
1

Resource Sharing of a Computing Access
Point for Multi-user Mobile Cloud Offloading

with Delay Constraints

Meng-Hsi Chen, Student Member, IEEE, Min Dong, Senior Member, IEEE, and Ben Liang, Fellow, IEEE

Abstract—We consider a mobile cloud computing system with multiple users, a remote cloud server, and a computing access point

(CAP). The CAP serves both as the network access gateway and a computation service provider to the mobile users. It can either

process the received tasks from mobile users or offload them to the cloud. We jointly optimize the offloading decisions of all users,

together with the allocation of computation and communication resources, to minimize the overall cost of energy consumption,

computation, and maximum delay among users. The joint optimization problem is formulated as a mixed-integer program. We show

that the problem can be reformulated and transformed into a non-convex quadratically constrained quadratic program, which is NP-hard

in general. We then propose an efficient solution to this problem by semidefinite relaxation and a novel randomization mapping method.

Furthermore, when there is a strict delay constraint for processing each user’s task, we further propose a three-step algorithm to

guarantee the feasibility and local optimality of the obtained solution. Our numerical results show that the proposed solutions give

nearly optimal performance under a wide range of parameter settings, and the addition of a CAP can significantly reduce the cost of

multi-user task offloading compared with conventional mobile cloud computing where only the remote cloud server is available.

Index Terms—Mobile cloud computing, computing access point, offloading decision, resource allocation, energy cost, computation

cost, delay cost.

✦

1 INTRODUCTION

MOBILE Cloud Computing (MCC) extends the capabil-
ities of mobile devices to improve user experience

[2] [3] [4]. Mobile users can offload tasks to the cloud,
using abundant cloud resources to help them gather, store,
and process data. However, the interaction between mobile
devices and the cloud introduces some key challenges in
the system design. For example, the decision on whether
to offload tasks to the cloud needs to balance the tradeoff
between energy consumption and computing performance.
Furthermore, the communication delay between mobile
users and the cloud needs to be taken into consideration
[2].

With an aim to reduce the communication delay in
task offloading, Mobile Edge Computing (MEC), as defined
by the European Telecommunications Standards Institute
(ETSI), is a distributed MCC system where computing re-
sources are installed locally at or near the base station of
a cellular network [5] [6] [7]. MEC shares similarities with
micro cloud centers [8], cloudlets [9], cyber-foraging [10],
and fog computing [11], except that the MEC computing
servers are managed by a mobile service provider, which

• Meng-Hsi Chen and Ben Liang are with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, Canada (e-mail:
{mchen, liang}@ece.utoronto.ca).
Min Dong is with the Department of Electrical, Computer and Software
Engineering, University of Ontario Institute of Technology, Oshawa,
Canada (e-mail: min.dong@uoit.ca).

• This work has been funded in part by grants from the Natural Sciences
and Engineering Research Council (NSERC) of Canada and in part by the
Ontario Ministry of Research and Innovation under an Early Researcher
Award.

• A preliminary version of this work has appeared in [1].

allows more direct control and resource management.
Similar to the concept of MEC, in this work, we use

the general term computing access point (CAP), which refers
to a wireless access point or a cellular base station with
built-in computation capability. For example, CAPs may be
provided by Internet service providers as a value-added ser-
vice. Mobile devices that wish to offload a task first sends it
to the CAP. The CAP may serve its conventional networking
function and forward the task to the remote cloud server,
or directly process the task by itself. The additional option
of computation by the CAP reduces the need for access to
the remote cloud server, and hence can potentially decrease
the communication delay and also the overall energy and
computation cost. However, the availability of CAP adds
an extra dimension of variability for offloading decisions.
Each task may be processed locally at the mobile device,
at the CAP, or at the remote cloud server. Furthermore,
both computation and communication resources need to
be considered in different offloading choices. This makes
optimizing the mobile task offloading decision even more
challenging.

In this work, we study the interaction among multiple
users, the CAP, and the cloud. In a multi-user scenario,
to offload tasks, we need to allocate communication and
computation resources among competing users. We jointly
consider both the offloading decision and resource allo-
cation among all users, with an aim to conserve energy
and maintain service quality for all of them. For this joint
optimization problem, an optimal offloading decision must
take into consideration the computation and communica-
tion energies, computation costs, and communication and
processing delays at all local user devices, as well as the

2

resource constraints and capabilities of the CAP and the re-
mote cloud. The contributions of this work are summarized
as follows:

• We focus on jointly optimizing the offloading deci-
sions as well as the computation and communication
resource allocation for multiple mobile users with
one CAP and one remote cloud server. We formu-
late the joint optimization problem to minimize a
weighted sum of costs of energy, computation, and
the maximum delay among all users. This results in
a mixed integer programming problem. To solve this
challenging problem, we first reformulate and trans-
form the problem into a non-convex quadratically
constrained quadratic program (QCQP) [12], which
is still NP-hard in general. To obtain a solution to
this problem, we then propose an efficient heuristic
algorithm, termed shareCAP, based on semidefinite
relaxation (SDR) [13] and a novel randomization
mapping method.

• We further study the scenario where there is a strict
processing deadline for each user’s task. With these
additional delay constraints, the proposed shareCAP
method can no longer be directly applied to find
a solution due to the absence of a feasibility guar-
antee. To solve this more complicated optimization
problem, we further propose a three-step algorithm
named shareCAP-D, consisting of SDR, adaptive ad-
justment, and sequential tuning, to iteratively find
a solution. We show that shareCAP-D guarantees a
locally optimal solution.

• Through numerical study, by comparing with an
optimal offloading policy obtained by exhaustive
search, we demonstrate that the proposed shareCAP
and shareCAP-D methods give nearly optimal per-
formance under a wide range of parameter settings.
Furthermore, we observe that the addition of a CAP
can significantly reduce the energy and computa-
tional costs of the system, as compared with the con-
ventional MCC where only the remote cloud server
is available for task offloading.

The rest of this paper is organized as follows. Related
works are reviewed in Section 2. In Section 3, we describe
the system model for mobile cloud computing with a CAP
and formulate the optimization problem. In Section 4, we
transform our problem to a QCQP problem and solve it
through the SDR approach. In Section 5, we further study
the scenario with strict delay constraints. In Section 6, we
extend our work to sum delays optimization. Numerical
results are presented in Section 7, followed by conclusion
in Section 8.

Notations: We denote by aT and AT the transpose of
vector a and matrix A, respectively. The notation diag(a)
denotes the diagonal matrix with diagonal elements being
elements of vector a. The trace function of matrix A is
denoted by Tr(A). We use A(i, j) to denote the (i, j)th
entry of matrix A. We use A � 0 to indicate that A is a
positive semi-definite matrix.

2 RELATED WORK

Many existing works study task offloading from mobile
users to the local (or remote) processor in two-tier cloud
systems. For a single mobile user offloading its entire appli-
cation to the cloud, the authors of [14], [15], [16] presented
different energy models to analyze whether or not to offload
application to the cloud, and the tradeoff between energy
consumption and computing performance was studied in
[17], [18]. Furthermore, many studies have considered par-
titioning an application into multiple tasks. Among them,
MAUI [19], Clonecloud [20], and Thinkair [21] are systems
proposed to enable a mobile device to offload tasks to
the cloud. These works focus on the implementation of
offloading mechanisms from the mobile device to the cloud,
and the discussion on optimizing the offloading decisions
was limited. In [22] and [23], heuristic offloading policies
were proposed for a mobile user with sequential tasks. In
[24], [25], [26], the problem of cloud offloading for a mobile
user with dependent tasks was studied. In [27], offloading
a mobile user’s tasks in an intermittently connected cloud
system was considered. The impact of mobility was consid-
ered in [28], where the authors proposed an opportunistic
offloading algorithm. All of the studies above focus on a
single mobile user.

Task offloading by multiple mobile users have been con-
sidered in [29], [30], [31], [32], [33], [34], [35], [36], [37], where
each user has a single application or task to be offloaded to
the cloud in its entirety. In [29], [30], [31], the authors consid-
ered optimizing offloading decisions, aiming to maximize
the revenue of the mobile cloud service providers under
a fixed resource usage per user. The cooperation among
selfish service providers to improve the revenue was further
studied in [31]. The authors of [32], [33] studied the allo-
cation of radio and computation resources in the scenario
where all tasks are always offloaded. The joint optimization
of offloading decision and communication and computation
resources for system utility maximization was considered in
[34], where where the number of tasks that can be offloaded
is limited by the transmission bandwidth; a heuristic algo-
rithm was proposed to obtain the resource allocation and
offloading decision sequentially. Game theoretic approaches
were adopted in [35], [36], [37] to study decentralized deci-
sion control in systems where offloading decisions are made
by mobile users as selfish players. However, these game
theoretic works focus on the offloading decisions for each
user without considering the allocation of communication
and computation resources. Furthermore, a multi-user sce-
nario where each user has multiple independent tasks was
considered in [38], where the offloading decision algorithm
were proposed by minimizing the weighted cost of energy
consumption and worst-case offloading delay. The authors
of [39] considered a mobile device cloud, which is composed
purely of proximal mobile devices, and a task scheduling
mechanism was proposed for concurrent application man-
agement. Coordination of local mobile devices forming a
mobile cloud has been studied in [40]. All of the studies
above focus on a two-tier cloud network consisting of only
mobile users and another tier of local or remote processors.

