
processor. However, each task offloaded to the remote cloud
incurs a cost for offloading its data load, which may include
multiple factors such as network bandwidth usage, trans-
mission energy loss, etc. The scheduler at the local cluster
has two important decisions to make: 1) which tasks are to
be offloaded to the remote cloud, and 2) how to efficiently
schedule the remaining tasks on the local processors.

We note that, in general, a scheduler may not have
information about the processing time of a task until it is ex-
ecuted to completion [6]. Furthermore, it is known that task
completion times in a public cloud are not known apirori
due to random factors associated with machines and the
network connecting these machines in a data center [7]. This
motivates us to consider the online setting, where the local
scheduler in a hybrid cloud does not know the processing times
of the tasks a priori. We note that the algorithms developed
under this setting can be used to benchmark the algorithms
that assume the knowledge of the processing times of the
tasks.

The problem of offloading tasks in specific computing
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Fig. 1: Abstract model of computational offloading system

systems has received much attention in the recent literature.
For example, the authors in [8], [9], [10], [11], [12] studied
the problem in a hybrid cloud and the authors in [13], [14],
[15] studied the problem in MCC. However, in Section 2
we will argue that these works either ignore the delay in
processing tasks or ignore the costs in offloading the tasks.
In this work, we jointly consider both the costs incurred in
offloading tasks and the delay in processing tasks. We use
makespan as the efficiency measure for delay in processing
the tasks. A scheduler may reduce makespan by offloading
a task to the remote cloud, but this incurs an offloading
cost. Therefore, we study the joint optimization problem
toward minimizing a weighted sum of the makespan and
the offloading cost, which is denoted by Psum.

We note that Psum is a challenging open problem. Even
for the special case where the remote cloud has negligible
processing time, i.e., ρ = 0, Psum is NP-hard [16], [17].
Furthermore, to the best of our knowledge, all previous
studies on this special case assume that both the processing
times of the tasks and their offloading costs are known a
priori [16], [17], [18], [19]. In contrast to the above works, we
do not assume the knowledge of task processing times, so
that solving Psum requires online estimation of the processing
times. We do assume that the cost for offloading the data
load of a task is known a priori. This cost can be estimated
given the size of the data load of a task.

Our general approach to solve this problem is as follows.
We first consider a problem of minimizing the maximum of
the completion times on the m local processors, completion
time at the remote cloud, and the weighted offloading cost at
the remote cloud, which is denoted by Pmax. We then show
that any θ-competitive algorithm for Pmax results in a 2θ-
competitive algorithm for Psum. This key property motivates
us to first focus on Pmax.

To this end we first solve the special case of Pmax where
ρ = 0. We observe that in this case, Pmax is equivalent to a
problem of scheduling independent tasks to minimize the
makespan, on m local processors and a hypothetical proces-
sor, where the processing time of a task on the hypothetical
processor is equal to its weighted offloading cost at the
remote cloud. The makespan minimization problem is also
known to be NP-hard even when all processing times are
known a priori [20]. Further, we show that any algorithm
with a pre-determined scheduling order to solve Pmax, when
ρ = 0, has a competitive ratio of at least n

m
−1, where n is the

number of tasks. This Ω(n) factor in the competitive ratio
is due to the makespan penalty incurred by unknowingly

scheduling a task with very large processing time on a local
processor. Our approach to solve Pmax is by using the notion
of task restart [21], where we identify a task with large
processing time during its run time, cancel it on the local
processor, and offload it to the remote cloud, provided its
offloading cost is not too high. This forms the basis of the
proposed Greedy-One-Restart (GOR) algorithm. To identify
a task that needs to be restarted during its run time, GOR
uses an estimation factor η and the known offloading cost
of each task. GOR restarts any task at most once, and we
show that its competitive ratio is a convex function of η. For
general ρ > 0, we further extend GOR and propose Greedy-
Two-Restart (GTR), under which tasks may be cancelled and
rescheduled twice.

The main contributions of our work are the following:

• When all tasks arrive at the scheduler at time zero,
we propose the GOR algorithm. For the special case
of ρ = 0, we prove that its competitive ratio for Pmax

is a convex function of the estimation factor η, given
by 1 + f(η), where f(η) is a convex function. Its
competitive ratio for Psum is then 2(1+f(η)). We find
the minimum of f(η) and prove that GOR is O(

√
m)-

competitive for both Pmax and Psum. Furthermore, for
the case of ρ = 0 and m = 1, we show that GOR
has tight 4 competitive ratio for Pmax. We further
extend the above analysis and show that GOR is
O(

√
m)-competitive when ρ is either negligible or

1
ρ
= O(

√
m).

• Noting that GOR is not O(
√
m)-competitive for gen-

eral ρ, we extend GOR and propose GTR. We show
that GTR has O(

√
m) competitive ratio for any ρ ≥ 0.

However, its average performance is generally below
that of GOR.

• We further consider the weighted sum minimiza-
tion problem where tasks arrive dynamically in time
and their arrival times are unknown a priori, which
is denoted by Pd

sum. Adopting a general approach
from [21], we extend GOR to Dynamic-GOR (DGOR)
and GTR to Dynamic-GTR (DGTR) to accommodate
this case. We show that DGOR has O(

√
m) compet-

itive ratio for Pd
sum for the special cases where ρ is

either negligible or 1
ρ

= O(
√
m). Similarly, DGTR

has O(
√
m) competitive ratio for general ρ.

• Further simulation results suggest that, in terms of
average performance, GOR provides 20 − 40% im-
provement over the celebrated list scheduling algo-
rithm [22], while DGOR provides 40−50% improve-
ment. However, despite its O(

√
m) competitive ratio

for general ρ, GTR incurs higher average total cost
than list scheduling. This can be attributed to the fact
that under GTR some tasks may be restarted twice.

• Finally, we also discuss how to apply GOR in the case
where the remote cloud is not abstracted as a single
powerful server but as multiple remote processors.
We propose a simple yet effective extension to GOR
based on list scheduling over the unknown remote
processors. We demonstrate through simulation that
in this scenario GOR remains superior to existing
alternatives.

The rest of this paper is organized as follows. In Sec-
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tion 2, we present the related work. The system model is
given in Section 3. In Section 4, we provide some prelimi-
nary analysis essential to later derivations. In Section 5 we
present GOR and its competitive ratio analysis for ρ = 0.
In Section 6 we further discuss special cases of ρ for which
GOR has provable competitive ratio and then propose GTR,
deriving its competitive ratio for general ρ. In Section 7 we
present DGOR and DGTR for dynamic task arrivals with
unknown arrival times. We present simulation results in
Section 8 and conclude in Section 9.

2 RELATED WORK

In this section we first review the body of works where
various computational offloading systems are studied. We
then review other works that are closely related to Psum and
Pmax. Specifically, we focus on the special case of Psum and
Pmax when ρ = 0, which is the only case to have been subject
to rigorous analytical performance optimization in previous
studies.

2.1 Computational Offloading Systems

In this subsection we review the works on hybrid cloud
and MCC systems. Scheduling and offloading in a hybrid
cloud has been studied under various system models [8],
[9], [10], [11], [12]. The authors in [8] studied the problem
of minimizing computational costs of the tasks scheduled
locally and communication costs of the offloaded tasks.
They formulated and solved the problem using a Markov
Decision Process under the assumption that tasks have
different communication costs but identical computational
costs. We note that they do not consider task processing
delays.

In contrast, the authors in [9], [10] studied the problem
of scheduling tasks in a hybrid cloud with the objective
of minimizing cost at the public cloud subject to deadline
constraints of the tasks. They proposed heuristic algorithms
to solve the formulated problem. The authors in [11] studied
the problem of offloading tasks to the public cloud under
a Lyapunov optimization framework. Their objective was
to minimize the time average cost incurred at the public
cloud, subject to average admission ratio being above a
certain threshold, and provided a guarantee on the worst
case completion time of the tasks. Similar formulation was
studied in [12]. Even though [9], [10], [11], and [12] con-
sidered the delay in the processing of individual tasks,
their formulations do not provide a means to optimize the
makespan of the tasks. Also, in contrast to the above works
we do not restrict the admission of tasks into the system,
and we consider a joint optimization of cost incurred at the
public cloud and the makespan of tasks.

In MCC systems [3], where a mobile device enlists the
help of a remote processor in a remote cloud, most current
research is focused on the task offloading problem with
the objective of minimizing computational and transmission
energy of the mobile device, e.g., [13], [14], [15], [23], [24],
[25]. In addition, several empirical studies have been con-
ducted on task offloading from a mobile device to remote
servers [3], [26], [27]. None of these works explicitly consid-
ered the joint optimization of the cost incurred in offloading

tasks and the makespan of the tasks. Therefore, none of the
solutions provided in the above studies are applicable to our
problem.

