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Abstract—We consider the maximization of α-fair utility in a
generalized spatial Aloha network consisting of multiple tiers of
transmitter-receiver (T-R) pairs each forming a Poisson bipolar
process. The tiers are distinguished by transmission power and
the T-R distance. Multi-rate communication between the T-R
pairs is facilitated by multiple received signal-to-interference
ratio (SIR) thresholds. We aim to optimize the transmission
probability of each tier. This results in a complex non-convex
optimization problem due to intra-tier and cross-tier interference.
We propose a solution termed Minorize-Maximization with Tier
Separation (MMTS), through designing an iterative sequence
of lower bound problems that can be decomposed into tier-
separable one-dimensional convex optimization problems and
solved efficiently. Specific solutions are derived for the cases
0 ≤ α < 1, α = 1, and α > 1. We show the convergence
of MMTS to the objective value of a Karush-Kuhn-Tucker
(KKT) point of the original problem and further identify several
conditions under which it finds the global optimum. Numerical
results demonstrate the near optimality of MMTS and substantial
performance advantage over existing alternatives.

Index Terms—Spatial Aloha networks, utility maximization,
transmission probability, minorize-maximization, tier separation.

I. INTRODUCTION

Direct transmission between devices in proximity is a well
promoted paradigm to allow ad hoc network access and to
increase wireless spectrum utilization [1]. In particular, device-
to-device communication has become an important aspect of
next-generation wireless standardization [2]. One of the main
challenges in direct communication among devices is how to
allocate the common wireless spectrum in an efficient and fair
manner over a large-scale network, such as in the Internet-of-
Things environment.

Utility maximization in random access networks has re-
ceived much attention in the literature. The authors of [3]
first studied the problem of maximizing network α-fair utility
for α > 1 using the protocol model. They showed that the
problem can be recast as a convex optimization problem and
proposed a distributed scheduling based on Lagrangian dual
decomposition. Then [4] further proposed a method based on
coordinate descent to solve the utility maximization problem
by observing that the problem is convex in the transmission
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probability of each T-R pair separately for all α values. In
addition, [5] studied the utility maximization problem in the
single signal-to-interference-plus-noise ratio (SINR)-threshold
model instead of the protocol model, and show that the single
SINR threshold model yields higher throughput. However,
these works all required that the exact position of each node
is known, which may be difficult to obtain. This inspires
researchers to study random access networks with a random
topology defined only by its statistics.

In the presence of a large number of direct communication
pairs, acquiring the exact topology information is a prohibitive
task, especially in networks with high mobility. Thus, research
on wireless network models with random topology has drawn
much attention. In the celebrated spatial Aloha model [6],
only statistical information of the topology is available. Each
transmitter in the network randomly transmits following the
slotted Aloha medium access control (MAC) protocol. Both
the Poisson point process (PPP) and Poisson bipolar process
(PBP) are commonly used to model the location of transmitters
and receivers in spatial Aloha networks. In the PBP model, the
transmitters form a PPP, and each transmitter is paired with a
dedicated receiver at some distance away.

An interesting design problem in spatial Aloha networks is
to optimize the transmission probability. This is a challenging
problem, often with a non-convex objective function due to
signal interference. In [6]–[11], this problem is studied where
all transmitters are assumed to use the same transmission prob-
ability if the exact location of nodes is unknown. This model is
suitable only when the network is uniform. In many practical
scenarios, the transmitters may have different powers and the
T-R distance may be different for different T-R pairs, so that
the transmitters should use different transmission probabilities.
Some previous studies have addressed this problem in static
Aloha networks [3]–[5], [12]–[14], but none of them allows
randomness in the network topology.

Furthermore, most existing works assume single-rate com-
munication either based on a single received SIR threshold
[5]–[11], such that the data rate is log(1 + Th) if the received
SIR is above some threshold Th, and is zero otherwise; or
based on the “protocol model” [3], [4], [12]–[14] wherein
the data rate is some fixed term if the nearby transmitters
do not transmit. In terms of physical implementation, both
cases correspond to the usage of only a single modulation-
coding scheme at the transmitter. Such a model simplifies
mathematical analysis but has limited application in more
sophisticate multi-rate systems.

In this work, we extend the spatial Aloha model of [7]–[9]
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to the multi-tier, multi-rate regime. Each tier of the network is
defined by the power of the transmitters and the T-R distance.
We consider both intra-tier and inter-tier interference. We
also accommodate multi-rate communication through multiple
received SIR thresholds. We aim to optimize the transmission
probability of each tier, to maximize a general α-fair utility
function.

Our main contributions are as follows:
• We first derive a closed-form expression of the average

throughput of T-R pairs in each tier, which takes into
account the random location of multi-tier interferers and
multiple received SIR thresholds. This is then used in
the formulation of an optimization problem to maximize
the network-wide spatial α-fair utility, which is generally
non-convex.

• We propose a computationally efficient iterative algo-
rithm, termed Minorize-Maximization with Tier Separa-
tion (MMTS), to address this optimization problem. By
exploring the partial-convexity and partial-concavity of
the objective function when 0 ≤ α ≤ 1 and α > 1,
respectively, we develop special lower bounds to the
α-fair objective, which we dynamically update in each
iteration through solving an optimization sub-problem.
Furthermore, the lower bounds are designed so that these
sub-problems can be decomposed into one-dimensional
convex optimization problems that are separable accord-
ing to T-R tiers, which drastically reduces the computa-
tional complexity.

• We show that MMTS converges to the objective value of
a KKT point of the optimization problem. We further
provide various sufficient conditions under which the
KKT point is a global optimizer. Numerical evaluation
results demonstrate that MMTS is near optimal over a
wide range of parameter settings, and it substantially
outperforms existing alternatives.

The rest of the paper is organized as follows. In Section
II, we summarize the related work. In Section III, we present
the system model and formulate our optimization problem.
In Sections IV, we derive the average throughput of com-
munication pairs in different tiers. In Section V and VI, we
present MMTS and discuss its convergence and optimality,
respectively. In Section VII, we present numerical evaluation
results. Conclusions are drawn in Section VIII.

II. RELATED WORKS

There has been a large amount of research into ad hoc,
device-to-device, or direct-transmission networks that employ
the Aloha MAC protocol [3]–[21]. Among them, [3]–[5],
[12]–[14] consider a fixed transmitter/receiver topology, [6],
[17]–[21] use the PPP model, [7], [10], [11], [15], [16] use
the PBP model, while [8], [9] use the PBP model with
partial topology information. The networks in the latter three
groups are commonly termed spatial Aloha networks. In this
section, we briefly review works in optimizing transmission
probabilities in spatial aloha networks. We further describe
the Minorize-Maximization framework and its application in
communication systems.

TABLE I: Table of Notations

Notation Description
N Number of tiers
λn Intensity of PBP of transmitters in tier n
Rn T-R distance in tier n
Pn Transmission power of transmitter in tier n
pn Transmission probability of transmitter in tier n
γ Pathloss exponent
L Number of SIR thresholds to modulate the received signal
Tl lth SIR threshold
α Fairness index in the utility function

A. Spatial Aloha Networks

Several studies consider the optimization of transmission
probability in spatial Aloha [6]–[11]. However, in these works
all transmitters are assumed to use the same transmission
probability when the exact location of nodes is unknown.
In our work, we design different transmission probabilities
for different tiers of the network based on T-R distance and
transmission power. Our numerical results show that this can
lead to substantial performance improvement.

Furthermore, all of [6]–[11] use a simple single-rate com-
munication model based on a single received SIR threshold,
with [7] further considering the Shannon-rate upper bound,
while in this work we allow multiple SIR thresholds for
multi-rate communication between each T-R pair. Finally, the
performance objectives of these works are narrow: [6], [7],
[10], [11] focus on the sum throughput, while [8], [9] concern
the log utility. All of these objectives are special cases of the
general α-fair utility in this work.