The three-tier network consisting of mobile users, a local
computing node (e.g., cloudlet or CAP), and a remote cloud

3

server has been studied in [41], [42], [43], [44], [45]. Without
considering resource allocation, centralized heuristic algo-
rithms for offloading decisions were proposed in [41], [42],
[43], while a game theoretic approach was considered to
distributedly obtain the offloading decision in [44]. Despite
these works, the joint optimization of the offloading deci-
sion and the allocation of computation and communication
resources for a general three-tier system has not been in-
vestigated before. The joint optimization problem is much
more complicated to solve, because the offloading decision
and resource allocation are inter-dependent.

In our recent work [45], a multi-user scenario where
each user has multiple independent tasks was considered
for joint optimization of offloading and allocation of com-
munication and computation resources. The differences of
this work and [45] are as follows: 1) The problem structures
are different, leading to different problem formulations and
solution approaches; 2) For the single-task per user case
studied in this paper, we propose a low-complexity algo-
rithm that is shown to achieve nearly optimal performance.
This combined advantage in both the complexity and per-
formance cannot be achieved by the algorithm proposed
in [45]; 3) In this work, we further study the scenario
where a strict processing deadline is imposed on each user’s
task, which cannot be addressed by the solution approach
proposed in [45].

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the model of mobile cloud
computing with a CAP, detailing the costs of processing
locally, at the CAP, and at the cloud. We then explain the
joint offloading decision and resource allocation optimiza-
tion problem to minimize a weighted sum cost.

3.1 System Model

3.1.1 Mobile Cloud with CAP

Consider a cloud access network with N mobile users, one
CAP, and one remote cloud server, as shown in Fig. 1.
The CAP is a wireless access point (or a cellular base
station) with built-in computation capability that may be
provided by Internet service providers as a value-added
service. Instead of just serving as a relay to always forward
received tasks from users to the cloud, the CAP also has
the capability to process user tasks subject to its resource
constraint. We denote the set of all users by N = {1, ..., N}.
Each mobile user has one task to be either processed locally
or offloaded to the CAP, and the CAP determines whether
to process each received task by itself or further offload it
to the cloud for processing. Since there are multiple tasks
offloaded to the CAP and some of them are processed by
the CAP, we need to further allocate the communication and
computation resources available at the CAP.

We assume that all tasks are available at time zero. This
is similar to many existing studies [15], [16], [17], [18], [33],
[34], [35], [36], [37]. If the tasks arrive dynamically in time,
we may apply our model and the proposed solution in a
quasi-static manner, where the system processes the tasks in
batches that are collected over time intervals [46].

Remote
 Cloud

Computing
 AP

Mobile
User 1

 1

Mobile
User 2

Mobile
User N

 2

 N

Fig. 1. System model

3.1.2 Offloading Decision

Denote the offloading decisions for user i by xl
i, x

a
i , x

c
i ∈

{0, 1}, indicating whether user i’s task is processed locally,
at the CAP, or at the cloud, respectively. The offloading
decisions are constrained by

xl
i + xa

i + xc
i = 1, i ∈ N . (1)

Notice that only one of xl
i, x

a
i , and xc

i for user i can be 1.

3.1.3 Cost of Local Processing

The input data size, output data size, and processing cycles
of user i’s task are denoted by Din(i), Dout(i), and Y (i)1,
respectively. Similar to [16], [17], [18], [33], [34], [35], [36],
[37], we assume that these quantities are known, which
may be achieved by applying a program profiler [19], [20],
[21]. We assume that the additional instructions required
for remote processing can be downloaded directly by the
CAP or the cloud via their access to a high-capacity wired
network. When the task is processed locally, the processing
energy is denoted by El

i and the processing time is denoted
by T l

i .

3.1.4 Cost of CAP Processing

For user i’s task being offloaded to the CAP, we denote the
energy consumed by wireless transmission (to the CAP)
and reception (from the CAP) at user i by Et

i and Er
i ,

respectively. We further denote the uplink and downlink
transmission times between user i and the CAP by T t

i =
Din(i)/(η

u
i c

u
i) and T r

i = Dout(i)/(η
d
i c

d
i), respectively, where

cui and cdi are uplink bandwidth and downlink bandwidth
allocated to user i, and ηui and ηdi are the spectral efficiency
of uplink and downlink transmission between user i and
the CAP, respectively2. Furthermore, cui and cdi are limited
by the uplink bandwidth CUL and downlink bandwidth CDL

as follows

N
∑

i=1

cui ≤ CUL, (2)

1. The processing cycles of user i’s task depends on the input data
size and the application type. For simplicity of illustration, we initially
assume that a task requires the same value of Y (i) on different CPUs so
that its processing time is a function of the CPU’s clock speed only. We
will explain later how the proposed solution can be trivially extended
to the general case.

2. The spectral efficiency can be approximated by log(1+SNR) where
SNR is the link quality between user i and the CAP.

4

and

N
∑

i=1

cdi ≤ CDL. (3)

Since some uplink and downlink transmissions may overlap
with each other, there is also a total bandwidth constraint

N
∑

i=1

(cui + cdi) ≤ CTotal. (4)

If this task is processed by the CAP, denote its processing
time by T a

i = Y (i)/fa
i , where fa

i is the assigned processing
rate, which is limited by the total processing rate fA at the
CAP as

N
∑

i=1

fa
i ≤ fA. (5)

The usage cost associated with the CAP processing user i’s
task is denoted by Ca

i . The usage cost may depend on the
data size and processing cycles of a task, as well as the
hardware and energy cost to maintain the CAP. Detailed
modeling of the usage cost is outside the scope of this work.
Here we simply assume that Ca

i is given for all i.

3.1.5 Cost of Cloud Processing

If a task is further offloaded to the cloud from the CAP,
besides all the costs mentioned above (except T a

i and Ca
i

related to the task processing cost by the CAP), there is
an additional transmission time between the CAP and the
cloud, denoted by T ac

i = (Din(i) +Dout(i))/r
ac, where rac

is the transmission rate between the CAP and the cloud.
Also, the cloud processing time is denoted by T c

i = Y (i)/f c,
where f c is the cloud processing rate for each user. The rate
rac is assumed to be a pre-determined value regardless of
the number of users. This is because the CAP-cloud link is
likely to be a high-capacity wired connection as compared
with the limited wireless links between the mobile users
and the CAP, thus there is no need to consider bandwidth
sharing among the users. Similarly, f c is also assumed to be
a pre-determined value because of the high computational
capacity and dedicated service of the remote cloud server.
Thus, T ac

i and T c
i only depend on task i itself. Finally, the

cloud usage cost of processing user i’s task at the cloud is
denoted by Cc

i .
The above notations are summarized in Table 1.

3.2 Problem Formulation

Our goal is to reduce the mobile users’ energy consumption
and maintain the service quality to their tasks. To do so,
we define the total system cost as the weighted sum of
total energy consumption, the costs to offload and process
all tasks, and the corresponding maximum transmission
and processing delays among all users. We aim to mini-
mize the total system cost by jointly optimizing the task
offloading decision vector xi = [xl

i, x
a
i , x

c
i]
T and the com-

munication and CAP processing resource allocation vector
ri = [cui , c

d
i , f

a
i]

T .
For user i’s task being offloaded to the CAP, we define

EA
i as the weighted transmission energy and processing

cost. Similarly, we define EC
i as the weighted transmission

TABLE 1
Notation and corresponding description.

Notation Description

Din(i), Dout(i) input data size and output data size of
user i’s task

Y (i) processing cycles of user i’s task
El

i local processing energy of user i’s task
Et

i , Er
i uplink transmitting energy and

downlink receiving energy of user i’s
task to and from the CAP

T l
i , T a

i , T c
i local processing time, CAP processing

time, and cloud processing time of
user i’s task

T t
i , T r

i uplink transmission time and
downlink transmission time of
user i’s task between the mobile user
and the CAP

T ac
i transmission time of user i’s task

between the CAP and the cloud
CUL, CDL uplink bandwidth and downlink

bandwidth for transmission between
mobile users and the CAP

CTotal total transmission bandwidth between
mobile users and the CAP

cui , cdi uplink bandwidth and downlink
bandwidth assigned to user i

ηui , ηdi spectral efficiency of uplink and
downlink transmission between user i
and the CAP

Ca
i , Cc

i CAP usage cost and cloud usage cost
of user i’s task

rac transmission rate for each user
between the CAP and the cloud

f c cloud processing rate for each user
fA total CAP processing rate
fa
i CAP processing rate assigned to user i
α weight of the CAP usage cost
β weight of the cloud usage cost
ρi weight of the energy consumption of

user i’s task

energy and processing cost if the task is offloaded to the
cloud. They are given by

EA
i = (Et

i + Er
i + αCa

i),

and

EC
i = (Et

i + Er
i + βCc

i),

where α and β are the relative weights between the trans-
mission energy and the processing cost in EA

i and EC
i ,

respectively. The local processing delay at user i, denoted
by TL

i , is given by

TL
i = T l

ix
l
i.