2.2 Minimizing Makespan Plus Offloading Cost in an

Offline Setting

To the best of our knowledge Psum has not been studied
before, even for the case where task processing times are
known a priori. However, for the special case where ρ = 0,
Psum is equivalent to minimizing the makespan plus a
weighted penalty, which was of practical interest in oper-
ations research [16], mainly due to its applicability to highly
loaded make-to-order production systems. In such a system,
accepting all the tasks may result in an unacceptable delay
to the completion time, so the production firm may reject
some tasks at a penalty and aim to minimize a weighted
sum of the completion time and the penalty.

The makespan-plus-weighted-penalty problem was first
studied in [17], under the assumption that the processing
times are known a priori. The authors considered two cases,
all tasks available at time zero and tasks arriving dynam-
ically in time. They proposed a (2 − 1

m
)-approximation

algorithm for the former case, and a Rejection-Total-Penalty

algorithm that has
√
5+3
2 competitive ratio for the latter case.

Further, they showed that this is the best competitive ratio
any algorithm can achieve. The authors in [18] proposed

a 1+
√
3

2 -competitive algorithm for the problem with the
assumption that all the tasks have unit processing time.
The authors in [19] studied the problem with m = 2. They
proposed 3

2 -competitive algorithms for two variants of the
problem.

We emphasize that, in addition to having solved Psum

for the special case ρ = 0, all of the above works require
the assumption that the task processing times are known
a priori. In our work, the processing time of a task is not
known until the completion of its execution, and we also
solve the problem for general ρ. Since the proposed algo-
rithm GOR is O(

√
m)-competitive for ρ = 0, a by-product

result of our work is a first known algorithm that solves
the makespan-plus-weighted-penalty problem for unknown
task processing times with provable competitive ratio.

2.3 Minimizing Makespan on Parallel Processors

We note that, similar to Psum, Pmax has not been studied
before. However, we will show later that when ρ = 0,
Pmax is equivalent to a makespan-minimization problem.
In the offline setting, where the task processing times are
known a priori and all tasks are available at time zero,
the problem of scheduling independent tasks on parallel
processors to minimize the makespan has been well studied
in the literature [20] [28] [29].

Works are sparse in the online setting, where the process-
ing time of a task on a processor is not known until it is
executed to completion. The celebrated list scheduling [22] is
a greedy algorithm that selects a task from the given set in
an arbitrary order and assigns it to whichever processor that
becomes idle first. For m identical parallel processors, it has
(2− 1

m
) competitive ratio. For the case where the processors

are unrelated, i.e., the processing times of a task on different
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processors are independent, an O(log n)-competitive algo-
rithm was proposed by Shmoys et. al. in [21]. When ρ = 0,
Pmax can be solved by either list scheduling or Shmoys’ al-
gorithm by ignoring the known processing times. However,
we will show that the competitive ratio of list scheduling
is at least n

m
− 1 for Pmax. Shmoys’ algorithm remains

O(log n)-competitive for Pmax. However, in Section 5.2 we
will demonstrate that the average performance of Shmoys’
algorithm is worse than list scheduling. This is due to
the fact that it does task restarts based on conservative
estimates of the task processing time, which may result in
multiple restarts of a task. In contrast, in GOR and GTR
any task experiences at most one restart and two restarts,
respectively. We prove that GOR is O(

√
m)-competitive for

Pmax for important special cases of ρ, including when ρ = 0,
and GTR is O(

√
m)-competitive for Pmax for general ρ. This

is a significant improvement over O(log n) noting the fact
that, especially in the enterprise cloud environment, the
number of tasks n is generally much larger than the number
of processors m.

In [30], we also used the idea of task restart for solving
a makespan minimization problem on a system of m + 1
parallel processors, where task processing times on m pro-
cessors are known and one processor are unknown. We note
that the algorithm proposed in [30] cannot be used to solve
our problem as the ratio of known and unknown processors
in [27] is the exact opposite of that of Pmax. Further, [30] uses
the known processing times as estimates for the unknown
processing times, but GOR and GTR use a design parameter
η for estimating the unknown processing times.

3 SYSTEM MODEL

We consider a hybrid cloud system model as illustrated in
Figure 1. The device/enterprise has access to m identical
local parallel processors or virtual machines, indexed by
i ∈ L = {1, . . . ,m}. It also has access to a remote cloud.
We initially assume that the remote cloud is abstracted as
a single powerful processor and refer to it by processor 0.
Later, in Section 7 we show how the proposed algorithm
can be extended to the case of multiple processors. We
consider the remote processor as a reserved instance in the
remote cloud, so that there is no further usage cost after the
overhead cost of reservation.

Tasks that arrive at the scheduler may be scheduled on
one of the local processors or offloaded to the remote cloud.
Initially, we focus on the case where all tasks are available
at time zero. In Section 7, we will extend this to the case of
dynamic task arrivals with unknown arrival times.

3.1 Processing, Cloud Cost, and Scheduling

Consider n independent and non-preemptible tasks are
available to the scheduler at time zero. Let T = {1, . . . , n}
be the set of task indices. The processing time of task j ∈ T
on processor i ∈ L is given by uj and is unknown. Its pro-
cessing time on processor 0, when offloaded to the remote
cloud, is given by ρuj , where ρ ∈ [0,∞), and the factor 1

ρ

denotes the relative speed of processing at the remote cloud

when compared with local processing1. As the remote cloud
is usually faster than the local processors we are primarily
interested in the case ρ ≤ 1. Nevertheless, we allow ρ > 1
and derive the results for the sake of completeness.

When a task j is offloaded to the remote cloud, a cost âj
is incurred for offloading its data load. It may be viewed
as an aggregation of various penalties, e.g., transmission
energy loss and network bandwidth usage. We assume that
this cost is known for each task before it is processed, as it
can be estimated using the size of its data load. We also
assume that the offloading cost of a task is independent
of its processing time. This assumption is appropriate in
scenarios where the processing time of a task is independent
of its data load size. For example, a task having a single
for-loop may have data size on the order of tens of bytes.
However, depending on the number of iterations in the for-
loop, its processing can take a large amount of time. We
further assume that the offloading time of a task is negligible
compared with its processing time at the remote processor.
We will see in Section 6.2 that the proposed algorithms do
not depend on task data size and can still be used when the
offloading times are non-negligible.

A natural objective for the device/enterprise is to min-
imize the makespan of the tasks scheduled on processors
L ∪ {0}. The makespan can be reduced by offloading tasks
to the remote cloud, but offloading a task incurs some cost.
Hence, we consider the makespan and the offloading cost
jointly, by combining them in a weighted sum.

Let s denote a schedule and S denote the set of all
possible schedules. The schedule s decides whether to of-
fload a task to the remote cloud or process it on one of the
processors in L. Let Ti(s) be the set of tasks scheduled on
processor i ∈ L ∪ {0} under schedule s. Given the set of
tasks at time 0, the makespan of a schedule s on processors
from L ∪ {0} is defined as the time when the processing
of the last task from ∪i∈L∪{0}Ti(s) is completed. It equals
maxi∈L∪{0}{Ci(s)}, where Ci(s) is the completion time of
the last task assigned to processor i and is given by

Ci(s) =
∑

j∈Ti(s)

uj , ∀i ∈ L,

C0(s) =
∑

j∈T0(s)

ρuj .

Note that the schedule does not know Ci(s) a priori,
since uj are unknown. The offloading cost of the tasks
is given by Γ(s) =

∑

j∈T0(s)
âj . We define Υ(s) ,

maxi∈L∪{0}{Ci(s)} + wΓ(s) as the total cost of schedule s,
where the weight parameter w allows a system designer to
tune the importance between makespan and offloading cost.
We are interested in the following sum cost minimization
problem Psum:

minimize
s∈S

Υ(s).

In the offline setting, all parameter values of the tasks
are known at time 0. In this case, let s̄∗ denote an optimal

1. The speed-up ratio for different tasks between the public cloud and
the local processor might be different for different tasks. To model this
aspect we may consider that the processing time of task j on remote
processor equals ρjuj , where ρj is the speed-up ratio for task j. We note
that the proposed algorithms can still be used for this case by setting
ρ = minj ρj , and proofs for the competitive ratios for the algorithms
also hold.
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TABLE 1: List of symbols

m Number of local processors

L Set of local processors

i Processor index

ρ Speed factor

n Number of tasks

T Set of tasks

j Task index

uj Local processing time

âj Offloading cost

w weight

aj Weighted offloading cost

s Schedule

Ci(s) Completion time on processor i

Γ(s) Total offloading cost

Υ(s) Total cost

η Estimation factor (design parameter)

Cmax Makespan

C∗

max Optimal makespan

s
∗ Optimal schedule

χ Hypothetical processor with processing times aj

schedule. Psum is NP-hard even in the offline setting. This is
because a special case of Psum, where ρ = 0, is known to be
NP-hard [16], [17].

