
1

Multi-user Task Offloading to Heterogeneous
Processors with Communication Delay

and Budget Constraints
Sowndarya Sundar∗, Jaya Prakash Champati†, and Ben Liang∗

∗Electrical and Computer Engineering, University of Toronto, Ontario, Canada
†Information Science and Engineering, EECS, KTH Royal Institute of Technology, Stockholm, Sweden

Email: ssundar@ece.utoronto.ca, jpra@kth.se, liang@ece.utoronto.ca

Abstract—We study task scheduling and offloading in a cloud computing system with multiple users where tasks have different
processing times, release times, communication times, and weights. Each user may schedule a task locally or offload it to a shared
cloud with heterogeneous processors by paying a price for the resource usage. We consider four different models in this paper: (i) zero
task release and communication times, (ii) non-zero task release times and zero communication times, (iii) non-zero task release times
and fixed communication times, and (iv) non-zero task release times and sequence-dependent communication times. Our work aims at
identifying a task scheduling decision that minimizes the weighted sum completion time of all tasks, while satisfying the users’ budget
constraints. We propose an efficient solution framework for this NP-hard problem. As a first step, we use a relaxation and a rounding
technique to obtain an integer solution that is a constant factor approximation to the minimum weighted sum completion time. This
solution violates the budget constraints, but the average budget violation decreases as the number of users increases. Thus, we
develop a scalable algorithm termed Single-Task Unload for Budget Resolution (STUBR), which resolves budget violations and orders
the tasks to obtain robust solutions. We prove performance bounds for the rounded solution as well as for the budget-resolved solution,
for all four models considered. Via extensive trace-driven simulation for both chess and compute-intensive applications, we observe
that STUBR exhibits robust performance under practical scenarios and outperforms existing alternatives. We also use simulation to
study the scalability of STUBR algorithm as the number of tasks and the number of users in the system increases.

F

1 INTRODUCTION

Computational offloading is a key feature of cloud com-
puting that led to the development of Mobile Cloud Com-
puting (MCC) systems, where mobile devices offload their
computational tasks to cloud resource providers [2]. Edge
computing [3]–[7] is a recent advancement in MCC where
finite computational/cloud resources are made available at
the edge of the network or in the vicinity of the mobile
users. For example, in a Mobile/Multiaccess Edge Com-
puting (MEC) system [5]–[7], MEC servers are deployed
at the cellular base stations and are shared by the mobile
users. Each user pays a monetary cost for the computational
resource usage.

Motivated by above systems, we study a problem of task
scheduling and offloading in a cloud computing system
to minimize the computational delays of the users’ tasks.
Several existing works study the offloading problem for
single-user environment [8]–[13], multi-user environments
with simplified cloud models [14]–[19], and optimize energy
or makespan objectives [11], [17], [18], [20]–[25]. Several
works consider a sum completion time objective but in
the absence of budget constraints [26]–[32]. In this work,
we study a multi-user scenario with finite-capacity user

• Part of this paper has appeared in [1]. This new version contains substan-
tial revision with new model extensions, analysis, and simulation results.

• This work has been funded in part by the Natural Sciences and Engineer-
ing Research Council of Canada.

devices, a finite-capacity cloud consisting of heterogeneous
servers, budget constraints for the users, and an objective to
minimize weighted sum completion time.

In particular, we consider user tasks that may have
different processing times, release times, communication
times, and weights. A task may be executed locally on the
user’s device or offloaded to a server at the finite-capacity
cloud. The servers at the cloud are heterogeneous processors
with different speeds. The users are required to pay a certain
monetary price based on the usage time of a processor at
the cloud, and the price may potentially depend on the
processor speed. Each user has a specific budget which
determines the monetary cost that the user is willing to
spend for offloading tasks to the cloud.

Our objective is to identify the task scheduling decision
that minimizes the sum of weighted completion times of all
tasks subject to all users’ budget constraints. The problem is
NP-hard since minimizing the sum of weighted completion
times of jobs with release times on a single processor is NP-
hard [33]. For a special case of our problem where there is
a single user and no budget constraint, an efficient solution
was proposed in [32]. However, extending their solution
is non-trivial even for a single budget constraint. We will
see later that having budget constraints for multiple users
makes the problem much more challenging. Our solution
approach is inspired by an interval-indexed Integer Linear
Program (ILP) introduced in [32]. We exploit the structure
of an approximation solution to such an ILP to solve our

2

problem.
Our main contributions are summarized below:

1) We first consider the problem where all tasks are avail-
able at time zero and communication times are negligi-
ble. We formulate an interval-indexed ILP inspired by
[32]. Using a relaxed LP-solution, we obtain an integer
solution that is shown to provide a constant-factor ap-
proximation to the minimum weighted sum completion
time. Even though this integer solution violates the
budget constraints, we make an interesting observation
that the average budget violation decreases with respect
to the number of users.

2) Based on the above observation, we propose an al-
gorithm termed Single Task Unload for Budget Reso-
lution (STUBR). In addition to finding a relaxed and
rounded LP-solution for the above interval-indexed
ILP, STUBR resolves budget violations. We prove per-
formance bounds for this budget-resolved solution. We
then use a greedy task ordering scheme on each pro-
cessor to further reduce the weighted sum completion
time. We also study the computational complexity of
STUBR.

3) We then extend STUBR to more practical models (a)
with task release times, (b) with fixed communication
times, and (c) with sequence-dependent communica-
tion times, i.e., considering a finite-capacity channel
model where tasks must be sequenced and communi-
cated. We obtain performance bounds for these cases as
well.

4) Our trace-driven simulation shows that STUBR per-
forms consistently better than the existing alternatives.
It exhibits maximum performance gains of more than
50% for both chess and compute intensive applica-
tions [34] in comparison with the Greedy Weighted
Shortest Processing Time (WSPT) scheme. Finally, our
simulation results demonstrate that STUBR is highly
scalable with respect to the number of users in the
system.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the related work. Section 3 describes
the system model and the problem formulation. In Section
4, we propose the STUBR algorithm, and present perfor-
mance guarantees. In Section 5, we extend this to the
problem with release times, fixed communication times, and
with sequence-dependent communication times. Section 6
presents the simulation results, and we conclude the paper
in Section 7.

2 RELATED WORK

The problem of computational offloading and scheduling
in the mobile cloud environment has received much recent
attention. Existing works that investigate this problem for a
multi-user multi-task system often tend to view the cloud
as a single entity. For example, in [14], the tasks were
assumed to have constant processing time at the cloud and
the queueing delay is considered. In [15]–[18], the remote
cloud was assumed to be an infinite server. Similarly, in
[19], a multi-user system with just a single multi-core MEC
server was considered where the server was assumed to
maintain separate buffers for separate users. Unlike these
aforementioned studies, we account for the heterogeneity and

finite-capacity of the cloud resource by considering a finite
number of cloud processors that must be shared by all users.

Several studies have considered multiple processors or
multiple resources at the cloud and focused on optimizing
different objectives. Some works look to minimize energy
consumption or some form of cost [17], [18], [20], [21], [24],
[25]. On the other hand, [11], [22], [23] focus on minimizing
makespan or response time.

However, the sum completion time is also an important
performance metric, as it represents the processing delay
incurred by individual tasks. The objective of weighted sum
completion time enhances this feature further by allow-
ing us to express the relative priorities of the tasks. The
general problem of minimizing the weighted sum com-
pletion time on a single processor has been well studied
[26]. Some works in the literature have also considered
the same objective to schedule tasks in a multi-processor
cloud environment. In [27], the authors proposed an Ant
Colony Optimization based algorithm to solve this NP-hard
problem. Similarly, in [28], the authors proposed Min-Min
and Min-Max heuristics for this purpose. The same objective
was also considered in [29], [30] for scheduling coflows in
data center networks and approximation algorithms were
proposed. In [31], online algorithms are presented to mini-
mize weighted sum completion time for the concurrent open
shop, coflow, and concurrent cluster models. In [32], the
authors considered this objective for scheduling tasks with
release times on parallel processors, and proposed an 8-
approximation algorithm. Our solution approach is inspired
by [32]. However, our problem, in addition to considering
a weighted sum completion time objective and task release
times, also accounts for multiple users, and per-user budget
constraints, which renders our problem more challenging
than those addressed in [26], [27], [29], [32].

Some existing works also consider the expense incurred
by users to utilize the resources at the cloud. A majority
of these works address this problem by minimizing some
form of usage cost (e.g., [35]) or maximizing revenue (e.g.,
[36]), while very few aim to maximize the benefit to users in
a cloud computing environment under budget constraints
[23], [37]. In [37], the authors considered the problem of
maximizing the service quality for a multi-task application
with a single budget constraint. In [23], the authors in-
vestigated the case where jobs are scheduled onto virtual
machines with an objective of minimizing the response time
subject to budget constraints on individual tasks. However,
[23], [37] consider objectives that are different from ours and
do not accommodate per-user budget constraints.

Additionally, in this work, we also address the pro-
posed problem under more generic task communication time
models. The existing works that consider sum completion
time objective for multiprocessor environments, i.e., [26],
[27], [29], [32] do not consider communication time, and
cannot be easily extended to accommodate a finite-capacity
communication channel model as considered in this work.

In [1], we had considered a model with task release
times and fixed communication times. We had proposed
the STUBR algorithm to minimize weighted sum comple-
tion time. In this work, we additionally consider a mod-
ified channel model to accommodate sequence-dependent
communication times and corresponding problem formula-

3

Fig. 1: Example system of 3 users and 5 cloud processors.