Also, define TA
i and TC

i as the transmission and processing
delay at the CAP and the cloud, respectively. We have

TA
i =

(

Din(i)

ηui c
u
i

+
Dout(i)

ηdi c
d
i

+
Y (i)

fa
i

)

xa
i ,

5

and

TC
i =

(

Din(i)

ηui c
u
i

+
Dout(i)

ηdi c
d
i

+ T ac
i + T c

i

)

xc
i .

The values of TL
i , TA

i , and TC
i depend on the offloading

decisions xi and the communication and CAP processing
resource allocation ri. The joint optimization of offloading
and resource allocation is formulated as follows

min
{xi},{ri}

[N
∑

i=1

ρi(E
l
ix

l
i + EA

i x
a
i + EC

i xc
i)

+ max
i
{TL

i + TA
i + TC

i }
]

(6)

s.t. (1), (2), (3), (4), (5),

cui , c
d
i , f

a
i ≥ 0, i ∈ N , (7)

xl
i, x

a
i , x

c
i ∈ {0, 1}, i ∈ N , (8)

where ρi is the weight on energy consumption relative to the
delay. The proposed optimization problem (6) can be solved
by any controller in this network after collecting all required
information. In practice, the controller could be the CAP.
That is, each user provides its information to the CAP, and
the CAP will broadcast the obtained offloading decisions
(and the corresponding resource allocations) to all users by
solving problem (6).

Notice that in problem (6), the cost of delay is considered
in the total system cost objective. We put different emphasis
on delay by adjusting ρi. Note that, since processing delay
is in the objective instead of as a constraint in problem (6),
any offloading decision and resource allocation are feasible.
However, in practice, there are applications that require
strict processing deadlines, and some offloading decisions
may not satisfy the strict delay constraint for a task. This
scenario will be further discussed in Section 5.

4 SHARECAP OFFLOADING SOLUTION

For the scenario without any delay constraint, we show in
this section that optimization problem (6) has an equiv-
alent QCQP formulation that is NP-hard in general. We
then present our proposed solution through the SDR and
randomization mapping approach.

4.1 Overview of the Proposed Solution

Given some offloading decisions xi, problem (6) concerns
only the resource allocation vector ri as

min
{ri}

(

E +max
i
{TL

i + TA
i + TC

i }
)

(9)

s.t. (2), (3), (4), (5), and (7),

where

E ,

N
∑

i=1

ρi(E
l
ix

l
i + EA

i x
a
i + EC

i xc
i).

Note that E only depends on xi, and thus can be treated as
a constant. The resource allocation problem (9) is convex. It
can be solved optimally using standard convex optimization
approaches such as the interior-point method. Since there

are a finite number of offloading decisions, a globally opti-
mal solution for problem (6) can be obtained by exhaustive
search among 3N possible offloading decisions. However,
the complexity grows exponentially with the number of
users and thus impractical.

In order to find an efficient solution to problem (6),
we first transform it into a separable QCQP with a linear
objective, and then propose a separable SDR approach and a
novel randomization mapping method to recover the binary
offloading decisions. Once we obtain the binary offloading
decisions, we can easily solve problem (9) to find the corre-
sponding optimal resource allocation. We name our method
the shareCAP offloading and resource allocation solution.

4.2 QCQP Reformulation and Semidefinite Relaxation

We first replace the integer constraint (8) by

xs
i (x

s
i − 1) = 0, i ∈ N , (10)

for s ∈ {l, a, c}. Then, we move the delay term from
the objective to the constraints by introducing additional
auxiliary variable t. Optimization problem (6) is equivalent
to the following problem

min
{xi},{ri}, t

N
∑

i=1

ρi(E
l
ix

l
i + EA

i xa
i + EC

i xc
i) + t (11)

s.t. T l
ix

l
i +

(

Din(i)

ηui c
u
i

+
Dout(i)

ηdi c
d
i

+
Y (i)

fa
i

)

xa
i

+

(

Din(i)

ηui c
u
i

+
Dout(i)

ηdi c
d
i

+T ac
i +T c

i

)

xc
i≤ t, i∈N , (12)

(1), (2), (3), (4), (5), (7), and (10).

We now show that the optimization problem (11) can be
transformed into a separable QCQP problem by the follow-
ing steps.

First, we introduce additional auxiliary variables di ,

(Du
i , D

d
i , D

a
i). Constraint (12) can be equivalently replaced

by the following four constraints

T l
ix

l
i +Du

i +Dd
i +Da

i + (T ac
i + T c

i)x
c
i ≤ t, i ∈ N , (13)

Din(i)(x
a
i + xc

i)

ηui c
u
i

≤ Du
i , i ∈ N , (14)

Dout(i)(x
a
i + xc

i)

ηdi c
d
i

≤ Dd
i , i ∈ N , (15)

and

Y (i)xa
i

fa
i

≤ Da
i , i ∈ N , (16)

where constraint (13) is the overall delay constraint, con-
straints (14) to (16) correspond to the uplink transmission
time, the downlink transmission time, and the CAP pro-
cessing time, respectively.

Next, we vectorize the variables and parameters in (11).
Define

w0 , [t, 01×8]
T , (17)

and

wi , [xl
i, x

a
i , x

c
i , c

u
i , D

u
i , c

d
i , D

d
i , f

a
i , D

a
i]

T , i ∈ N , (18)

6

which is the decision vector for user i containing all decision
variables. Then, we can rewrite the objective in (11) as

N
∑

i=0

bT
i wi, (19)

where

b0 , [1,01×8]
T ,

and

bi , ρi[E
l
i, E

A
i , EC

i ,01×6]
T , for i 6= 0.

In the following, we present each constraint in problem
(11) in a corresponding matrix form. For the overall delay
constraint (13), it can be rewritten as

N
∑

k=0

(bc
ik)

Twk ≤ 0, i ∈ N , (20)

where

bc
i0 , [−1,01×8]

T ,

bc
ii , [T l

i , 0, (T
ac
i + T c

i), 0, 1, 0, 1, 0, 1]
T ,

bc
ik , 0, for k 6= 0, i.

The matrix forms of constraints (14) - (16) are

wT
i A

µ
i wi + (bµ

i)
Twi ≤ 0, µ ∈ {u, d, a}, i ∈ N , (21)

where

Au′

i , −0.5
[

0 ηui
ηui 0

]

, Ad′

i , −0.5
[

0 ηdi
ηdi 0

]

,

Au
i ,

03×3 03×2 03×4

02×3 Au′

i 02×4

04×3 04×2 04×4

 ,

Ad
i ,

05×5 05×2 05×2

02×5 Ad′

i 02×2

02×5 02×2 02×2

 ,

Aa′

i , −0.5
[

0 1
1 0

]

, Aa
i ,

[

07×7 07×2

02×7 Aa′

i

]

,

bu
i , [0, Din(i), Din(i),01×6]

T ,

bd
i , [0, Dout(i), Dout(i),01×6]

T ,

ba
i , [0, Y (i), 0,01×6]

T .

We then replace the offloading placement constraint (1) with

(bP
i)

Twi = 1, i ∈ N , (22)

where bP
i , [1, 1, 1,01×6]

T . For uplink and downlink band-
width resource constraints (2) and (3), we rewrite them as

N
∑

i=1

(bU
i)

Twi ≤ CUL, (23)

and

N
∑

i=1

(bD
i)Twi ≤ CDL, (24)

where

bU
i , [0, 0, 0, 1,01×5]

T , bD
i , [01×5, 1, 0, 0, 0]

T .

