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Abstract—Compared with traditional observation satellites, agile earth observation satellites are capable of prolonging observation
time windows (OTWs) for targets, which significantly alleviates observation conflicts, thereby facilitating imaging data collection.
However, it also leads to more uncertainties in determining the start time to image targets within these longer OTWs for an agile
satellite network (ASN) to collect imaging data. Furthermore, these collected data are offloaded only within short transmission time
windows between data collectors and data sinks, thus resulting in a transmission scheduling problem. Toward this end, this paper
investigates joint observation and transmission scheduling in ASNs, aiming at accommodating more imaging data to be collected and
offloaded successfully. Specifically, we formulate the studied problem as integer linear programming (ILP) to maximize the weighted
sum of scheduled imaging tasks. Then, we explore the hidden structure of this ILP and transform it into a special framework, which can
be solved efficiently through semidefinite relaxation (SDR). To reduce computation complexity, we further propose a fast yet efficient
algorithm by combining the advantages of the devised SDR method and a genetic algorithm with special population initialization.
Finally, simulation results demonstrate that the proposed algorithm can significantly increase the weighted sum of scheduled tasks.

Index Terms—Agile earth observation satellites, time windows, observation scheduling, transmission scheduling.

F

1 INTRODUCTION

A S an important space information acquisition platform,
the earth observing network (EON) leverages earth

observation satellites (EOSs) located in polar orbits to con-
tinuously supply earth observation data. The EON has been
integrated within diversity space applications such as me-
teorology, environmental monitoring, and natural disaster
surveillance [1]. However, the fast proliferation of these
space applications has brought a tremendous increase in
demand for the collection of earth observation data. Toward
this end, by enhancing the maneuverability of EOSs, the
advent of agile satellite networks (ASNs) contributes to
alleviate this issue. Specifically, non-agile EOSs can roll
themselves to take pictures only when flying over targets.
In comparison, as shown in Fig. 1, agile earth observa-
tion satellites (AEOSs) in ASNs not only can roll but also
pitch themselves agilely to image before or after flying
over targets. As a result, the agility of AEOS extends each
starting imaging time point to a time interval, termed as
the observation time window (OTW). That is, an AEOS
can start to image a target at any time within these OTWs,
which significantly alleviates observation conflicts, thereby
facilitating observation data collection [2].

At the same time, this agility also results in more uncer-
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tainties in observation resource allocation for ASNs. Partic-
ularly, one needs to determine the start time of imaging a
target within multiple OTWs instead of fixed time points.
It is therefore essential to effectively allocate observation re-
sources within multiple OTWs for ASNs, aiming at reducing
observation conflicts, such that earth observation data can
be collected as efficiently as possible.

Furthermore, the phenomenal growth of earth observa-
tion data results in more collected data to offload from di-
verse space information acquisition platforms to data sinks,
e.g., ground stations (GSs) [3]. However, the transmission
resource of the current systems is insufficient to support
these collected data, despite operating in the super high
frequency or extremely high frequency bands. The reasons
mainly come from three aspects: 1) The amount of imaging
data grows fast. As the National Aeronautics and Space
Administration (NASA) of the United States projected, the
size of pure climate data could grow up to 350 petabytes
by 2030 [4]. This phenomenon is exacerbated especially in
ASNs, due to the fact that the enhanced maneuverability
of EOSs results in a larger amount of observation data to
offload. 2) The high-speed movement of AEOSs leads to
very limited intermittent contact time. More specifically,
the data collectors can offload their collected data only
when flying within the coverage of data sinks. That is,
the data offloading operations occur only in contact time
windows, termed as transmission time windows (TTWs).
However, the size of TTWs is in general very small, e.g.,
a satellite located in polar orbits accesses a GS for only
10 minutes at a time [5]. 3) The terrestrial deployment of
GSs is affected by a number of integrated factors, such as
national boundaries and politics. It is therefore difficult to
achieve global large-scale deployment of GSs. In view of
these challenges, it is imperative to jointly consider the ob-
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servation resource allocation problem with the allocation of
transmission resources, to accommodate more observation
data to be collected and offloaded successfully.

Several new challenges arise in addressing this multi-
resource allocation problem in ASNs for the following rea-
sons: Firstly, compared with non-agile EOSs, the maneu-
verability of AEOSs for image acquisitions broadens the
starting imaging time from fixed time points to OTWs,
thereby generating a considerably larger solution space.
Secondly, the enhanced observation abilities of AEOSs con-
tribute to the completion of more scheduled observation
tasks, such that a larger amount of imaging data needs to be
offloaded. Last but not least, several complicated dependent
constraints in both time and space domains exist in ASNs,
which exacerbates a wide range of resource conflicts. Hence,
our main problem is how to characterize these complicated
dependent constraints and resolve various resource conflicts
in ASNs, with the aim of achieving efficient imaging data
collection and transmission.

To address the aforementioned challenges, we jointly
optimize the observation and transmission resources within
various time windows for ASNs, aiming to address a
weighted sum maximization problem, constrained by com-
plicated dependent constraints in space and time domains.
The main contributions of our work are summarized in the
following:

• We put forward a joint optimization framework with
the consideration of observation and transmission re-
source allocation together to maximize the weighted
sum of scheduled tasks in ASNs. In particular, our
proposed framework incorporates various time win-
dows and the complicated dependent constraints
in time and space domains from realistic scenarios,
thereby charactering the features of real ASNs.

• We explore the underlying structure of a weighted
sum maximization problem and transform it into
a special integer linear programming (ILP) prob-
lem, which can be efficiently handled by utilizing
semidefinite relaxation (SDR). Next, we reformu-
late the resulting ILP as a quadratically constrained
quadratic programming problem (QCQP), followed
by converting it into the standard form of SDR.
Thereafter, in Section 4.1, we give a preliminary
design by utilizing SDR to solve the studied problem
directly.

• We further propose a hierarchical solution termed
Joint Observation and Transmission Scheduling Al-
gorithm with Agile Satellites (JOTSAS), which uti-
lizes the above SDR design but has dramatic
reduction in computation cost. Specifically, we
first replace three-dimensional variables by two-
dimensional variables, and then equivalently de-
compose the weighted sum maximization problem
into a high-level master problem (i.e., the hybrid
time window association problem) and a low-level
subproblem (i.e., the time window resource alloca-
tion problem). We show that simple modifications
to the preliminary SDR-based method can solve
the low-level subproblem efficiently over its smaller
search space, thereby enabling a quick response to

the master problem, i.e., the weighted sum of suc-
cessfully scheduled tasks. We then adopt a genetic
framework to solve the master problem, propos-
ing a novel conflict-driven population initialization
method (CPInit), to update the time window associ-
ation strategies to maximize the utility of ASNs.

• Extensive simulations on ASNs demonstrate the fol-
lowing results: 1) Our proposed algorithm outper-
forms the alternatives in terms of the weighted sum
of scheduled tasks. 2) The efficient joint scheduling of
observation and transmission leads to substantially
higher performance of ASNs.

The remainder of this paper is outlined as follows. In
Section 2, we provide an overview of the related work.
Section 3 presents the system model and the problem formu-
lation. Section 4 elaborates the proposed algorithms to solve
the studied problem. In Section 5, we present simulation
results and discussions. Finally, we give concluding remarks
in Section 6.

2 RELATED WORK

In this section, we first discuss observation resource allo-
cation in ASNs and then transmission resource allocation
in non-agile EOSs. Subsequently, we introduce the joint
observation and transmission resource allocation in non-
agile EOSs. Finally, we detail the resource allocation in a
similar scenario, i.e., the sensor network.

2.1 Observation Resource Allocation in ASNs
There are many existing studies on the resource allocation
problem for ASNs to schedule their observation tasks. In
particular, the authors of [6] surveyed current literature on
the problem of observation resource scheduling. We classify
these works into two categories. In the first category, the
authors focused on a single agile satellite and devised meta-
heuristic algorithms (e.g., local search [7], hybrid differential
evolution [8], neighborhood search [9]) and machine learn-
ing [10]. In the second category, the authors considered mul-
tiple agile satellites. Specifically, [11] extended the neigh-
borhood search method in [9] to the scenario of multiple
agile satellites. In [12], a real-time task scheduling scheme
was proposed to respond to unexpected environmental
changes in multiple agile satellite networks. The authors of
[13] addressed task scheduling with multiple observations
aiming at maximizing the entire observation profit, which is
nonlinear in the number of observations. In [14], the authors
considered a many-objective agile satellite mission planning
problem. In [15], the authors proposed a generic Markov
decision process model based on reinforcement learning
aiming to solve the agile satellite scheduling problem. The
authors of [16] investigated the satellite scheduling problem
with consideration for the impact of clouds. However, the
above works focus only on observation resource allocation
without taking into account the scheduling of transmission
resources.