TABLE 1: Notations

Notation Description

tj local processing time of task j
cj communication time of task j
tRj release time of task j

wj weight of task j
αir speed-up achieved by user i’s tasks on processor r
βr cost per unit time to utilize processor r
Bi budget of user i
Ji set of tasks user i wishes to execute
R set of all processors (local and cloud)
C set of cloud processors
Ri set of cloud processors and user i’s local processor
R′ set of machine-interval processors
N total number of users

(τl−1,τl) time interval l
L number of intervals

tion, and prove performance bounds for the same. Further-
more, we prove improved performance bounds for budget-
resolved solutions for all release-time and communication
time models considered, and additional simulation results
to further analyze the proposed schemes.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present details of the system model and
problem formulation. Initially, we consider the problem of
scheduling immediately available tasks to heterogeneous
processors under user budget constraints. In Section 5, we
extend this to the case where tasks have release times, fixed
communication times, and sequence-dependent communi-
cation times.

3.1 System Model
3.1.1 Processors and Tasks
We consider a system with N user/mobile devices. Each
user i ∈ {1, . . . , N} wishes to complete a set of indepen-
dent tasks, denoted by Ji. Each user has its own unary
local processor, i.e., it can execute only one task at a time.
This assumption is without loss of generality, as allowing

multiple tasks to share a processor simultaneously will not
provide any improvement to our weighted sum completion
time objective. The system includes a finite-capacity cloud
consisting of a number of heterogeneous processors that run
at different speeds. Let C be the set of cloud processors. Each
processor at the cloud is assumed to be unary. Similar to the
local processor scenario, this unary-capacity assumption is
also without loss of generality. Additionally, one may note
that multiple unary-capacity processors may be combined
to create finite-capacity servers at the cloud. An example of
such a system is illustrated in Figure 1.

The processing time for each task j ∈ Ji is tj on user i’s
local processor. The speed-up factor for each cloud processor
r is αir ≥ 0, so that the processing time for task j at
processor r is αirtj . Each user can execute its tasks either
locally or remotely at one of the cloud processors. The
processing times may be obtained by applying a program
profiler as shown in experimental studies such as MAUI [8],
Clonecloud [38], and Thinkair [39]. In this work, we proceed
assuming that such information is already given. We also
consider a weight wj associated with each task, to signify
the relative urgency of certain tasks with respect to the
others. We assume these weights are set apriori depending
on the task priorities. In the absence of such information,
the weights can just be set to 1. For notation simplicity, we
further define R as the set of all processors (including all
users’ local processors), Ri as the set of processors to which
user i can offload its tasks, i.e., its own local processor and
cloud processors.

3.1.2 User Budget

The users are required to pay a certain price per unit time to
use the processors at the cloud, but no price to execute tasks
locally on their own device. Let βr be the cost per unit time
for executing a task on processor r. Each user i has a budget
Bi that determines the total expense that the user is willing
to incur for offloading tasks to the cloud.

3.1.3 Release Times and Communication Times

Each task j has a release time tRj , i.e., the time at which the
task j becomes available at the local processor. Furthermore,
each task may require some input data that needs to be
communicated if the task is to be executed at the cloud.
The time to transmit the input data for task j to the cloud
is given by cj . We consider two different communication
models:

1) Fixed Communication Times: The input data for each
task j can be transmitted to the cloud as soon as the
task is available. Hence, the communication delay for
task j is simply cj . Hence, the overall communication
delay for task j is the sum of transmission times of
itself and all tasks before it. This allows us to model a
communication link with a large number of channels.

2) Sequence-dependent Communication Times: The in-
put data for each task cannot be transmitted as soon
as the task is available. We assume that the data is
transmitted to the scheduled processor one task at a
time, i.e., the channel to a processor is unary. This allows
us to model a communication link with finite capacity.

4

3.2 Problem Formulation
For clarity of presentation, initially we consider the case
where all tasks are released and available at time zero, and
the links between processors are fast enough so that the
communication delay between them is negligible. This leads
to the problem formulation in this section and the corre-
sponding STUBR algorithm in Section 4. We will provide
details on how they are extended to the cases non-zero task
release times, fixed communication times, and sequence-
dependent communication times in Section 5.

We wish to identify the task scheduling decision that
minimizes the weighted sum completion time of all tasks
subject to user budget constraints. We formulate the pro-
posed problem by using an interval-indexing method pro-
posed in [32]. Towards this end, we divide the time axis
into intervals (τl − 1, τl), where τ0 = 1 and τl = 2l−1, for
l ∈ 1, ..., L, where L is the smallest integer such that

2L−1 ≥
∑
j

tj .

This means that 2L−1 is a sufficiently large time horizon
for the scheduling of all given tasks since it accounts for
the worst-case completion time

∑
j tj . The task scheduling

decision determines the processors where each task should
be scheduled, as well as the order of the tasks. We define
decision variables {xjrl} where xjrl = 1 if and only if
task j finishes execution on processor r in time interval
l ∈ {1, . . . , L}. Such an approach reduces the number of
variables in our formulation in comparison with a time-
indexed formulation with constant-size intervals, making
it computationally tractable, with a small penalty in the
precision of quantifying the optimization objective. The
optimization problem is defined below.

min
{xjrl}

N∑
i=1

∑
j∈Ji

wj
∑
r∈Ri

L∑
l=1

τl−1xjrl, (1)

s.t.
L∑
l=1

∑
r∈Ri

xjrl = 1, ∀i ∈ {1, . . . , N}, j ∈ Ji, (2)

N∑
i=1

∑
j∈Ji

αirtjxjrl ≤ τl, ∀r ∈ R, l ∈ {1, . . . , L}, (3)

∑
j∈Ji

L∑
l=1

∑
r∈Ri

βrαirtjxjrl ≤ Bi, ∀i ∈ {1, . . . , N},

(4)
xjrl = 0, if τl < αirtj ,

∀i ∈ {1, . . . , N}, j ∈ Ji, r ∈ C, l ∈ {1, . . . , L},
(5)

xjrl = 0, if τl < tj ,

∀i ∈ {1, . . . , N}, j ∈ Ji, r /∈ C, l ∈ {1, . . . , L},
(6)

xjrl = 0, if Bi < βrαirtj ,

∀i ∈ {1, . . . , N}, j ∈ Ji, r ∈ R, l ∈ {1, . . . , L},
(7)

xjrl ∈ {0, 1},
∀i ∈ {1, . . . , N}, j ∈ Ji, r ∈ R, l ∈ {1, . . . , L}.

(8)

The objective (1) is to minimize the weighted sum comple-
tion times of tasks across all users. Constraint (2) ensures
that every task is assigned to exactly one processor and one
interval. Constraint (3) enforces that for each interval l, the

total load on every processor r cannot exceed τl. Equation
(4) enforces the budget constraints for each user. Equations
(5)-(7) ensure that individual tasks do not exceed the τl
interval deadline and the budget. Constraint (8) forces the
decision variables to take on binary values.

Remark 1. One may note that τl−1 is a lower bound to the com-
pletion time of a task completing in interval l, and consequently,
(1) is a lower bound to the weighted sum completion time. In
Sections 4 and 5, we present algorithms that provide worst-case
performance guarantees in terms of constant factors above this
lower-bound objective. Hence, the same algorithms also have at
least the same worst-case performance guarantees with respect to
the optimal weighted sum completion time.

4 THE STUBR ALGORITHM

In this section, we present the STUBR algorithm to solve
problem (1). We then prove some guarantees and properties
of this algorithm, to better understand its functionality and
performance.

STUBR has the following steps:
1) Relax the integer constraints in problem (1) and obtain

a relaxed solution.
2) Round this solution to obtain an integer solution that

gives an objective value that is no higher than 8 times
the objective value achieved by the relaxed solution,
and thus is also no higher than 8 times of the optimal
objective value of problem (1). While this rounded
solution is expected to violate the budget, we prove that
the average cost over a large number of users meets the
average user budget.

3) We resolve any budget violation by strategically mov-
ing some tasks to the local device.

4) To further reduce the total weighted completion time,
we note that the well-known WSPT is optimal for a
single processor and jobs without release times. Hence,
on each processor, we reorder the tasks allocated to it
by WSPT ordering.

These steps are explained in detail in the following sections.

4.1 Relaxed Solution

For each user i ∈ {1, . . . , N}, j ∈ Ji, and r ∈ Ri, let pjr and
bjr be the processing times and costs for scheduling task j
on processor r. For our initial plain model with no release
times and communication times, we have

pjr :=

{
αirtj if r ∈ C,
tj otherwise,

(9)

bjr :=

{
βrαirtj if r ∈ C,
0 otherwise.

(10)

Using (9) and (10), we reformulate the optimization problem
in Section 3.2, and relax the integer constraints to obtain the
following linear program.

min
{xjrl}

N∑
i=1

∑
j∈Ji

wj
∑
r∈Ri

L∑
l=1

τl−1xjrl, (11)

5

s.t.
L∑
l=1

∑
r∈Ri

xjrl = 1, ∀i ∈ {1, . . . , N}, j ∈ Ji, (12)

N∑
i=1

∑
j∈Ji

pjrxjrl ≤ τl, ∀r ∈ R, l ∈ {1, . . . , L}, (13)

∑
j∈Ji

∑
r∈Ri

L∑
l=1

bjrxjrl ≤ Bi, ∀i ∈ {1, . . . , N}, (14)

xjrl = 0, if τl < pjr, ∀i ∈ {1, . . . , N},
r ∈ R, l ∈ {1, . . . , L},

(15)

xjrl = 0, if Bi < bjr, ∀i ∈ {1, . . . , N},
j ∈ Ji, r ∈ R, l ∈ {1, . . . , L},

(16)

xjrl ≥ 0, ∀i ∈ {1, . . . , N},
j ∈ Ji, r ∈ R, l ∈ {1, . . . , L}.