Similarly, the total bandwidth constraint (4) is as follows

N
∑

i=1

(bS
i)

Twi ≤ CTotal, (25)

where bS
i , [0, 0, 0, 1, 0, 1, 0, 0, 0]T . The constraint (5) on the

CAP processing resource allocation can be rewritten as

N
∑

i=1

(bA
i)

Twi ≤ fA, (26)

where bA
i , [01×7, 1, 0]

T . Constraint (7), which ensures that
all variables are nonnegative, is replaced by

wi � 0, i ∈ N ∪ {0}. (27)

Finally, we rewrite integer constraint (10) as

wT
i diag(ej)wi − (ej)

Twi = 0, j ∈ {1, 2, 3}, i ∈ N , (28)

where each ej is a 9 × 1 standard unit vector with the
jth entry being 1. By further defining zi , [wT

i 1]
T , for

i in N ∪ {0}, and together with the above matrix form
expressions, optimization problem (11) can now be trans-
formed into the following equivalent homogeneous separa-
ble QCQP formulation

min
{zi}

N
∑

i=0

zTi Gizi (29)

s.t.
N
∑

k=0

zTkG
c
ikzk ≤ 0, i ∈ N , (30)

zTi G
µ
i zi ≤ 0, µ ∈ {u, d, a}, i ∈ N , (31)

zTi G
P
i zi = 1, i ∈ N , (32)

N
∑

i=1

zTi G
U
i zi ≤ CUL, (33)

N
∑

i=1

zTi G
D
i zi ≤ CDL, (34)

N
∑

i=1

zTi G
S
i zi ≤ CTotal, (35)

N
∑

i=1

zTi G
A
i zi ≤ fA, (36)

zTi G
I
jzi = 0, j ∈ {1, 2, 3}, i ∈ N , (37)

zi � 0, i ∈ N ∪ {0}, (38)

where

Gi ,

[

0 1
2bi

1
2b

T
i 0

]

,

Gc
ik ,

[

0 1
2b

c
ik

1
2 (b

c
ik)

T 0

]

,

G
µ
i ,

[

A
µ
i

1
2b

µ
i

1
2 (b

µ
i)

T
0

]

, µ ∈ {u, d, a},

Gπ
i ,

[

0 1
2b

π
i

1
2 (b

π
i)

T
0

]

, π ∈ {P,U,D, S,A},

GI
j ,

[

diag(ej) − 1
2ej

− 1
2e

T
j 0

]

, j ∈ {1, 2, 3}.

7

Comparing the optimization problems (11) and (29), all
constraints have one-to-one corresponding matrix repre-
sentations. Specifically, constraint (30) is the overall delay
constraint, constraint (31) comes from the additional aux-
iliary constraints (14)-(16), constraint (32) is the offloading
placement constraint, constraints (33) and (34) correspond to
uplink and downlink bandwidth resource constraints, con-
straint (35) is the total bandwidth constraint, constraint (36)
is the constraint on the CAP processing resource allocation,
and constraint (37) corresponds to the integer constraint
(10). Therefore, optimization problem (29) is equivalent to
the original problem (6).

Note that optimization problem (29) is a non-convex
separable QCQP problem, which is NP-hard in general. To
solve it, we apply a separable SDR approach to relax it into a
separable semidefinite programming (SDP) problem. Define
Zi , ziz

T
i . We then have

zTi Gzi = Tr(GZi), (39)

with rank(Zi) = 1. By dropping the rank constraint
rank(Zi) = 1, we relax problem (29) into the following
separable SDP problem

min
{Zi}

N
∑

i=0

Tr(GiZi) (40)

s.t.
N
∑

k=0

Tr(Gc
ikZk) ≤ 0, i ∈ N , (41)

Tr(Gµ
i Zi) ≤ 0, µ ∈ {u, d, a}, i ∈ N , (42)

Tr(GP
i Zi) = 1, i ∈ N , (43)

N
∑

i=1

Tr(GU
i Zi) ≤ CUL, (44)

N
∑

i=1

Tr(GD
i Zi) ≤ CDL, (45)

N
∑

i=1

Tr(GS
i Zi) ≤ CTotal, (46)

N
∑

i=1

Tr(GA
i Zi) ≤ fA, (47)

Tr(GI
jZi) = 0, j ∈ {1, 2, 3}, i ∈ N , (48)

Zi(10, 10) = 1, i ∈ N ∪ {0}, (49)

Zi � 0, i ∈ N ∪ {0}. (50)

The above problem can be solved efficiently in polyno-
mial time using standard SDP software, such as SeDuMi
[47]. Denote Z∗

i as the optimal solution of the SDP problem
(40). We need to obtain the offloading decision xi of the
original problem (6) from Z∗

i . In the following, we propose
a randomization method to obtain our binary offloading
decisions.

4.3 Binary Offloading Decisions via Randomization

One might consider using a common approach [13] to
obtain an integer solution from the relaxed SDP problem, by
randomly generating vectors from the Gaussian distribution
with zero mean and covariance Z∗

i for L times, and then
mapping them to the integer set {0, 1}3N by using the

sign of each element in these vectors. Among the generated
vectors, the one that yields the best objective value of the
original problem would be chosen as the desired solution.
However, the above randomization procedure does not
produce a feasible solution due to the offloading decision
placement constraint (1). Instead, using the structure of Zi

and constraints in problem (40), we propose the following
randomization method for a feasible solution.

Denote the offloading solution vector as

x , [xT
1 , . . . ,x

T
N]T ,

where xi , [xl
i, x

a
i , x

c
i]
T , for i ∈ N . Since we have removed

the rank-1 constraint from problem (29) to arrive at the
relaxed problem (40), the obtained solution Z∗

i for problem
(40) does not directly provide a feasible binary solution for
the offloading decisions. Our goal is to obtain appropriate
offloading decisions from Z∗

i by mapping its elements to
binary numbers. Note that only the first three elements in
zi correspond to the offloading decision variables for user i
(see wi in (18)). Also, since Zi = ziz

T
i and zi(10) = 1, we

know that the last row of Zi satisfies Zi(10, j) = zi(j), for
all j. Hence, we can use the values of Z∗

i (10, j) to recover the
binary offloading decision zi(j), for j = 1, 2, 3. Before pro-
viding the details of the proposed randomization method,
we first show the property of Z∗

i (10, j), for j = 1, 2, 3, in the
following lemma.

Lemma 1. For the optimal solution Z∗
i of problem (40),

Z∗
i (10, j) ∈ [0, 1], for j = 1, 2, 3, and i ∈ N .

Proof: After dropping rank-1 constraint rank(Zi) = 1,
in the relaxed problem (40), constraint (48) can only guar-
antee that Zi(j, j) = Zi(10, j)(= Zi(j, 10)) for j = 1, 2, 3.
To show that Z∗

i (10, j) ∈ [0, 1], for j = 1, 2, 3, we note that,
first, Z∗

i (j, j) ≥ 0 since Z∗
i � 0, which means Z∗

i (10, j) ≥ 0,
for j = 1, 2, 3. In addition, constraint (43) guarantees that

Z∗
i (10, 1) + Z∗

i (10, 2) + Z∗
i (10, 3) = 1.

Thus, we have Z∗
i (10, j) ∈ [0, 1], for j = 1, 2, 3.

Based on Lemma 1, we consider a probabilistic mapping
method to find x. We take Z∗

i (10, j) as the probability of
zi(j) = 1, i.e., prob(zi(j) = 1) = Z∗

i (10, j), for j = 1, 2, 3.
Denote

pi , [pli, p
a
i , p

c
i]
T
, [Z∗

i (10, 1),Z
∗
i (10, 2),Z

∗
i (10, 3)]

T .

Equivalently, this means prob(xs
i = 1) = psi , for s = l, a, c.

We reconstruct [xl
i, x

a
i , x

c
i] using pi as marginal probabili-

ties, while satisfying constraint (1). This leads to our pro-
posed probabilistic randomization method as follows.

Let

U l
i = pli(1− pai)(1 − pci),

Ua
i = (1− pli)p

a
i (1− pci),

and

U c
i = (1− pli)(1 − pai)p

c
i .

8

To satisfy the placement constraint (1), we define random
vector ui, which represent the location that user i’s task will
be processed, as follows:

ui=

[1, 0, 0]T, with probabilityP l
i (local processing),

[0, 1, 0]T, with probabilityP a
i (CAP processing),

[0, 0, 1]T, with probabilityP c
i (cloud processing),

(51)

where

P s
i =

Us
i

U l
i + Ua

i + U c
i

, s ∈ {l, a, c},

and

P l
i + P a

i + P c
i = 1.

We generate M i.i.d. feasible offloading solutions x(m) =

[(u
(m)
1)T . . . (u

(m)
N)T]T using the above procedure, for m =

1, ...,M, and solve the corresponding resource allocation
problem (9) for each x(m). We then choose among these
feasible solutions the one that gives the minimum objective
value of the optimization problem (6) to obtain the offload-
ing solution xsdr and the corresponding optimal resource
allocation {rsdr∗i }. For the best decision, in practice, we
should also compare xsdr with the solutions from local
processing only and cloud processing only methods, and
select the one that gives the minimum cost as the final
offloading decision xsdr∗ and the corresponding optimal
resource allocation {rsdr∗i }.