B. Minorize-Maximization Framework

The Minorize-Maximization (MM) framework is not a
specific algorithm, but a general approach to construct an
algorithm. It has been used to efficiently solve some non-linear
optimization problems in wireless networking design [22],
[23]. One of its advantages is the avoidance of matrix inversion
in many cases, which reduces computational complexity. The
key design to apply MM in maximization problems is to
develop appropriate lower bounds for the objective that are
iteratively updated. Examples include Taylor series expansion
[22] and log functions [23]. In this work, we develop unique
lower bounds specific to α-fairness in spatial Aloha networks,
for different values of α. Unlike general MM-based heuristics,
these lower bounds are designed to be iteratively updated to
converge to the objective value of a KKT point of our utility
maximization problem. To our best knowledge, this is the first
time such a solution has been constructed under the general
MM framework.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe multi-tier, multi-rate spatial
aloha network. We further consider the fairness in the network,
and formulate the problem of maximizing the α-fair utility
of the network. Important notations throughout this paper are
summarized in Table I.
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Fig. 1: Multi-tier spatial Aloha network

A. Multi-tier Spatial Aloha Network

Consider a spatial random network in two-dimensional
Euclidean space consisting of multiple simple T-R pairs
with fixed transmission power, communicating over a shared
channel as illustrated in Fig.1. The T-R pairs are differentiated
into N tiers, defined by their transmission power and T-R
distance. Each tier independently forms a PBP, i.e., the tier n
transmitters form a PPP with intensity λn, denoted by ΦTx

n , and
each transmitter is associated with a receiver that is uniformly
randomly located on a circle of fixed radius Rn centered at
the transmitter. We observe that by this definition of the PBP,
the tier n receivers also form a PPP with intensity λn, since
they are i.i.d. marks of ΦTx

n .
Due to the large number of T-R pairs in the network, we

assume that each pair only acquires its own T-R distance,
transmission power, and spatial statistics of the interfering T-R
pairs. The T-R pairs employ the slotted Aloha MAC protocol
due to the lack of topology information [7]. The transmission
probability of each tier n transmitter is denoted by pn. Then,
the independent thinning property of a PPP implies that the
active transmitters in tier n is a PPP with intensity pnλn. We
denote by Pn the fixed transmission power of active tier n
transmitters.

Note that this N -tier spatial Aloha network model is gen-
eral. For example, if in practice the power of transmitters in a
tier becomes unequal, this tier can be further split into multiple
tiers such that the above definition of a tier is upheld. The total
number of tiers can be set large enough based on the required
precision of system modeling and analysis. In this work, our
analysis proceeds assuming that the tiers are already given.

B. Multiple SIR Thresholds and Average Throughput

The received power of the receiver located at y from the
transmitter located at x is given by

Pxy =
Pxhxy
|x− y|γ

, (1)

where Px is the transmission power, hxy is the channel power
gain under Rayleigh fading, and γ is the path loss exponent
where γ > 2. We assume that hxy is i.i.d. with unit mean and
independent of ΦTx

n for all n.
Because of spatial stationarity, we may focus on an arbitrary

T-R pair in tier n, termed the typical pair. We further assume
the transmitter and the receiver in the typical pair are situated

at xn0 and origin 0, respectively. Then, the SIR of the receiver
in the typical pair is given by

SIRn =

Pnhxn00

Rnγ∑N
k=1,k 6=n

∑
x∈ΦTx

k

Pkhx0

|x|γ +
∑

x∈ΦTx
n \{xn0}

Pnhx0

|x|γ
,

where Pnhxn00

Rnγ
is the received power at the DRx of the

typical pair,
∑

x∈ΦTx
n \{xn0}

Pnhx0

|x|γ is the interference from
other T-R pairs in the same tier as the typical pair, and∑N
k=1,k 6=n

∑
x∈ΦTx

k

Pkhx0

|x|γ is the interference from the T-R
pairs in the other tiers.

We assume the system is interference limited. The receivers
use L SIR thresholds to demodulate the received signal,
denoted by T = {T1, · · · , TL}. Without loss of generality,
we assume that Ti < Tj if i < j. We further assume that the
transmission rate is rl when a T-R pair’s SIR is between Tl and
Tl+1, and rL when the SIR is larger than or equal to TL. And
we set r0 = 0 for notational convenience. Since Tl > Tl−1, we
have rl > rl−1. In the above, we have normalized the channel
bandwidth to one.

The average throughput of the typical pair in tier n is given
by

rn = pn

[L−1∑
l=1

P(Tl ≤ SIRn < Tl+1)rl + P(SIRn ≥ TL)rL

]

= pn

L∑
l=1

alP(SIRn ≥ Tl),

(2)
where al = rl − rl−1.

C. Problem Statement

Similar to [3]–[5], we define the spatial α-fair utility as

U(p) =



N∑
n=1

(λnrn)
1−α

1− α
if α 6= 1,

N∑
n=1

log (λnrn) if α = 1,

(3)

where p = [pn]N×1, and formulate our main optimization
problem as

P : max
p

U(p) (4)

s.t. pn,min ≤ pn ≤ pn,max, 1 ≤ n ≤ N, (5)

where pn,max and pn,min are the maximum and minimum
transmission probabilities of transmitters in tier n. Further-
more, we define P as the feasible set of problem P .

Thus, we can adjust the fairness among different tiers by
tuning the value of α. It should be noted that, since the T-
R pairs in each tier have the same T-R distance, transmission
power, and interference statistics, they have the same expected
average throughput. Therefore, although the objective of Prob-
lem P is formulated as a sum of utility over tiers, tuning the
value of α can also adjust the fairness among individual T-R
pairs. Generally, when α is set larger, maximizing the α-fair
utility allows T-R pairs in unfavorable transmission conditions
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(e.g., long T-R distance or lower transmission power) to
obtain more throughput, and thus the system becomes more
fair. Specifically, when α = 0, U(p) degrades to the sum
throughput over all T-R pairs; when α = 1, maximizing
U(p) leads to the celebrated proportional fairness; and when
α→∞, maximizing U(p) leads to max-min fairness.

The challenges of problem P are two-fold. First, the average
throughput of communication pairs in different tiers (i.e., rn)
needs to be derived for the multi-tier, multi-rate scenario.
Second, P is non-convex in most cases because of the non-
concavity of its objective function. Thus, conventional convex
solvers do not apply.

IV. AVERAGE THROUGHPUT DERIVATION

In this section, we derive a closed-form expression of the
average throughput of the typical T-R pair. The probability of
the event, that the received SIR of the receiver in the typical
T-R pair is no less than T , denoted by SIRn, is given by

P(SIRn ≥ T ) = P
(
hxn00 ≥

TIRn
γ

Pn

)
(a)
= EI

[
exp

(
−TIRn

γ

Pn

)]
,

(6)

where I is the sum intra-tier and inter-tier interference re-
ceived by the receiver in the typical T-R pair, given by
I =

∑N
k=1,k 6=n

∑
x∈ΦTx

k

Pkhx0

|x|γ +
∑

x∈ΦTx
n \{xn1}

Pnhx0

|x|γ , and (a)
is based on the distribution of hxn00 and its independence of
I .

As shown in Appendix A, the Laplace transform of I is
given by

LI(s) =

N∏
j=1

exp

(
−pjλjπ(sPj)

2
γ Γ(1− 2

γ
)Γ(1 +

2

γ
)

)
.

(7)
Substituting (7) into (6), we have

P(SIRn ≥ T ) = exp

− N∑
j=1

pjλjRn
2

(
Pj
Pn

)2/γ

C

 , (8)

where C = πT
2
γ Γ(1− 2

γ )Γ(1 + 2
γ ).

Substituting (8) into (2) and simplifying, we find the average
throughput of the typical T-R pair:

rn = pn

L∑
l=1

al exp

−mnl

N∑
j=1

pjλjP
′

j

 , (9)

where Cl = πTl
2
γ Γ(1− 2

γ )Γ(1+ 2
γ ), P

′

n = Pn
2/γ , and mnl =

Rn
2Cl
P ′n

. Note that even though Cl contains the gamma function,
it is a positive constant, so the right-hand side of (9) is in
closed-form with respect to p. This contributes to the tier-
separability and efficiency of MMTS.

V. MINORIZE-MAXIMIZATION WITH TIER SEPARATION

In this section, we present MMTS to solve problem P . We
first develop three lower bounds for objective (4), for 0 ≤
α < 1, α = 1, and α > 1. Then, we develop lower bound

problems for these three cases, and show how they can be
decomposed to multiple one-dimensional convex optimization
problems that are separable according to the T-R tiers, which
can be solved either in closed-form or otherwise efficiently.
Finally, we explain how these tier-separable solutions can be
employed in a recursive MM framework to address the original
problem P .

A. Lower Bound Problem for 0 ≤ α < 1

Though objective (4) is not concave, it has a special
partially-convex structure when 0 ≤ α < 1. We take advantage
of this special structure and develop a lower bound as stated
in Lemma 1.

Lemma 1: When 0 ≤ α < 1, for all p = [pn]N×1,p
t−1 =

[pt−1
n ]N×1 ∈ P,(
λnpn

∑L
l=1 al exp(−mnl

∑N
j=1 P

′

jλjpj)
)1−α

1− α

≥ f t−1
n − dt−1

n

N∑
j=1

P
′

jλj(pj − pt−1
j ) + et−1

n log
pn

pt−1
n

,

(10)

where

dt−1
n =

(
λnp

t−1
n

)1−α L∑
l=1

almnl exp(−mnl

N∑
j=1

P
′

jλjp
t−1
j )(

L∑
l=1

al exp(−mnl

N∑
j=1

P
′
jλjp

t−1
j )

)α ,

et−1
n =

λnpt−1
n

L∑
l=1

al exp(−mnl

N∑
j=1

P
′

jλjp
t−1
j )

1−α

,

f t−1
n =

(
λnp

t−1
n

L∑
l=1

al exp(−mnl

N∑
j=1

P
′

jλjp
t−1
j )

)1−α

1− α
,

(11)
and the equality holds if p = pt−1.