(17)

The above linear program can be solved efficiently in
polynomial-time to obtain a relaxed solution to the problem
(1). This formulation also resembles the LP-relaxed version
of the problem minimizing the weighted sum completion
time in a system of unrelated1 machines, i.e. R||

∑
wjCj

in the standard parallel-processor-scheduling notation as
formulated in [32]. However, our formulation has additional
budget constraints, (14) and (16), that need to be met for
each user. It also accommodates multiple users unlike the
formulation in [32]. These aspects render our formulation a
more complex one requiring more sophisticated techniques,
for recovering an integer solution and resolving budget
overage.

4.2 Rounded Solution

In [32], the authors used a method proposed in [40] for
solving the generalized assignment problem, and obtained
an integer solution for their problem at hand. However,
our formulation renders a further constrained version of
the generalized assignment problem due to the budget
constraints. We therefore extend the method proposed in
[40] to obtain a rounded solution to problem (1). We study
the behavior of this solution and later employ techniques
to improve this solution for our problem. We also provide
worst-case performance and incurred cost guarantees. Ad-
ditionally, we study the behavior of the average incurred
cost as the number of users increases in the system.

4.2.1 Rounding Technique
We first convert the LP-solution xjrl to xjr′ , where each
machine-interval pair (r, l) is viewed as a single virtual
processor r′ ∈ R′, such thatR′ is the set of machine-interval
processors. This facilitates the application of the rounding
method proposed in [40] to our problem.

The rounding technique lists the tasks in non-increasing
order of pjr′ , for r′ ∈R′, and constructs a bipartite fractional
matching. A fractional matching between task nodes and
machine nodes assigns each task node partially to multiple
machine nodes, and all allocated fractions for a particular
task node should sum up to 1. Let f (vr′s,uj) denote the
fractional matching between task nodes uj , for j ∈ Ji,

1. In the mode of unrelated machines, the processing times of a task
on any two machines are independent.

i ∈ {1, . . . , N}, and machine nodes vr′s, for r′ ∈ R′,
s ∈ {1, . . . , kr′}, and kr′ = d

∑
j xjr′e. This is constructed

in accordance with the following:

xjr′ =
∑

s:(vr′s,uj)∈E

f(vr′s, uj),

∀r′ ∈ R′, j ∈ Ji, i = {1, . . . , N}, (18)∑
j:(vr′s,uj)∈E

f(vr′s, uj) = 1,

∀r′ ∈ R′, s = {1, . . . , (kr′ − 1)}, (19)

where E is the set of edges of the bipartite graph. This
fractional matching is then converted to a minimum cost
integer matching where each task is assigned to a single
machine node.

For our problem, this would be equivalent to a weighted
sum completion time integer matching. We call this integer
solution x = {xjrl}. This integer matching solution, how-
ever, is likely to violate the interval deadline τl constraints
as well as the user budget constraints, since the relaxed
solution that meets these constraints has been rounded. We
now analyze the extent to which these constraints could be
violated, and the resulting performance guarantee.

4.2.2 Interval Deadline Violation and Performance Guaran-
tee
Lemma 1. With the rounded solution, the total processing time of
all tasks for every r′ ∈ R′ = (r, l), and interval l ∈ {1, . . . , L}
cannot be worse than 2τl, i.e., constraint (13) is violated by at
most τl.

Proof. For each machine node vr′s, let the maximum possi-
ble processing time be

pmax
r′s = max

j:(vr′s,uj)∈E
pjr′ , (20)

and minimum possible processing time be

pmin
r′s = min

j:(vr′s,uj)∈E
pjr′ . (21)

Consequently, pmin
r′s ≥ pmax

r′(s+1), since tasks are allocated in
non-increasing order of pjr′ while constructing the frac-
tional bipartite matching. Along the lines of the proof in
[40], we have for each r′ ∈ R′,

kr′∑
s=2

pmax
r′s ≤

kr′−1∑
s=1

pmin
r′s (22)

≤
kr′−1∑
s=1

∑
j:(vr′s,uj)∈E

pjr′f(vr′s, uj) (23)

≤
kr′∑
s=1

∑
j:(vr′s,uj)∈E

pjr′f(vr′s, uj) (24)

=
N∑
i=1

∑
j∈Ji

pjr′xjr′ ≤ τl. (25)

Furthermore, pmax
r′1 ≤ τl,∀r′, from (15). Hence, we have

N∑
i=1

∑
j∈Ji

pjrxjrl =
N∑
i=1

∑
j∈Ji

pjr′xjr′ (26)

6

≤
kr′∑
s=1

pmax
r′s ≤ 2τl, ∀r ∈ R, l = {1, . . . , L}. (27)

We derive an approximation ratio for the integer match-
ing x̄ which is presented in the following theorem.

Theorem 2. The objective value of the rounded solution obtained
from the integer matching x cannot be worse than 8 times the
optimal objective of problem (1).

Proof. We define new intervals τl := 2l+1, ∀l =
{1, . . . , L}. From Lemma 1, we can see every task j that
was scheduled in the lth interval will be completed by time
τ̄l. This is because τl − τl−1 ≤ 2τl, and from Lemma 1, we
know that the total processing time for the tasks assigned
to the lth interval does not exceed 2τl. Let the contribution
to the objective by task j be given by Orelax

j and Oround
j in

the relaxed solution and the rounded solution, respectively.
If task j is scheduled to complete in interval l, we have

Orelax
j = wjτl−1 (28)

= wj2
l−2. (29)

Similarly, for the rounded solution, we have

Oround
j ≤ wjτl (30)

≤ wj2l+1 (31)

≤ wj2l−223 (32)

≤ 8Orelax
j . (33)

This implies that

N∑
i=1

∑
j∈Ji

Oround
j ≤

N∑
i=1

∑
j∈Ji

8Orelax
j . (34)

We see that the rounded objective value is at most 8 times
the relaxed solution, and hence, at most 8 times the optimal
objective of problem (1) since the relaxed solution by defi-
nition returns an objective value that is below the optimal
objective.

4.2.3 Multiple Users and Incurred Cost Guarantees
Since our problem also accounts for multiple users and
budget constraints, we wish to evaluate the performance
of this rounded solution with respect to these parameters.

Theorem 3. With the rounded solution, the sum of the incurred
cost of all users cannot be worse than (|R′|+ 1) times the sum of
user budgets.

Proof. Let bmax
r′s and bmin

r′s be the maximum and minimum
possible costs at machine node (r′,s), respectively. For each
processor r′, we have pmin

r′s ≥ pmax
r′(s+1), as explained in 1.

Consequently, we have bmin
r′s ≥ bmax

r′(s+1) for our model from
(9) and (10). Then, we have

N∑
i=1

∑
r′∈R′

kr′∑
s=2

bmax
r′s ≤

N∑
i=1

∑
r′∈R′

kr′−1∑
s=1

bmin
r′s (35)

≤
N∑
i=1

∑
r′∈R′

kr′−1∑
s=1

∑
j:(vr′s,uj)∈E

bjr′f(vr′s, uj) (36)

≤
N∑
i=1

∑
r′∈R′

kr′∑
s=1

∑
j:(vr′s,uj)∈E

bjr′f(vr′s, uj) (37)

=
N∑
i=1

∑
r′∈R′

∑
j∈Ji

bjr′xjr′ ≤
N∑
i=1

Bi. (38)

Hence, if we take out the tasks allocated to machine nodes
vr′1 for every r′ ∈ R′, the remaining tasks have a sum cost
that is less than the sum of user budgets. There are at most
|R′| such tasks. Furthermore, for each r′ ∈ R′ and j such
that (vr′1,uj) ∈ E , we know from (16) that

bjr′ ≤ bmax
r′1 ≤

N∑
i=1

Bi. (39)

Hence we have
N∑
i=1

∑
j∈Ji

∑
r∈R

L∑
l=1

bjrxjrl =
N∑
i=1

∑
j∈Ji

∑
r′∈R′

L∑
l=1

bjr′xjr′ (40)

≤
N∑
i=1

∑
r′∈R′

kr′∑
s=1

bmax
r′s ≤ (|R′|+ 1)

N∑
i=1

Bi. (41)

Remark 2. We see from the above at most one task on each
interval-processor violates the sum of the user budgets. Conse-
quently, we can find a subset of at most |R′| tasks that violate the
sum of the user budgets.

The following conclusions follow directly from Theorem
3.