The details of the overall shareCAP offloading and re-
source allocation algorithm are given in Algorithm 1. Notice
that the SDP problem (40) can be solved within precision
ǫ by the interior point method in at most O(

√
N log(1/ǫ))

iterations in which the amount of work per iteration is
O(N6) [48]. This compares well with the 3N choices in
exhaustive search to find an optimal offloading decision. In
addition, we observe from numerical results that a small
number of randomization trials (e.g., M = 10) is enough to
give system performance very close to the optimal one.

Remark 1. The proposed solution can be easily extended to the
general case where the number of processing cycles for each task on
different CPUs are different because these quantities are constants
in optimization problem (6).

5 OFFLOADING WITH DELAY CONSTRAINTS

Time-sensitive applications in practice may have strict pro-
cessing deadlines, which complicates the offloading deci-
sions and resource allocation. In this section, we further
study the scenario where each task must be completed
before some given deadline. That is, there is a strict delay
constraint for each user’s task given by

TL
i + TA

i + TC
i ≤ Ti, i ∈ N , (52)

where we note that only one of TL
i , TA

i , and TC
i is non-

zero by their definitions and constraint (1). To ensure that at
least one feasible offloading solution exists, we assume that
local processing time T l

i ≤ Ti so that each user can at least
process its task locally to meet the deadline regardless of the

Algorithm 1 ShareCAP Offloading Algorithm

1: Obtain optimal solution Z∗
i of the SDP problem (40). Ex-

tract Z∗
i (10, j), for j = 1, 2, 3, from Z∗

i . Set the number
of randomization trials as M .

2: Record the values of Z∗
i (10, j), for j = 1, 2, 3, as pi.

3: for m = 1, ...,M do

4: x(m) = [u
(m)
1 , . . . ,u

(m)
N]T with u

(m)
i generated as in

(51);
5: Given x(m), solve resource allocation problem (9)

and record the minimum cost value of (9) as J (m);
6: end for
7: Choose among x(1), . . . ,x(M) the one that yields the

minimum system cost: xsdr = argmin{x(m)}J
(m)

8: Compare the minimum cost of (9) under xsdr with those
under the local processing only and cloud processing
only solutions. Select the one that yields the minimum
system cost as xsdr∗ .

9: Output: the proposed offloading solution xsdr∗ and the
corresponding optimal resource allocation {rsdr∗i }.

availability of the remote processing. With above additional
delay constraints, the optimization problem becomes

min
x,{ri}

[N
∑

i=1

ρi(E
l
ix

l
i + EA

i x
a
i + EC

i xc
i)

+ max
i
{TL

i + TA
i + TC

i }
]

(53)

s.t. (1), (2), (3), (4), (5), (7), (8), and (52).

Due to additional delay constraints (52), the optimization
problem (53) is more complicated than the original problem
(6). In addition, different from (6) where any offloading
decision is always feasible, only some offloading decisions
are feasible for problem (53). To solve this problem, in
the following, we modify the original shareCAP solution
and propose a three-step algorithm, named sharedCAP with
Delay Constraints (shareCAP-D). Furthermore, we will show
that the newly obtained binary offloading decision x and
computation and communication resource allocation {ri}
by shareCAP-D algorithm are locally optimal.

5.1 Step 1: QCQP Transformation and Semidefinite Re-

laxation

As mentioned above, optimization problem (53) is more
complicated, since individual strict delay constraints are
imposed to all users’ tasks. Following the similar procedure
in Section 4.2, we move the delay term from the objective to
the constraints by introducing additional auxiliary variables
t, and rewrite (53) as

min
{xi},{ri}, t

N
∑

i=1

ρi(E
l
ix

l
i + EA

i x
a
i + EC

i xc
i) + t (54)

s.t. T l
ix

l
i +

(

Din(i)

ηui c
u
i

+
Dout(i)

ηdi c
d
i

+
Y (i)

fa
i

)

xa
i

+

(

Din(i)

ηui c
u
i

+
Dout(i)

ηdi c
d
i

+T ac
i +T c

i

)

xc
i≤Ti, i∈N ,

(55)

(1), (2), (3), (4), (5), (7), (10), and (12),

9

where constraint (55) comes from the strict delay constraint
(52). Comparing optimization problem (54) with problem
(11), we observe that they share a similar structure, except
that problem (54) has the additional delay constraint (55).
Therefore, we can apply a similar procedure to transform
problem (54) into a non-convex separable QCQP problem,
and solve the corresponding separable SDP relaxation prob-
lem.

Rewriting the additional constraint (55) into a matrix
form, we have

zTi G
C
i zi ≤ Ti, i ∈ N , (56)

where zi is defined as in Section 4.2, and

bC
i , [T l

i , 0, (T
ac
i + T c

i), 0, 1, 0, 1, 0, 1]
T ,

GC
i ,

[

09×9
1
2b

C
i

1
2 (b

C
i)

T 0

]

.

The optimization problem (54) can now be transformed into
the following equivalent separable QCQP formulation

min
{zi}

N
∑

i=0

zTi Gizi (57)

s.t. (30)− (38), and (56).

Similar to (39), we have Zi = ziz
T
i and

zTi G
C
i zi = Tr(GC

i Zi).

Therefore, we can further reformulate problem (57) into a
separable SDP problem as follows

min
{Zi}

N
∑

i=0

Tr(GiZi) (58)

s.t. Tr(GC
i Zi) ≤ Ti, i ∈ N , (59)

(41)− (50),

which is SDP problem (40) with the additional delay con-
straint (59). Note that SDP problem (58) is a relaxation of
problem (54) and always feasible, so that we can obtain the
optimal solution{Z∗

i }. However, the randomization proce-
dure introduced in Section 4.3 cannot be directly applied
to find a feasible solution for problem (53) due to the
individual delay constraint for each user’s task (52). In other
words, there is no feasibility guarantee for the randomly
generated offloading vector x w.r.t (52) and hence its associ-
ated resource allocation problem.

To deal with this issue, we propose a deterministic
approach in which we choose an initial offloading solution
that will subsequently be improved in Steps 2 and 3 below.

Initial offloading solution: First, we have xi = [xl
i, x

a
i , x

c
i]
T

and pi = [pli, p
a
i , p

c
i]
T as defined in Section 4.3. Applying

Lemma 1, we can guarantee that psi ∈ [0, 1], s ∈ {l, a, c}.
Then, we recover the offloading decisions xsdr

i using pi as
follows:

xsdr
i =

[1, 0, 0]T, if max
s∈{l,a,c}

psi = pli (local processing),

[0, 1, 0]T, if max
s∈{l,a,c}

psi = pai (CAP processing),

[0, 0, 1]T, if max
s∈{l,a,c}

psi = pci (cloud processing),

(60)

and obtain the overall offloading decision as

xsdr = [(xsdr
1)T , . . . , (xsdr

N)T]T .

Since an offloading decision xsdr generated using the
above procedure may not satisfy individual delay con-
straints (52), in the following, we introduce an adaptive
adjustment procedure to obtain a feasible solution through
iteration, with xsdr as the initial solution.

5.2 Step 2: Obtaining a Feasible Solution via Adaptive

Adjustment

Similar to (9), optimization problem (53) is reduced to the
optimization of computation and communication resource
allocation {ri} given by

min
{ri}

(

E +max
i
{TL

i + TA
i + TC

i }
)

(61)

s.t. (2), (3), (4), (5), (7), and (52),

where E is defined below (9). We can determine whether a
given offloading decision x is feasible by solving problem
(61) which is convex. If it is feasible, we can obtain the
corresponding optimal resource allocation {ri}.

We now provide an adaptive adjustment procedure to
obtain a feasible offloading solution iteratively. Set xaa∗ =
xsdr. At each iteration:

i Check the feasibility of xaa∗ by solving problem (61).
ii Define a set N−

l = {i : xl
i = 0, i ∈ N}, which

contains all users with current decisions to offload
their tasks. If xaa∗ is infeasible, randomly pick i ∈
N−

l and modify the decision to be local processing
as xaa∗

i = [1, 0, 0]T .

Repeat steps i and ii until xaa∗ is feasible for problem
(61), and record the corresponding resource allocation as
{raa∗

i }. Then output the solution of the adaptive adjustment
procedure as (xaa∗ , {raa∗

i }).
Note that the above procedure always converges to

some feasible offloading decision xaa∗ (and corresponding
optimal resource allocation {raa∗

i }). To see this, we note that
in the worst case, the offloading solutions xaa∗ converges
to the no offloading decision profile where each task is
processed locally, which is feasible since T l

i ≤ Ti for i ∈ N .
We summarize this property in the following proposition.

Proposition 1. (xaa∗ , {raa∗

i }) obtained from the adaptive ad-
justment procedure is always a feasible solution to the original
optimization problem (53) with strict delay constraints.