Proof: See Appendix B.
From Lemma 1, a lower bound of objective (4) is

Ũ(p,pt−1) =

N∑
n=1

(
−

N∑
j=1

dt−1
j P

′

nλn(pn − pt−1
n )

+ et−1
n log

pn

pt−1
n

+ f t−1
n

)
,

for all p,pt−1 ∈ P, and Ũ(p,pt−1) = U(p) when p = pt−1.
Therefore, when 0 ≤ α < 1, for any given pt−1 ∈ P, we may
consider the following optimization problem that lower bounds
P .

P1
LB : max

p
Ũ(p,pt−1) (12)

s.t. pn,min ≤ pn ≤ pn,max, 1 ≤ n ≤ N. (13)

Remark: Note that the right-hand side (RHS) of (10) has
been designed to be separable with respect to the optimization
variables {pn}. This enables our decomposition of P1

LB into
N separable one-dimensional convex optimization problem
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according to the T-R tiers. The nth problem, for 1 ≤ n ≤ N ,
is given by

P1,n
LB : max

pn
Ũn(pn) (14)

s.t. pn,min ≤ pn ≤ pn,max, (15)

where

Ũn(pn) = −
N∑
j=1

dt−1
j P

′

nλn(pn−pt−1
n )+et−1

n log
pn

pt−1
n

+f t−1
n .

Problem P1,n
LB has a closed-form optimal solution as stated

in Lemma 2, whose proof is given in Appendix C.
Lemma 2: Problem P1,n

LB is convex in pn, and its optimal
solution is

p̃∗n =

[
et−1
n

P ′nλn
∑N
j=1 d

t−1
j

]pn,max

pn,min

, (16)

where [x]xmax
xmin

= min{max{x, xmin}, xmax}.
Since P1

LB is separable into convex problems, itself is
also a convex problem. This facilitates our analysis of the
convergence of MMTS as described in Section VI.

B. Lower Bound Problem for α = 1

When α = 1, the objective of P is

U(p) =

N∑
n=1

log(λnpn) + log(

L∑
l=1

al exp(−mnl

N∑
j=1

P
′

jλjpj).

We note that log(
∑L
l=1 al exp(−mil

∑N
j=1 xj)), for all l

and al > 0, is convex in x = [xj ]N×1 based on the
convexity of the LogSumExp function [24]. Hence, for all
p = [pn]N×1,p

t−1 = [pt−1
n ]N×1 ∈ P, we have

log(

L∑
l=1

al exp(−mnl

N∑
j=1

P
′

jλjpj))

≥ −gt−1
n

N∑
j=1

P
′

jλj(pj − pt−1
j ) + ht−1

n ,

(17)

where

gt−1
n =

∑L
l=1 almnl exp(−mnl

∑N
j=1 P

′

jλjp
t−1
j )∑L

l=1 al exp(−mnl

∑N
j=1 P

′
jλjp

t−1
j )

,

ht−1
n = log

 L∑
l=1

al exp(−mnl

N∑
j=1

P
′

jλjp
t−1
j )

 ,

(18)

and the equality holds if p = pt−1.
Hence, a lower bound of objective (4) is given by

Û(p,pt−1) =−
N∑
j=1

N∑
n=1

gt−1
j P

′

nλn(pn − pt−1
n )

+

N∑
n=1

log(λnpn) +

N∑
n=1

ht−1
n ,

for all p,pt−1 ∈ P, and Û(p,pt−1) = U(p) when p = pt−1.
Therefore, when α = 1, for any given pt−1 ∈ P, we may

consider the following optimization problem that lower bounds
P .

P2
LB : max

p
Û(p,pt−1) (19)

s.t. pn,min ≤ pn ≤ pn,max, 1 ≤ n ≤ N. (20)

Similarly to the case 1 ≤ α < 1, the RHS of (17) has
been designed to be separable with respect to the optimization
variables {pn}. We can decompose P2

LB into N separable one-
dimensional convex optimization problem according to the T-R
tiers. The nth problem, for 1 ≤ n ≤ N , is given by

P2,n
LB : max

pn
Ûn(pn) (21)

s.t. pn,min ≤ pn ≤ pn,max, (22)

where

Ûn(pn) = −
N∑
j=1

gt−1
j P

′

nλn(pn − pt−1
n ) + log(λnpn) + ht−1

n .

Problem P2,n
LB has a closed-form optimal solution as stated

in Lemma 3.
Lemma 3: Problem P2,n

LB is convex in pn, and its optimal
solution is

p̂∗n =

[
1

P ′nλn
∑N
j=1 g

t−1
j

]pn,max

pn,min

. (23)

C. Lower Bound Problem for α > 1

When α > 1, We take advantage of a special partially-
concave structure of objective (4) and develop the following
lower bound as stated in Lemma 4. For notational convenience,
we define α′ = (N + 1)(1− α).

Lemma 4: When α > 1, for all p = [pn]N×1,p
t−1 =

[pt−1
n ]N×1 ∈ P,(
λnpn

∑L
l=1 al exp(−mnl

∑N
j=1 P

′

jλjpj)
)1−α

(1− α)

≥ rt−1
n pn

α′

α′
+

N∑
j=1

L∑
l=1

st−1
njl exp(−α′mnlP

′

jλjpj)

α′
,

(24)

where

rt−1
n =λn

1−αpt−1
n

N(α−1)

 L∑
l=1

al exp(−mnl

N∑
j=1

P
′

jλjp
t−1
j )

1−α

st−1
njl =

al exp

(
−mnl

(
N∑
k=1

P
′

kλkp
t−1
k − α′P ′jλjp

t−1
j

))
(
λnp

t−1
n

)α−1

(
L∑
l′=1

al′ exp(−mnl′

N∑
k=1

P
′
kλkp

t−1
k )

)α ,
(25)

and the equality holds if p = pt−1.
Proof: See Appendix D.

From Lemma 4, a lower bound of objective (4) is

Ū(p,pt−1)

=

N∑
n=1

rt−1
n pα

′

n

α′
+

N∑
j=1

L∑
l=1

st−1
jnl

exp(−α′mjlP
′

nλnpn)

α′

 ,
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for all p,pt−1 ∈ P, and Ū(p,pt−1) = U(p) when p = pt−1.
Therefore, when α > 1, for any given pt−1 ∈ P, we may
consider the following optimization problem that lower bounds
P .

P3
LB : max

p
Ū(p,pt−1) (26)

s.t. pn,min ≤ pn ≤ pn,max, 1 ≤ n ≤ N. (27)

Again, similarly to the other cases of α, the RHS of (24) has
been designed to be separable with respect to the optimization
variables {pn}. We can decompose P 3

LB into N separable one-
dimensional convex optimization problem according to the T-R
tiers. The nth problem, for 1 ≤ n ≤ N , is given by

P3,n
LB : max

pn
Ūn(pn) (28)

s.t. pn,min ≤ pn ≤ pn,max, (29)

where

Ūn(pn) =
rt−1
n pα

′

n

α′
+

N∑
j=1

L∑
l=1

st−1
jnl

exp(−α′mjlP
′

nλnpn)

α′
.

Problem P3,n
LB is convex as stated in Lemma 5.

Lemma 5: Optimization problem P3,n
LB is convex in pn.

Proof: Recall that rt−1
n

α′ < 0 and
st−1
jnl

α′ < 0 when α > 1.
f(x) = xβ is convex in x when x > 0 and β < 0, and
f(x) = exp(ax) is convex in x, for all a, x ∈ R. Therefore,
the objective Ūn(pn) is concave in pn. Thus, the problem P3,n

LB
is convex with linear constraints.

Remark: Though we cannot find a closed-form solution to
P3,n

LB , a global optimizer can still be efficiently computed by
methods such as bi-section search.

D. MMTS Algorithm Description and Complexity

Based on the above lower bounds, we design MMTS to
solve probelm P . The main idea of MMTS is to solve the
lower bound problems iteratively until convergence. Specifi-
cally, for 0 ≤ α < 1, in iteration t, we compute the parameters
in the lower bound problem, {dt−1

n } and {et−1
n }, by (11), and

obtain the transmission probability of each tier by (16). For
α = 1, in iteration t, we compute the parameters in the lower
bound problem, {gt−1

n }, by (18), and obtain the transmission
probability of each tier by (23). For α > 1, in iteration
t, we compute the parameters in the lower bound problem,
{rt−1
n } and {st−1

njl }, by (25), and obtain the transmission
probability of each tier by solving optimization problem P3,n

LB ,
for 1 ≤ n ≤ N , via bi-section search. We thus iteratively
update the transmission probability of each tier in this way
until convergence.