Corollary 4. If bjr is independent of task j, let br = bjr. We
further define S = {r ∈ R′ : ∃ j, xjr = 1}. Then, we have

N∑
i=1

∑
j∈Ji

∑
r∈R

L∑
l=1

brxjrl ≤
N∑
i=1

Bi +
∑
r∈S

br. (42)

Corollary 5. If Ci is the incurred cost for user i,

1

N

N∑
i=1

Ci ≤
1

N

N∑
i=1

Bi +
1

N
|R′|Bmax, (43)

where Bmax = maxiBi, and for the specific case from Corollary 4,

1

N

N∑
i=1

Ci ≤
1

N

N∑
i=1

Bi +
1

N

∑
r∈S

br. (44)

If we increase the number of users N , the total pro-
cessing time increases, and consequently, the number of
intervals L increases. But we note that since the interval
size increases exponentially, the number of intervals L only
increases logarithmically. Additionally, the number of pro-
cessors |R| is fixed. This implies that |R′| = L|R| increases
more slowly in comparison with N . Hence, we can see that
as N → ∞, the second term on the right-hand side of (43)
approaches zero, leading to Corollary 6.

Corollary 6. As N → ∞, the average cost incurred across all
users meets the average budget.

Thus, the average user cost performance improves as
the number of users in the system increases. This property
indicates that the proposed algorithm is highly scalable and
is a suitable choice for multi-user systems.

7

4.3 Dealing with Budget Violation
Even if the budget constraints are met on average, the
budget constraints for each individual user could still be
violated. In cases where the users expect strict budget
constraints, we need to identify a technique by which this
rounded solution can be modified to ensure that each user’s
budget is met, while not significantly affecting the weighted
sum completion time. Since there is no budget constraint
on executing tasks on a user’s local device, we propose the
following technique to move certain tasks to the local device
in the event of a budget violation:

1) Check if budget is violated for user i.
2) If so, sort all its offloaded tasks, {j ∈ Ji | xjrl = 1,∀r ∈
C}, in non-decreasing order of wjtj . We do this as we
expect a task with smaller weight and smaller local
processing time does lesser damage to the weighted
sum completion time objective when transferred to the
local device.

3) Start with the first task (with least wjtj) and schedule
it on the local device. Update the incurred cost of user i
by subtracting the previously incurred cost of this task.

4) If incurred cost now meets the budget, stop. If not,
repeat Steps 2 and 3 until the budget is met.

5) Repeat for all users.
6) Once every user meets its budget, we apply our modi-

fied WSPT (presented in Section 4.4) on all processors.
Now we wish to understand the impact of moving tasks

to the local device to meet the budget on the performance.

Theorem 7. The objective value of the final solution is at most
2dlog2(2+

1
a)e+2 times the optimal solution, where a = mini,r αir

is the minimum value of speed-up factor in the system.

Proof. We know, from Remark 2, that for every interval l,
at most one task from every cloud processor needs to be
moved to the local device, and this task has a maximum
processing time of τl. We also know, from Lemma 1, that
total processing time on a local processor for the tasks as-
signed to the lth interval does not exceed 2τl. Furthermore,
from (15), the processing time of a task scheduled to finish
in interval l cannot exceed τl. Thus, after moving a task
belonging to user i from cloud processor r to user i’s local
processor, the total processing time on the local processor
will be (2 + 1

αir
)τl, in the worst case. Since this task that

we move back may belong to any user, this value will be at
most (2 + 1

a)τl, as a = mini,r αir is the minimum value of
speed-up factor. In other words, we now have
N∑
i=1

∑
j∈Ji

pjrxjrl ≤ (2+
1

a
)τl, ∀r ∈ R, l = {1, . . . , L}. (45)

We need to redefine τl defined in Theorem 2 such that every
task that is assigned to the lth interval may be run entirely
within the interval (τl−1, τl). In other words, we need

τl − τl−1 ≤ (2 +
1

a
)τl. (46)

Towards this end, we set x = log2

(
2 + 1

a

)
+ 1, and τl =

2xτl = 2x2l−1 = 2x+l−1.
We now get, for every task j,

Oround
j

Orelax
j

≤ wj
τl
τl−1

≤ 2x+1 ≤ 2log2(2+ 1
a)+2 (47)

Thus, the objective value of the final solution is at most
2dlog2(2+

1
a)e+2 times the optimal solution.

4.4 WSPT Ordering
From the above, we obtain a scheduling decision for every
task that specifies on which processor the task should be ex-
ecuted. Some processors will be assigned multiple tasks. We
know that the WSPT ordering is optimal for the weighted
sum completion time objective for a single processor and
jobs without release times [41]. Thus, we perform a WSPT
ordering on the tasks allocated to a particular processor to
further improve our objective value as follows:

1) Step 1: Obtain the task scheduling decision, i.e., the
processor on which each task should be scheduled.

2) Step 2: On each processor r ∈ R, order the scheduled
tasks in the non-decreasing order of pjr

wj
. This ensures

that tasks with smaller weights and longer completion
times (without accounting for wait times) are scheduled
earlier.

3) Step 3: Modify the task completion times correspond-
ingly, and obtain the new objective value.

The STUBR pseudocode is outlined in Algorithm 1 below.

Algorithm 1 STUBR algorithm pseudocode

Input: Processing times tj for every task j, speed-up factor
αr and cost βr for every processor r, budgets Bi for
every user i.

Output: Scheduling decision for every task j.
1: Solve (11) to obtain relaxed solution {xjrl} for every

task j on processor r in interval l.
2: Set (r, l)→ r′, for every r, l.
3: Construct bipartite fractional matching f (vr′s,uj) be-

tween task nodes uj and machine nodes vr′s, for r′ ∈
R′, s ∈ {1, . . . , kr′}, and kr′ = d

∑
j xjr′e, in accordance

with conditions (18) and (19).
4: Convert fractional matching to integer matching solu-

tion x = {xjrl} using technique in [40]. This solution is
at most 8 times the optimal.

5: for all user i do
6: if budget is violated then
7: Set offloaded tasks in non-decreasing order of
wjtj → O.

8: for all task o ∈ O do
9: Schedule task o back on the user’s local device

and modify xor′ , for all r′ accordingly.
10: Update incurred cost to user.
11: if incurred Cost < Bi then
12: break
13: end if
14: end for
15: end if
16: end for
17: for all processor r do
18: Order the scheduled tasks in the non-decreasing order

of pjrwj
.

19: end for

4.5 Feasibility and Complexity Analysis
It can be readily noted that the STUBR algorithm provides
a feasible solution. In other words, the user budgets are

8

TABLE 2: STUBR Steps and Solutions

Step Technique Resulting Solution

1

Relax the integer constraints
in the interval-indexed

formulation

Lower bound
to optimum

2
Round the fractional values

by applying technique from [40]

(1) Constant-factor
approximation;

(2) Violates
budget constraints;
(3) Average budget
violation decreases

with increase
in number of users.

3
Budget resolution by moving

some tasks to local devices

Approximation;
Dependent on

minimum value of
speed-up factor

4

Re-order tasks
on each processor

using WSPT or modified WSPT
(Skip for sequence-dependent

communication times)

Heuristic
with improved

performance

always met, and all the tasks are always scheduled. Thus, in
the worst case with extremely tight budgets, the algorithm
will execute all tasks locally.

The time complexity of STUBR is dominated by the
LP-solving step (in Section 4.1) and the rounding step (in
Section 4.2) that involves finding the weighted sum com-
pletion time bipartite matching. An LP can be solved in
O(n3.5) time where n is the number of variables [42]. For
our problem, this would imply that the time complexity
for solving the LP is O((P |R|L)3.5), where P =

∑N
i=1 |Ji|

is the total number of tasks. On the other hand, bipartite
matching can be solved in cubic time in the number of
vertices by utilizing the Hungarian algorithm, proposed in
[43]. If P > |R|, the time complexity of this step is O(P 3).
Thus, we see that the overall worst-case time complexity of
STUBR is O((P 2L)3.5).

We present the steps and the resulting solution following
each step in Table 2.

5 STUBR EXTENSIONS

In this section, we consider the models with release times,
fixed communication times, and sequence-dependent com-
munication times, introduced in Section 3.1.3.

5.1 With Task Release Times
STUBR can also be applied to solve the problem of schedul-
ing tasks with release times. We reformulate problem (11) to
incorporate release times tRj for every task j as follows.

min
{xjrl}

N∑
i=1

∑
j∈Ji

wj
∑
r∈Ri

L∑
l=1

τl−1xjrl, (48)

s.t.
L∑
l=1

∑
r∈Ri

xjrl = 1, ∀i ∈ {1, . . . , N}, j ∈ Ji, (49)

N∑
i=1

∑
j∈Ji

pjrxjrl ≤ τl, ∀r ∈ R, l ∈ {1, . . . , L}, (50)

∑
j∈Ji

∑
r∈Ri

L∑
l=1

bjrxjrl ≤ Bi, ∀i ∈ {1, . . . , N}, (51)

xjrl = 0, if τl < tRj + pjr, ∀i ∈ {1, . . . , N},
r ∈ R, l ∈ {1, . . . , L},

(52)

xjrl = 0, if Bi < bjr, ∀i ∈ {1, . . . , N},
j ∈ Ji, r ∈ R, l ∈ {1, . . . , L},

(53)

xjrl ≥ 0, ∀i ∈ {1, . . . , N},
j ∈ Ji, r ∈ R, l ∈ {1, . . . , L}.

(54)

On applying the same rounding method proposed in
Section 4.2, we can easily see that Lemma 1 is satisfied for
this case as well. Additionally, we can also extend the results
in Theorem 2 to prove the following.

Theorem 8. The objective value of the rounded solution obtained
from the integer matching x cannot be worse than 8 times the
optimal objective of problem (48).