3.2 Semi-online Scheduling with Unknown Processing

Times

In practice, the processing time required for the task gener-
ally is unknown without first processing it [21]. Therefore,
we are interested in semi-online scheduling, where the
processing times uj , for all j, are not known a priori and
their cloud costs âj , for all j, are known a priori.

The efficacy of an online algorithm is often measured
by its competitive ratio in comparison with an optimal
offline algorithm. We use the same measure for semi-online
algorithm as well. Let P be a problem instance of Psum, s(P )
be the schedule given by an online algorithm and s̄

∗(P )
be the schedule given by an optimal offline algorithm. The
online algorithm is said to have a competitive ratio θ if and
only if

max
∀P

Υ(s(P ))

Υ(s̄∗(P ))
≤ θ.

Furthermore, θ is said to be tight for the online algorithm if
∃P such that Υ(s(P )) = θΥ(s̄∗(P )).

For convenience of notation, we define aj , wâj , ∀j. In
Table 1 we summarize the notation used in this paper.

4 PRELIMINARY ANALYSIS

We first formally define the problem of minimizing the
maximum of the makespan on the m + 1 processors and
the weighted offloading cost at the remote cloud, which is
denoted by Pmax:

minimize
s∈S

Cmax(s),

where Cmax(s) , max{maxi∈L∪{0}{Ci(s)}, wΓ(s)}. In the
offline setting, let s∗ denote the optimal schedule for Pmax

and C∗
max denote the optimal objective value.

Note that, if w = 0, then Pmax is equivalent to mini-
mizing makespan on m+ 1 parallel processors, which is an
NP-hard problem [20]. Therefore, Pmax is NP-hard.

In the following proposition we establish a relation be-
tween the problems Psum and Pmax.

Proposition 1. Any θ-competitive algorithm for Pmax is a 2θ-
competitive algorithm for Psum.

Proof. Let s
′ be the computed schedule of a θ-competitive

algorithm for solving Pmax. We have the following inequali-
ties.

Υ(s′) = max
i∈L∪{0}

{Ci(s
′)} + wΓ(s′)

≤ 2max{ max
i∈L∪{0}

{Ci(s
′)}, wΓ(s′)}

≤ 2θmax{ max
i∈L∪{0}

{Ci(s
∗)}, wΓ(s∗)}

≤ 2θmax{ max
i∈L∪{0}

{Ci(s̄
∗)}, wΓ(s̄∗)}

≤ 2θ[ max
i∈L∪{0}

{Ci(s̄
∗)}+ wΓ(s̄∗)]

= 2θΥ(s̄∗).

We therefore conclude that an effective solution to Pmax is
suitable for Psum as well. Hence, we next focus on designing
algorithms for Pmax.

In the following lemmas we establish a lower bound for
C∗

max in terms of ρ, m, the processing times and the cloud
costs. These results will be later used extensively for proving
the main theorems in this paper.

Lemma 1.
n
∑

j=1

uj ≤
(

m+
1

ρ

)

C∗
max.

Proof. Let C∗
i denote the completion times and T ∗

i denote
the set of tasks scheduled on processor i under an optimal
schedule s

∗. We have,

C∗
i =

∑

j∈T ∗
i

uj, ∀i ∈ L, (1)

C∗
0 =

∑

j∈T ∗
0

ρuj. (2)

By substituting C∗
max in (1) and (2) we obtain

C∗
max ≥

∑

j∈T ∗
i

uj , ∀i ∈ L, (3)

C∗
max ≥

∑

j∈T ∗
0

ρuj . (4)

Summing the inequalities in (3) and (4), we obtain

(

m+
1

ρ

)

C∗
max ≥

n
∑

j=1

uj .

Lemma 2. For some η ≥ 1, if T ′ ⊆ T is a subset of tasks
satisfying uj ≥ ηaj for all j ∈ T ′, then

∑

j∈T ′

aj ≤
(

1 +
m

η

)

C∗
max.
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Proof. Let s
′ denote the optimal schedule and C

′∗
max de-

note the optimal objective value, with respect to Pmax, for
scheduling tasks from T ′

with the assumption that the

processing time of a task j ∈ T ′

on processor i ∈ L is
ηaj . Also, let C

′∗
i denote the corresponding schedule length

on processor i ∈ L ∪ {0}. We have uj > ηaj , for all j ∈ T ′

and T ′ ⊆ T . Therefore, C
′∗
max ≤ C∗

max. Let T ′

0 ⊆ T ′

denote
the subset of tasks offloaded to cloud under schedule s

′. We
have

1

η

m
∑

i=1

C
′∗
i +

∑

j∈T ′

0

aj =
∑

j∈T ′

aj. (5)

Using C
′∗
max ≥ C

′∗
i , for all i ∈ L ∪ {0} and C

′∗
max ≥∑

j∈T ′

0
aj

in (5), we obtain
(

1 +
m

η

)

C
′∗
max ≥

∑

j∈T ′

aj

⇒
(

1 +
m

η

)

C∗
max ≥

∑

j∈T ′

aj .

Hence the result is proven.

5 THE CASE OF NEGLIGIBLE ρ

In this section we consider the special case of Pmax where
ρ = 0. This case arises when the processing speed at the
remote cloud is fast enough to be considered approximately
infinite compared with the speed of local processors.

5.1 Equivalence to Makespan Minimization

We show that Pmax is equivalent to a makespan minimiza-
tion problem when ρ = 0. For a given schedule s, define

Cχ(s) = max{C0(s), wΓ(s)}.
Note that for the case ρ = 0, Cχ(s) = wΓ(s) =

∑

j∈T0(s)
aj .

Therefore, for ρ = 0, Cχ(s) can be treated as the completion
time of the offloaded tasks on a hypothetical processor
χ on which the processing time of a task j is aj . We
emphasize here that the use of processor χ is purely for
the purpose of problem transformation and should not
be mistaken for processor 0, which is an actual physical
processor on which processing time of task j is ρuj . Now,
we have Cmax(s) = max{maxi∈L Ci(s), Cχ(s)} which can
be viewed as the makespan of the tasks from T when they
are scheduled on m + 1 processors, where the processing
time of task j on processor i ∈ L is uj , and its processing
time on processor χ is aj .

In the following design of GOR, we use the observation
that, for ρ = 0, the problem Pmax is a minimization of
the above makespan. As explained in Section 2.3, this is a
challenging problem when there are unknown processing
times.

5.2 GOR Design Consideration

The classical list scheduling has (2 − 1
m+1 ) competitive

ratio, for solving makesapn minimization on m+ 1 identical
parallel processors [22]. In Pmax we have m + 1 parallel
processors with m of them identical but the hypothetical

processor χ is independent of the other processors. There-
fore, the (2− 1

m+1 ) competitive ratio is not applicable when
list scheduling is used to solve Pmax when ρ = 0. In fact,
in the following theorem we show that list scheduling, or
any other simple deterministic semi-online algorithm that
performs list scheduling using some ordering on the tasks,
has at least n

m
− 1 competitive ratio.

Theorem 1. For ρ = 0, the competitive ratio of any semi-online
algorithm that performs list scheduling using a pre-determined
ordering on tasks is at least n

m
− 1 with respect to Pmax.

Proof. To prove the result it is sufficient to identify a problem
instance where the algorithm gives a makespan whose ratio
is n

m
−1. Consider the following family of problem instances:

uj = 1, for all j ∈ {1, . . . , n − m}, uj = n2, for all

j ∈ {n − m + 1, . . . , n}, and aj = n2

n−m
, for all j. Since

uj are unknown, any algorithm using some pre-determined
order to schedule the tasks can only use the knowledge
of aj . However, since all aj are equal, the tasks cannot be
differentiated by such an algorithm. Therefore, this may
lead it to schedule the m tasks with processing time n2 on
processors 1 through m, with one task on each processor
and all the other tasks on processor χ. This will result in a

makespan of n2. However, the optimal makespan is mn2

n−m
,

which is achieved by executing tasks {n − m + 1, . . . , n}
on processor χ and performing simple list scheduling for
the other tasks on processors 1 through m. This results in a
makespan ratio of n

m
− 1.

In light of the result in Theorem 1, we consider more so-
phisticated algorithms that can be used to solve the problem.
For ρ = 0, the problem Pmax is related to minimizing make-
span on unrelated parallel processors where the processing
times of tasks on none of the processors are known. For this
fully online version of the problem, Shmoys et. al. in [21]
have proposed an O(log n)-competitive algorithm. It esti-
mates the processing times of the tasks and then uses an
offline algorithm to schedule them. Tasks that are not com-
pleted in the estimated time are cancelled and rescheduled
using the same offline algorithm. The procedure is repeated
until all tasks are executed to completion.