The pseudo code of MMTS is presented in Algorithm 1.
In each iteration of MMTS, the lower bound problem either
has a straightforward closed-form solution for 0 ≤ α ≤ 1,
or is otherwise separable into N one-dimensional convex
optimization problems, which can be solved efficiently by bi-
section search. Thus the computational complexity in each
iteration is low. Specifically, when 0 ≤ α < 1, the main
computation in each iteration is the calculation of parameters
{dt−1
n } and {et−1

n } related to the sub-problems, since the

solution of problems in each iteration is in closed-form. The
computation complexity of this is O(NL), where N is the
number of tiers, and L is the number of SIR thresholds.
When α = 1, similar to the 0 ≤ α < 1 case, the main
computation in each iteration is the calculation of parameters
{gt−1
n }, the computation complexity of which is also O(NL).

When α > 1, the computation in each iteration consists of
two parts, the computation of parameters {st−1

njl } and {rt−1
n }

with computational complexity O(N2L), and the computation
of gradient in bisection search to solve the sub-problems
with computational complexity O(N2L). In summary, the
computational complexity in each iteration is O(NL) for
0 ≤ α ≤ 1 and O(N2L) for α > 1.

Furthermore, such decomposition of the original problem
into N sub-problems allows distributed computation by each
tier, separately from the other tiers. This can be implemented
either by some elected representative for each tier, or by
each individual nodes in each tier. In one possible distributed
implementation scenario, a representative first collects the
intensity of each tier. This information can be collected by
some central node, such as a base station, and sent to each
representative. Alternatively, the representative of each tier
collects the local intensity information in its neighborhood,
and exchange such information among all representatives, so
that they can estimate the intensity of all tiers. Then, in each
iteration of MMTS, each representative solves the sub-problem
for its own tier. Specifically, each representative runs lines 5-21
in Algorithm 1 and sends the updated transmission probability
of its tier to the representatives in other tiers. The information
exchange can be realized, for example, via the methods in
[25], [26].

VI. CONVERGENCE AND OPTIMALITY OF MMTS
In this section, we discuss the convergence and optimality of

MMTS. First, as stated in Theorem 6, we observe that MMTS
always converges to the objective value of a KKT point of
problem P .1

Theorem 6: MMTS converges to the objective value of a
KKT point of optimization problem P .

Proof: See Appendix E.
A KKT point can be a global optimizer, a local optimizer,

or even a saddle point. In the following, we present some
sufficient conditions under which MMTS converges to the
global optimum.

Define %il,max = exp(−mil

∑N
k=1 P

′

kλkpk,min), and
%il,min = exp(−mil

∑N
k=1 P

′

kλkpk,max). Define oi,max =∑L
l=1 al%il,max, oi,min =

∑L
l=1 al%il,min, ξi,max =∑L

l=1 almil%il,max, ξi,min =
∑L
l=1 almil%il,min, δi,max =∑L

l=1 almil
2%il,max, and ψi,max = (λipi,maxoi,max)1−α .

Further define,

ωmin =

N∑
j=1

(λjpj,min)1−αξj,min

oj,max
α

,

Vii = max{ oi,max
1−α

wminP
′
i (λipi,min)α

1The KKT conditions are necessary conditions for global or local optimal-
ity.
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Algorithm 1 MMTS for Solving P
Input: {Tl}, {rl} {Pn}, {Rn}, {λn}, {pn,min}, {pn,max}, α,

γ, N , L.
Output: p.

1: Compute al = rl − rl−1, Cl = πTl
2
γ Γ(1 − 2

γ )Γ(1 + 2
γ ),

P
′

n = Pn
2/γ , mnl = Rn

2Cl
P ′n

, for 1 ≤ n ≤ N , 1 ≤ l ≤ L,
and α′ = (N + 1)(1− α).

2: Pick initial point p0 = [p0
n]N×1 in P, and set t = 0.

3: repeat
4: t = t+ 1.
5: if 0 ≤ α < 1 then
6: Compute {dt−1

n } and {et−1
n } by (11), and set ptn =[

et−1
n

P ′nλn
∑
j d
t−1
j

]pn,max

pn,min

, for 1 ≤ n ≤ N .

7: else if α = 1 then
8: Compute {gt−1

n } by (18), and set ptn =[
1

P ′nλn
∑
j g
t−1
j

]pn,max

pn,min

, for 1 ≤ n ≤ N .

9: else
10: Compute {rt−1

n } and {st−1
njl } by (25).

11: for n ∈ {1, ..., N} do
12: plower = pn,min and pupper = pn,max.
13: repeat
14: pmid = (plower + pupper)/2.

g = rt−1
n pmid

α′−1 −
N∑
j=1

L∑
l=1

st−1
jnlmjlP

′

nλn exp(−α′mjlP
′

nλnpmid).

15: if g > 0 then
16: plower = pmid.
17: else
18: pupper = pmid.
19: end if
20: until convergence
21: Set ptn = pmid.
22: end for
23: end if
24: until convergence
25: return pt = [ptn]N×1

+ ψi,max

N∑
j′=1

(λj′pj′ ,max)
1−α

wmin
2oj′ ,min

α

δj′ ,max −
αξ
j
′
,min

2

o
j
′
,max

1− α
,

(λipi,max)1−αξi,max
wminoi,min

α
+ ψi,max

(λipi,min)
−α
ξi,max

wmin
2P
′
i oi,min

α
},

Vij = max{ψi,max

N∑
j′=1

(λj′pj′ ,max)
1−α

wmin
2oj′ ,min

α

δj′ ,max −
αξ
j
′
,min

2

o
j
′
,max

1− α
,

(λipi,max)1−αξi,max
wminoi,min

α
+ ψi,max

(λjpj,min)
−α
ξj,max

wmin
2P
′
joj,min

α
}, ∀j 6= i.

Theorem 7: For 0 ≤ α < 1, if

(1− α)2
N∑
i=1

N∑
j=1

Vij
2 < 1, (30)

then MMTS converges to the global optimum of problem P .

Proof: See Appendix F.
Based on Theorem 7, we have a corollary as stated

in Corollary 8. First, we define %1,max = maxi,l %il,max,
%1,min = mini,l %il,min, %2,max = maxi,lmil%il,max, %2,min =

mini,lmil%il,min, %3,min = %2,min

∑N
j=1 min{1, λjpj,min},

and %4,max = maxi,lmil
2%il,max. We further define

β̃ =

N∑
i=1

1
%3,min

P
′
i min{1, λipi,min}

+N
max{1, λipi,max}%2,max

%1,min%3,min
,

β̌ = N

N∑
i=1

N∑
j=1

max{1, λipi,max}max{1, λjpj,maxρ1,max}%4,max

%1,min%3,min
2

,

β̇ =

N∑
i=1

N∑
j=1

%2,max max{1, λjpj,maxρ1,max}
%1,min%3,min

2P
′
i min{1, λipi,min}

.

Corollary 8: For 1− 1
β̃
< α < 1, if

rL <

(
1− (1− α)β̃

(β̌ + (1− α)β̇)

) 1
2(1−α)

,

then MMTS converges to the global optimum.
Proof: See Appendix G.

Remark: Corollary 8 asserts that for 1 − 1
β̃
< α < 1,

when the maximum transmission rate rL is sufficiently small,
MMTS is optimal. Furthermore, larger minimum transmission
probability of each tier, i.e., pn,min, for all n, or smaller
maximum transmission probability of each tier, i.e., pn,max,
for all n, can increase the range of α where MMTS is optimal.

For α = 1, we have the following sufficient condition as
stated in Theorem 9 .

Theorem 9: For α = 1, if

TL <

(
1

N2
+ 1

) γ
4

T1,

then MMTS converges to the global optimum.
Proof: See Appendix H.

Remark: Theorem 9 asserts that, for α = 1, i.e., when propor-
tional fairness is our optimization objective, if the maximum
SIR threshold TL, and the minimum SIR threshold T1, are
sufficiently close, the number of tiers N is sufficiently small,
or the pathloss exponent γ is sufficiently large, then MMTS
is globally optimal.