Proof. Every task that is assigned to the lth interval may be
run entirely within the interval (τl−1, τl), where τl := 2(l+1).
This is because τl − τl−1 ≤ 2τl, and from Lemma 1, we
know that the total processing time for the tasks assigned
to the lth interval does not exceed 2τl. Additionally, every
task j that is assigned to the lth interval will have been
released by τl−1 because τl−1 > τl > tRj + pjr > tRj . Thus,
similar to Theorem 2, we see that the rounded objective
value is at most 8 times the relaxed solution, and hence,
at most 8 times the optimal objective of problem (48) since
the relaxed solution by definition returns an objective value
that is below the optimal objective.

We can also see that Theorem 3 and the corresponding
corollaries are satisfied for this case. We apply the budget
resolution technique proposed in Section 4.3 and can easily
see that Theorem 7 can be proved for this case as well.
Additionally, we also apply a modified WSPT similar to that
in Section 4.4 that we call m-WSPT ordering, by accommo-
dating task release times. We do this by scheduling tasks in

the non-decreasing order of
tRj +pjr
wj

in Step 2.

5.2 With Fixed Communication Times
We can further extend the solution in Section 5.1 to the case
where every task j has release time tRj and communication
time cj . This is equivalent to defining a new per processor
release time tRjr, to be the release times for scheduling task j
on processor r, as follows:

tRjr :=

{
tRj + cj if r ∈ C,
tRj otherwise,

(55)

Thus, the new version of problem (11) becomes

min
{xjrl}

N∑
i=1

∑
j∈Ji

wj
∑
r∈Ri

L∑
l=1

τl−1xjrl, (56)

s.t.
L∑
l=1

∑
r∈Ri

xjrl = 1, ∀i ∈ {1, . . . , N}, j ∈ Ji, (57)

9

N∑
i=1

∑
j∈Ji

pjrxjrl ≤ τl, ∀r ∈ R, l ∈ {1, . . . , L}, (58)

∑
j∈Ji

∑
r∈Ri

L∑
l=1

bjrxjrl ≤ Bi, ∀i ∈ {1, . . . , N}, (59)

xjrl = 0, if τl < tRjr + pjr, ∀i ∈ {1, . . . , N},
r ∈ R, l ∈ {1, . . . , L},

(60)

xjrl = 0, if Bi < bjr, ∀i ∈ {1, . . . , N},
j ∈ Ji, r ∈ R, l ∈ {1, . . . , L},

(61)

xjrl ≥ 0, ∀i ∈ {1, . . . , N},
j ∈ Ji, r ∈ R, l ∈ {1, . . . , L}.

(62)

We can see that the fixed communication times are incor-
porated in constraint (60). On applying the same rounding
method proposed in Section 4.2, we can easily see that
Lemma 1 is satisfied for this case as well. Additionally,
we can also extend the results in Theorem 8 to prove the
following.

Theorem 9. The objective value of the rounded solution obtained
from the integer matching x cannot be worse than 8 times the
optimal objective of problem (56).

Proof. The proof is similar to the proof of Theorem 8, except
that we note that every task j that is assigned to the
lth interval, i.e., (τl−1, τl) will have been released by τl−1
because τl−1 > τl > tRjr + pjr > tRjr.

We see that Theorem 3, the corresponding corollaries,
as well as Theorem 7 can be proved for this case as well.
Additionally, we can accommodate both task release times
and communication times by scheduling tasks in the non-

decreasing order of
tRjr+pjr
wj

in Step 2 of m-WSPT proposed
in Section 4.4.

5.3 With Sequence-dependent Communication Times

5.3.1 Modified Channel Model and Problem Formulation

In a more practical model of a communication channel with
finite channel capacity, the input data is communicated
to the scheduled processor one task at a time. To extend
STUBR to this more complicated scenario, we introduce the
following new decision variables:

xjrpl :=

1 task j is communicated at interval p

to processor r and executed at interval l,
0 otherwise,

(63)

We define communication times for a task j on a proces-
sor r as

cjr :=

{
cj if r ∈ C,
0 otherwise,

(64)

It should be noted that, under this channel model, the re-
lease time of a task j at the local device is tRj , but the release
time of the task at a cloud processor is now determined
by the sequence in which tasks are communicated to this
processor.

5.3.2 Relaxed Solution

Incorporating (63), (64), and the consideration of sequence-
dependent communication times into the first step of
STUBR, we first solve the following optimization problem
to obtain an LP-relaxed solution.

min
{xjrpl}

N∑
i=1

∑
j∈Ji

wj
∑
r∈Ri

L∑
l=1

τl−1

L∑
p=1

xjrpl, (65)

s.t.
L∑
l=1

∑
r∈Ri

l∑
p=1

xjrpl = 1, ∀i ∈ {1, . . . , N}, j ∈ Ji,

(66)
N∑
i=1

∑
j∈Ji

l∑
p=1

pjrxjrpl ≤ τl, ∀r ∈ R, l ∈ {1, . . . , L},

(67)
N∑
i=1

∑
j∈Ji

L∑
l=p

cjxjrpl ≤ τp, ∀r ∈ C, p ∈ {1, . . . , L},

(68)∑
j∈Ji

∑
r∈Ri

L∑
l=1

L∑
p=1

bjrxjrl ≤ Bi, ∀i ∈ {1, . . . , N},

(69)
L∑
l=1

xjrpl = 0, if τp < tRj + cj ,∀i ∈ {1, . . . , N},

j ∈ Ji, r ∈ C, p ∈ {1, . . . , L}, (70)
L∑
p=1

xjrpl = 0, if τl < tRj + pjr,

∀i ∈ {1, . . . , N}, j ∈ Ji, r /∈ C, l ∈ {1, . . . , L}, (71)

xjrpl = 0, if τl < τp−1 + pjr and τp > tRj + cj ,

∀i ∈ {1, . . . , N}, j ∈ Ji, r ∈ C,
p ∈ {1, . . . , L}, l ∈ {1, . . . , L}, (72)

xjrpl = 0, if Bi < bjr, ∀i ∈ {1, . . . , N},
j ∈ Ji, r ∈ R, l ∈ {1, . . . , L}, p ∈ {1, . . . , L}, (73)
xjrpl ≥ 0, ∀i ∈ {1, . . . , N},

j ∈ Ji, r ∈ R, l ∈ {1, . . . , L}, (74)

Constraint (96) enforces that for each interval p the total
load on the channel cannot exceed τp. Equations (98) and
(99) ensure that individual tasks do not exceed the τl and
τp separately. Constraint (100) ensures that a task cannot be
communicated in p and executed in l even if the task can be
communicated by τp but it cannot be executed by τl.

5.3.3 Rounded Solution

We convert the LP-solution xjrpl,∀j, r to

yjr′ =
L∑
p=1

xjrpl (75)

where each (r, l) pair is viewed as a single virtual processor
r′, and

zjr̂ =
L∑
l=1

xjrpl (76)

10

where each (r, p) pair is viewed as a single virtual proces-
sor r̂. We then apply the rounding technique proposed in
Section 4.2 to both yjr′ and zjr̂ separately.

Lemma 10. With the rounded solution, the total processing time
of all tasks for every r′ ∈ R′ and interval l ∈ {1, . . . , L} cannot
be worse than 2τl, i.e., constraint (95) is violated by at most τl.

Proof. From inequality (24) of Lemma 1 and using constraint
(95), we can see that for each r′ ∈ R′,

kr′∑
s=2

pmax
r′s ≤

N∑
i=1

∑
j∈Ji

pjr′yjr′ (77)

≤
N∑
i=1

∑
j∈Ji

L∑
p=1

pjr′yjr′ ≤ τl. (78)

Furthermore, pmax
r′1 ≤ τl,∀r′, from (99), (100) and (102).

Hence, we have
N∑
i=1

∑
j∈Ji

L∑
p=1

pjrxjrpl ≤ 2τl, ∀r ∈ R, l = {1, . . . , L}. (79)

Lemma 11. With the rounded solution, the total communication
time of all tasks for every r̂ ∈ R̂ and interval p ∈ {1, . . . , L}
cannot be worse than 2τp, i.e., constraint (96) is violated by at
most τp.

Proof. For each machine node vr′s, let the maximum possi-
ble communication time be

cmax
r̂s = max

j:(vr̂s,uj)∈E
cj , (80)

and minimum possible communication time be

cmin
r̂s = min

j:(vr̂s,uj)∈E
cj . (81)

From inequality (24) of Lemma 1 and using constraint (96),
we can see that for each r̂ ∈ R̂,

kr̂∑
s=2

pmax
r̂s ≤

N∑
i=1

∑
j∈Ji

cjr̂zjr̂ (82)

≤
N∑
i=1

∑
j∈Ji

L∑
l=1

cjr̂zjr̂ ≤ τp. (83)

Furthermore, cmax
r̂1 ≤ τp,∀r̂, from (98) and (102). Hence, we

have
N∑
i=1

∑
j∈Ji

L∑
l=1

cjxjrpl ≤ 2τp, ∀r ∈ R, p = {1, . . . , L}. (84)

Theorem 12. The objective value of the rounded solution ob-
tained from the integer matching x cannot be worse than 32 times
the optimal objective of problem (93).

Proof. We define new communication intervals τp :=
2(p+1) = 4τp, similar to Theorem 2. We can easily show
using Lemma 11 that every task j assigned to finish com-
munication in the pth interval may be run entirely within
interval (τp−1, τp). Thus, the actual release time of these
tasks at the cloud processors is τp.