In Figure 2, we present the average makespan achieved
by Shmoys’ algorithm and list scheduling, to solve Pmax for
the case where ρ = 0, m = 1, n = 100, and uj and aj are
generated from an exponential distribution with mean 1500.
The average is computed over 5000 problem instances. The
3
2 -approximation algorithm given by Potts in [31] is used as
the offline component in Shmoys’ algorithm.

We observe that, despite its Ω(n) competitive ratio as
shown in Theorem 1, list scheduling gives a shorter aver-
age makespan than Shmoys’ algorithm. We conjecture that
this is due to Shmoys’ algorithm using crude estimates of
the unknown processing times, which results in multiple
restarts of some tasks. Although restarting the tasks paves
the way to obtain an O(log n) competitive ratio, it penalizes
the makespan on average, as the time already spent in
processing a cancelled task is wasted. This motivates us to
combine the virtues of both algorithms in a new semi-online
design.

Neither list scheduling nor Shmoys’ algorithm utilizes
the known processing times on the hypothetical processor
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Fig. 2: Comparison of Shmoys’ algorithm and list scheduling
for varying mean processing time for solving Pmax for ρ = 0.

χ. In contrast, we design the GOR algorithm to judicially
utilize the known processing times, while allowing at most
one restart for any task. The idea behind one restart is that,
the tasks that are scheduled on processors 1 to m and have
large uj compared with aj are identified, cancelled, and
rescheduled, so that they may be scheduled on processor χ
in the new schedule. Cancelling a task with large uj on some
processor in L may allow some tasks that have smaller uj

values to be scheduled on that processor. At the same time,
we avoid the wastage of time in cancelling a task more than
once. A more detailed description of the GOR algorithm is
given below.

5.3 GOR Algorithm Description

GOR forms a list of the tasks according to the ascending
order of their known offloading costs aj . Tasks from the
start of the list are scheduled one by one on processor χ,
i.e., they are offloaded to the remote processor. From the
end of the list, they are scheduled on the processors in L,
i.e., the local processors, using list scheduling. GOR is not
aware of the processing time of a task j that is scheduled
on a processor in L. Therefore, it uses ηaj as as an estimate
for the processing time of task j and cancels it if its run
time exceeds this estimate and sets it aside. In this work
we consider η ≥ 1 so that a task is not cancelled until at
least it is processed for a duration equivalent to its weighted
offloading cost.

After going through all tasks in the above iteration, those
that are cancelled are again sorted and a list is formed in
the ascending order of aj . In the next iteration, the list is
scheduled using the same procedure as above, but this time
we do not cancel any task, except the last one. The details of
the algorithm are presented in Algorithm 1.

Note that, GOR can be readily implemented in practice
as it only requires sorting of the tasks based on their
offloading costs and η, which can be precomputed as will
be shown shortly. GOR has two iterations and any task is
restarted at most once. In each iteration, the sorting of the
tasks dominates the runtime, and thus GOR has O(n log n)
computational complexity. We use s

GOR to denote the resul-
tant schedule.

Remark 1: The tasks scheduled on the hypothetical pro-
cessor χ are the tasks offloaded to the remote cloud. In the

Algorithm 1: Greedy-One-Restart Algorithm (GOR)

1: l = 1, T (l) = T
2: while l ≤ 2 do
3: j1 = 1, j0 = |T (l)|+ 1
4: Sort T (l) in the ascending order of aj . WLOG,

re-index tasks such that a1 ≤ a2 ≤ . . . ≤ a|T (l)|.
5: Start processing task j1 on processor χ
6: for k = 1 to min{m, |T (l)|} do
7: j0 = j0 − 1
8: Start processing task j0 on processor k.
9: if l = 1 then

10: Cancel task j0 if its execution time
exceeds ηaj0 , and include it in T (2)

11: end if
12: end for
13: while T (l) 6= ∅ do
14: Wait until next event E occurs
15: if E = a task ĵ is cancelled or completed on

processor î ∈ L then

16: Cancel task ĵ if it is scheduled on processor χ
17: T (l) = T (l)\{ĵ}
18: j0 = j0 − 1
19: if j0 > j1 then
20: Schedule task j0 on processor î.
21: end if
22: if l = 1 then
23: Cancel task j0 if its execution time exceeds

ηaj0 , and include it in T (2)

24: end if
25: else if E = task j1 is completed on processor χ

then
26: Cancel task j1 if it is scheduled on a processor

from L
27: T (l) = T (l)\{j1}
28: j1 = j1 + 1
29: if Task j1 is not completed or cancelled yet then
30: Schedule task j1 on processor χ.
31: end if
32: end if
33: end while
34: l = l+ 1
35: end while

above explanation of GOR, scheduling the next task on χ
after duration aj is equivalent to offloading the next task
to the remote cloud after waiting for a duration equivalent
to aj . Also, in Algorithm 1 during the iterations where
j0 <= j1, a task is simultaneously executed on processor χ
and one of the processors from L. This is because whenever
processor χ becomes idle, GOR schedules the next unfin-
ished task on it (cf. line 29 of Algorithm 1). In other words,
when j0 <= j1 the task that is already being processed
on some processor from L will be scheduled on the remote
processor if it becomes idle.

5.4 Case Study

We demonstrate the working of GOR using the family of
problem instances given in the proof of Theorem 1, i.e., uj =
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1, ∀j ∈ {1, . . . , n − m}, uj = n2, ∀j ∈ {n − m + 1, . . . , n}
and aj =

n2

n−m
, ∀j. For now we simply use η = 1. Later, we

will study in detail how to choose η. As aj are the same for
all tasks, GOR cannot differentiate the tasks. Therefore, in
the first iteration, the schedule given by GOR is equivalent
to list scheduling with the exception that the last task is
scheduled both on processor χ and one of the processors
in L. Another exception is that, in the first iteration, the
processing time of any task before cancellation on proces-

sors 1 through m is n2

n−m
(since η = 1). Therefore, any task

j ∈ {n−m+1, . . . , n} scheduled on a processor in L will be

cancelled after being processed for duration n2

n−m
. Also, any

task j ∈ {1, . . . , n−m} will be finished in the first iteration
since it will not be cancelled if scheduled on a processor in

L, as n2

n−m
> 1 = uj, ∀j ∈ {1, . . . , n − m}. In the second

iteration any cancelled task j ∈ {n −m + 1, . . . , n} will be
finished on processor χ.

Next, to illustrate how restarting tasks with large pro-
cessing times improves the worst-case bound, we find a
simple upper bound for the makespan achieved by GOR
for the above family of problem instances. In the worst case,
GOR may schedule tasks n − m + 1 through n on some
processor î ∈ L. Each of them will be cancelled in the first

iteration after being processed for duration n2

n−m
. Therefore,

mn2

n−m
time is elapsed on processor î. In this duration, m

tasks will be finished on processor χ and the rest of the
n−2m tasks can be executed on processors L\{î} in at most
n−2m
m−1 + 1 duration. This is because the processing time of

those tasks on processors 1 through m is 1. In the second
iteration all the tasks n−m+1 through n will be scheduled
on processor χ. Therefore, the duration of execution of these

tasks will be mn2

n−m
.

From the above analysis, a simple upper bound for
Cmax(s) is

Cmax(s
GOR) ≤ mn2

n−m
+

n− 2m

m− 1
+ 1 +

mn2

n−m

⇒ Cmax(s
GOR)

C∗
max

≤ n−m

mn2

(

2mn2

n−m
+

n−m

m− 1

)

= 2 +
(1 −m/n)2

m(m− 1)
.

In the second inequality above, we have used the optimal
makespan value from the proof of Theorem 1. Therefore, the
makespan ratio of GOR for this family of problem instances
is O(1), which is a huge improvement over the ratio n

m
− 1

as shown in the proof of Theorem 1 for algorithms with
pre-determined scheduling order.

5.5 GOR Competitive Ratio Analysis

In this subsection, we first derive a competitive ratio for
GOR as a function of the estimation factor η. We then find η
that minimizes the competitive ratio.

5.5.1 Competitive Ratio for General η

We refer to the time to process the set of tasks T (l) in
iteration l as the schedule length of this iteration, denoted

by C
(l)
max(sGOR). Let sl denote the intermediate schedule

obtained by breaking the loop in Line 13 of Algorithm 1

as soon as j0 becomes equal to j1. We note that sl is a
schedule over the set T (l), and all the tasks from T (l) will
be scheduled on some machine under sl. To understand
this, in the while loop from Line 13 of Algorithm 1, when
j0 = j1 − 1, all the |T (l)| tasks should have been scheduled
on some processor. Now, any more iterations in the while
loop will only result in scheduling a task that is already
scheduled on some processor from L onto processor χ. Since
under sl the while loop breaks when j0 = j1, there will be
only one task that is scheduled on both processor χ and
some processor in L. This will be the last task scheduled by
sl in iteration l, and we denote it by q(l) = j0 = j1.