2.2 Transmission Resource Allocation in Non-Agile
EOSs
It is imperative to address the scheduling of transmission
resources aiming at efficiently offloading the collected data



3

within the short contact time windows. In [17], a collabora-
tive data downloading algorithm was developed by jointly
scheduling inter-satellite links and satellite-ground links.
The authors of [18] raised a two-phase task scheduling
scheme to dynamically schedule the GEO-LEO communica-
tion links in data relay satellite networks. The authors of [19]
devised a scheduling scheme to efficiently allocate trans-
mission resources in space networks by jointly considering
data compression and transmission. These works made
the assumption that the desired observation data has been
collected and stored into the satellites, thereby neglecting
observation resource allocation. However, the data collec-
tion and transmission procedures incur complicated time-
dependent constraints in practical satellite networks, thus
greatly limiting the applications of these existing schemes.

2.3 Joint Observation and Transmission Resource Al-
location in Non-Agile EOSs
By integrating the two phases of data observation and trans-
mission, some existing works start to focus on the multi-
resource allocation problem in non-agile EOSs. The authors
of [20] developed a two-phase genetic annealing algorithm
to solve the integrated imaging and data transmission
scheduling problem under the assumption that the trans-
mission resource is sufficient. In [21], the authors simplified
the coupling between download scheduling and mission
scheduling to obtain a two-step binary linear programming
formulation. Inspired by [17], [22] utilized a transmission
time sharing method in the data transmission phase to
enable the transmission time sharing among multiple EOSs
aiming at the efficient utilization of transmission resources.
In [23], an exact branch and price algorithm was devised
for the problem of imaging and downloading integrated
scheduling by making the assumption that the number of
transmission opportunities is significantly less than that of
observation opportunities. The authors of [24] formulated
a joint scheduling problem that considers weather uncer-
tainties into a mixed integer linear programming model and
used a commercial solver to solve it.

However, it is not obvious how to extend the above
solutions to the more complicated ASNs, due to their much
larger number of degrees of freedom [25]. To the best of our
knowledge, there are scarce works to address the joint obser-
vation and transmission resource allocation issue in ASNs.
In [26], the authors addressed the scheduling problem of
agile satellites with download considerations by construct-
ing a simple model, where only three different pitching
angles were considered. Furthermore, they excluded the
overlaps between OTWs and TTWs, which are often present
in practical ASNs, as shown in Fig. 2.

2.4 Resource Allocation in Sensor Networks
Interestingly, we observe that resource allocation with mo-
bile sinks in the context of sensor networks are similar to
our studied problem. Specifically, the deployment of mobile
data sinks in sensor networks enables data collection from
sensor nodes via a single-hop communication link [27]. In
line with the pattern of sink mobility, we may broadly cat-
egorize these proposed schemes into three categories: ran-
dom mobility [28], predictable mobility [29], and controlled
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Fig. 1. System scenario.

mobility [30]. The latter two categories specify the mobility
path of data sinks, which is similar to the fact that AEOSs
circle the earth with their individual orbits. To be specific,
in [29], by predicting the mobility path of data sinks, sensor
nodes are capable of scheduling sleep and listen periods,
thereby optimizing their energy consumption. In [30], a
data sink moves along some specified path, which can be
stopped or slowed down to maximize communication with
sensor nodes. Furthermore, [31] studied a scenario where
a data sink (e.g., a LEO satellite) visits the specified area
periodically to gather data from deployed sensor nodes.
However, none of [29]–[31] can be directly applied to solve
our studied problem due to the following reasons: 1) In
ASNs, the motion of AEOSs is difficult to control, e.g., stop
or slow down; 2) The high-speed and periodic motion of
satellite nodes generates a large number of regular contact
opportunities, which requires new analytical methods; and
3) In addition to offloading data from data collectors or
sensors to data sinks, in this work we are concerned about
also the observation resource scheduling of the satellites to
collect information.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the considered system
model and then describe the constraints. Finally, we for-
mulate the problem of maximizing the weighted sum of
scheduled tasks.

3.1 System Model
As shown in Fig. 1, we consider an ASN consisting of S
AEOSs, denoted by S = {1, ..., S}. Each AEOS s ∈ S
collects the observation data by agilely rolling and pitching
to image a set of targets, denoted by I = {1, ..., I}. After
that, the AEOSs need to transmit the collected imaging data
by accessing the data receiver antennas of a set of data sinks,
denoted by H = {1, ...,H}. In the data observation phase,
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(a) Scenario. (b) Overlaps between TTWs and OTWs.

Fig. 2. Illustration of overlaps between TTWs and OTWs , for one observation satellite, three GSs, and ten targets. (a) The
simulation scenario. (b) The TTWs and OTWs obtained via the satellite tool kit. It can be seen that the TTWs and OTWs frequently
overlap.

AEOS s can image a target i ∈ I at any moment within an
OTW due to its agility. This means that any moment within
an OTW corresponds to an image angle [9]. In addition,
the periodic motion of AEOS s generates multiple OTWs
associated with target i, denoted by Oi,s. Accordingly, we
useOi,S to indicate the set of OTWs between target i and the
S AEOSs. In the data transmission phase, data transmission
occurs only when AEOS s flies within the coverage of a
data receiver antenna h ∈ H. That is, AEOS s transmits the
collected data only within a TTW. Similarly, the periodicity
of AEOS s also produces multiple TTWs associated with
antenna h, denoted by Ts,h. Moreover, we denote TS,h as
the set of TTWs between the S AEOSs and antenna h. Also,
let Ts,H be the set of TTWs between AEOS s and the H
antennas. Accordingly, the notation TS,H represents the set
of TTWs between S AEOSs and H antennas.

Note that this paper mainly focuses on devising a strat-
egy to jointly allocate the observation and transmission
resources in ASNs to efficiently download observation data
under some given network resource. As such, we do not
consider strategies to increase the amount of data trans-
mission by changing network resource, such as increasing
the link bandwidth and optimizing the locations of GSs. In
addition, we assume that the data transmission in the sec-
ond phase is error-free. That is to say, transmission errors in
the physical layer can be detected and corrected efficiently
by upper-layer protocols. In practical applications, we note
that image quality is impacted by different imaging angles.
Specifically, a larger imaging angle could lead to a smaller
resolution and larger size of the image. In this work, for
analytical tractability, we omit the impact of imaging angle
on image quality.

3.1.1 Time Window Model
We observe that the OTWs and TTWs represent the time
windows, during which AEOSs can conduct the observation
and transmission operations, respectively. It is therefore
imperative to model these various time windows aiming
at characterizing the intermittent connectivity of ASNs.
For simplicity, we adopt a two-tuple (aik, bik) to indicate
time window k associated with target i, where aik and
bik represent the associated start time and end time, re-
spectively. That is, for an OTW k with respect to AEOS s

(e.g., k ∈ Oi,s), the time for AEOS s to execute observation
operations should be neither earlier than aik nor later than
bik. Furthermore, for a TTW k with respect to AEOS s (e.g.,
k ∈ Ts,h), this means that target i was visible to AEOS s
and its imaging data can be downloaded from AEOS s to
antenna h within aik and bik.

3.1.2 Task Model

We define task i as the process incorporating both the
imaging data acquisition and transmission of target i. Also,
we consider each task i is associated with a weighted value
of wi. Furthermore, we let pik denote the processing time
of task i within time window k. Particularly, for k ∈ Oi,s,
pik represents the imaging time for AEOS s on image target
i, i.e., pik = Di

Rob
ik

, where Di denotes the amount of imaging

data and Rob
ik denotes the data collecting rate within OTW

k of target i; for k ∈ Ts,h, pik indicates the transmission
time for AEOS s to transmit the imaging data of target i
on antenna h, i.e., pik = Di

Rtr
ik

, where Rtr
ik indicates the data

transmission rate within TTW k of target i. Moreover, let di
denote the deadline of task i. Accordingly, we can utilize di
to update time windows, thus obtaining effective OTWs and
TTWs, denoted by Oei,s, Oei,S , T eS,h, T es,H, and T eS,H. More
specifically, we replace bik by di if the deadline of task i
is within time window k, (i.e., aik < di < bik). Also, we
remove time window k if the start time of time window k is
larger than the deadline of task i (i.e., aik ≥ di).