We also define new execution intervals τl := 2(l+3).
We can easily show using Lemma 10 that every task j
assigned to finish communication in the lth interval may
be run entirely within interval (τl−1, τl). Every task j that is
assigned to the lth interval will have been released by τl−1
because

τl−1 = 8τl > 8τp−1 + 4pjr > 8τp−1 > 4τp (85)

If task j is scheduled to complete in interval l, we have

Orelax
j = wj2

l−2 (86)

Similarly, for the rounded solution, we have

Oround
j ≤ wj2l+3 (87)

≤ wj2l−225 (88)

≤ 32Orelax
j . (89)

This implies that

N∑
i=1

∑
j∈Ji

Oround
j ≤

N∑
i=1

∑
j∈Ji

32Orelax
j . (90)

Thus, we see that the rounded objective value is at most
32 times the relaxed solution, and hence, at most 32 times the
optimal objective of problem (56) since the relaxed solution
by definition returns an objective value that is below the
optimal objective.

Theorem 3 and the corresponding corollaries on budget
violation can be trivially extended for this case since the
costs are only dependent on task processing times.

5.3.4 Dealing with Budget Violation
We apply the same budget resolution technique proposed in
Section 4.3 in order to ensure that individual user budgets
are met. Consequently, along the lines of Theorem 7, we can
prove the following.

Theorem 13. The objective value of the final solution is at most
2dlog2(2+

1
a)e+3 times the optimal solution, where a = mini,r αir

is the minimum value of speed-up factor in the system.

Proof. Similar to Theorem 7, we can show that after moving
a task belonging to user i back to the local device, the local
total processing time will be at most (2 + 1

a)τl, where a =
mini,r αir is the minimum value of speed-up factor. In other
words, we now have, using (95),

N∑
i=1

∑
j∈Ji

L∑
p=1

pjrxjrpl ≤ (2 +
1

a
)τl, ∀r ∈ R, l = {1, . . . , L}.

(91)
We need to redefine τl defined in Theorem 12 such that
every task that is assigned to the lth interval is available for
processing by τl−1 and may be run entirely within the inter-
val (τl−1, τl). Towards this end, we set x = log2

(
2 + 1

a

)
+ 1,

and τl = 2x+l.
We now get, for every task j,

Oround
j

Orelax
j

≤ wj
τl
τl−1

≤ 2x+2 ≤ 2log2(2+ 1
a)+3. (92)

Thus, the objective value of the final solution is at most
2dlog2(2+

1
a)e+3 times the optimal solution.

11

Remark 3. Even though the proven worst-case bounds look large,
from the trace-driven simulation results in Section 6, we see that
the performance of STUBR in practice is no worse than 4 times
the relaxed solution and consequently the optimal, for all models
and cases considered.

We do not apply the modified WSPT ordering here as the
release times on processors depend on the sequence of tasks
transmitted, and we cannot trivially extend this technique
to improve performance for this case.

For all of the extensions described in this section, using
similar arguments as in Section 4.5, it can be verified that
the STUBR algorithm always provides a feasible solution
and has worst-case time complexity O((P 2L)3.5).

5.4 Online Implementation
We next address the online problem where tasks arrive
randomly over time. In other words, the release times of
the tasks are not known in advance, and we assume that
we know the processing and communication times, i.e., tj
and cj of a task j only once it has been released. Toward
this goal, we will modify the offline STUBR algorithm and
use it as a recurring component of our online solution. We
use the case of sequence-dependent communication times
as example, but the proposed method can be modified to
suit other scenarios.

5.4.1 STUBR Subroutine
The online implementation is an iterative algorithm that
runs an offline subroutine at each iteration l, where each
iteration corresponds to each computation interval. The
offline subroutine tries to identify the subset of tasks that
maximizes the total weight of the released but unscheduled
tasks. For each user i ∈ {1, . . . , N} and iteration l, let Til
be the released but unscheduled tasks and Bil ≤ Bi be the
budget allocated. The following optimization gives us an
LP-relaxed solution to this problem for a particular interval
l:

min
{xjrps}

N∑
i=1

∑
j∈Til

wj
∑
r∈Ri

τl−1

L∑
p=1

xjrpl, (93)

s.t.
∑
r∈Ri

l∑
p=1

xjrpl = 1, ∀i ∈ {1, . . . , N}, j ∈ Til, (94)

N∑
i=1

∑
j∈Til

l∑
p=1

pjrxjrpl ≤ τl, ∀r ∈ R, (95)

N∑
i=1

∑
j∈Til

cjxjrpl ≤ τp, ∀r ∈ C, p ∈ {1, . . . , L},

(96)∑
j∈Til

∑
r∈Ri

L∑
p=1

bjrxjrpl ≤ Bil, ∀i ∈ {1, . . . , N},

(97)

xjrpl = 0, if τp < tRj + cj ,∀i ∈ {1, . . . , N},
j ∈ Til, r ∈ C, p ∈ {1, . . . , L}, (98)
L∑
p=1

xjrpl = 0, if τl < tRj + pjr,

TABLE 3: Task Characteristics

Application Input Computation Arrival Rate

Chess 2 MBytes 10 MFLOPs 1 task/sec
Compute-intensive 8 MBytes 100 MFLOPs 0.5 task/sec

∀i ∈ {1, . . . , N}, j ∈ Til, r /∈ C, (99)

xjrpl = 0, if τl < τp−1 + pjr and τp > tRj + cj ,

∀i ∈ {1, . . . , N}, j ∈ Til, r ∈ C,
p ∈ {1, . . . , L}, (100)

xjrpl = 0, if Bil < bjr, ∀i ∈ {1, . . . , N},
j ∈ Til, r ∈ R, p ∈ {1, . . . , L}, (101)
xjrpl ≥ 0, ∀i ∈ {1, . . . , N}, j ∈ Til, r ∈ R. (102)

To this relaxed solution, we apply the rounding tech-
nique proposed in Section 5.3.3, and deal with budget
violation as proposed in Section 5.3.4. This gives us a subset
of tasks to schedule during iteration l. We expect that this
would help increase the

∑
j wjτl−1 term for interval l in the

original objective.

5.4.2 Implementation Steps

The main steps of our online implementation are as follows:
1) Divide the time horizon into intervals (τl−1, τl), as

defined in Section 4.
2) Set Bi1 = Bi for every user i.
3) At the end of each interval l, i.e., time instant τl, identify

the set of tasks Til for every user i.
4) Run the STUBR subroutine (given in Section 5.4.1) to

identify the subset of tasks that maximizes the total
weight of the tasks.

5) Mark these subset of tasks as scheduled.
6) Calculate the resulting cost Ci, and set Bi(l+1) = Bil −
Ci for every user i.

7) Repeat Steps 3-6 until all tasks are scheduled.
The above online algorithm terminates once all tasks have
been scheduled and there is no more task arrival. Intuitively,
it greedily maximizes the weight of tasks assigned to earlier
intervals, resulting in smaller weighted sum completion
time.

6 TRACE-DRIVEN SIMULATION

In addition to the worst-case bounds derived in Sections
4 and 5, in this section, we investigate the performance of
STUBR, using trace-driven simulation. We study the effect of
user budget and number of tasks on algorithm performance.
We evaluate STUBR for the model with release times and
fixed communication times described in Section 5.2, and
for the model with sequence-dependent release times and
communication times described in Section 5.3.

6.1 Traces and Parameter Setting

In [34], the authors conducted experiments on different
applications, and provided task characteristics in terms of
input data, computation need, and arrival rates. We provide
these details in Table 3, for the chess and compute-intensive

12

0 1 2 3 4 5 6

User budget

20

40

60

80

100

120

140

160

180

W
e
ig

h
te

d
 s

u
m

 c
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

STUBR

Local processing

Greedy

Comm. sensitive

Rounded infeasible

Lower bound

(a) Effect of user budget

8 9 10 11 12 13 14 15 16
Number of tasks per user

0

100

200

300

400

500

600

W
ei

gh
te

d
su

m
 c

om
pl

et
io

n
tim

e
(s

)

STUBR
Local processing
Greedy
Comm. sensitive
Rounded infeasible
Lower bound

(b) Effect of the number of tasks per user

Fig. 2: For chess application on Galaxy S5.

0 5 10 15 20 25 30
User budget

50

100

150

200

250

300

350

400

450

500

550

W
ei

gh
te

d
su

m
 c

om
pl

et
io

n
tim

e
(s

)

STUBR
Local processing
Greedy
Comm. sensitive
Rounded infeasible
Lower bound

(a) Effect of user budget

8 9 10 11 12 13 14 15 16

Number of tasks per user

0

200

400

600

800

1000

1200

1400

1600

W
e
ig

h
te

d
 s

u
m

 c
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

STUBR

Local processing

Greedy

Comm. sensitive

Rounded infeasible

Lower bound

(b) Effect of the number of tasks per user

Fig. 3: For compute intensive application on Nexus 10.

applications considered. Additionally, they consider differ-
ent mobile devices with varying computational capacities.
We use these traces from this paper in order to test our
proposed algorithm as follows:

1) We take the computation need and input data given in
[34] as mean, and allow a maximum of±50 % variation.
In other words, we randomly pick these values from a
uniform distribution in (50% mean, 150% mean).

a) We calculate the mean local processing time tj of
tasks.

b) We calculate the mean communication time of a
task by dividing the input data (in MBytes) by the
available data rate, which is 20 Mbps from [34].