5.3 Step 3: Obtaining a Local Optimum via Sequential

Turning

With a feasible solution (xaa∗ , {raa∗

i }) obtained in Step 2,
we now propose an iterative procedure, termed sequential
tuning, to further reduce the system cost and obtain a local
optimum for problem (53).

Set (xst∗ , {rst∗

i }) = (xaa∗ , {raa∗

i }) as the initial point. At
each iteration:

i Randomly order the list of all users.
ii Go through the user list one by one. For each

examined user, check the three possible offloading
decisions for its task, while keep the offloading
decisions of all other users unchanged. For each
offloading decision, find the total system cost by

10

solving problem (61). As soon as some user i is
found to admit a lower total system cost by chang-
ing its offloading decision, update (xst∗ , {rst∗

i }) to
the new offloading decision and resource allocation
that give the lower cost, and exit the iteration.

Repeat steps i and ii until xst∗ converges, i.e., no change for
xst∗ can be made. Then output the solution of the sequential
turning procedure as (xst∗ , {rst∗

i }).
The above procedure is guaranteed to converge. This

is because there is a finite number of possible values for
xst
i [t]. The iteration eventually will reach some (xst∗ , {rst∗

i }),
where the total system cost cannot be further reduced by
modifying any user’s offloading decision (and correspond-
ing resource allocation). It is straightforward to show that
(xst∗ , {rst∗

i }) is a local optimum of problem (53), since it
gives the lowest system cost in the joint binary-valued
neighborhood of x and neighborhood of {ri}. This result
is stated in the following proposition.

Proposition 2. Given any feasible initial point, (xst∗ , {rst∗

i })
obtained from the sequential tuning procedure is a local optimal
solution to the original optimization problem (53) with strict delay
constraints.

We summarize the above three-step shareCAP-D algo-
rithm in Algorithm 2. Note that, by design, the final solution
(xst∗ , {rst∗

i }) obtained by adopting the sequential tuning
procedure is better than or at least as good as (xaa∗ , {raa∗

i }).
In Section 7, we show that the proposed shareCAP-D method
provides not only a local optimum solution but also nearly
optimal performance compared with the optimal policy.

Remark 2. The sequential tuning procedure can also be applied
as an extension of shareCAP for the case without the delay
constraints, to obtain a locally optimal solution with an even lower
total system cost to problem (6).

6 EXTENSION TO SUM DELAY OPTIMIZATION

In previous optimization problems (6) and (53), we have
considered the maximum transmission and processing de-
lays among all users as part of the total system cost. Our
approach and proposed solution can also be extended to the
consideration of the sum delay of all users’ tasks as part of
the total system cost. This optimization problem is given as

min
{xi},{ri}

N
∑

i=1

[

ρi(E
l
ix

l
i + EA

i x
a
i + EC

i xc
i)

+ (TL
i + TA

i + TC
i)

]

(62)

s.t. (1), (2), (3), (4), (5), (7), and (8).

Same as in problems (6) and (53), we can adjust ρi to put
different emphasis on the sum delay. In addition, the strictly
delay constraint (52) can be included when considering
time-sensitive applications.

Using a similar procedure as described in Section 4.2, we
can obtain the corresponding non-convex separable QCQP
problem and separable SDP relaxation problem for problem
(62). The only difference between problems (62) and (6) is
the structure of the resulting SDR problems. Therefore, the

Algorithm 2 ShareCAP-D Offloading Algorithm

Step 1: Initial offloading solution via SDR
1: Obtain optimal solution {Z∗

i } of the SDR problem (58).

Extract the upper-left 3 × 3 sub-matrices {Ẑ∗
i } from

{Z∗
i }.

2: Record the values of diagonal terms in Ẑ∗
i by pi =

[pli, p
a
i , p

c
i]
T .

3: Set xsdr = [(xsdr
1)T , . . . , (xsdr

N)T]T , where xsdr
i is given by

(60), as the initial offloading solution.
Step 2: Adaptive adjustment

4: Set xaa∗ = xsdr.
5: Set AA = False.
6: while AA == False do
7: Check the feasibility of xaa∗ by solving problem (61);
8: if xaa∗ is infeasible then
9: Determine the set of users with offloaded task:

Set N−
l = {i : xl

i = 0, i ∈ N};
10: Randomly pick user i ∈ N−

l and set its offloading
decision to local processing: xaa∗

i = [1, 0, 0]T ;
11: else
12: Record the corresponding resource allocation

{raa∗

i };
13: Set AA = True; ⊲ Exit while loop
14: end if
15: end while

Step 3: Sequential tuning
16: Set (xst∗ , {rst∗

i }) = (xaa∗ , {raa∗

i }), and record the corre-
sponding total system cost as J st∗ .

17: Set ST = False.
18: while ST == False do
19: Randomly order the list of all users;
20: Set user index j = 1;
21: while j ≤ N do
22: Keep xst∗

j′ , j
′ 6= j, j′ ∈ N unchanged. For the

three possible offloading choices of xst∗

j , find
their respective total system costs by solving
problem (61); set J st′ as the minimum cost
among these choices, and record the

corresponding solution as xst′

j and {rst′i };

23: if J st′ < J st∗ then
24: Set xst∗

j = xst′

j , {rst∗

i } = {rst′

i }, J st∗ = J st′ ;
25: j ← N + 1;
26: else if j = N then
27: j ← N + 1; ST = True; ⊲ No change of xst∗

can be found; exit
28: else
29: j ← j + 1;
30: end if
31: end while
32: end while
33: Output: The offloading decision xst∗ and the corre-

sponding resource allocation {rst∗

i }.

same approach as shareCAP or shareCAP-D (when consid-
ering the strictly delay constraint) can again be applied to
obtain the final offloading decision and the corresponding
optimal resource allocation for problem (62). We omit the
derivation details to avoid repetition.

11

β
×10

-7

0.5 1 1.5 2 2.5 3

to
ta

l
c
o

s
t

(s
)

200

250

300

350

400

local processing

cloud processing

local cloud

shareCAP

random mapping

optimal policy

Fig. 2. The total system cost versus weight β (J/bit).

f
A ×10

9

0 2 4 6 8 10

to
ta

l
c
o

s
t

(s
)

150

200

250

300

350

400

450
local processing

cloud processing

local cloud

shareCAP

random mapping

optimal policy

Fig. 3. The total system cost versus CAP CPU rate fA (cycles/s).

7 NUMERICAL RESULTS

In this section, we provide numerical results based on
Monte Carlo repeated sampling to study the performance
of both shareCAP and shareCAP-D under different parameter
settings.

7.1 Parameter Setup

In the following, the default parameter values are described,
unless otherwise indicated later. We adopt the mobile device
characteristics from [49], which is based on a Nokia mobile
phone, and set the number of users as N = 8. According
to Tables 1 and 3 in [49], the mobile device has CPU rate
600 × 106 cycles/s and processing energy consumption

1
650×106 J/cycle, and the local computation time 3.95× 10−7

s/bit and local processing energy consumption 3.65× 10−7

J/bit are calculated when the x264 CBR encode application
(1900 cycles/byte) is considered for Y (i) = 1900Din(i). The
input and output data sizes of each task are assumed to be
uniformly distributed from 10 to 30 MB and from 1 to 3 MB,
respectively.

Both uplink bandwidth CUL and downlink bandwidth
CDL between mobile users and the CAP are set to 20
MHz, with no additional limit on the total bandwidth, and
the transmission and receiving energy consumptions of the
mobile user are both 1.42× 10−7 J/bit as indicated in Table
2 in [49]. For simplicity, we set ηui = ηdi = 3.5 b/s/Hz for all

ρ

0.2 0.3 0.4 0.5 0.6 0.7 0.8

to
ta

l
c
o

s
t

(s
)

100

150

200

250

300

350

400

450

500
local processing

cloud processing

local cloud

shareCAP

random mapping

optimal policy

Fig. 4. The total system cost versus weight ρi = ρ (s/J).

number of users

6 7 8 9 10

to
ta

l
c
o

s
t

(s
)

150

200

250

300

350

400

local processing

cloud processing

local cloud

shareCAP

random mapping

optimal policy

Fig. 5. The total system cost versus number of users.

i. The CPU rates of the CAP and each server at the remote
cloud are 3 × 109 cycle/s and 2 × 109 cycle/s, respectively.
When tasks are offloaded to the cloud, the transmission rate
rac is 6 Mpbs. Also, we set the values of cost Ca

i and Cc
i

to be the same as that of the input data size Din(i), and
α = 1 × 10−8 J/bit and β = 2 × 10−7 J/bit. We further set
ρi = ρ = 0.5 s/J for all i. Finally, all numerical results are
obtained by averaging over 100 realizations of the input and
output data sizes of each task.