3.2 Constraints

3.2.1 Decision Variable Constraints

To simplify our problem formulation, we first divide the
scheduling time horizon into T intervals equally, each in-
dexed by t ∈ T = {1, ..., T}. Each interval is termed as a
slot. As shown below, such discretization of the time line
is to develop an ILP model, instead of the mixed-integer
nonlinear programming model that would result from using
a continuous time line. Then, we introduce decision vari-
ables xitk ∈ {0, 1} to depict resource assignment includ-
ing observation and transmission resources. Specifically, if
k ∈ Oei,s, xitk = 1 reveals that AEOS s performs the imaging
of target i at time t within OTW k; otherwise xitk = 0.
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When k ∈ T es,h, xitk = 1 indicates that AEOS s transmits the
imaging data of target i to antenna h at time t within TTW
k; otherwise xitk = 0. Each task should be observed and
transmitted at most once. This is expressed by the following
constraints:

C1:
∑
t∈T

k∈Oe
i,S

xitk≤1,∀i, C2:
∑
t∈T

k∈T e
S,H

xitk≤1,∀i.

3.2.2 Sequential Dependency Constraints
In the following, for clarity, we first explain the resource
conflicts in ASNs and then introduce constraints that aim to
avoid these conflicts.

For any target, an AEOS needs to adjust its attitude to
point at it, so it is unable to image two or more targets
simultaneously. That is to say, imaging operations for vari-
ous targets on the same AEOS should be sequential. Here,
to indicate this sequential dependency, we introduce binary
variables λijs ∈ {0, 1}, so that λijs = 1 indicates that AEOS
s first images target i and then target j; otherwise λijs = 0.
Let roo

ijs be the time to adjust the attitude of AEOS s such
that its sensor points away from target i and points at target
j. Then, the following constraints should be met:

C3:
∑
t∈T
k∈Oe

i,s

xitkt ≥
∑
t∈T
k∈Oe

j,s

xjtk(t+ pjk + roo
ijs)−V λijs,∀i 6= j, s,

C4: λijs + λjis = 1,∀i 6= j, s,

where V is a sufficiently large positive constant.
Furthermore, we assume that each AEOS is equipped

with only one transmission antenna to access data receiver
antennas. That is, the data transmission time of different
tasks cannot overlap each other for the same AEOS. There-
fore, we introduce binary variables ψijs ∈ {0, 1} to reveal
the sequential dependency of various transmission opera-
tions conducted by an AEOS, so that ψijs = 1 indicates that
AEOS s first transmits the observation data of target i and
then that of target j; otherwise ψijs = 0. We denote rtt

ijs

as the time to adjust the attitude of AEOS s such that its
transmitting antenna points away from task i and points at
task j. Thus, we can obtain the following constraints:

C5:
∑
t∈T

k∈T e
s,H

xitkt≥
∑
t∈T

k∈T e
s,H

xjtk(t+ pjk + rtt
ijs)−V ψijs,∀i 6= j, s,

C6: ψijs + ψjis = 1,∀i 6= j, s.

For data transmission, we assume that each data receiver
antenna can only accommodate one AEOS. Accordingly,
we use binary variables γijh ∈ {0, 1} to represent the
sequence of transmission operations for the same antenna.
In particular, γijh = 1 means that the data transmission of
target i is before that of target j on antenna h; otherwise
γijh = 0. Let lijh denote the rotation time of data receiver
antenna h from pointing at task i to pointing at task j.
To avoid the transmission data block of different targets
overlapping each other on the same antenna, we require
the following constraints:

C7:
∑
t∈T

k∈T e
S,h

xitkt≥
∑
t∈T

k∈T e
S,h

xjtk(t+ pjk + lijh)−V γijh,∀i 6= j, h,

C8: γijh + γjih = 1,∀i 6= j, h.

We assume that an AEOS cannot image a target and
transmit captured data at the same time. From the perspec-
tive of practical applications, this assumption is reasonable
because the probability that an AEOS can simultaneously
observe and transmit is extremely low in practical systems
due to the strict requirements of satellite attitudes toward
either an imaging target or a data receiver antenna. Here,
binary variables θijs ∈ {0, 1} are utilized to reveal the
sequential dependency of observation and transmission op-
erations on the same AEOS. Specifically, θijs = 1 represents
the following two cases for AEOS s: either it first images task
i and then transmits the data for task j, or it first images task
j and then transmits the data for task i. Hence, we have the
following constraints:

C9:
∑
t∈T
k∈Oe

i,s

xitkt≥
∑
t∈T

k∈T e
s,H

xjtk(t+ pjk + rot
ijs)−V θijs,∀i 6= j, s,

C10: θijs + θjis = 1,∀i 6= j, s,

where rot
ijs is the time to adjust the attitude of AEOS s

such that its sensor pointing away from target i and its
transmitting antenna points at task j.

In addition, for a task, we should first use an AEOS
to image it and then transmit the collected imaging data
to a data receiver antenna. Toward this end, the following
constraint should be satisfied:

C11:
∑
t∈T

k∈T e
s,H

xitkt≥
∑
t∈T
k∈Oe

i,s

xitk(t+ pik + rto
is),∀i, s,

where rto
is is the time to adjust the attitude of AEOS s such

that its transmitting antenna points away from task i and its
sensor points at target i.

It should be noted that the binary variables λijs, γijh,
γijh, and θijs are used to impose restrictions on decision
variables xitk, aiming to avoid sequential dependency con-
flicts. In particular, in the special case where two different
targets i and j are not observed, the constraints C3, C5, C7,
and C9 are always satisfied. Then, the right side of C4, C6,
C8, and C10 can be set to zero or one. Therefore, setting
them to one does not change in the optimal value of the
considered problem.

3.2.3 Completed Task Constraints
Apart from the above constraints between tasks, any task
should be also subjected to the following constraints:

Assignment of two types of time windows: Each task
should be assigned to two time windows, both of which
are associated with the same AEOS. As such, the following
constraint should be satisfied:

C12:
∑
t∈T
k∈Oe

i,s

xitk+
∑
t∈T

k∈T e
s,H

xitk≥2−V (1− zis),∀i, s,

where zis ∈ {0, 1} so that zis = 1 if task i is completed
successfully by satellite s; otherwise zis = 0. Particularly,
C1, C2, and C12 ensure that a successful task should be
allocated to one OTW and one TTW associated with the
same AEOS.
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Time window constraints: Both the start time of the
observation and transmission operations for a task should
be conducted within the associated time windows, i.e.,

C13:
∑
t∈T

k∈Oe
i,S

xitkaik≤
∑
t∈T

k∈Oe
i,S

xitkt≤
∑
t∈T

k∈Oe
i,S

xitk(bik−pik),∀i,

C14:
∑
t∈T

k∈T e
S,H

xitkaik≤
∑
t∈T

k∈T e
S,H

xitkt≤
∑
t∈T

k∈T e
S,H

xitk(bik−pik),∀i.

3.3 Problem Formulation
Aiming to maximize the utility of ASNs, we focus on the
design of the task scheduling decisions by jointly optimizing
the resources of observation and transmission in ASNs. To-
ward this end, we formulate the problem of maximizing the
weighted sum of scheduled tasks, constrained by various
time windows:

P0: max
(x,z,f)

∑
i∈I

∑
s∈S

wizis

s.t. (x, z,f) ∈ F0,

where x = {xitk}, z = {zis}, f = (λ,ψ,γ,θ), λ = {λijs},
ψ = {ψijs}, γ = {γijh}, and θ = {θijs}. And the feasible
set F0 is defined as:

F0 =

(x, z,f)

∣∣∣∣∣∣∣∣
C1-C14, xitk∈{0, 1},∀i, t, k,
λijs∈{0, 1}, θijs∈{0, 1},
ψijs∈{0, 1},∀i, j, s,

γijh∈{0, 1},∀i, j, h, zis∈{0, 1},∀i, s.


The weighted sum maximization problem P0 involves

integer variables. Theorem 1 below reveals that this problem
is difficult to solve in polynomial time. Therefore, we turn to
investigating an approximation scheduling strategy to solve
the problem.

Theorem 1. Problem P0 is NP-hard in general.

Proof: The transmission scheduling problem in ASNs
is the same as that of the non-agile EOSs, which is NP-hard
[32]. Furthermore, we note that a special case of the obser-
vation scheduling problem in ASNs, where pik = bik − aik
for all i and all observation windows k, is the same as that
of the non-agile EOSs, which is also NP-hard [33]. Hence,
the joint observation and transmission scheduling problem
in P0 is NP-hard. This completes the proof of Theorem 1.