2) We pick the release time values from a uniform distri-
bution in the range (0, number of tasks

arrival rate (in task/sec)).
3) We pick the task weights from a uniform distribution

in the range (0,1).
4) We run multiple randomized iterations (for different

values of input data and computation) for each param-
eter setting, and take the average among them to plot

each point on the graph.
We run our simulation using MATLAB R2016b, and utilize
the CVX programming package to solve our linear pro-
grams.

6.2 Comparison Targets

We use the following targets for comparison with STUBR
algorithm:

• Lower bound: This is the relaxed solution obtained
from Section 4.1.

• Rounded infeasible: This is the solution obtained from
Section 4.2, without dealing with budget violation.
We also perform a modified WSPT, proposed in Sec-
tion 4.4, on this solution. Hence, this solution has an
objective value that is a constant times the optimal,
but may violate the user budgets.

• Greedy: All tasks are sorted in the non-decreasing
order of weighted local processing time tj

wj
for all

j, and each task is scheduled in this order onto the

13

0 1 2 3 4 5 6

User budget

20

40

60

80

100

120

140

160

180

200
W

e
ig

h
te

d
 s

u
m

 c
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

STUBR

Local processing

Greedy

Comm. sensitive

Rounded infeasible

Lower bound

(a) Effect of user budget

10 12 14 16 18 20
Number of tasks per user

0

200

400

600

800

1000

1200

1400

1600

W
ei

gh
te

d
su

m
 c

om
pl

et
io

n
tim

e
(s

)

STUBR
Local processing
Greedy
Comm. sensitive
Rounded infeasible
Lower bound

(b) Effect of the number of tasks per user

Fig. 4: For chess application on Galaxy S5.

0 1 2 3 4 5 6
User budget

0

100

200

300

400

500

600

W
ei

gh
te

d
su

m
 c

om
pl

et
io

n
tim

e
(s

)

STUBR
Local processing
Greedy
Comm. sensitive
Rounded infeasible
Lower bound

(a) Effect of user budget

10 12 14 16 18 20

Number of tasks per user

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

W
e
ig

h
te

d
 s

u
m

 c
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

STUBR

Local processing

Greedy

Comm. sensitive

Rounded infeasible

Lower bound

(b) Effect of the number of tasks per user

Fig. 5: For compute intensive application on Nexus 10.

processor where it meets its user’s budget and has
the fastest processing time.

• Local processing: All tasks are scheduled locally, and
ordered in the non-decreasing order of weighted

local processing time
tRj +tj
wj

for all j. This would illus-
trate the benefits of offloading using our algorithm.

• Comm. sensitive: All tasks are sorted in the non-
decreasing order of communication cj for all j, and
each task is scheduled in this order onto the pro-
cessor where it meets its user’s budget and has the
fastest processing time. This method of sorting tries
to offload the tasks that have shorter communication
times thereby decreasing the overall contribution of
communication time to the objective.

6.3 For Release Times and Fixed Communication
Times

In this section, we evaluate STUBR for the model with
release times and fixed communication times described in

Section 5.2, for chess and compute-intensive applications
presented in [34].

In Figures 2a and 2b, we consider three Galaxy S5 users
and chess applications. We consider a five-processor cloud
with speed-up factors αi1 = 0.5, αi2 = αi3 = 0.1, and
αi4 = αi5 = 0.2 for every user i. We set the processor prices
as β1 = 0.5, β2 = β3 = 3, and β4 = β5 = 2. This parameter
setting ensures that the users will have to pay a higher price
to use a faster processor.

For Figure 2a, we consider users with equal budget, and
constant number of tasks |J1| = 5, |J2| = 5, and |J3| = 10.
This allows us to study the impact of user budget on the
weighted sum completion time and algorithm performance.
We see that as the user budget increases, the weighted sum
completion time decreases as expected. We also see that the
STUBR curve appears to plateau beyond a particular value
of budget that is large enough to offload all tasks to the
fastest processors. On the other hand, for tighter values of
budget, we see that the STUBR curve coincides with the lo-
cal execution curve. Additionally, we also note that the gap

14

2 3 4 5 6
Number of users

0

50

100

150

200

250

300
W

ei
gh

te
d

su
m

 c
om

pl
et

io
n

tim
e

(s
)

STUBR
Local processing
Greedy
Comm. sensitive
Rounded solution
Lower bound

(a) For chess application on Galaxy S5.

2 3 4 5 6
Number of users

0

100

200

300

400

500

600

700

800

W
ei

gh
te

d
su

m
 c

om
pl

et
io

n
tim

e
(s

)

STUBR
Local processing
Greedy
Comm. sensitive
Rounded solution
Lower bound

(b) For compute intensive application on Nexus 10.

Fig. 6: Effect of number of users

between STUBR and the rounded solution decreases with
increasing budget until eventually the STUBR curve meets
the rounded solution curve. This illustrates that the amount
of budget violation decreases with increasing budget, and
consequently, the STUBR solution approaches the rounded
solution.

In Figure 2b, we observe the impact of the number of
tasks per user, for user budgets B1 = B2 = B3 = 5. The
total weighted completion time increases with increasing
number of tasks per user (and total number of tasks) as
expected. We see that the performance gap between STUBR
and other schemes increases with increasing number of
tasks, indicating that STUBR is more scalable.

In Figures 3a and 3b, we consider three Nexus 10 users
running compute-intensive applications (as described in
[34]). We consider the same five-processor simulation setup
as that of Figures 2a and 2b. For Figure 3a, we consider
constant number of tasks |J1| = 5, |J2| = 5, and |J3| = 10.
For Figure 3b, we set B1 = B2 = B3 = 20. We again see
that STUBR provides superior performance and scales well.

6.4 For Sequence-dependent Communication Times
We now consider the model with sequence-dependent re-
lease times and communication times described in Section
5.3. In Figures 4 and 5, we use the same simulation setting
from Section 6.3 for the modified channel model and STUBR
proposed in Section 5.3.

Interestingly, we observe that STUBR performs bet-
ter than even the rounded solution for some samples.
This happens because moving tasks to the local device
may significantly reduce task completion times in some
cases because of the reduction of sequence-dependent re-
lease/communication times, particularly when these domi-
nate the processing times. Furthermore, STUBR outperforms
all other alternatives for both chess and compute-intensive
applications. In fact, the performance gap between STUBR
and other alternatives is even greater than for the fixed
communication case. It is also interesting to note that the
communication sensitive scheme performs better than the
greedy scheme for this sequence-dependent communication

model since the communication times now contribute more
to the overall objective. In some cases, we see that greedy
and communication sensitive schemes may even increase
with increase in user budget, because of the naive nature of
these schemes that causes the initial tasks to use up all of
the budget and do not take release times into account while
making scheduling decisions. We again see that STUBR
scales well with increase in number of tasks per user.

In Figure 6, we study the impact of number of users
on algorithm performance. We consider the same five-
processor simulation setup as that of Figures 4 and 5, for
user budgets Bi = 5 and number of tasks |Ji| = 5, for
every user i. We see that STUBR still outperforms all other
alternatives for both chess and compute-intensive applica-
tions, for the entire range of number of users considered.
We restrict it to a maximum of six users for the purposes
of simulation, but we can see that STUBR scales well with
increasing number of users. Additionally, we see that the
gap between STUBR and other alternatives increases as
the number of users increases, which further validates the
relative superiority of STUBR.

7 CONCLUSION AND FUTURE WORK

We have studied a multi-user computational offloading
problem, for a system consisting of a finite-capacity cloud
with heterogeneous processors. The offloaded tasks incur
monetary cost for the cloud resource usage and each user
has a budget constraint. We have formulated the problem
of weighted-sum-completion-time minimization subject to
the user budget constraints. We have formulated a problem
to minimize the weighted sum completion time subject to
the user budget constraints. The proposed STUBR algorithm
relaxes, rounds, and resolves budget violations, and it sorts
the tasks to obtain an effective solution. We have also
obtained interesting performance bounds for both the un-
derlying rounded solution and the budget-resolved solution
for different release-time and communication-time models.
Through simulation using real-world application traces, we
have observed that STUBR is scalable and substantially

15

outperforms the existing alternatives especially for larger
systems.

A possible future research direction is to account for
explicit task dependencies in the formulation. Additionally,
the consideration of multiple types of computing resource in
task scheduling is a challenging but important problem [44],
[45]. For example, the memory requirements of the tasks and
the memory capacity of the processors may be considered.
Additionally, we may consider different pricing and budget
schemes as an extension to the linear scheme considered in
this paper.

REFERENCES

[1] S. Sundar, J. P. Champati, and B. Liang, “Completion time min-
imization in multi-user task scheduling with heterogeneous pro-
cessors and budget constraints,” in Proc. IEEE/ACM International
Symposium on Quality of Service (IWQoS), Short Paper, 2018.

[2] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud com-
puting: A survey,” Future Gener. Comput. Syst., vol. 29, no. 1, pp.
84–106, Jan 2013.

[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for VM-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, Oct. 2009.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proc. MCC workshop on
Mobile cloud computing, 2012.

[5] E. G. Specification, “Mobile edge computing (mec); framework
and reference architecture,” ETSI GS MEC 003 V1.1.1, vol. 3, 2016.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[7] B. Liang, “Mobile edge computing,” in Key Technologies for 5G
Wireless Systems, V. W. S. Wong, R. Schober, D. W. K. Ng, and
L.-C. Wang, Eds., Cambridge University Press, 2017.