For α > 1, we have another sufficient condition as stated
in Theorem 10. We define o

′

i,max = max{1, λipi,maxoi,max},
o
′

i,min = min{1, λipi,minoi,min}, w
′

min =
∑
jmjo

′

j,min, and
ψ
′

i,max = max {1, λipi,maxoi,max}. We further define

Wii = max{
o
′

i,max

w
′
minP

′
i λipi,min

+ ψ
′

i,max

N∑
j′=1

m2
j′
o
′

j′ ,max

w
′
min

2 ,

mi

o
′

i,max

w
′
min

+ ψ
′

i,max

mio
′

i,max

w
′
min

2
P
′
i λipi,min

},

Wij = max{ψ
′

i,max

N∑
j′=1

m2
j′
o
′

j′ ,max

w
′
min

2 ,

mi

o
′

i,max

w
′
min

+ ψ
′

i,max

mjo
′

j,max

w
′
min

2
P
′
jλjpj,min

}, ∀j 6= i.
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Theorem 10: For α > 1 − 1
M , where M =

√
N∑
i=1

N∑
j=1

W 2
ij ,

if L = 1, then MMTS converges to the global optimum.
Proof: See Appendix I.

Remark: Recall that the optimal transmission probability in
the case L = 1, i.e., single SIR threshold, and α = 1 has
been studied in [8] for the case where the network topology is
unknown. However, MMTS is optimal for a far wider range
of α values.

VII. NUMERICAL PERFORMANCE EVALUATION

In this section, we study the convergence of MMTS and
the impact of different system parameters on its perfor-
mance. We set the number of tiers N = 10. The T-R
distance in these tiers are {15, 20, · · · , 60} m. The trans-
mission power of each tier is randomly generated between
1 mW and 5 mW in a uniform manner. We choose five
SIR thresholds {0.2025, 0.7494, 4.4926, 26.1397, 96.1391}
from [27], which corresponds to three transmission rates
{0.1523, 0.6016, 1.9141, 3.9023, 5.5547} bit/s/Hz in [28]. The
default pathloss exponent γ is 4. The maximum transmission
probability, pn,max, and minimum transmission probability,
pn,min, is set as 1 and 10−6, respectively, for 1 ≤ n ≤ 10. We
evaluate the performance of MMTS when the number of T-R
pairs is 1000, 3000, 5000, 10000, and 30000 per cell and the
cell size is 500m, as recommended by [29]. This corresponds
to the sum intensity of all tiers, λ, is 1.3× 10−3, 3.6× 10−3,
6.5 × 10−3, 1.3 × 10−2, and 3.9 × 10−2. We further added
an extra smaller intensity setting of 0.65 × 10−3 for a wider
simulation setting. We uniformly generate the intensity of each
tier. For the α-fair utility, we consider the average throughput
per unit area, with the unit bit/s/Hz/m2.

We choose the initial point in MMTS in the following
log-uniform manner. We uniformly draw the initial point,
y0 = [y0

n]N×1, from set P
′

= {y ∈ RN | log10 pn,min ≤
yn ≤ log10 pn,max, 1 ≤ n ≤ N}. Then the initial point in
MMTS is p0

n = 10y
0
n , for 1 ≤ n ≤ N . In our numerical

observation, the KKT points of the optimization problem
tend to be small. Hence, the selection of log-uniform initial
points in log-uniform manner allows us to use smaller initial
points with higher probability, which can speed up the rate
of convergence. We run MMTS with multiple initial points,
from which we pick the best one that leads to the maximum
utility at convergence. Since we do not have prior knowledge
about the location of the global optimum, by running MMTS
with multiple initial points, we can increase the probability of
MMTS converging to the global optimum.

We compare the performance of MMTS with 1 and 5
initial points to the following alternatives: 1) the optimum
by exhaustive search method where we exhaustively search
for a global optimizer over the feasible set, 2) the equal
transmission probability method where we compute a single
transmission probability for all transmitters, which is achieved
via MMTS over a single tier in which the T-R distance is
set to the average distance among all tiers, i.e., 37.5m, an
approximation to the actual multi-tier network topology, and
the transmission power is the average of the transmission

power of all tiers, 3) the method proposed in [7] that is based
on a single tier of T-R pairs and a single SIR threshold. We use
it to compute the transmission probability after setting the SIR
threshold to the average of all SIR thresholds, the transmission
power to the average, and T-R distance to 37.5m. We then
assign this probability to all T-R pairs. When we compute
the utility of this method, we use multiple SIR thresholds and
multiple tiers for fair comparison. Note that [7] further presents
a method based on the Shannon-rate upper bound. It gives
similar performance, and is omitted for brevity.

A. Convergence of MMTS

We study the impact of number of tiers and α on the
convergence of MMTS. For any given number of tiers, we
select evenly spaced T-R distances between 15m and 60m.
The convergence condition is that the relative difference of
the objective value in consecutive iterations is less than 10−3.

In Fig. 2, we show the convergence behavior of MMTS in
one realization. We observe that the objective increases in each
iteration as expected in the MM framework. In addition, in this
realization, MMTS meets the convergence condition in 11, 4,
and 53 iterations, when α = 0, α = 1, and α = 2, respectively.
Table II further summarizes the average number of iterations
when the convergence condition is met. We observe that for
α = 0.5 and α = 1, the number of tiers has little impact on
the number of iterations, while for other α values, the number
of iterations increases almost linearly in the number of tiers.
Furthermore, the simulation results suggest that the value of
α has significant impact on the convergence behavior. MMTS
converges faster when α is close to 1.

B. Impact of Different System Parameters

We study the impact of intensity, pathloss, and number of
SIR thresholds on the utility of the four schemes, when α = 0,
α = 1, and α = 2. In Figs. 3-5, we see that under different
α values, the utility of MMTS is very close to the optimal
utility via exhaustive search. For the case α = 0, we observe
that running MMTS with multiple initial points can improve
the utility, since it can pick a better KKT point compared
with running MMTS with 1 initial point. For the cases α = 1
and α = 2, the utility of MMTS is almost identical to that
of the optimal utility via exhaustive search. The reason is
that under the simulation settings, the optimization problem
is highly likely to have a single KKT point, which is globally
optimal by default. Even though the sufficient conditions of
Theorems 7, 9, and 10 are not always satisfied, our numerical
data indicate that MMTS often converges to the objective value
of a good KKT point over a wide range of parameter settings.
Furthermore, MMTS substantially outperforms the method
in [7] and the equal transmission probability method. This
suggests the importance of assigning different transmitting
probabilities to different types of T-R pairs in maximizing the
α-fair utility.

1) Impact of Intensity: In Figs. 3a-3c, we study the utility
achieved by MMTS and the other schemes under different
node intensity settings. These figures show that, when the
intensity is sufficiently high, the utility of MMTS does not
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TABLE II: Number of iterations versus number of tiers

α
# of iterations # of tiers

5 10 15 20 25

α = 0 10.3 14.2 17.3 19.1 20.8
α = 0.5 9.8 8.9 8.7 8.5 8.5
α = 1 4.1 4.0 4.0 4.2 4.3
α = 1.5 21.3 28.8 36.2 43.4 50.3
α = 2 40.7 61.6 82.2 101.0 118.9
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Fig. 2: Convergence behavior

6.5 10
-4

1.3 10
-3

3.9 10
-3

6.5 10
-3

1.3 10
-2

3.9 10
-2

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

U
til

ity

10-4

Optimum by exhaustive search
MMTS with 1 initial point
MMTS with 5 initial points
Equal transmission prob
Scheme proposed in [7]

(a) α = 0

6.5 10
-4

1.3 10
-3

3.9 10
-3

6.5 10
-3

1.3 10
-2

3.9 10
-2

-125

-124

-123

-122

-121

-120

-119

-118

-117

U
til

ity

Optimum by exhaustive search
MMTS with 1 initial point
MMTS with 5 initial points
Equal transmission prob
Scheme proposed in [7]

(b) α = 1

6.5 10
-4

1.3 10
-3

3.9 10
-3

6.5 10
-3

1.3 10
-2

3.9 10
-2

-108

-107

-106

U
til

ity

Optimum by exhaustive search
MMTS with 1 initial point
MMTS with 5 initial points
Equal transmission prob
Scheme proposed in [7]

(c) α = 2

Fig. 3: Utility versus intensity

increase with respect to the intensity, i.e., the system is
“saturated”. The transmission of a T-R pair introduces inter-
ference to other transmitting T-R pairs. When the intensity is
sufficiently large, allowing more T-R pairs to transmit does
not benefit the utility because of the introduced interference.
In addition, we observe that the intensity where the system
becomes saturated is larger when α = 0 is larger than that
when α = 1 and α = 2. The system is more fair when
maximizing the utility with a larger α value. Generally, with
larger α, T-R pairs in favorable transmission conditions (e.g.,
shorter T-R distance or higher transmission power ) receive
lower throughput, while T-R pairs in unfavorable transmission
conditions receive higher throughput. With a larger α value, in
order to improve the throughput of the T-R pairs in unfavorable
transmission conditions, the interference from other T-R pairs
is reduced by decreasing the intensity of the transmitting T-
R pairs. Therefore, the intensity where the system becomes
saturated becomes smaller with a larger α value.