4 SOLUTIONS AND ALGORITHM FRAME-
WORK
In this section, we first propose an initial design using
SDR to directly solve a suitably transformed version of P0.
Next, to reduce the computation complexity, we introduce
JOTSAS, a fast yet efficient joint scheduling algorithm com-
bining the SDR method and a genetic algorithm (GA) with
a conflict-driven initialization scheme.

4.1 Preliminary Design Using SDR
P0 naturally leads to an ILP. We observe that simply relaxing
the integer constraints would result in a poor solution to P0.
Therefore, we turn to a more powerful SDR approximation
approach to tackle P0. However, despite the current form

of P0 having an intuitive physical explanation, to directly
use SDR to solve P0 will lead to a highly complex solution.
More specifically, the main steps in using the SDR method
to tackle P0 are listed as follows: First, P0 must be rewritten
as a QCQP form. Second, the obtained QCQP form is refor-
mulated into a semidefinite programming (SDP) problem.
Finally, we drop the rank constraint in the SDP problem to
obtain a convex semedefinite relaxation problem. Note that
the binary constraint x ∈ {0,1} in P0 is equivalent to the
two quadratic constraints x(x − 1) ≤ 0 and x(x − 1) ≥ 0.
The binary constraints z ∈ {0,1} and f ∈ {0,1} can
be similarly transformed into quadratic constraints. After
that, P0 can be easily reformulated as a nonconvex QCQP.
However, in the second step, the nonconvex QCQP achieved
by the current form of P0 is very difficult to transform into
a SDP form. This motivates us to first transform P0 into a
suitable structure.

Toward this end, we leverage the inherent relation
among the binary decision variables in P0. More specifically,
it is observed that the binary decision variables in P0 can
be classified into three groups: the scheduling variable x,
the indicator variable z, and the auxiliary variable f . Par-
ticularly, z reveals the conditions of successfully scheduled
tasks through the design of x, while f is used to impose
restriction on the scheduling decisions (i.e., x) to meet the
time-sequence requirements of practical observation and
transmission operations. To summarize, both z and f are
used to limit the value of x. Inspired by this, we can remove
z and f by introducing new decision variables, if they
are capable of representing the same resource allocation
constraints.

In what follows, by introducing new decision variables,
we first remove f from P0, thereby obtaining new formula-
tion P1. Next, by removing z, we transform P1 into a special
ILP problem P3, which can be solved efficiently using SDR.
This leads to an SDR-based scheduling algorithm to solve
P0 efficiently.

4.1.1 Reduction of Auxiliary Variable f
By exploring the special structure in P0, we introduce new
decision variables to generate a more SDR-friendly reformu-
lation by removing f . Initially, we can utilize C13 and C14 to
exclude some time indices outside of time windows. That is
to say, for each task, we can find all the feasible time indices
within time windows (OTWs and TTWs). In particular, we
need to construct one-to-one correspondence between these
feasible time indices and time t ∈ T . Specifically, let tob

ink
be the time corresponding to feasible time index n within
OTW k associated with task i. Similarly, ttrimk denotes the
time corresponding to feasible time index m within TTW k
associated with task i. As such, we can obtain feasible time
index sets of observation and transmission, denoted by tob

ik
and ttrik, respectively, as follows:

tob
ik = {tob

i1k, ..., t
ob
iNk

i k
}, Nk

i =
∣∣∣tob
ik

∣∣∣ ,∀i, k ∈ Oei,S ,
ttrik = {ttri1k, ..., ttriMk

i k
}, Mk

i =
∣∣ttrik∣∣ ,∀k ∈ T eS,H.

Moreover, we denote Ni and Mi as the total number
of feasible observation and transmission time indices asso-
ciated with task i, respectively. Thus, Ni =

∑
k∈Oe

i,S

Nk
i and
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Mi =
∑

k∈T e
S,H

Mk
i . Next, we introduce two new decision

variables xtob
ink
∈{0, 1} and xttr

imk
∈{0, 1}, so that xtob

ink
= 1

reveals that target i is observed at time tob
ink corresponding

to the index n within the OTW k; otherwise xtob
ink

= 0.
Similarly, xttr

imk
= 1 indicates that the observation data of

target i is transmitted at time ttrimk corresponding to the
index m within the TTW k; otherwise xttr

imk
= 0. Therefore,

the one-to-one mapping between xitk and new decision
variables (i.e., xtob

ink
and xttr

imk
) is as follows:

xitk =

{
xtob

ink
, tob

ink ∈ tob
ik, k ∈ Oei,S ,

xttr
imk

, ttrimk ∈ ttrik, k ∈ T eS,H.
(1)

Then, it is observed from C1 and C2 that a task should
be allocated to at most one OTW and one TTW, respectively.
Therefore, we can use the new decision variables to rewrite
C1 and C2 as the following two constraints:

C15:
∑

k∈Oe
i,S

∑
tob
ink∈t

ob
ik

xtob
ink
≤ 1,∀i,

C16:
∑

k∈T e
S,H

∑
ttr
imk∈t

tr
ik

xttr
imk
≤ 1,∀i.

Next, we definite A as the infeasible observation set
to represent some conflict observation operations in re-
alistic applications. Specifically, according to C3 and C4,
we can check whether the observation operations of any
two different tasks conducted by the same satellite, e.g.,
(xtob

ink
, xtob

jn′k′
), is in conflict. If there is a conflict, we add

(tob
ink, t

ob
jn′k′) into set A. After traversing all the possible

combinations, C3 and C4 can be rewritten as

C17: xtob
ink

+ xtob
jn′k′

≤ 1, (tob
ink, t

ob
jn′k′) ∈ A.

Similarly, we let B be the infeasible transmission set
to characterize the conflict transmission operations. Specif-
ically, on the basis of C5 and C6, we can judge whether
the transmission operations conducted by a satellite for any
different two tasks is in conflict. Furthermore, combining C7
with C8, we can check whether the transmission operations
for various tasks to access a data receiving antenna is fea-
sible. After that, we can add all the infeasible combinations
(e.g., (ttrimk, t

tr
jm′k′)) unsatisfying the constraints above into

set B. As such, we can obtain the constraint as follows:

C18: xttr
imk

+ xttr
jm′k′

≤ 1, (ttrimk, t
tr
jm′k′) ∈ B.

Furthermore, we denote set C to indicate the conflict op-
erations between observation and transmission. Specifically,
on the basis of C9-C11, we check whether the sequence
of observation and transmission operations for any two
different tasks on the same satellite is feasible. It follows that
we can add all the infeasible combinations, e.g., (tob

ink, t
tr
jmk),

into C to get:

C19: xtob
ink

+ xttr
jmk
≤ 1, (tob

ink, t
tr
jmk) ∈ C.

Next, according to C12, we need to ensure that both the
observation and transmission of a task should be on the
same satellite. As such, we use the new decision variables
to rewrite C12 as follows:

C20:
∑

k∈Oe
i,s

tob
ink∈t

ob
ik

xtob
ink

+
∑

k∈T e
s,H

ttr
imk∈t

tr
ik

xttr
imk
≥2−V (1− zis),∀i, s.

Finally, the following integer constraints should be intro-
duced:

C21: xtob
ink
∈{0, 1}, tob

ink∈ tob
ik,∀i, k∈Oei,S ,

C22: xttr
imk
∈{0, 1}, ttrimk∈ ttrik,∀i, k∈T eS,H,

C23: zis ∈ {0, 1},∀i, s.

By now, P0 can be equivalently transformed into the
following optimization problem:

P1: max
(xot,z)

∑
i∈I

∑
s∈S

wizis

s.t.
(
xot, z

)
∈ F1,

where xot = (xob,xtr), xob = {xtob
ink
}, xtr = {xttr

imk
}, and

F1 denotes the feasible set, defined as

F1 =
{(
xot, z

)
| C15-C23

}
.

4.1.2 Reduction of Indicator Variable z
We first transform C20 into the following constraint:

zis ≤
1

V

∑
k∈Oe

i,s

tob
ink∈t

ob
ik

xtob
ink

+
1

V

∑
k∈T e

s,H
ttr
imk∈t

tr
ik

xttr
imk

+
V − 2

V
, ∀i, s. (2)

Next, multiplying (2) by wi and then summing it over both
i ∈ I and s ∈ S , we have∑

i∈I

∑
s∈S

wizis ≤
1

V

∑
i∈I

∑
k∈Oe

i,S
tob
ink∈t

ob
ik

wixtob
ink

+
1

V

∑
i∈I

∑
k∈T e

s,H
ttr
imk∈t

tr
ik

wixttr
imk

+
S(V − 2)

V

∑
i∈I

wi.