To study the performance of shareCAP and shareCAP-D,
we compare them with the following methods: 1) the local
processing only method where all tasks are processed by mo-
bile users, 2) the cloud processing only method where all tasks
are offloaded to the cloud, 3) the local-cloud offloading method
where the same approximation procedure as the shareCAP
method is applied except that there is no CAP, 4) the random
mapping method where each task is processed at different
locations with equal probability, 5) the optimal policy where
the optimal value is obtained by exhaustive search. When
compared with shareCAP-D, all of the adaptive adjustment
procedure in Section 5 is added to all of the above methods
when their offloading decisions are not feasible.

7.2 Performance of ShareCAP

In Fig. 2, we show the system cost vs. weight β on the cloud
processing cost. When β becomes large, the total system
cost puts more emphasis on the cloud usage cost. As a

12

number of users

10 15 20 25 30 35 40 45 50

to
ta

l
c
o

s
t

(s
)

200

400

600

800

1000

1200

1400

1600 local processing

cloud processing

local cloud

shareCAP

random mapping

Fig. 6. The total system cost versus number of users with scaled re-
sources.

TABLE 2
Average run time comparison under various number of users.

Number of shareCAP (sec) optimal policy (sec)
users (exhaustive search)

6 1.65 146.48
7 1.74 445.18
8 1.90 1355.18
9 2.07 4113.86
10 2.22 12539.73
20 4.14 N/A
30 6.56 N/A
40 9.82 N/A
50 14.37 N/A

consequence, all tasks are more likely to be processed by
either the mobile user or the CAP. The local-cloud method
in this case converges to the local processing method. On the
other hand, when β decreases, the cost of cloud processing
becomes insignificant, and shareCAP, local-cloud, and optimal
policy all converge to cloud processing.

Though the existence of the CAP can provide additional
computation capacity, all tasks processed at the CAP need
to share the CAP CPU rate fA by optimally allocating the
processing rate to each user’s task. In Fig. 3, we plots the
total system cost vs. fA. As expected, a more powerful
CAP can dramatically increase system performance, and
shareCAP converges to local-cloud when the CAP CPU rate is
too slow to help.

In Fig. 4, we study the system cost when weight ρ
(weight of energy consumption relative to delay) changes.
In Figs. 5, and 6, we study the system cost under various
number of users N . In particular, in Fig. 6, the amount of
limited resources (i.e., uplink and downlink bandwidth and
the total CAP processing rate) is scaled proportional to the
number of users N . From Figs. 4 to 6, We observe that
with the help of the CAP, shareCAP outperforms all other
methods. Furthermore, all of these figures show that, over a
wide range of system parameter values, shareCAP provides
performance close to that of optimal policy, where the latter,
obtained by exhaustive search, has an exponential compu-
tational complexity in N , i.e., O(3N). The corresponding
average run times for different values of N are also provided
in Table 2. They are obtained on a desktop PC with Intel
Core i3-4150 3.5 GHz processor and 8 GB RAM. For optimal

θ

1 1.1 1.2 1.3 1.4 1.5

to
ta

l
c
o

s
t

(s
)

240

250

260

270

280

290

300

310

320

330

local processing

cloud processing

local-cloud

shareCAP-D

random mapping

optimal policy

Fig. 7. The total system cost versus delay factor θ with strict delay
constraints.

f
A ×10

9

0 2 4 6 8 10

to
ta

l
c
o

s
t

(s
)

100

150

200

250

300

350

local processing

cloud processing

local-cloud

shareCAP-D

random mapping

optimal policy

Fig. 8. The total system cost versus CAP CPU rate fA (cycles/s) with
strict delay constraints.

policy by exhaustive search, we only obtain the run times
up to 10 users as the required computational time becomes
very high for the cases beyond 10 users.

7.3 Performance of ShareCAP-D

For numerical results with shareCAP-D, we assume Ti ≥ θT l
i

for all i.
Fig. 7 plots the total system cost vs. the delay factor θ.

We observe that shareCAP-D provides near-optimal perfor-
mance unless θ is close to 1, i.e., when the problem (53)
is nearly infeasible. When θ is moderately relaxed, there
are more offloading decisions can satisfy delay constraints,
which allows shareCAP-D to choose a local optimum that is
closer to the optimal solution.

In Fig. 8, we plots the total system cost vs. fA with θ =
1.1. We see that shareCAP-D outperforms all other methods
except the optimal solution. Furthermore, we observe that
shareCAP-D is the only method that can efficiently utilize
the increasing CAP processing capacity, as demonstrated by
it steeply declining cost curve as fA increases. In particular,
when fA ≥ 5 × 109, shareCAP-D is nearly identical to an
optimal policy.

Finally, we plot the total system cost vs. number of users
N with θ = 1.1 in Fig. 9. Though the optimization problem
is more complicated due to additional delay constraints, we

13

number of users

6 7 8 9 10

to
ta

l
c
o

s
t

(s
)

150

200

250

300

350

400

local processing

cloud processing

local-cloud

shareCAP-D

random mapping

optimal policy

Fig. 9. The total system cost versus number of users with strict delay
constraints.

see that the system cost of shareCAP-D is still close to that of
the optimal policy, showing the scalability of our proposed
algorithm for various N values.

8 CONCLUSION

We have studied a mobile cloud computing system con-
sisting of multiple users, one CAP, and one remote cloud
server. We propose a new approach toward joint task of-
floading and allocation of computation and communication
resources, to minimize the weighted total cost of energy,
computation, and the maximum delay among all users. Al-
though the optimization problem is non-convex, we propose
shareCAP, an efficient heuristic algorithm using SDR and a
new randomization mapping approach. For the case with
strict delay constraints for each task, we propose shareCAP-
D, a three-step algorithm to obtain a feasible solution that is
locally optimal. Numerical results suggest that the proposed
method gives nearly optimal performance over a wide range
of parameter settings, and the resultant efficient utilization
of a CAP can bring substantial cost benefit.

REFERENCES

[1] M.-H. Chen, M. Dong, and B. Liang, “Joint offloading decision
and resource allocation for mobile cloud with computing access
point,” in Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Mar. 2016, pp. 3516–3520.

[2] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of
computation offloading for mobile systems,” Mobile Networks and
Applications, vol. 18, no. 1, pp. 129–140, Feb. 2013.

[3] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud comput-
ing: A survey,” Future Generation Computer Systems, vol. 29, no. 1,
pp. 84 – 106, Jan. 2013.

[4] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mo-
bile cloud computing: architecture, applications, and approaches,”
Wireless Communications and Mobile Computing, vol. 13, no. 18, pp.
1587–1611, 2013.

[5] ETSI Group Specification, “Mobile edge computing (MEC); frame-
work and reference architecture,” ETSI GS MEC 003 V1.1.1, 2016.

[6] B. Liang, “Mobile edge computing,” in Key Technologies for 5G
Wireless Systems, V. W. S. Wong, R. Schober, D. W. K. Ng, and
L.-C. Wang, Eds., Cambridge University Press, 2017.

[7] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5g networks: New paradigms, scenar-
ios, and challenges,” IEEE Communications Magazine, vol. 55, no. 4,
pp. 54–61, Apr. 2017.

[8] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost
of a cloud: Research problems in data center networks,” ACM
SIGCOMM Computer Communication Review, vol. 39, no. 1, pp. 68–
73, Dec. 2008.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for VM-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, Oct. 2009.

[10] G. Lewis and P. Lago, “Architectural tactics for cyber-foraging:
Results of a systematic literature review,” Journal of Systems and
Software, vol. 107, pp. 158 – 186, 2015.

[11] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proc. ACM SIGCOMM
Workshop on Mobile Cloud Computing, Aug. 2012, pp. 13–16.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[13] Z.-Q. Luo, W.-K. Ma, A.-C. So, Y. Ye, and S. Zhang, “Semidefi-
nite relaxation of quadratic optimization problems,” IEEE Signal
Processing Magazine, vol. 27, no. 3, pp. 20–34, May 2010.

[14] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp.
51–56, Apr. 2010.

[15] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. Wu,
“Energy-optimal mobile cloud computing under stochastic wire-
less channel,” IEEE Transactions on Wireless Communications,
vol. 12, no. 9, pp. 4569–4581, Sep. 2013.

[16] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile ap-
plication execution: Taming resource-poor mobile devices with
cloud clones,” in Proc. IEEE International Conference on Computer
Communications (INFOCOM), Mar. 2012, pp. 2716–2720.

[17] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Computation
offloading for mobile cloud computing based on wide cross-
layer optimization,” in Proc. Future Network and Mobile Summit
(FutureNetworkSummit), Jul. 2013, pp. 1–10.

[18] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio
and computational resources for energy efficiency in latency-
constrained application offloading,” IEEE Transactions on Vehicular
Technology, vol. 64, no. 10, pp. 4738–4755, Oct. 2015.

[19] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys), Jan. 2010, pp. 49–62.