To differentiate the terms with respect to s
GOR and sl, we

append onto them the labels of (sGOR) and (sl), respectively.
We note that in iteration l, the schedule produced by s

GOR

improves on sl. To see this, observe that sl stops scheduling
when j0 = j1. The step j0 = j1 also occurs under s

GOR in
both iterations. However, sGOR may not stop at this step.
If processor χ completes task q(l) first, then s

GOR cancels
task q(l) on a processor from L on which it is scheduled.
Further, it schedules task q(l) + 1 on processor χ if it is
not completed yet. The above procedure is repeated till all
tasks are completed. This will result in a schedule length no
longer than that given by sl, i.e.,

C(l)
max(s

GOR) ≤ C(l)
max(sl). (6)

In the following lemma we give a bound for C
(1)
max(sGOR).

Lemma 3. For ρ = 0, C
(1)
max(sGOR) ≤ 2ηC∗

max.

Proof. From (6) it is sufficient to prove the lemma for

C
(1)
max(s1), which we do in the following. Let γj =

min(uj , ηaj). Noting that η ≥ 1, we have

C∗
max ≥ 1

m+ 1

n
∑

j=1

min(uj , aj)

=
1

η(m+ 1)

n
∑

j=1

min(ηuj , ηaj)

≥ 1

η(m+ 1)

n
∑

j=1

γj . (7)

Note that C∗
max cannot be less than minimum processing

time any task incurs in the system. Therefore,

C∗
max ≥ min(uj,max(aj , ρuj)), ∀j. (8)

From (8) we obtain

C∗
max ≥

1

η
γj , ∀j. (9)

We also note that, in the first iteration of GOR, a task j
scheduled on processor i ∈ L is processed for γj duration.

Let T (1)
i (s1) ⊆ T (1) denote the set of tasks scheduled on

processor i, when s1 is used to schedule tasks from T (1).
We now consider the following cases for schedule s1.

Case 1: C
(1)
max(s1) = C

(1)
χ (s1). For this case, task q(1)

should have been scheduled on some processor î ∈ L, but
its processing was completed first on processor χ. In other
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words, processing q(1) on processor î to completion would
have increased the schedule length. Therefore, we have

C(1)
max(s1) ≤

∑

j∈T (1)

î
(s1)

γj + γq(1) . (10)

Also, at time C
(1)
max(s1) − γq(1) , all the processors i ∈ L\{î}

should have been busy executing some task, since otherwise
task q(1) would have been scheduled on processor i ∈ L\{î}
which is idle at that time. Therefore,

C(1)
max(s1)− γq(1) ≤

∑

j∈T (1)
i

(s1)

γj , ∀i ∈ L\{î}. (11)

Note that task q(1) is finished on processor χ. Therefore,

q(1) /∈ ∪i∈LT (1)
i (s1). Now, from (10) and (11) we have

C(1)
max(s1)− γq(1) ≤

∑

j∈T (1)
i

(s1)

γj , ∀i ∈ L

⇒ mC(1)
max(s1)− (m− 1)γq(1) ≤

∑

j∈∪i∈LT (1)
i (s1)

γj + γq(1)

⇒ mC(1)
max(s1) ≤

n
∑

j=1

γj + (m− 1)γq(1)

⇒ mC(1)
max(s1) ≤

n
∑

j=1

γj + (m− 1)γmax, (12)

where γmax = maxj γj . In the third inequality above, we

have used q(1) /∈ ∪i∈LT (1)
i (s1) and ∪i∈LT (1)

i (s1)∪{q(1)} ⊆
T . Now, using (7) and (9) in (12), we obtain

C(1)
max(s1) ≤

η(m+ 1)

m
C∗

max +
η(m− 1)

m
C∗

max

= 2ηC∗
max.

Case 2: C
(1)
max(s1) 6= C

(1)
χ (s1). Let C

(1)
max(s1) = C

(1)

î
(s1)

for some î ∈ L. Also, let task ĵ be the last task completed

processing on processor î. Again, at time C
(1)
max − γĵ any

processor i ∈ L\{î} should be busy executing some task.
Otherwise, scheduling task ĵ on some processor i ∈ L\{î}
that is idle by that time would result in a smaller schedule
length, and s1 would have done so. Therefore,

C(1)
max(s1) =

∑

j∈T (1)

î
(s1)

γj , ∀i ∈ L,

C(1)
max(s1)− γĵ ≤

∑

j∈T (1)
i

(s1)

γj , ∀i ∈ L\{î}.

Again, we obtain (12) by summing the above inequalities,
and the result is derived using the same manipulation as in
Case 1.

We note that, a task j scheduled in the second iteration of
GOR should have been scheduled on some processor i ∈ L
in the first iteration and have been cancelled as uj ≥ ηaj .
Therefore, for task j scheduled in the second iteration we
know some information about its processing time uj . This

insight forms the basis for deriving a bound for C
(2)
max(sGOR),

which is stated in the following lemma.

Lemma 4. For ρ = 0,

C(2)
max(s

GOR) ≤
(

1 +
m

η

)

C∗
max.

Proof. Note that C
(2)
max(sGOR) cannot be greater than the

schedule length of tasks from T (2) when all of them are
offloaded to the cloud. This implies

C(2)
max(s

GOR) ≤ max







∑

j∈T (2)

aj ,
∑

j∈T (2)

ρuj







≤
∑

j∈T (2)

aj . (13)

In the second inequality above we have used ρ = 0. Since
uj ≥ ηaj , for all j ∈ T (2), the lemma follows from (13) and
Lemma 2.

Noting that Cmax(s
GOR) = C

(1)
max(sGOR) +C

(2)
max(sGOR), the

following theorem is a direct consequence of Lemmas 3
and 4.

Theorem 2. For ρ = 0,

Cmax(s
GOR)

C∗
max

≤ 1 + f(η),

where
f(η) = 2η +

m

η
.

5.5.2 Minimizing the Competitive Ratio

One interesting feature of GOR is that the competitive ratio
of the algorithm can be tuned by choosing an appropriate
value for η. By using a large η, in the first iteration, we allow
the tasks to run for a longer duration before cancellation and

the worst-case bound for C
(1)
max increases. On the other hand,

using a small η value results in aggressive cancellation of
the tasks in the first iteration and the worst-case bound for
C

(2)
max increases.

Hence, we consider the following optimization problem
to minimize the upper bound of the competitive ratio:

minimize
η≥1

f(η). (14)

The solution to (14) is given by

η =

{

1 m = 1,
√

m
2 m ≥ 2.

(15)

Substituting η in Theorem 2, we get

Cmax(s
GOR)

C∗
max

≤
{

4 m = 1,

1 + 2
√
2m m ≥ 2.

Therefore, GOR is O(
√
m)-competitive for Pmax. It has the

same competitive order for Psum by Proposition 1. We state
this in the following theorem.

Theorem 3. For ρ = 0, GOR is O(
√
m)-competitive for Pmax

and Psum.

Remark 2: We note that the proofs of Lemmas 3 and 4 do
not require the tasks to be ordered in the ascending order of
their costs. Therefore, GOR without the sorting step will still
have O(

√
m) competitive ratio. However, we have observed

that for problem instances generated randomly from typical
distributions, sorting reduces the total cost on average.
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5.6 Tight Competitive Ratio for m = 1

For m = 1, the competitive ratio of GOR is 4. In the
following theorem we state that this competitive ratio is
tight.

Theorem 4. For ρ = 0, m = 1 and choosing η = 1, GOR has
tight 4 competitive ratio for Pmax.

Proof. To show that the competitive ratio is tight, we provide
the following problem instance for which the competitive
ratio is achieved by GOR. Consider n = 8 and the task
processing times are as follows:

aj =

{

10− δ j = 1, 2, 3, 4
10 j = 5, 6, 7, 8,

uj =







δ j = 1, 2, 3, 4
40 j = 5,
10 + δ j = 6, 7, 8,

where δ is a positive real number close to 0. GOR lists
the tasks in the ascending order of aj . Tasks 1 through
4 are scheduled on processor χ and tasks 5 through 8
are scheduled on processor 1 in the first iteration. Since
uj > aj , ∀j ∈ {5, 6, 7, 8}, all the tasks scheduled on proces-
sor 1 will be cancelled. Therefore, the schedule length in the
first iteration is 40− 4δ. Tasks 5 through 8 have the same aj .
Therefore, in the second iteration, GOR cannot differentiate
the tasks and may schedule task 5 on processor 1 and tasks
6 through 8 on processor 2. In this case the schedule length
in the second iteration is 40. This results in a makespan
Cmax(s

GOR) = 80− 4δ.
The optimal schedule s

∗ is the following. Schedule tasks
1, 2, 3, 4, 6, 7 on processor 1 and tasks 5, 8 on processor χ.
The optimal maskespan is C∗

max = 20 + 6δ. Since δ can
be chosen arbitrarily close to 0, the competitive ratio 4 is
achieved.