(3)

Plugging (3) into the objective of P1 and dropping C23, we
can obtain the following problem:

P2: max
xot

1

V

∑
i∈I

∑
k∈Oe

i,S
tob
ink∈t

ob
ik

wixtob
ink

+
1

V

∑
i∈I

∑
k∈T e

s,H
ttr
imk∈t

tr
ik

wixttr
imk

+
S(V − 2)

V

∑
i∈I

wi

s.t. xot ∈ F2,

with the feasible set F2 defined as

F2 =
{
xot
∣∣C15-C19,C21, C22,xot ≥ 0

}
.

Obviously, the optimum of P2 is an upper bound of the
optimum of P1, owing to the fact that the objective value
of P2 is larger than that of P1 and F1 ⊂ F2. Furthermore,
multiplying the objective of P2 by 1

2V and then removing
the constant term, we have

P3: max
xot

∑
i∈I

∑
k∈Oe

i,S
tob
ink∈t

ob
ik

1

2
wixtob

ink
+
∑
i∈I

∑
k∈T e

s,H
ttr
imk∈t

tr
ik

1

2
wixttr

imk

s.t. xot ∈ F2.

It is easy to understand that the optimal solution to P3 is
the same as that of P2. We use P1∗ and P3∗ to represent the
optimum of P1 and P3, respectively.
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Theorem 2. P3∗ is an upper bound of P1∗. Furthermore, a
necessary and sufficient condition for the equivalence of problems
P1 and P3 is that in P3 each task is allocated two time windows.

Proof: Compared with P3, the objective function of P1
is bounded by the additional constraints C20 and C23. This
means that, zis = 1,∀i, s if and only if∑

k∈Oe
i,s

tob
ink∈t

ob
ik

xtob
ink

+
∑

k∈T e
s,H

ttr
imk∈t

tr
ik

xttr
imk
≥2. (4)

Combined with C15 and C16, (4) is turned into an equality,
i.e., each task should be allocated two time windows associ-
ated with the same satellite. Particularly, C19 in P3 ensures
that the OTW and TTW for a task is associated with the
same satellite. As such, we only need to guarantee that each
task is allocated two time windows. However, there is no
such constraint in P3, so F1 ⊂ F2 and the objective value of
P3 over F2 is larger than that of P1 over F1. This finishes
the proof of Theorem 2.
Remark 1. According to Theorem 2, we can convert the
solution to P3 into a feasible solution for P1 by finding tasks
associated with two time windows.

4.1.3 Preliminary SDR-based Algorithm Design
To obtain an SDR formulation, we first convert C21 and C22
into the following two constraints:

C24: xtob
ink

(xtob
ink
− 1) = 0, tob

ink ∈ tob
ik,∀i, k ∈ Oei,S ,

C25: xttr
imk

(xttr
imk
− 1) = 0, ttrimk ∈ ttrik,∀i, k∈T eS,H.

Therefore, P3 can be transformed into an equivalent prob-
lem as follows:

P4: max
xot

∑
i∈I

∑
k∈Oe

i,S

∑
tob
ink∈t

ob
ik

1

2
wixtob

ink

+
∑
i∈I

∑
k∈T e

S,H

∑
ttr
imk∈t

tr
ik

1

2
wixttr

imk

s.t. C15-C19, C24, C25,xot ≥ 0.

Define xot
i = [xtob

i11
, ..., xtob

iNi|Oe
i,S|

, xttr
i11
, ..., xttr

iMi|T e
S,H|

]T

as the 1×Oi row vector for all i, where Oi is equal
to Ni|Oei,S | + Mi|T eS,H|. It is therefore easy to obtain
xot = [xot

1 , ...,x
ot
I ]T , which is the 1×O column vector

with O =
∑
i∈I

Oi. Moreover, ep
1×Nk

i
and ep1×Oi

represent

Nk
i -dimensional and Oi-dimensional column unit vectors,

respectively, with the pth element being one. As such, we
equivalently convert P4 into the vector form as follows:

P5: max
xot

∑
i∈I

(Di)
Txot

i

s.t.
(
bob
i

)T
xot
i ≤1,

(
btr
i

)T
xot
i ≤1,∀i,(

bAink

)T
xot
i +

(
bAjn′k′

)T
xot
j ≤1,

(
tob
ink, t

ob
jn′k′

)
∈A,(

bBimk

)T
xot
i +

(
bBjm′k′

)T
xot
j ≤1,

(
ttrimk, t

tr
jm′k′

)
∈B,(

bCink

)T
xot
i +

(
bCjmk

)T
xot
j ≤1,

(
tob
ink, t

tr
jmk

)
∈C,(

xot
i

)T diag
(
ep1×Oi

)
xot
i −

(
ep1×Oi

)T
xot
i =0, p ∈ {1, ..., Oi},∀i,

xot
i ≥ 0,∀i,

where

Di=
1

2
wi1Oi×1, b

ob
i = [11×Ni|Oe

i,S |,01×Mi|T e
S,H|]

T ,

btr
i = [01×Ni|Oe

i,S |,11×Mi|T e
S,H|]

T ,

bAink=[01×N1
i
, ..., en

′

1×Nk
i
, ...,01×Mi|T e

S,H|]
T ,

bAjn′k′=[01×N1
j
, ..., en

′

1×Nk′
j

, ...,01×Mj |T e
S,H|]

T ,

bBimk=[01×Ni|Oe
i,S |, ..., e

m
1×Nk

i
, ...,01×Mi|T e

S,H|]
T ,

bBjm′k′=[01×Nj |Oe
j,S |, ..., e

m′

1×Nk′
j

, ...,01×Mj |T e
S,H|]

T ,

bCink=[01×N1
i
, ..., en1×Nk

i
, ...,01×Mi|T e

S,H|]
T ,

bCjmk=[01×Nj |Oe
j,S |, ..., e

m
1×Nk

j
, ...,01×Mj |T e

S,H|]
T .

We further define qi = [(xot
i )
T
, 1]T and recast P5 as the

following QCQP formulation:

P6: max
{qi}

∑
i∈I
qTi Giqi

s.t. qTi G
ob
i qi≤1, qTi G

tr
i qi≤1,∀i,

qTi G
A
inkqi+q

T
j G
A
jn′k′qj≤1,

(
tob
ink, t

ob
jn′k′

)
∈A,

qTi G
B
imkqi+q

T
j G
B
jm′k′qj≤1,

(
ttrimk, t

tr
jm′k′

)
∈B,

qTi G
C
inkqi+q

T
j G
C
jmkqj ≤1,

(
tob
ink, t

tr
jmk

)
∈C,

qTi Gpqi=0, p ∈ {1, ..., Oi}, qi ≥ 0,∀i,

where

GAink=

[
0 1

2b
A
ink

1
2 (bAink)T 0

]
,GCink=

[
0 1

2b
C
ink

1
2

(
bCink

)T
0

]
,

GCjmk=

 0 1
2b
C
jmk

1
2

(
bCjmk

)T
0

,GBimk=

[
0 1

2b
B
imk

1
2 (bBimk)T 0

]
,

GAjn′k′=

[
0 1

2b
A
jn′k′

1
2 (bAjn′k′)

T 0

]
,Gob

i =

[
0 1

2b
ob
i

1
2 (bob

i )T 0

]
,

GBjm′k′=

[
0 1

2b
B
jm′k′

1
2 (bBjm′k′)

T 0

]
,Gtr

i =

[
0 1

2b
tr
i

1
2 (btr

i )
T

0

]
,

Gi=

[
0 1

2Di
1
2 (Di)

T
0

]
,Gp=

[
diag

(
ep1×Oi

)
− 1

2e
p
1×Oi

− 1
2 (ep1×Oi

)T 0

]
.

So far, we have not achieved much due to the fact that P6
is still a computationally difficult problem. Toward this end,
we define Xi = qiq

T
i ,∀i, and then drop the rank constraint

rank(Xi) = 1,∀i, to obtain a standard SDR formulation as
follows:

P7: max
{Xi}

∑
i∈I

Tr(GiXi)

s.t. Tr(Gob
i Xi)≤1,Tr(Gtr

iXi)≤1,∀i,
Tr(GAinkXi)+Tr(GAjn′k′Xj)≤1, (tob

ink, t
ob
jn′k′)∈A,

Tr(GBimkXi)+Tr(GBjm′k′Xj)≤1, (ttrimk, t
tr
jm′k′)∈B,

Tr(GCinkXi)+Tr(GCjmkXj) ≤1, (tob
ink, t

tr
jmk)∈C,

Tr(GpXi)=0, p ∈ {1, ..., Oi},∀i,
Xi(Oi+1, Oi+1)=1,Xi�0,∀i.
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It is known that P7 can be solved to obtain an optimal
solution X∗ = {X∗i } in polynomial time, for example,
through free SDP solvers (e.g., SDPT3, SeDuMi, SDPNAL)
[34].