[20] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: Elastic execution between mobile device and cloud,”
in Proc. ACM Conference on Computer Systems (EuroSys), Apr. 2011,
pp. 301–314.

[21] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in Proc. IEEE International Conference
on Computer Communications (INFOCOM), Mar. 2012, pp. 945–953.

[22] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload:
An efficient code partition algorithm for mobile cloud comput-
ing,” in Proc. IEEE International Conference on Cloud Networking
(CLOUDNET), Nov. 2012, pp. 80–86.

[23] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling
policy for collaborative execution in mobile cloud computing,”
in Proc. IEEE International Conference on Computer Communications
(INFOCOM), Apr. 2013, pp. 190–194.

[24] S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal
joint scheduling and cloud offloading for mobile applications,”
IEEE Transactions on Cloud Computing, Apr. 2016.

[25] Y. H. Kao, B. Krishnamachari, M. R. Ra, and F. Bai, “Hermes:
Latency optimal task assignment for resource-constrained mobile
computing,” in Proc. IEEE International Conference on Computer
Communications (INFOCOM), Apr. 2015, pp. 1894–1902.

[26] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, “An optimal
offloading partitioning algorithm in mobile cloud computing,” in
Proc. International Conference on Quantitative Evaluation of Systems,
Aug. 2016, pp. 311–328.

[27] Y. Zhang, D. Niyato, and P. Wang, “Offloading in mobile cloudlet
systems with intermittent connectivity,” IEEE Transactions on Mo-
bile Computing, vol. 14, no. 12, pp. 2516–2529, Dec. 2015.

[28] T. Truong-Huu, C. K. Tham, and D. Niyato, “To offload or to
wait: An opportunistic offloading algorithm for parallel tasks in
a mobile cloud,” in Proc. IEEE International Conference on Cloud
Computing Technology and Science, Dec. 2014, pp. 182–189.

[29] D. T. Hoang, D. Niyato, and P. Wang, “Optimal admission control
policy for mobile cloud computing hotspot with cloudlet,” in Proc.

14

IEEE Wireless Communications and Networking Conference (WCNC),
Apr. 2012, pp. 3145–3149.

[30] D. T. Hoang, D. Niyato, and L. B. Le, “Simulation-based opti-
mization for admission control of mobile cloudlets,” in Proc. IEEE
International Conference on Communications (ICC), Jun. 2014, pp.
3764–3769.

[31] R. Kaewpuang, D. Niyato, P. Wang, and E. Hossain, “A framework
for cooperative resource management in mobile cloud comput-
ing,” IEEE Journal on Selected Areas in Communications, vol. 31,
no. 12, pp. 2685–2700, Dec. 2013.

[32] S. Ren and M. van der Schaar, “Efficient resource provisioning
and rate selection for stream mining in a community cloud,” IEEE
Transactions on Multimedia, vol. 15, no. 4, pp. 723–734, Jun. 2013.

[33] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization
of radio and computational resources for multicell mobile-edge
computing,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 1, no. 2, pp. 89–103, Jun. 2015.

[34] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task
offloading and resource optimization in proximate clouds,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3435–3447,
Apr. 2017.

[35] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 4, pp. 974–983, Apr. 2015.

[36] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy
aware offloading for competing users on a shared communication
channel,” IEEE Transactions on Mobile Computing, vol. 16, no. 1, pp.
87–96, Jan. 2017.

[37] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, Oct 2016.

[38] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision
and resource allocation for multi-user multi-task mobile cloud,”
in Proc. IEEE International Conference on Communications (ICC), May
2016.

[39] H. Viswanathan, P. Pandey, and D. Pompili, “Maestro: Orchestrat-
ing concurrent application workflows in mobile device clouds,” in
Proc. IEEE International Conference on Autonomic Computing (ICAC),
Jul. 2016, pp. 257–262.

[40] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,”
in Proc. IEEE International Conference on Cloud Computing, Jun. 2015,
pp. 9–16.

[41] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V.
Vasilakos, “Mapcloud: Mobile applications on an elastic and scal-
able 2-tier cloud architecture,” in Proc. IEEE/ACM Fifth Interna-
tional Conference on Utility and Cloud Computing, Nov. 2012, pp.
83–90.

[42] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “Mu-
sic: Mobility-aware optimal service allocation in mobile cloud
computing,” in Proc. IEEE International Conference on Cloud Com-
puting, Jun. 2013, pp. 75–82.

[43] J. Song, Y. Cui, M. Li, J. Qiu, and R. Buyya, “Energy-traffic tradeoff
cooperative offloading for mobile cloud computing,” in Proc. IEEE
International Symposium of Quality of Service (IWQoS), May 2014,
pp. 284–289.

[44] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei,
V. Grassi, F. Lo Presti, and V. Piccialli, “A game-theoretic approach
to computation offloading in mobile cloud computing,” Mathemat-
ical Programming, vol. 157, no. 2, pp. 421–449, 2016.

[45] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud
with computing access point,” in Proc. IEEE International Confer-
ence on Computer Communications (INFOCOM), May 2017.

[46] D. B. Shmoys, J. Wein, and D. P. Williamson, “Scheduling parallel
machines on-line,” SIAM J. Comput., vol. 24, no. 6, pp. 1313–1331,
Dec. 1995.

[47] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for
disciplined convex programming,” 2009. [Online]. Available:
http://cvxr.com/cvx/

[48] Y. Nesterov, A. Nemirovskii, and Y. Ye, Interior-point polynomial
algorithms in convex programming. SIAM, 1994.

[49] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile
clients in cloud computing,” in Proc. USENIX Conference on Hot
Topics in Cloud Computing (HotCloud), Jun. 2010, pp. 4–11.

Meng-Hsi Chen received the B.S. degree in
Electrical Engineering and M.S. degree in Com-
munications Engineering from the National Ts-
ing Hua University (NTHU), Hsinchu, Taiwan,
in 2009 and 2011, respectively, and the Ph.D.
degree in Electrical and Computer Engineering
from the University of Toronto, Toronto, Canada,
in 2017. His research interests are in the areas
of mobile cloud systems, wireless communica-
tions, and optimization.

Min Dong (S’00-M’05-SM’09) received the
B.Eng. degree from Tsinghua University, Beijing,
China, in 1998, and the Ph.D. degree in electrical
and computer engineering with minor in applied
mathematics from Cornell University, Ithaca, NY,
in 2004. From 2004 to 2008, she was with Cor-
porate Research and Development, Qualcomm
Inc., San Diego, CA. In 2008, she joined the De-
partment of Electrical, Computer and Software
Engineering at University of Ontario Institute of
Technology, Ontario, Canada, where she is cur-

rently an Associate Professor. She also holds a status-only Associate
Professor appointment with the Department of Electrical and Computer
Engineering at University of Toronto. Her research interests are in the
areas of statistical signal processing for communication networks, co-
operative communications and networking techniques, and stochastic
network optimization in dynamic networks and systems.

Dr. Dong received the Early Researcher Award from Ontario Ministry
of Research and Innovation in 2012, the Best Paper Award at IEEE
ICCC in 2012, and the 2004 IEEE Signal Processing Society Best Paper
Award. She is a co-author of ICASSP 2016 Best Student Paper of
Signal Processing for Communications and Networking at IEEE ICASSP
2016. She currently serves as an Editor for the IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS. She served as an Associate Ed-
itor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING (2010-
2014), and as an Associate Editor for the IEEE SIGNAL PROCESSING
LETTERS (2009-2013). She was the symposium lead co-chair of the
Communications and Networks to Enable the Smart Grid Symposium
at the IEEE International Conference on Smart Grid Communications
(SmartGridComm) in 2014. She has been an elected member of IEEE
Signal Processing Society Signal Processing for Communications and
Networking (SP-COM) Technical Committee since 2013.

Ben Liang (S’94-M’01-SM’06-F’18) received
honors-simultaneous B.Sc. (valedictorian) and
M.Sc. degrees in Electrical Engineering from
Polytechnic University in Brooklyn, New York, in
1997 and the Ph.D. degree in Electrical Engi-
neering with a minor in Computer Science from
Cornell University in Ithaca, New York, in 2001.
In the 2001 - 2002 academic year, he was a
visiting lecturer and post-doctoral research as-
sociate with Cornell University. He joined the De-
partment of Electrical and Computer Engineer-

ing at the University of Toronto in 2002, where he is now a Professor.
His current research interests are in networked systems and mobile
communications. He has served as an editor for the IEEE Transactions
on Communications since 2014 and an associate editor for the IEEE
Transactions on Mobile Computing since 2017, and he was an editor
for the IEEE Transactions on Wireless Communications from 2008 to
2013 and an associate editor for Wiley Security and Communication
Networks from 2007 to 2016. He regularly serves on the organizational
and technical committees of a number of conferences. He is an IEEE
Fellow and a member of ACM and Tau Beta Pi.