The significance of Theorem 4 is the following. When
ρ = 0 and m = 1, Pmax is a semi-online version of the
problem of minimizing the makespan on two unrelated
parallel processors. For the offline version of the problem,
where the processing times of the tasks on both the proces-
sors are known, the authors in [31] gave a 3

2 -approximation
algorithm. Further, 3

2 is the lower bound on the approxima-
tion ratio that any polynomial-time algorithm can achieve,
unless P=NP [32]. On the other extreme, in the fully on-
line version of the problem, where the processing times
of the tasks on neither processors are known, an O(log n)-
competitive algorithm was given in [21]. GOR has constant-
competitive ratio for solving the semi-online version of
the problem, where the processing times of the tasks on
one processor are known and those on the other processor
are unknown. We observe substantial improvement in the
achievable competitive ratio when the processing times on
one processor become available. Further, the competitive
ratio 4 compares well with the lower bound 3

2 in the offline
case.

6 THE CASE OF GENERAL ρ

In this section, we first study some additional special cases
of ρ values where GOR has a provable competitive ratio. We

then extend GOR and propose Greedy-Two-Restart (GTR).
We provide competitive ratio analysis for GTR showing
that it has O(

√
m) competitive ratio for Pmax and Psum for

general ρ.

6.1 Competitive Ratio of GOR for Small and Large ρ
Values

In the following lemmas we give new upper bounds for the
schedule lengths of GOR for ρ > 0.

Lemma 5. For ρ > 0,

C(1)
max(s

GOR) ≤ min(2η, ζ)C∗
max,

where

ζ =

(

1 +
1

mρ
+

(m− 1)

m
max(1, 1/ρ)

)

.

Proof. We note that the proof of Lemma 3 does not depend

on the value of ρ. Therefore, we have C
(1)
max(sGOR) ≤ 2ηC∗

max.
To prove the other part of the bound, in the following we
reuse the inequalities from the proof of Lemma 3.

From (8) we obtain

C∗
max ≥ min(1, ρ)uj ≥ min(1, ρ)γj , ∀j. (16)

Now, substituting in (12) the results from Lemma 1, and (16),
we obtain

C(1)
max(s1) ≤

(

1 +
1

mρ
+

(m− 1)

m
max(1/ρ, 1)

)

C∗
max,

where s1 is defined in the proof of Lemma 3. The result

follows by noting that C
(1)
max(sGOR) ≤ C

(1)
max(s1).

Lemma 6. If 1
ρ
≥ maxj

uj

aj
, then

C(2)
max(s

GOR) ≤
(

1 +
m

η

)

C∗
max

Proof. The proof is similar to the proof of Lemma 4 and is
omitted.

We now consider the scenario of small ρ values, where
1
ρ
≥ maxj

uj

aj
. For this case we obtain the following compet-

itive ratio for GOR in terms of η.

Lemma 7. If 1
ρ
≥ maxj(

uj

aj
), then

Cmax(s
GOR)

C∗
max

≤ 1 + f(η),

where

f(η) = 2η +
m

η
.

Proof. Noting that Cmax(s
GOR) = C

(1)
max(sGOR) + C

(2)
max(sGOR),

the theorem is a direct consequence of Lemmas 5 and 6.

From Lemma 7 we note that the competitive ratio
achieved by GOR for 1

ρ
≥ maxj(

uj

aj
) is the same as that

of the case of ρ = 0 in Theorem 2. Therefore, using same
analysis that followed Theorem 2 we can prove that GOR is
O(

√
m) competitive for 1

ρ
≥ maxj(

uj

aj
).
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Next, we consider the scenario of large ρ values, where
1
ρ

= O(
√
m). Using this in ζ, we obtain ζ = O(

√
m).

Therefore, from Lemma 5 we have

C
(1)
max(sGOR)

C∗
max

= O(
√
m), if

1

ρ
= O(

√
m). (17)

We note that the above upper bound for C
(1)
max(sGOR) is

independent of η. Therefore, for this scenario we choose
η = ∞, i.e., for 1

ρ
= O(

√
m), GOR does not do any restarts

of the tasks. Since in this case Cmax(s
GOR) = C

(1)
max(sGOR),

from (17) we conclude that GOR is O(
√
m)-competitive. The

above analysis leads to our main theorem below.

Theorem 5. If 1
ρ
≥ maxj(

uj

aj
), then choose η given in (15). If

1
ρ
= O(

√
m), then choose η = ∞. For both these scenarios GOR

is O(
√
m)-competitive for Pmax and Psum.

Discussion

Note that Theorem 5 does not provide any performance
guarantee for GOR for 1

ρ
< maxj(

uj

aj
). For this scenario

we choose the value of η given in (15). Therefore, in our
implementation of GOR this is the default value of η unless
1
ρ

= O(
√
m), in which case we set η to a large value

such that no task is restarted. Since GOR is not O(
√
m)-

competitive for Psum for general ρ, in the next section we
propose the GTR algorithm, which has O(

√
m) competitive

ratio for general ρ.

6.2 The GTR Algorithm

To improve on the competitive performance of GOR for
general ρ, we propose GTR and show that it has O(

√
m)

competitive ratio for Pmax and Psum. The GTR algorithm
is an extension of GOR as follows. GTR has the same first
iteration as GOR, where a list is formed by sorting the
tasks in the ascending order of aj . Tasks from the start of
the list are offloaded to the remote processor, and tasks
from the end of the list are scheduled locally. If the task
processing time of task j on a local processor exceeds ηaj it
is cancelled and is kept aside. In the second iteration of GTR,
the cancelled tasks from the first iteration are scheduled
in the same manner as in the first iteration. However, in
contrast to GOR which does not cancel tasks in its second
iteration, GTR cancels a task if its processing on a processor
from L exceeds

aj

ρ
or its processing on processor χ exceeds

aj . We will see later that this step will aid in deriving the
O(

√
m) competitive ratio for GTR. The cancelled tasks from

the second iteration are scheduled using the same procedure
as in the first and second iterations, but this time they are
not cancelled.

The details of GTR are presented in Algorithm 2. Note
that GTR has three iterations and a task may be restarted
at most twice. In each iteration, the algorithm performs
sorting of the tasks which takes O(n logn) time, and a
fixed number of operations to schedule each task which
takes O(n) time. Since the dominating operation in GTR
is sorting, its runtime complexity is O(n logn). We use s

GTR

to denote the resultant schedule.

Algorithm 2: Greedy-Two-Restart Algorithm (GTR)

1: l = 1, T̄ (l) = T
2: while l ≤ 3 do
3: j1 = 1, j0 = |T̄ (l)|+ 1
4: Sort T̄ (l) in the ascending order of aj . WLOG,

re-index tasks such that a1 ≤ a2 ≤ . . . ≤ a|T̄ (l)|.
5: Start processing task j1 on processor χ
6: if l = 2 then
7: Cancel task j1 if its execution time exceeds aj0 ,

and include it in T̄ (3)

8: end if
9: for k = 1 to min{m, |T̄ (l)|} do

10: j0 = j0 − 1
11: Start processing task j0 on processor k.
12: if l = 1 then
13: Cancel task j0 if its execution time

exceeds ηaj0 , and include it in T̄ (2)

14: end if
15: if l = 2 then
16: Cancel task j0 if its execution time

exceeds
aj0

ρ
, and include it in T̄ (3)

17: end if
18: end for
19: while T̄ (l) 6= ∅ do
20: Wait until next event E occurs
21: if E = a task ĵ is cancelled or completed on

processor î ∈ L then

22: Cancel task ĵ if it is scheduled on processor χ
23: T̄ (l) = T̄ (l)\{ĵ}
24: j0 = j0 − 1
25: If j0 > j1, schedule it on processor î.
26: if l = 1 then
27: Cancel task j0 if its execution time exceeds

ηaj0 , and include it in T̄ (2)

28: end if
29: if l = 2 then
30: Cancel task j0 if its execution time exceeds

aj0

ρ
, and include it in T̄ (3)

31: end if
32: else if E = task j1 is completed on processor χ

then
33: Cancel task j1 if it is scheduled on a processor

from L
34: T̄ (l) = T̄ (l)\{j1}
35: j1 = j1 + 1
36: If task j1 is not completed or cancelled yet,

schedule it on processor χ
37: if l = 2 then
38: Cancel task j1 if its execution time exceeds aj0 ,

and include it in T̄ (3)

39: end if
40: end if
41: end while
42: l = l+ 1
43: end while
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Competitive Ratio Analysis

We use T̄ (l) to denote the set of tasks in iteration l and
C

(l)
max(sGTR) to denote the corresponding schedule length.