Upon obtaining the optimal solution X∗, we can uti-
lize a randomization method to generate an approximate
solution to P5, targeting at yielding the best optimization
objective. Here, we adopt the Gaussian randomization ap-
proach proposed in [35] to generate approximate solutions.
Specifically, we let R be the number of randomizations. For
r ∈ {1, 2, ..., R}, the rth approximate solution with respect
to task i, denoted by πri , can be generated according to a
normal distribution with zero expectation and varianceX∗i ,
i.e., πri ∼ N (0,X∗i ). We need to map πr = {πri } into a
feasible solution of P5, denoted by π̃r = {π̃ri }. We first sort
all elements of πr in decreasing order. Next, we sequentially
consider each of the sorted elements of πr starting from the
largest one. We set the corresponding element in π̃r to 1 if
doing so satisfies C15-C19; otherwise it is set to 0. Finally, we
choose the best π̃r among theR random realizations. Details
of this preliminary SDR-based solution method, which we
term SDR-JOTSAS, are given in Algorithm 1.

4.2 Joint Observation and Transmission Scheduling
Algorithm

By utilizing the SDR technique to optimize three-
dimensional variable x, Algorithm 1 enables a solution
in polynomial time. Nevertheless, the huge solution space
still leads to high computational complexity in practical
applications. Toward this end, in the following, we partition
the three-dimensional variable x into two two-dimensional
variables. Accordingly, the weighted sum maximization
problem can be equivalently transformed into a hybrid time
window association (HTWA) problem, which contains an
embedded time window resource allocation (TWRA) prob-
lem. Interestingly, simple modifications of the devised SDR
method in Section 4.1 is also suitable to solve the TWRA
efficiently, due to the fact that it is of a similar form of P0.
More importantly, solving the TWRA over a smaller solution
space of two-dimensional variables significantly reduces the
computational time. Furthermore, we devise an efficient
genetic framework to solve the HTWA with low complexity.

4.2.1 Problem Decomposition
Here, we recall the decision variable x of P0 indicates which
observation/transmission time window is associated with
task i and its position within the time window. To reduce
the complexity of the SDR solution proposed in Section 4.1,
we will now decompose x into two parts. We first associate
each task with two time windows (i.e., OTW and TTW), and
then decide its start time within each time window. Toward
this end, we let xitk = yitηik,∀i, t, k, where ηik indicates
that task i is associated with time window k and yit denotes
that task i is processed at time t. We further divide yit into
two variables yob

it and ytr
it, representing that task i is observed

and transmitted at time t, respectively. Thus, we can replace
xitk by the following new variables:

xitk =

{
yob
it ηik, k ∈ Oei,S ,
ytr
itηik, k ∈ T eS,H.

(5)

Algorithm 1 Preliminary SDR-based Joint Observation and
Transmission Scheduling Algorithm with Agile Satellites
(SDR-JOTSAS)

1: Initialization: π̃r = 0.
2: Solve P7 to obtain optimal solution X∗ = {X∗i }.
3: for r = 1 : R do
4: for i = 1 : I do
5: Generate πri ∼ N (0,X∗i ).
6: end for
7: end for
8: Sort all elements of πr in decreasing order.
9: for j = 1 to the length of πr do

10: if C15-C19 are satisfied then
11: π̃r(j) = 1.
12: else
13: π̃r(j) = 0.
14: end if
15: end for
16: Obtain r∗ by solving max

r

∑
i∈I
Diπ̃

r
i .

Output: π̃r
∗
.

Therefore, a reformulation of P0 with η = {ηik} known
can be written as follows (i.e., TWRA):

P8: max
(y,z,f)

∑
i∈I

∑
s∈S

wizis

s.t. C1′:
∑
t∈T

yob
it ηik≤1,∀i, C2′:

∑
t∈T

ytr
itηik≤1,∀i,

C3′:
∑
t∈T

yob
it ηikt≥

∑
t∈T

yob
jtηjk(t+ pjk)−V λijs,∀i 6= j, s,

C5′:
∑
t∈T

ytr
itηikt≥

∑
t∈T

ytr
jtηjk(t+ pjk)−V ψijs,∀i 6= j, s,

C7′:
∑
t∈T

ytr
itηikt≥

∑
t∈T

ytr
jtηjk(t+ pjk)−V γijh,∀i 6= j, h,

C9′:
∑
t∈T

yob
it ηikt≥

∑
t∈T

ytr
jtηjk(t+ pjk)−V θijs,∀i 6= j, s,

C11′:
∑
t∈T

ytr
itηikt≥

∑
t∈T

yob
it ηik(t+ pik),∀i, s,

C12′:
∑
t∈T

yob
it ηik+

∑
t∈T

ytr
itηik≥2−V (1− zis),∀i, s,

C13′:
∑
t∈T

yob
it ηikaik≤

∑
t∈T

yob
it ηikt≤

∑
t∈T

yob
it ηik(bik−pik),∀i,

C14′:
∑
t∈T

ytr
itηikaik≤

∑
t∈T

ytr
itηikt≤

∑
t∈T

ytr
itηik(bik−pik),∀i,

f ∈ F3, zis∈{0, 1},∀i, s, ytr
it ∈ {0, 1}, yob

it ∈ {0, 1},∀i, t,

where y = (yob
it , y

tr
it), and we define F3 as follows:

F3 =

f
∣∣∣∣∣∣

C4,C6,C8,C10,
λijs ∈ {0, 1}, ψijs ∈ {0, 1},

γijh ∈ {0, 1}, θijs ∈ {0, 1},∀i, j.


Furthermore, we should optimize η to solve the follow-

ing problem (i.e., HTWA):

P9: max
η

g∗(η)

s.t. C26:
∑

k∈Oe
i,S

ηik≤1,
∑

k∈T e
S,H

ηik≤1,∀i,
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C27:
∑

k∈Oe
i,s

ηik+
∑

k∈T e
s,H

ηik=2,∀i, s,

C28: ηik ∈ {0, 1},∀i, k,

where g∗(η) is the optimal value of P8 given η.
Thus, P0 can be equivalently decoupled into a high-level

master problem nested by a lower-level subproblem. At the
lower level, optimize (y, z,f) when fixing η, by solving P8.
At the higher level, optimize η by solving P9.

4.2.2 TWRA Problem Solving
We observe that P8 has a similar form to P0, so that the SDR-
based solution in Section 4.1 similarly applies. However,
by replacing the three-dimensional variable x by the two-
dimensional variable y, we can now much more efficiently
solve P8. For clarity, we explain the mainly modifications as
follows.

Initially, we recast P8 as the following problem:

P1′: max
(yot,z)

∑
i∈I

∑
s∈S

wizis

s.t. C15′:
∑

tob
in∈tob

i

ytob
in
≤ 1,∀i,

C16′:
∑

ttr
im∈ttr

i

yttr
im
≤ 1,∀i,

C17′: ytob
in

+ ytob
jn′
≤ 1, (tob

in, t
ob
jn′) ∈ A′,

C18′: yttr
im

+ yttr
jm′
≤ 1, (ttrim, t

tr
jm′) ∈ B′,

C19′: ytob
in

+ yttr
jm
≤ 1, (tob

in, t
tr
jm) ∈ C′,

C20′:
∑

tob
in∈tob

i

ytob
in

+
∑

ttr
im∈ttr

i

yttr
im
≥2−V (1− zis),∀i,

C21′: ytob
in
∈ {0, 1}, tob

in ∈ tob
ik,∀i,

C22′: yttr
im
∈ {0, 1}, ttrim ∈ ttrik,∀i,

C23′: zis ∈ {0, 1},∀i,

where yot = (yob,ytr), yob = {ytob
in
}, and ytr = {yttr

im
}.

Obviously, P1′ is easy to obtain by specifying time window
index k for task i in P1. We let tob

i = {tob
in} and ttri = {ttrin},

where tob
in and ttrin correspond to the values of tob

ink and
ttrink in P1 when given ηik,∀i, k, respectively. Similarly, ytob

in

and yttr
im

correspond to the values of xtob
ink

and xttr
imk

, re-
spectively, when given ηik,∀i, k. Furthermore, according to
Section 4.1.1, we construct sets A, B, and C with the known
ηik,∀i, k, denoted by A′, B′, and C′.