[8] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in Proc. ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2010.

[9] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling
policy for collaborative execution in mobile cloud computing,”
in Proc. IEEE International Conference on Computer Communications
(INFOCOM), 2013.

[10] Y.-H. Kao and B. Krishnamachari, “Optimizing mobile compu-
tational offloading with delay constraints,” in Proc. IEEE Global
Communication Conference (Globecom), 2014.

[11] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent
tasks for computation-intensive applications in mobile cloud com-
puting,” in Proc. IEEE INFOCOM Workshop on Computer Communi-
cations, pp. 352–357, 2014.

[12] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes:
Latency optimal task assignment for resource-constrained mobile
computing,” IEEE Transactions on Mobile Computing, 2017.

[13] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal com-
putation task scheduling for mobile-edge computing systems,”
in Proc. IEEE International Symposium on Information Theory (ISIT),
2016.

[14] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[15] V. Cardellini, V. D. N. Personé, V. Di Valerio, F. Facchinei, V. Grassi,
F. L. Presti, and V. Piccialli, “A game-theoretic approach to com-
putation offloading in mobile cloud computing,” Mathematical
Programming, vol. 157, no. 2, pp. 421–449, 2016.

[16] M.-H. Chen, B. Liang, and M. Dong, “Multi-user multi-task of-
floading and resource allocation in mobile cloud systems,” arXiv
preprint arXiv:1803.06577, 2018.

[17] M.-H. Chen, M. Dong, and B. Liang, “Resource sharing of a
computing access point for multi-user mobile cloud offloading
with delay constraints,” IEEE Transactions on Mobile Computing,
2018.

[18] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud
with computing access point,” in Proc. IEEE Conference on Computer
Communications (INFOCOM), 2017.

[19] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint
radio and computational resource management for multi-user
mobile-edge computing systems,” IEEE Transactions on Wireless
Communications, vol. 16, no. 9, pp. 5994–6009, 2017.

[20] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,”
in Proc. IEEE International Conference on Computer Communications
(INFOCOM), 2016.

[21] S. Sundar and B. Liang, “Offloading dependent tasks with commu-
nication delay and deadline constraint,” in Proc. IEEE Conference
on Computer Communications (INFOCOM), 2018.

[22] S. K. Panda and P. K. Jana, “Efficient task scheduling algorithms
for heterogeneous multi-cloud environment,” The Journal of Super-
computing, vol. 71, no. 4, pp. 1505–1533, 2015.

[23] M. Mao and M. Humphrey, “Scaling and scheduling to maximize
application performance within budget constraints in cloud work-
flows,” in Proc. International Symposium on Parallel & Distributed
Processing (IPDPS), 2013.

[24] J. Yan, S. Bi, and Y. A. Zhang, “Optimal offloading and resource
allocation in mobile-edge computing with inter-user task depen-
dency,” in 2018 IEEE Global Communications Conference (GLOBE-
COM), 2018, pp. 1–8.

[25] Z. Kuang, Y. Shi, S. Guo, J. Dan, and B. Xiao, “Multi-user offload-
ing game strategy in ofdma mobile cloud computing system,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 12, pp. 12 190–
12 201, 2019.

[26] D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms, 1st ed. New York, NY, USA: Cambridge University
Press, 2011.

[27] C. Mateos, E. Pacini, and C. G. Garino, “An ACO-inspired algo-
rithm for minimizing weighted flowtime in cloud-based parame-
ter sweep experiments,” Advances in Engineering Software, vol. 56,
pp. 38–50, 2013.

[28] Z. Zhou and H. Zhigang, “Task scheduling algorithm based on
greedy strategy in cloud computing,” The Open Cybernetics &
Systemics Journal, vol. 8, no. 1, pp. 111–114, 2014.

[29] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted
completion time of coflows in datacenter networks,” in Proc. ACM
Symposium on Parallelism in Algorithms and Architectures, 2015.

[30] B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling coflows of
multi-stage jobs to minimize the total weighted job completion
time,” in Proc. IEEE Conference on Computer Communications (IN-
FOCOM), 2018.

[31] S. Khuller, J. Li, P. Sturmfels, K. Sun, and P. Venkat, “Select
and permute: An improved online framework for scheduling to
minimize weighted completion time,” Theoretical Computer Science,
vol. 795, pp. 420–431, 2019.

[32] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, “Scheduling to
minimize average completion time: Off-line and on-line approx-
imation algorithms,” Mathematics of Operations Research, vol. 22,
no. 3, pp. 513–544, 1997.

[33] P. Crescenzi and V. Kann, “Approximation on the web: A com-
pendium of np optimization problems,” in Proc. International Work-
shop on Randomization and Approximation Techniques in Computer
Science, 1997.

[34] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,”
in IEEE Proc. International Conference on Cloud Computing (CLOUD),
2015.

[35] Y. Kim, J. Kwak, and S. Chong, “Dual-side dynamic controls for
cost minimization in mobile cloud computing systems,” in Proc.
International Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks (WiOpt), 2015.

[36] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation
offloading in green mobile edge cloud computing,” IEEE Transac-
tions on Services Computing, vol. 12, no. 5, pp. 726–738, 2019.

[37] Q. Zhu and G. Agrawal, “Resource provisioning with budget
constraints for adaptive applications in cloud environments,” in
Proc. ACM International Symposium on High Performance Distributed
Computing, 2010.

[38] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and cloud,”
in Proc. ACM Conference on Computer Systems, 2011.

16

[39] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in Proc. IEEE International Conference
on Computer Communications (INFOCOM), 2012.

[40] D. B. Shmoys and É. Tardos, “An approximation algorithm for
the generalized assignment problem,” Mathematical Programming,
vol. 62, no. 1-3, pp. 461–474, 1993.

[41] W. E. Smith, “Various optimizers for single-stage production,”
Naval Research Logistics, vol. 3, no. 1-2, pp. 59–66, 1956.

[42] N. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming,” in Proc. ACM Symposium on Theory of Computing, 1984.

[43] H. W. Kuhn, “The hungarian method for the assignment prob-
lem,” Naval Research Logistics, vol. 2, no. 1-2, pp. 83–97, 1955.

[44] W. Wang, B. Liang, and B. Li, “Multi-resource fair allocation in
heterogeneous cloud computing systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 10, pp. 2822–2835, 2014.

[45] W. Wang, B. Li, B. Liang, and J. Li, “Multi-resource fair sharing for
datacenter jobs with placement constraints,” pp. 1003–1014, 2016.

Sowndarya Sundar Sowndarya Sundar is cur-
rently a Research Scientist at Ford Greenfield
Labs, working on continual learning and com-
puter vision problems for connected vehicles.
She completed her PhD in Electrical and Com-
puter Engineering at the University of Toronto,
Canada, where she worked on the design and
analysis of algorithms to solve optimization prob-
lems in cloud computing. She obtained her Mas-
ters of Applied Sciences degree from the Uni-
versity of Toronto, and Bachelor of Engineering

degree from Anna University, India. She has been a recipient of multiple
research scholarships including the Natural Sciences and Engineering
Research Council of Canada postgraduate scholarships, Queen Eliz-
abeth II Graduate Scholarships in Science & Technology, and Ontario
Graduate Scholarships.

Jaya Prakash Champati Jaya Prakash Cham-
pati is currently a post-doctoral researcher from
the division of Information Science and Engi-
neering, EECS, KTH Royal Institute of Technol-
ogy, Sweden. In September 2020, he will be
joining IMDEA Networks Institute, Spain, as an
Assistant Professor. His general research inter-
est is in the design and analysis of algorithms
for scheduling problems that arise in networking
and information systems. Currently, his focus is
on the analysis and optimization of delay and

freshness in networked systems to support emerging applications from
Cyber-Physical Systems (CPS), Internet of Things (IoT), and edge
computing systems. He finished his PhD in Electrical and Computer
Engineering, University of Toronto, Canada in 2017. He obtained his
master of technology degree from Indian Institute of Technology (IIT)
Bombay, India, and bachelor of technology degree from National In-
stitute of Technology Warangal, India. Prior to joining PhD, he worked
at Broadcom Communications, where he was part of developing LTE
MAC layer. He was a recipient of the best paper award at IEEE National
Conference on Communications, 2011.

Ben Liang Ben Liang received honors-
simultaneous B.Sc. (valedictorian) and
M.Sc. degrees in Electrical Engineering from
Polytechnic University (now the engineering
school of New York University) in 1997 and
the Ph.D. degree in Electrical Engineering with
a minor in Computer Science from Cornell
University in 2001. He was a visiting lecturer
and post-doctoral research associate at Cornell
University in the 2001 - 2002 academic year.
He joined the Department of Electrical and

Computer Engineering at the University of Toronto in 2002, where he is
now Professor and L. Lau Chair in Electrical and Computer Engineering.
His current research interests are in networked systems and mobile
communications. He is an associate editor for the IEEE Transactions
on Mobile Computing and has served on the editorial boards of the
IEEE Transactions on Communications, the IEEE Transactions on
Wireless Communications, and the Wiley Security and Communication
Networks. He regularly serves on the organizational and technical
committees of a number of conferences. He is a Fellow of IEEE and a
member of ACM and Tau Beta Pi.