Since GTR is an extension of GOR, the upper bounds of
the schedule lengths of GTR are similar to those of GOR. In
the following lemmas we present these upper bounds.

Lemma 8.

C(1)
max(s

GTR) ≤ min(2η, ζ)C∗
max

Proof. Noting that the first iteration of GTR is the same as in
GOR, the result is a direct consequence of Lemma 3.

Again note that in the first iteration of GTR, any task j
that is cancelled should satisfy uj > ηaj . Therefore,

uj > ηaj , ∀j ∈ T̄ (2). (18)

Lemma 9.

C(2)
max(s

GTR) ≤
(

1 +
m

η

)

C∗
max.

Proof. Noting the property of T̄ (2) from (18), the result is
proved by using the same steps of the proof of Lemma 4.

Lemma 10.

C(3)
max(s

GTR) ≤
(√

1 + 4m+ 1

2

)

C∗
max.

Proof. Since T̄ (3) ⊆ T , from Lemma 1, we have
(

m+
1

ρ

)

C∗
max ≥

∑

j∈T
uj ≥

∑

j∈T̄ (3)

uj . (19)

Note that in the second iteration of GTR, a task is cancelled
if its processing on a processor from L exceeds

aj

ρ
or its

processing on processor χ exceeds aj . This implies

ρuj ≥ aj , ∀j ∈ T̄ (3). (20)

Therefore, we have C
(3)
max(sGTR) = maxi∈L∪{0}{C(3)

i (sGTR)}.
Next, we claim that the following inequality holds.

(

m+
1

ρ

)

C(3)
max(s

GTR) ≤
∑

j∈T̄ (3)

uj +muq(3) , (21)

where q(3) is the last task scheduled under the intermediate
schedule s3, which is defined in Section 5. From (6) we
conclude that, to justify our claim it is sufficient to prove (21)
is true when s

GTR is replaced by s3. To this end we consider
the following cases.

Case 1: C
(3)
max(s3) = C

(3)
0 (s3). We note that, in this case

the last task q(3) is completed on processor 0. Scheduling
task q(3) on some processor i ∈ L and completing it on

that processor would increase the schedule length C
(3)
i (s3)

beyond C
(3)
max(s3). This implies

C(3)
max(s3)− uq(3) ≤ C

(3)
i (s3), ∀i ∈ L. (22)

Using (22) along with

C(3)
max(s3) = ρ

∑

j∈T̄ (3)
0

uj ,

C
(3)
i (s3) =

∑

j∈T̄ (3)
i

uj , ∀i ∈ L,

and ∪iT̄ (3)
i = T̄ (3), we obtain

m
∑

i=1

[C(3)
max(s3)− uq(3) ] +

1

ρ
C(3)

max(s3) ≤
∑

j∈T̄ (3)

uj

⇒
(

m+
1

ρ

)

C(3)
max(s3) ≤

∑

j∈T (3)

uj +muq(3) .

Case 2: C
(3)
max(s3) = C

(3)
i (s3) for some i ∈ L. The proof

of this case follows similar arguments as in Case 1 and is
omitted.

Now, using (6), (19), and C∗
max ≥ min(1, ρ)uq(3) in (21),

we obtain

C(3)
max(s

GTR) ≤
(

1 +
min(1, ρ)m

ρm+ 1

)

C∗
max. (23)

Note that, if ρ ≥ 1, from (23) the ratio
C(3)

max(s
GTR)

C∗
max

= O(1).
Therefore, the lemma is true for ρ ≥ 1. Hence, in the
following we consider ρ < 1.

We note that C
(3)
max(sGTR) cannot be greater than the

schedule length that is a result of scheduling all tasks from
T̄ (3) on processor 0. Therefore,

C(3)
max(s

GTR) ≤ ρ
∑

j∈T̄ (3)

uj

≤ (1 + ρm)C∗
max. (24)

In the last inequality above we have used (19). From (23)
and (24), we get

C(3)
max(s

GTR) ≤
[

1 + min

(

ρm,
m

ρm+ 1

)]

C∗
max. (25)

Note that in (25) the term ρm increases with ρ and the term
m

ρm+1 decreases with ρ. Therefore, a simple upper bound for

min
(

ρm, m
ρm+1

)

is obtained by solving

ρm =
m

ρm+ 1
.

The solution to the above equation is given by

ρ =

√
1 + 4m− 1

2m
. (26)

Substituting (26) in (25) gives the desired result.

Remark 3: We note that the proofs of Lemmas 8 , 9 and 10
do not require the tasks to be ordered in the ascending
order of their costs. Therefore, similar to GOR, GTR without
the sorting step will still have O(

√
m) competitive ratio.

However, we have observed that for problem instances gen-
erated randomly from typical distributions, sorting helps in
reducing the total cost on average.

We now state our second main theorem below.

Theorem 6. GTR is O(
√
m)-competitive for Pmax and Psum.

Proof. We have Cmax(s
GTR) = C

(1)
max(sGTR) + C

(2)
max(sGTR) +

C
(3)
max(sGTR). Therefore, from Lemmas 8, 9 and 10, we obtain

Cmax(s
GTR)

C∗
max

≤ 1 + f(η) +

√
1 + 4m+ 1

2
.
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Using η given in (15), which minimizes f(η), we obtain

Cmax(s
GTR)

C∗
max

≤
{

9+
√
5

2 m = 1,

1 + 2
√
2m+

√
1+4m+1

2 m ≥ 2.

Therefore, the result is true for Pmax, and from Proposition 1
it is true for Psum.

Remark 4: Note that, in the third iteration of GTR we
have ρuj > aj , ∀j ∈ T̄ (3). Therefore, we have C

(3)
max(sGTR) =

maxi∈L∪{0}{C(3)
i (sGTR)}, since the offloading cost is less

than the completion time on processor 0. Therefore, the
problem of scheduling tasks from T̄ (3) to minimize the
makespan is equivalent to the problem of minimizing make-
span on m + 1 uniform parallel processors, where m are
identical processors and the processing times of the tasks are
not known. For this case, using list scheduling on T̄ (3) until
at most m tasks are left unfinished, and then using Shmoys’
algorithm for scheduling those m tasks with LPT as the
offline component algorithm, we get 8 logm + 17 competi-
tive ratio [21], [33]. However, as noted in Section 5.2, using
Shmoys’ algorithm results in poor average performance.

Remark 5: We note that in the second iteration of GTR,
a task offloaded to the cloud may be restarted. Even though
this step facilitates our proof of the O(

√
m) competitive ratio

for GTR, it penalizes the sum cost objective. For example, if
a task j is cancelled at the cloud in the second iteration,
then the cloud cost aj paid for the task is wasted. If in
the third iteration, the task j is again scheduled at the
cloud, then it incurs an additional cost aj . We also note that
cancelling tasks in the first and second iterations of GTR on
processors from L also penalizes the makespan part in the
objective. From this we infer that the benefit of restarting a
task multiple times will be mitigated by the penalty it incurs
to makspan, and results in a poor average performance.
Therefore, we do not investigate algorithms which allow
more than two restarts.

Remark 6: For the case where the offloading times of the
tasks are non-negligible, the completion time on the remote
processor takes a complex form given in [34]. Nevertheless,
both GOR and GTR can be used in this case as they do not
assume any knowledge about the completion time of a task
on the remote processor a priori.

7 EXTENSIONS

In this section we present two extensions to our system
model. First, we consider dynamic task arrivals and show
how GOR and GTR can be extended for this case. We then
describe an extension to GOR for the case of multiple remote
processors.

7.1 Dynamic Task Arrivals

So far we have assumed that all n tasks are available to be
scheduled at time zero. In practice, the tasks may arrive
dynamically in time, and their arrival times may not be
known a priori. We consider Psum and Pmax under such
dynamic task arrivals, and relabel them as Pd

sum and Pd
max,

respectively.
Given a θ-competitive algorithm for Pmax, we may adopt

the general approach proposed in [21] to extend the algo-
rithm to one that has a 2θ competitive ratio for Pd

max. We

use this general approach to extend GOR, termed Dynamic-
GOR (DGOR), which is described as follows. Without loss
of generality, suppose there is at least one task available
at time 0. Let T (0) be the set of tasks available at time 0.
Schedule T (0) using GOR. Accumulate the tasks that arrive
while waiting for the time when all the tasks scheduled from
T (0) are finished. Then schedule the accumulated tasks
using GOR. Again, accumulate tasks and repeat the above
procedure until no more tasks are available to be scheduled.
Using the same approach above we extend GTR, termed
Dynamic-GTR (DGTR).

We note that Proposition 1 holds for problems Pd
sum and

Pd
max as well. Therefore, an extended algorithm for Pd

max

will have 4θ competitive ratio for Pd
sum. Using this result

along with Theorem 5 we conclude that DGOR is O(
√
m)-

competitive for Pd
max and Pd

sum when 1
ρ

≥ maxj
(

uj

aj

)

or
1
ρ

= O(
√
m). Similarly, DGTR is O(

√
m)-competitive for

both Pd
max and Pd

sum for general ρ.