Then, removing z from P1′ yields the following:

P3′: max
yot

∑
i∈I

∑
tob
in∈tob

i

1

2
wiytob

in
+
∑
i∈I

∑
ttr
im∈ttr

i

1

2
wiyttr

im

s.t. yot ∈ F ′2,

where F ′2 =
{
yot
∣∣C15′-C19′,C21′,C22′,yot ≥ 0

}
. Next, P3′

can be rewritten in the following QCQP formulation:

P4′: max
yot

∑
i∈I

∑
tob
in∈tob

i

1

2
wiytob

in
+
∑
i∈I

∑
ttr
im∈ttr

i

1

2
wiyttr

im

s.t. C15′-C19′,

C24′: ytob
in

(ytob
in
− 1) = 0, tob

in ∈ tob
ik,∀i,

C25′: yttr
im

(yttr
im
− 1) = 0, ttrim ∈ ttrik,∀i,

yot ≥ 0.

Naturally, we write the vector form of P4′ as:

P5′: max
yot

∑
i∈I

(D′i)
Tyot

i

s.t.
(
bob′
i

)T
yot
i ≤1,

(
btr′
i

)T
yot
i ≤1,∀i,(

bA
′

in

)T
yot
i +

(
bA
′

jn′

)T
yot
j ≤1,

(
tob
in, t

ob
jn′

)
∈A′,(

bB
′

im

)T
yot
i +

(
bB
′

jm′

)T
yot
j ≤1,

(
ttrim, t

tr
jm′
)
∈B′,(

bC
′

in

)T
yot
i +

(
bC
′

jm

)T
yot
j ≤1,

(
tob
in, t

tr
jm

)
∈C′,(

yot
i

)T diag
(
ep1×Oik

)
yot
i −

(
ep1×Oik

)T
yot
i =0,

p ∈ {1, ..., O′ik},∀i, yot
i ≥ 0,∀i,

where

yot = {yot
i },yot

i = [ytob
i1
, ..., ytob

iNk
i

, yttr
i1
, ..., yttr

iMk
i

]T ,

O′ik = Nk
i +Mk

i , D
′
i=

1

2
wi1O′ik×1,

bob′
i = [11×Nk

i
,01×Mk

i
]T , btr′

i = [01×Nk
i
,11×Mk

i
]T ,

bA
′

in =[en1×Nk
i
,01×Mk

i
]T , bA

′

jn′=[en
′

1×Nk
j
,01×Mk

j
]T ,

bB
′

im=[01×Nk
i
, em1×Mk

i
]T , bB

′

jm′=[01×Nk
j
, em

′

1×Mk
j

]T ,

bC
′

in=[en1×Nk
i
,01×Mk

i
]T , bC

′

jm=[em1×Nk
j
,01×Mk

j
]T .

Then, let pi=[(yot
i )
T
, 1]T and give the QCQP form of P5’:

P6′: max
pi

∑
i∈I
pTi G

′
ipi

s.t. pTi G
ob′
i pi≤1,pTi G

tr′
i pi≤1,∀i,

pTi G
A′
in pi+p

T
j G
A′
jn′pj≤1, (tob

in, t
ob
jn′)∈A′,

pTi G
B′
impi+p

T
j G
B′
jm′pj≤1, (ttrim, t

tr
jm′)∈B′,

pTi G
C′
impi+p

T
j G
C′
jnpj≤1, (tob

in, t
tr
jm)∈C′,

pTi G
′
ppi=0, p ∈ {1, ..., O′ik},∀i, pi≥0,∀i,

where

GC
′

im=

[
0 1

2b
C′
im

1
2 (bC

′

im)T 0

]
,Gob′

i =

[
0 1

2b
ob′
i

1
2 (bob′

i )T 0

]
,

Gtr′
i =

[
0 1

2b
tr′
i

1
2 (btr′

i )T 0

]
,GA

′

in =

[
0 1

2b
A′
in

1
2 (bA

′

in )T 0

]
,

GA
′

jn =

[
0 1

2b
A′
jn′

1
2 (bA

′

jn′)
T 0

]
,GB

′

im=

[
0 1

2b
B′
im

1
2 (bB

′

im)T 0

]
,

GB
′

jm′=

[
0 1

2b
B′
j,m′

1
2 (bB

′

jm′)
T 0

]
,GC

′

jn=

[
0 1

2b
C′
jn

1
2 (bC

′

jn)T 0

]
,

G′i=

[
0 1

2D
′
i

1
2 (D′i)

T 0

]
,G′p=

[
diag(ep1×O′ik

) − 1
2e

p
1×O′ik

− 1
2 (ep1×O′ik

)T 0

]
.

Finally, define Yi = pip
T
i ,∀i, and we have the SDR

formulation as follows:

P7′: max
Yi

∑
i∈I

Tr(G′iYi)

s.t. Tr(Gob′
i Yi)≤1,Tr(Gtr′

i Yi)≤1,∀i,
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Tr(GA
′

inYi)+Tr(GA
′

jn′Yj)≤1, (tob
in, t

ob
jn′)∈A′,

Tr(GB
′

imYi)+Tr(GB
′

jm′Yj)≤1, (ttrim, t
tr
jm′)∈B′,

Tr(GC
′

imYi)+Tr(GC
′

jnYj)≤1, (tob
in, t

tr
jm)∈C′,

Tr(G′pYi)=0, p ∈ {1, ..., O′ik},∀i,
Yi(O

′
ik+1, O′ik+1)=1,Yi�0,∀i.

Similar to the initial design using SDR, the remaining
steps are proceeded as follows. First, we solve P7′ to obtain
optimal solution Y ∗ = {Y ∗i }. Then, we utilize the Gaussian
randomization approach to generate approximate solutions,
followed by recovering them into feasible solutions. Due to
page limitation, we omit the details, which can be found in
Section 4.1.

4.2.3 HTWA Problem Solving
Aiming to solve P9 efficiently, we adopt a genetic frame-
work on the basis of generated feasible solutions. GA is a
well-known approach to find near-optimal solutions to NP-
hard problems through simulating the process of natural
selection [36]. Our main contribution in using GA to solve
the HTWA problem is in the novel CPInit method below.

The GA first represents the candidate solutions of an
optimization problem as a set of chromosomes termed as
a population. Then, bio-inspired operations (e.g., mutation,
crossover, and selection) are made on these chromosomes
targeting at evolving better solutions to the optimization
problem without excessive computational effort. We utilize
GA to remodel the P9 as follows:

Chromosome Representation: A candidate solution of P9
(i.e., η) is represented as a chromosome, which is made
up of two chromatids. We respectively term these two
chromatids the observation and transmission chromatid.
We use a vector of length I to represent each chromatid.
Thus, we can execute chromosome coding by assigning time
window indices to every element of such vector, thereby
constructing the one to one mapping between η and a
chromosome. Furthermore, we introduce fitness values to
evaluate chromosomes. Specifically, we define the fitness
value of a chromosome as the weighted sum of scheduled
tasks denoted by g. As such, we can find its fitness value
g = g∗(η) by solving the TWRA problem P8.

CPInit method: An efficient population initialization is
of vital importance because it can accelerate the convergence
speed and also improve the quality of solution. Particularly,
as pointed out by [37], seeding some possible solutions in
the initial population tends to improve the performance
of GA. Inspired by this view, we first use a random ini-
tialization method to an initial population in a random
manner, then propose a CPInit method to solve P3 aiming
at generating a set of initial solutions, and finally seed these
obtained solutions in the produced initial population.

In CPInit, we utilize the information including resource
requirement conflicts and the weight of tasks to generate
an initial population. Specifically, we first construct a con-
flict function set to quantitatively characterize the conflicts
among various decision variables. Then, according to both
the conflict function set and the weight of tasks, we fur-
ther design a probability distribution aiming at maintaining
genetic diversity. Finally, we produce an initial population
according to both the conflict function set and the designed

Algorithm 2 Conflict-driven Population Initialization Algo-
rithm (CPInit)

Input: Random initial population P 6= ∅.
1: Calculate conflict function set f(xot).
2: Obtain p(xot) according to both (6) and f(xot).
3: for u = 1 : U do
4: Obtain a solution x̄u according to p(xot).
5: Map x̄u into η.
6: Obtain Pu from P and update P = P \ Pu.
7: Seed η into Pu.
8: Update P = P ∪ Pu.
9: end for

Output: P .