2) Impact of Pathloss Exponent: In Figs. 4a-4c, the utility
under different pathloss exponent settings is studied. We
observe that the utility of MMTS increases with the increase of
pathloss exponent γ. But the behavior of MMTS with respect

to γ is different under different α value. The increase of
pathloss exponent leads to the weakening of the useful signal,
as well as decrease of interference from other T-R pairs. It has
different impact on the tiers with different T-R distance and
transmission power. From these figures, we see that the utility
changes differently with respect to γ under different fairness
index α settings. In additon, we observe similar behavior in
other alternative schemes.

3) Impact of SIR Thresholds: In Figs. 5a-5c,
we study the utility versus the number of SIR
thresholds. Evenly spaced SIR thresholds from
{0.2025, 0.4808, 1.1915, 4.4926, 16.9395, 38.7972, 96.1391}
from [27], which corresponds to transmission rates
{0.1523, 0.377, 0.8770, 1.9141, 3.3223, 4.5234, 5.5547}
bit/s/Hz in [28]. We observe that MMTS increases with more
thresholds. However, the increase of utility becomes flat when
the number of SIR thresholds is sufficiently large. Numerical
results such as these can provide design guidelines to system
operators on the appropriate number of modulation-coding
levels to balance the transmitter complexity and the system
performance. Furthermore, in Fig. 5c, the utility of the equal
transmission probability scheme decreases with more SIR
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Fig. 4: Utility versus pathloss exponent
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Fig. 5: Utility versus the number of SIR thresholds

thresholds when α = 2, and the number of thresholds is
larger than 3. In equal transmission probability scheme, we
approximate the T-R distance of all the T-R pairs with the
average when computing the optimal transmission probability.
This approximation results in lower likelihood of successful
transmission of T-R pairs with longer T-R distance and shorter
transmission power when the system has high SIR thresholds.
This increases unfairness, and thus decreases the utility. We
observe that in Fig. 5a and Fig. 5b, the utility of the method
in [7] slightly decreases when the number of SIR thresholds
increases from 3 to 5. This is due to the approximation of
the multi-tier multi-rate system to the single-tier single-rate
system in [7].

VIII. CONCLUSION

We have studied the optimization of the transmit proba-
bilities in a multi-tier, multi-rate spatial Aloha network with
multiple received SIR thresholds with respect to spatial α-
fairness. For different ranges of α, the proposed MMTS
algorithm utilizes a sequence of iteratively updated lower
bound problems, which in turn are decomposed into tier-
separable one-dimensional convex problems. The convergence
to the objective value of a KKT point is always guaranteed,
and several sufficient conditions for global optimality are
given. In numerical evaluation, we present the convergence
behavior of MMTS and find that MMTS converges faster
when α is close to 1. We further study the impact of different
system parameters, including the intensity, the pathloss, and
the number of SIR thresholds. Our simulation results suggest

that MMTS is nearly optimal and has substantial advantage
over prior solutions.

APPENDIX A
DERIVATION OF LAPLACE TRANSFORM OF I

The derivation of the Laplace transform of I is as follows:

L(s) = E[exp(−sI)]

= EI

exp

−s
 N∑
k=1,k 6=n

∑
x∈ΦTx

k

Pkhx0
|x|γ

+
∑

x∈ΦTx
n \{xn1}

Pnhx0
|x|γ


=

N∏
k=1,k 6=n

EΦTx
k ,{hx0}

exp

−s ∑
x∈ΦTx

k

Pkhx0
|x|γ


EΦTx

n ,{hx0}

exp

−s ∑
x∈ΦTx

n \{xn1}

Pnhx0
|x|γ


(a)
=

N∏
k=1,k 6=n

EΦTx
k

 ∏
x∈ΦTx

k

Ehx0

[
exp

(
−sPkhx0
|x|γ

)]
EΦTx

n

 ∏
x∈ΦTx

n \{xn1}

Ehx0

[
exp

(
−sPnhx0
|x|γ

)]
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(b)
=

N∏
k=1,k 6=n

EΦTx
k

 ∏
x∈ΦTx

k

1

1 + s Pk|x|γ


EΦTx

n

 ∏
x∈ΦTx

n \{xn1}

1

1 + s Pn|x|γ


(c)
=

N∏
j=1

exp

(
pjλj

∫
R2

(
1− 1

1 + s
Pj
|x|γ

)
dx

)
(d)
=

N∏
j=1

exp

(
−pjλj2π

∫ ∞
0

(
1− 1

1 + s
Pj
dγ

)
ddd

)
(e)
=

N∏
j=1

exp

(
−pjλjπ(sPj)

2
γ Γ(1− 2

γ
)Γ(1 +

2

γ
)

)
,

where (a) is based on the independence between {hx0} and
{ΦTx

k }, (b) is from the distribution of {hx0}, (c) is from
the Slivnyak’s theorem and probability generating functional
(PGFL) of homogeneous PPP, (d) is based on the transforma-
tion to polar coordinate, and (e) is from the manipulation of
Gamma function.

APPENDIX B
PROOF OF LEMMA 1

First, we show that function f(x) : RN → R, given by

f(x) =

(∑N
n=1 ρn exp(xn)

)β
β

,

is convex in x = [xn]N×1 ∈ RN , for ρn ≥
0, 1 ≤ n ≤ N, and β > 0. We rewrite f(x) as
f(x) = 1

β exp
(
β log

(∑N
i=1 ρn exp(xn)

))
. Then f(x) can

be viewed as the composition of h(y) : R → R and g(x) :
RN → R, i.e., f(x) = h(g(x)), where h(y) = 1

β exp(βy),

and g(x) = log
(∑N

n=1 ρn exp(xn)
)
. Since h(y) is convex

and nondecreasing in y, and g(x) is convex in x, according to
the composition rule [24], function f(x) = h(g(x)) is convex
in x.

Due to the convexity of f(x), for all x and xt−1 in the
domain of f , we have f(x) ≥ f(xt−1)+∇f(xt−1)(x−xt−1).

Hence(∑N
n=1 ρn exp(xn)

)β
β

≥

(∑N
n=1 ρn exp(xt−1

n )
)β

β

+

 N∑
j=1

ρj exp(xt−1
j )

β−1
N∑
n=1

ρn exp(xt−1
n )(xn − xt−1

n ),

(31)
and the equality holds when x = xt−1.

Since 0 ≤ α < 1, we have(
λnpn

∑L
l=1 al exp(−mnl

∑N
j=1 P

′

jλjpj)
)1−α

1− α

(a)
=λn

1−α

(∑L
l=1 al exp(log pn −mnl

∑N
j=1 P

′

jλjpj)
)1−α

(1− α)

(b)

≥ − dt−1
n

N∑
j=1

P
′

jλj(pj − pt−1
j ) + et−1

n log
pn

pt−1
n

+ f t−1
n ,

where (a) results from pn = log(exp(pn)), (b) is from (31),
and the equality holds if p = pt−1.

APPENDIX C
PROOF OF LEMMA 2

Recall that et−1
n ≥ 0,for all 1 ≤ n ≤ N . Hence, et−1

n log pn
and dt−1

j P
′

nλnpn are both concave in pn. Thus, Ũn(pn) is
concave in pn, which makes the optimization problem P1,n

LB
convex. The Lagrangian is

L(pn, µ1, µ2) =− Ũn(pn)

+ µ1(pn − pn,max) + µ2(−pn + pn,min).
(32)

KKT conditions are

∂L
∂pn
|pn=p̃∗n

= −e
t−1
n

p̃∗n
+ P

′

nλn

N∑
j=1

dt−1
j + µ1 − µ2 = 0,

(33)
µ1(p̃∗n − pn,min) = 0, µ2(pn,max − p̃∗n) = 0, (34)
pn,min ≤ p̃∗n ≤ pn,max, µ1 ≥ 0, µ2 ≥ 0. (35)

If p̃∗n 6= pn,min and p̃∗n 6= pn,max, then p̃∗n =
et−1
n

P ′nλn
∑
j d
t−1
j

based on (33). If p̃∗n = pn,min, then µ2 = 0. Substitute
µ1 ≥ 0, µ2 = 0, and p̃∗n = pn,min to (33), we have pn,min ≤

et−1
n

P ′nλn
∑
j d
t−1
j

. Similarly, if p̃∗n = pn,max, we have pn,max ≥

et−1
n

P ′nλn
∑
j d
t−1
j

. In conclusion, p̃∗n =

[
et−1
n

P ′nλn
∑
j d
t−1
j

]pn,max

pn,min

.