7.2 Multiple Remote Processors

For the case where the remote cloud is not abstracted as a
single powerful server but as multiple remote processors,
we propose a simple extension to GOR. In this case, in addi-
tion to offloading a task, GOR has to assign it to one of the
remote processors. Since the processing times of the tasks
are unknown on the remote processors, we have to choose
an online algorithm, namely, list scheduling or Shmoys’
algorithm, to do this assignment. We use list scheduling in
our implementation as Shmoys’ algorithm was shown to
have poor average performance (Section 5.2).

8 AVERAGE PERFORMANCE COMPARISON

In addition to the proven worst-case bounds via competitive
ratios presented in the previous sections, we next study
the average performance of the proposed algorithms over
randomly generated problem instances, for general ρ, using
simulation in MATLAB. We first present simulation results
for the case of all tasks available at time zero and then
present the results for the case of dynamic task arrivals.

8.1 All Tasks Available at Time Zero

For the purpose of comparison we consider the online
list scheduling algorithm [22], and two semi-online algo-
rithms, namely, Semi-Online Highest-Cost-First (SO-HCF)
and Semi-Online Least-Cost-First (SO-LCF). Further, for a
base-line comparison, we also propose an offline algorithm
called Offline Processing time to weighted-offloading-Cost
Ratio (Offline-PCR), that uses the task processing times uj

and the weighted offloading costs aj intelligently.

1) SO-HCF and SO-LCF: In SO-HCF we list the tasks
in descending order of their cloud costs and then
perform list scheduling on the processors. SO-LCF is
the same as SO-HCF except that the tasks are listed
in ascending order.

2) Offline-PCR: Under Offline-PCR, we assume that
uj are known apriori. A list is formed by sorting
the tasks in the ascending order of their process-
ing time to weighted-offloading cost ratio, i.e.,

uj

aj
.



14

20 30 40 50 60 70 80 90 100
E[u] (sec)

0

500

1000

1500

2000

2500

3000

3500

4000

T
o
ta
l
co
st

(c
en
ts
)

list sched.
SO-LCF
SO-HCF
GTR
GOR
Offline-PCR

(a)

20 30 40 50 60 70 80 90 100
E[u] (sec)

0

500

1000

1500

2000

2500

M
a
k
es
p
a
n
(s
ec
)

list sched.
SO-LCF
SO-HCF
GTR
GOR
Offline-PCR

(b)

20 30 40 50 60 70 80 90 100
E[u] (sec)

0

500

1000

1500

W
ei
g
h
te
d
-o
ffl
o
a
d
in
g
co
st

(c
en
ts
)

list sched.
SO-LCF
SO-HCF
GTR
GOR
Offline-PCR

(c)

Fig. 3: Effect of varying mean processing time, with ρ = 1
m

. All tasks at time zero.
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Fig. 4: Effect of varying number of local processors, with ρ = 1
m

. All tasks at time zero.

Since it is desirable to offload the tasks with long
processing time uj and low offloading cost aj to
the cloud and process tasks with small processing
times and high costs locally, Offline-PCR schedules
the next task from the start of the list whenever a
local processor becomes idle, and offloads the next
task from the end of the list whenever the remote
processor finishes a task.

In the following simulation results, both the processing
times uj and offloading cost aj are chosen from an ex-
ponential distribution, with default means 60 sec and 60

m

cents/sec, respectively. Our choice of the offloading cost aj
is inspired by the pricing of the EC2 on-demand instances
which range from 0.03 to 13 cents/sec [35]. In order to
compute the total cost in cents, at the local cloud processors
we consider a cost of 1 cent/sec of the makespan. Note
that, even though we have chosen parameter values from an
exponential distribution, similar results are observed when
other distributions are used. The other default parameters
are as follows: speed factor ρ = 1/m, number of tasks
n = 1500, number of processors m = 50, and weight factor
w = 1. We generate over 5000 problem instances for each
data point and compare the average total cost achieved by
different algorithms.

Figures 3(a), 4(a), 5, 6, and 7 present the average total
cost with varying mean processing time E[uj ], number of
processors m, speed factor ρ, number of tasks n, and weight
factor w, respectively. We observe that, in general, GOR
achieves lower average total cost compared with the online
and semi-online alternatives. Furthermore, GOR provides
a reduction of 20 − 40% in the average total cost when
compared with online list scheduling. We observe further
that, despite the fact that GOR does not know uj apriori, its
total cost is only 10 − 20% higher than that of the Offline-

PCR (which assumes uj are known) for most parameter
settings, except for very low ρ or high w values. Thus, in
addition to providing lower total cost when compared with
semi-online and online alternatives, GOR can be used to
benchmark algorithms that assume additional knowledge
on the statistics of uj .

For varying mean processing time and varying m we
have presented the performance of the algorithms with
respect to makespan and the weighted-offloading costs in
Figures 3(b) and 4(b), and Figures 3(c) and 4(c), respectively.
We again observe that GOR provides 20− 30% reduction in
makespan, and 30−40% reduction in offloading costs when
compared with list scheduling.

Despite of its O(
√
m) competitive ratio for general ρ,

GTR achieves higher average total cost compared with
the alternatives. As explained in Remark 3, this can be
attributed to the additional penalty incurred to makespan
due to the tasks restarting twice. This is demonstrated in
Figures 3(b) and 4(b), where the maksepan achieved by GTR
is higher than the other algorithms in contrast to its rela-
tively lower weighted-offloading cost as seen in Figures 3(c)
and 4(c).

Since GOR and GTR has the same competitive ratio
for small ρ and large ρ, GOR is clearly superior given its
better average performance. These results further suggest
the following choice between GOR and GTR for the case
of moderate ρ values: use GOR when the average perfor-
mance is more desirable, and use GTR when worst-case
performance guarantee is more important. From Figure 5,
we observe that GOR and GTR have the same average
performance for small ρ values. This is because the first
iteration of GOR and GTR is identical, and they differ in
the second iteration only through the additional condition
used for cancelling a task in GTR. Now, for any task j that
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Fig. 5: Effect of varying speed factor. All tasks at time zero.
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Fig. 6: Effect of varying number of tasks, with ρ = 1
m

. All
tasks at time zero.

is to be cancelled in the second iteration of GTR, it should
satisfy uj ≥ aj

ρ
. Since ρ is small, tasks getting cancelled in

the second iteration of GTR is less probable.
Finally, from Figure 6 we observe that, as the number of

tasks increase, the ratio between the total cost achieved by
list scheduling and that of GOR is increasing. This suggests
that GOR will perform far better than list scheduling in an
enterprise where the number of tasks is large.

8.2 Dynamic Task Arrivals

In this subsection we simulate dynamic task arrivals and
observe the average performance of DGOR and DGTR. We
compare it with list scheduling. Since the tasks arrive in time
and their arrival times are not known, SO-LCF and SO-HCF
cannot be used for this case. We generate task arrivals with
inter arrival times chosen from an exponential distribution
with mean 100 ms. All the other parameter values are the
same as described in the previous subsection. We simulate
for over 105 task arrivals for each data point.

In Figures 8 and 9, we present the average total cost of
the algorithms with varying mean processing time E[uj]
and weight factor w, respectively. We observe that DGOR
provides a reduction of 40− 50% in the total cost compared
with list scheduling. We note that the simulation results
using other parameters follow similar trends as for the case
of all tasks available at time zero and hence are omitted.
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Fig. 7: Effect of varying weight factor, with ρ = 1
m

. All tasks
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8.3 Multiple Remote Processors

In Figure 10, we present the performance of different al-
gorithms by varying the number of remote processors. We
observe that GOR significantly outperforms the existing
algorithms. More importantly its total cost reduces as the
number of remote processors increase. We observe similar
trends for other parameter setting as well and the figures
are not presented to avoid redundancy. From these results
we conclude that, for the problem at hand, the design
principles developed by modelling the public cloud as a
single powerful processor are equally applicable for the case
of multiple remote processors and the proposed extensions
have similar performance gains.

9 CONCLUSION

We have studied joint scheduling and offloading in a com-
putational offloading system. We have formulated an op-
timization problem to minimize the weighted sum of the
makespan and the offloading cost at the remote cloud. We
have proposed the GOR algorithm to solve this problem un-
der the challenging yet practical semi-online setting where
the task processing times are not known a priori. Even
though GOR is O(

√
m)-competitive only for some special

cases of ρ, simulation results suggest that, on average, it
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provides significant improvement over previously known
algorithms. On the other hand, GTR is O(

√
m)-competitive

for general ρ, but often performs worse than simple list
scheduling, on average, because of the penalties incurred
in restarting some tasks twice.
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