APPENDIX D
PROOF OF LEMMA 4

Define xn = P
′

nλnpn, xt−1
n = P

′

nλnp
t−1
n ,

νt−1
n =

∑L
l′=1 al′ exp(−mnl′

∑N
j=1 x

t−1
j ), and

θt−1
nl = exp(−mnl

∑N
j=1 x

t−1
j ), for all n, l. Then we

have

alxn exp(−mnl

N∑
j=1

xj) =
alθ

t−1
nl

νt−1
n

νt−1
n

θt−1
nl

xn exp(−mnl

N∑
j=1

xj).

Note that
∑L
l=1

alθ
t−1
nl

νt−1
n

= 1.

Hence, we have L∑
l=1

alxn exp(−mnl

N∑
j=1

xj)

1−α

=

 L∑
l=1

alθ
t−1
il

νt−1
i

νt−1
i

θt−1
il

xi exp(−mil

N∑
j=1

xj)

1−α

(a)

≤
L∑
l=1

alθ
t−1
nl

νt−1
n

νt−1
n

θt−1
nl

xn exp(−mnl

N∑
j=1

xj)

1−α

=

L∑
l=1

al

(
θt−1
nl

νt−1
n

)α
x1−α
n

N∏
j=1

exp(−mnl(1− α)xj),
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where (a) is from Jensen’s inequality and the fact that function
f(x) = xβ is convex in x when β < 0 and x > 0. Note that
equality holds when x = xt−1, where x = [xn]N×1, and
xt−1 = [xt−1

n ]N×1.
Next, note that for all zn > 0, zt−1

n > 0, we have∏N
n=1 zn ≤

∑N
n=1

∏
j=1,j 6=n z

t−1
j

Nzt−1
n

N−1 zn
N , and the equality holds

if zn = zt−1
n , for all n. This can be easily proved by the

inequality of arithmetic and geometric means. Hence, we have

x1−α
n

N∏
j=1

exp(−mnl(1− α)xj) ≤
ζt−1
nl xn

α′

N + 1

+

N∑
j=1

φt−1
njl exp(−α′milxj)

N + 1
.

(36)
where

ζt−1
nl =

∏N
k=1 exp(−(1− α)mnlx

t−1
k )

xt−1
n

(1−α)N
,

φt−1
njl =

xt−1
n

1−α∏N
k=1,k 6=j exp(−(1− α)mnlx

t−1
k )

exp(−(1− α)Nmnlx
t−1
j )

.

Recall that 1− α < 0. From (36), we have(∑L
l=1 alxn exp(−mnl

∑N
j=1 xj)

)1−α

1− α
≥

L∑
l=1

al

(
θt−1
nl

νt−1
n

)αζt−1
nl xn

α′

α′
+

N∑
j=1

φt−1
njl exp(−α′milxj)

α′

 ,

(37)
where the equality holds if x = xt−1.

Substituting xn = P
′

nλipi, and xt−1
n = P

′

nλnp
t−1
n into (37)

completes the proof.

APPENDIX E
PROOF OF THEOREM 6

The boundedness of the feasible set in the optimization
problem guarantees that the points generated by MMTS have
at least one limit point [30]. We need to verify the following
two conditions of our proposed lower bounds to show that
MMTS converges to the objective value of a KKT point [31].

Condition 1: ∀p,pt−1 ∈ P; for 0 ≤ α < 1, U(p) ≥
Ũ(p,pt−1); for α = 1, U(p) ≥ Û(p,pt−1); and for α >
1, U(p) ≥ Ū(p,pt−1). Furthermore, in all cases above, the
equalities hold when p = pt−1.

This condition has been verified in section V.
Condition 2: ∀p,pt−1 ∈ P, for 0 ≤ α < 1 and 1 ≤ k ≤ N ,

∂U(p)
∂pk
|p=pt−1 = ∂Ũ(p,pt−1)

∂pk
|p=pt−1 ; for α = 1 and 1 ≤ k ≤

N , ∂U(p)
∂pk
|p=pt−1 = ∂Ũ(p,pt−1)

∂pk
|p=pt−1 ; and for α > 1 and

1 ≤ k ≤ N , ∂U(p)
∂pk
|p=pt−1 = ∂Ū(p,pt−1)

∂pk
|p=pt−1 .

To show that this condition is satisfied, we first note that

∂U(p)

∂pk
= λk

1−αpk
−α exp

−mil

N∑
j=1

pjλjP
′

j

−
N∑
i=1

(λipi)
1−α

P
′

kλk
∑L
l=1 almil exp

(
−mil

∑N
j=1 pjλjP

′

j

)
(∑L

l=1 al exp
(
−mil

∑N
j=1 pjλjP

′
j

))α .

For 0 ≤ α < 1,

∂Ũ(p,pt−1)

∂pk
|p=pt−1 =

et−1
k

pt−1
k

−
N∑
i=1

dt−1
i P

′

kλk. (38)

Plugging (11) into (38), we can verify that ∂U(p)
∂pk
|p=pt−1 =

∂Ũ(p,pt−1)
∂pk

|p=pt−1 , for 1 ≤ k ≤ N .
Similarly, we can verify that ∂U(p)

∂pk
|p=pt−1 =

∂Û(p,pt−1)
∂pk

|p=pt−1 , for α = 1 and 1 ≤ k ≤ N , and
∂U(p)
∂pk
|p=pt−1 = ∂Ū(p,pt−1)

∂pk
|p=pt−1 , for α > 1 and

1 ≤ k ≤ N .

APPENDIX F
PROOF OF THEOREM 7

First, we present a useful lemma.
Lemma 11: [32] Consider an iterative algorithm,

x(t+ 1) = T (x(t)), t = 0, 1, · · · ,

where mapping T : X → X , and X is a closed subset of RN .
If T satisfies

|T (x)− T (y)| ≤ σ|x− y|,∀x,y ∈ X

where | · | is some norm and σ is a constant in [0, 1), then the
mapping T has a unique fixed point.

In this paper, we consider l2-norm. For notational con-
venience, we let xi = P

′

i λipi, x
t
i = P

′

i λip
t
i, xi,max =

P
′

i λipi,max, xi,min = P
′

i λipi,min, 1 ≤ i ≤ N , and X = {x ∈
RN |xi,min ≤ xi ≤ xi,max, 1 ≤ i ≤ N}.

We further define a vector-valued function f(x), where

fi(x) =

(∑L
l=1 alxi exp(−mil

∑N
k=1 xk)

P
′
i

)1−α

∑
j

xj1−α(
∑L
l=1 almjl exp(−mjl

∑N
k=1 xk))

P
′
j

1−α(
∑L
l=1 al exp(−mjl

∑N
k=1 xk))

α

, ∀i. (39)

The Jacobian matrix of f(x) is defined as J(x) = [ ∂fi∂xj
]N×N .

Furthermore, we use the following mapping

xi
t+1 =

[
fi(x

t)
]xi,max

xi,min
.

Let oi =
∑L
l=1 al exp(−mil

∑N
k=1 xk) ,

ξi =
∑L
l=1 almil exp(−mil

∑N
k=1 xk), and

δi =
∑L
l=1 almil

2 exp(−mil

∑N
k=1 xk).

The numerator and denominator of fi(x) is given by

ψi(x) = xi
1−αoi

1−α

P
′
i

1−α , and ω(x) =
∑
j′

x
j
′ 1−αξ

j
′

P
′

j
′
1−α

o
j
′ α

respec-

tively. After simple derivation, the partial derivatives of ψi(x)
and ω(x) are give by

∂ψi
∂xi

=
(1− α)(oi − xiξi)
P
′
i

1−α
xiαoiα

,
∂ψi
∂xj

=
(α− 1)xi

1−αξi

P
′
i

1−α
oiα

, ∀j 6= i,

and

∂ω

∂xj
=
∑
j′

xj′
1−α

P
′

j′
1−α

oj′
α

(
αξj′

2

oj′
− δj′ ) +

(1− α)xj
−αξj

P
′
j

1−α
ojα

, ∀j.

Then we have

∂fi
∂xi

=

∂ψi
∂xi

ω − ∂ω
∂xi

ψi

ω2
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=
(1− α)oi

wP
′
i

1−α
xiαoiα

+ ψi
∑
j′

xj′
1−α

w2P
′

j′
1−α

oj′
α

(δj′ −
αξj′

2

oj′
)

−

(
(1− α)xiξi

wP
′
i

1−α
xiαoiα

+ ψi
(1− α)xi

−αξi

w2P
′
i

1−α
oiα

)
,

and

∂fi
∂xj

=

∂ψi
∂xj

ω − ∂ω
∂xj

ψi

ω2

=ψi
∑
j′

xj′
1−α

w2P
′

j′
1−α

oj′
α

(δj′ −
αξj′

2

oj′
)

−

(
(1− α)xiξi

wP
′
i

1−α
xiαoiα

+ ψi
(1− α)xj

−αξj

w2P
′
j

1−α
ojα

)
,∀j 6= i.

Based on the Cauchy-Schwarz inequality, it is easy to show

δjoj ≥ ξj2,∀j.

Then since α ≤ 1, we have δj ≥ αξj
2

oj
. Then it is obvious that∣∣∣∣ ∂fi∂xi

∣∣∣∣ ≤ (1− α)Vii,

∣∣∣∣ ∂fi∂xj

∣∣∣∣ ≤ (1− α)Vij

Based on the assumption in Theorem 7, |J(x)| ≤√
(1− α)2

∑N
i=1

∑N
j=1 Vij

2 < 1. Hence, based on Mean
Value Theorem, for all x1,x2 ∈ X , we have

|f(x1)− f(x2)| ≤ |J(x̃)||x1 − x2|

≤

√√√√(1− α)2

N∑
i=1

N∑
j=1

Vij
2|x1 − x2|,

(40)

where x̃ is a convex combination of x1 and x2. Based on
Lemma 11, the proposed algorithm converges to the objective
value of the unique fixed point, which must be the global
optimum.

APPENDIX G
PROOF OF COROLLARY 8

Recall that al = rl− rl−1 and r0 = 0. Therefore,
∑L
l=1 al =

rL. For notional convenience, we define a = rL. It is easy
to prove that oi,max ≤ a%1,max, oi,min ≥ a%1,min, ξi,max ≤
a%2,max, ξi,min ≥ a%2,min, and δi,max ≤ a%4,max for all 1 ≤
i ≤ N .

Furthermore,

ωmin =
∑
j

(λjpj,min)1−αξj,min

oj,max
α

≥
∑
j

min{1, λjpj,min}a%2,min

(a%1,max)
α

(a)

≥
∑
j

min{1, λjpj,min}%2,min

max{1, %1,max}
a1−α ≥ %3,mina

1−α,

where (a) is is from the fact that %il,max < 1 for all 1 ≤ i ≤ N
and 1 ≤ l ≤ L.

In addition, we have

ψi,max = (λipi,maxoi,max)1−α

≤ (λipi,maxρ1,max)1−αa1−α

≤ max{1, λipi,maxρ1,max}a1−α.

Therefore,

oi,max
1−α

wminP
′
i (λipi,min)α

≤ a1−α(%1,max)1−α

%3,mina1−αP
′
i (λipi,min)α

≤ 1

%3,minP
′
i min{1, λipi,min}

.

Similarly, we have

(λipi,max)
1−α

wmin
2oi,min

α
δi,max ≤

max{1, λipi,max}%4,max

%1,min%3,min
2

a1−α,

(λipi,max)1−αξi,max
wminoi,min

α
≤ max{1, λipi,max}%2,max

%1,min%3,min
,

(λipi,min)
−α
ξi,max

wmin
2P
′
i oi,min

α
≤ %2,maxa

1−α

%1,min%3,min
2P
′
i min{1, λipi,min}

.

After simple derivation, we have

(1− α)

N∑
i=1

N∑
j=1

Vij ≤ (1− α)β̃ + (β̌ + (1− α)β̇)a2(1−α).

Recall that a = rL and 1 − 1
β̃

< α < 1. If rL <(
1−(1−α)β̃

(β̌+(1−α)β̇)

) 1
2(1−α)

, we have

(1− α)β̃ + (β̌ + (1− α)β̇)a2(1−α) < 1,

and

(1− α)2
N∑
i=1

N∑
j=1

Vij
2 ≤

(1− α)

N∑
i=1

N∑
j=1

Vij

2

< 1.

Based on Theorem 7, MMTS converges to the global
optimum.

APPENDIX H
PROOF OF THEOREM 9

For α = 1, we have

∂fi
∂xj

=
1

w2

∑
j′

(
δj′

oj′
−
ξj′

2

o2
j′

). (41)

Furthermore,
δ
j
′

o
j
′
≤ mj′L

2 and
ξ
j
′ 2

o2
j
′
≥ mj′1

2 for all j
′
. In

addition, ω =
∑
j′
ξ
j
′

o
j
′
≥
∑
j′ mj′1. Therefore

∂fi
∂xj

=
1

w2

∑
j′

(
δj′

oj′
−
ξj′

2

o2
j′

)

≤ 1(∑
j′ mj′1

)2

∑
j′

(
mj′L

2 −mj′1
2
)
.

Similar to the proof of Theorem 7, the sufficient condition
for global optimality is

1(∑
jmj1

)2

∑
j

(
mjL

2 −mj1
2
)
<

1

N2
. (42)
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We relax the sufficient condition (42) as∑
j

(
mjL

2 −mj1
2
)
<

1

N2

∑
j

mj1
2, (43)

based on the fact that
∑
jmj1

2 ≤
(∑

jmj1

)2

.

Plugging mil = Ri
2

P
′
i

πTl
2
γ Γ(1 − 2

γ )Γ(1 + 2
γ ) into (43), we

have

TL <

(
1

N2
+ 1

) γ
4

T1. (44)

APPENDIX I
PROOF OF THEOREM 10

For notational convenience, we let mi = mi1 for all i.
Case 1: α ∈ (1− 1

M , 1).
For L = 1, we have δi = mi

2oi and ξi = mioi. Similar to
the proof of Theorem 7, we have∣∣∣∣ ∂fi∂xi

∣∣∣∣ =(1− α)

∣∣∣∣∣∣ oi
1−α

wP
′
i

1−α
xiα

+ ψi
∑
j′

m2
j′
xj′

1−αoj′
1−α

w2P
′

j′
1−α

−

(
xiξi

wP
′
i

1−α
xiαoiα

+ ψi
xi
−αξi

w2P
′
i

1−α
oiα

)∣∣∣∣∣
≤(1− α)Wii,

(45)
and∣∣∣∣ ∂fi∂xj

∣∣∣∣ =(1− α)

∣∣∣∣∣∣ψi
∑
j′

m2
j′
xj′

1−αoj′
1−α

w2P
′

j′
1−α

−

(
xiξi

wP
′
i

1−α
xiαoiα

+ ψi
xj
−αξj

w2P
′
j

1−α
ojα

)∣∣∣∣∣
≤(1− α)Wij ,∀j 6= i.

(46)

Since α > 1− 1
M , |J| ≤ (1−α)M < 1. Following the same

approach in Theorem 7, the proposed algorithm converges to
the global optimum.

Based on the following inequality∑
i

mi

o
′

i,max

w
′
min

=

∑
imio

′

i,max∑
jmjo

′
j,min

≥ 1,

we can further show that M > N after simple manipulation
of Wij .

Case 2: α ≥ 1.
For α = 1, since L = 1, the objective degrades to

U(p) =

N∑
i=1

log(λipi) + log(a1 exp(−mi1

N∑
j=1

P
′

jλjpj).

Obviously, U(p) is concave in p.
For α > 1, since L = 1 , the objective degrades to

U(p) =

N∑
i=1

(
λipia1 exp

(
−mi1

∑N
j=1 pjλjP

′

j

))1−α

1− α
.

Let

g
′

i(x) =
(xi exp(−mi1

∑N
j=1 xj))

1−α

(P
′
i )

1−α(1− α)
,

where x ∈ R+
n .

Then we have

g
′

i(x) =
(exp(log(xi)−mil

∑N
j=1 xj))

1−α

(P
′
i )

1−α(1− α)

=
exp((1− α) log(xi)− (1− α)mil

∑N
j=1 xj))

(P
′
i )

1−α(1− α)

=
exp(h

′

i(x))

(P
′
i )

1−α(1− α)
,

(47)

where h
′

i(x) = (1 − α) log(xi) − (1 − α)mil

∑N
j=1 xj . For

α > 1, h
′

i(x) is convex in x. Furthermore, exp(x) is convex in
x and non-decreasing with respect to x. Hence, exp(h

′

i(x)) is
convex in x according to the composition rule. Therefore g

′

i(x)
is concave in x. We also have U(p) = a1−α

1

∑N
i=1 g

′

i(p),
where g

′

i(p) = g
′

i(x)|xi=P ′i λipi . Therefore, we conclude that
U(p) is concave in p.

Hence, for α ≥ 1 and L = 1, problem P is a convex opti-
mization problem. Furthermore, it is easy to verify that Slater’s
condition is satisfied. Thus, KKT conditions are sufficient for
global optimality. Combining this with Theorem 6, we see that
MMTS converges to the global optimum.
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