Algorithm 3 Joint Observation and Transmission Schedul-
ing Algorithm with Agile Satellites (JOTSAS)

Input: Generation number L, population size U .
1: Obtain initial population P of size U by calling CPInit

(Algorithm 2).
2: while l ≤ L do
3: Execute crossover and mutation operators.
4: Map each chromosome into η and obtain their fitness

values by solving TWRA (i.e., P8).
5: Use the strategies of tournament and elitism to select

chromosomes according to their fitnesses.
6: l = l + 1.
7: end while
8: Choose the best chromosome and then map it into x.

Output: x.

probability distribution. Detail descriptions are provided
below.

Step 1: Construction of conflict function set: We observe
that the constraints C15-C19 of P3 have the same structure
that the sum of variables is less than one. Furthermore,
this special structure combined with binary constraints (i.e.,
C21 and C22) reveals the special conflict relationship that
at most one variable in a constraint can be set to one.
To quantitatively analyze the conflicts relationship among
various variables, we introduce a conflict function denoted
by f(x) to represent the conflicts among variable x ∈ xot

with other variables. 1 For example, say x = xtob
ink

, we first
initialize f(xtob

ink
) = 0, and then let f(xtob

ink
) = f(xtob

ink
) + 1

when finding xtob
ink

+ xtob
j′n′k′

= 1 according to constraints
C15-C19. In addition, we define a conflict function set
f(xot) = {f(x)}. Obviously, a larger value of f(x) reveals
that variable x ∈ xot conflicts with more other variables.
Naturally, we prefer to choose variable x ∈ xot with a
smaller value of f(x), to maximize the optimization objec-
tive. Accordingly, we sort the elements of f(xot) in the order
of increasing values, while returning the number of different
values denoted by Q. The elements of xot are thus grouped
into Q clusters. For any q ∈ {1, 2, ..., Q}, we denote by ζq
cluster q and let ζ = {ζq}.

Step 2: Design of population generation probability: To di-
versify the initial population, we focus on devising a pop-

1. For convenience, we omit the subscript of the elements of xot

hereinafter, i.e., using notation x instead of xtob
ink

or xttr
imk

.
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ulation generation probability distribution p(xot) = {p(x)},
where p(x) denotes the probability of setting variable x ∈
xot to one. More specifically, according to the definition
of xot, we can obtain a task index, say i, associated with
each variable x ∈ xot, thereby obtaining the corresponding
weighted value wi. For clarity, we introduce a weighted
function w(x) to indicate the mapping between variable x
and wi, thereby yielding w(x) = wi. As such, for any vari-
able x, we calculate the population generation probability
as follows:

p(x) =
w(x)∑

x∈ζq
w(x)

, ∀q. (6)

Step 3: Generation of initial population: In this step, we use
p(xot) obtained by Step 2 to generate an initial population
suitable for solving HTWA. We denote by P = {Pu, 1 ≤
u ≤ U} the random initial population, where Pu is the uth
chromosome of P and U is the size of P . For any u, we
first use p(xot) to generate the uth solution to P3 denoted
by x̄u as follows: The elements of xot are first ordered in the
natural order 1, 2, ..., Q of clusters, and then, for each cluster
ζq , its elements are ordered with respect to the random
numbers generated by p(xot). Finally, we set the variables
x ∈ xot to one sequentially according to the above order,
while obeying constraints C15-C19; otherwise zero.

Then, we map x̄u into η combining (1) with x̄itk =
yitηik. Finally, we seed η into Pu. More specifically, for all
ηik ∈ η, we find the task index i and time window index k
satisfying ηik = 1. If window k is an OTW, we set the ith
element of the observation chromatid in Pu to k; otherwise,
set the ith element of the transmission chromatid in Pu to
k. The execution of these steps for exactly U times generates
our initial population.

5 SIMULATION EVALUATION
In this section, we evaluate the performance of the proposed
algorithm (i.e., JOTSAS) via a co-simulation platform using
Matlab and the Satellite Tool Kit (STK).

TABLE II. Simulation Parameters
Data collectors Inclination LTDN Altitude

AEOS 1 98.50◦ 10:30 778 km
AEOS 2 98.87◦ 08:34 863 km
AEOS 3 98.48◦ 13:30 770 km

Data sinks Latitude Longitude
DRS 1 0◦ 275◦

DRS 2 0◦ 46.2◦

DRS 3 0◦ 174◦

KaShi 39.5◦ 76◦

SanYa 18◦ 109.5◦

MiYun 40.0◦ 116.0◦

Target distribution Latitude range Longitude range
Small area [3◦, 13◦] [73◦, 83◦]

Medium area [3◦, 53◦] [74◦, 133◦]
Big area [0◦, 60◦] [−120◦,−60◦]

LTDN is the abbreviation for “local time of descending node”.

5.1 Parameters Setting
In the simulation, we set data collectors to three AEOSs.
All the data sinks consist of three data relay satellites
(DRSs) and three GSs. The relevant parameters of data sinks,
AEOSs, and target distribution are summarized in TABLE
II. Each DRS is equipped with one single-access antenna,
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tational time.

Fig. 3. Comparison between SDR-JOTSAS and JOTSAS.

whose transmission rate is set to 20 Mbit/s. The transmis-
sion rate of communication links between the AEOSs and
GSs, denoted byRtr, is set to 40 Mbit/s. The width of OTWs,
denoted by α, is set to 120 seconds [38]. The imaging time
of each target is 30 seconds [39]. The size of slot is set to 10
seconds. The data amount of each image is 10 Gbits. Also,
each task is associated with a weight, generated with an uni-
formly distribution on the interval [1, 10]. The parameters of
roo
ijs, r

tt
ijs, lijh, rot

ijs, and rto
is are set to zeros. In GA, we set the

mutation probability, crossover probability, and population
size to 0.8, 0.5, and 60, respectively. The number of genetic
generations is set to 400. The scheduling time horizon is
from 1 May 2019 00:00:00 to 1 May 2019 12:00:00. We use
the Matlab toolbox YALMIP to call the solver SDPNAL to
solve the SDR problems. We adopt the target distribution
with medium area and data sinks consisting of three GSs
(i.e., Kashi, SanYa, and MiYun) in the following experiments,
unless otherwise stated.

5.2 Benefit of JOTSAS over Preliminary SDR-JOTSAS

We first study the benefit of JOTSAS over our preliminary
design SDR-JOTSAS, which solves P0 directly. Fig. 3a com-
pares the two designs in terms of the weighted sum of
scheduled tasks. It shows that they give nearly identical
performance. Meanwhile, in Fig. 3b, we plot the compu-
tational time versus the number of tasks. It can be seen
that the computational time of SDR-JOTSAS is much higher.
This is because the number of time windows (including
OTWs and TTWs) increases significantly over the number of
tasks, thereby leading to exacerbating resource assignment
conflicts, such that the number of constraints in P3 grows
exceedingly large. Thus, JOTSAS is a superior algorithm
incorporating the low-complexity of GA and high efficiency
of SDR.

5.3 Impact of Design Elements in JOTSAS

In the proposed discretization model, we discretize the
continuous time line into T intervals, which may resulting
some performance loss. To quantify it, we have plotted Fig. 4
to illustrate the weighted sum of the scheduled tasks versus
the slot size. It is observed from Fig. 4 that the performance
loss is negligible when the slot size is below 20 seconds in
our practical setting.
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Fig. 5. Verification of population initialization in medium area
scenario.

We further study the impact of the CPInit population
initialization method in JOTSAS. For this purpose, we com-
pare it with an alternative random initialization method,
where for any task i, set xtob

iNk
i
|Oe

i,S|
= 1 with the probability

of 1
Ni|Oe

i,S |
,∀k ∈ Oei,S and set xttr

iMk
i
|T e
S,H|

= 1 with the

probability of 1
Mi|T e

S,H|
,∀k ∈ T eS,H.

Fig. 5 shows how the weighted sum of scheduled tasks
and the number of successfully scheduled tasks vary with
task number in various schemes. Here, we use CPInit and
Random Initialization to label the solutions generated by
these two methods without further GA refinement. From
Fig. 5, we observe that CPInit substantially outperforms the
random initialization method. This is because CPInit utilizes
information involving resource requirement conflicts and
the weight of tasks to devise a probability distribution,
thereby capable of yielding a superior solution. Further-
more, the performance of JOTSAS is superior to its random
initialization version. This indicates that CPInit provides an
excellent initial population, thereby improving the quality
of the final solution.

5.4 Performance Comparisons of JOTSAS and Alterna-
tives

To reveal the benefit of joint resource optimization, we
further compare JOTSAS with a naive alternative, where
the observation and transmission resources are optimized
separately by using JOTSAS. In Fig. 6, we show the re-
sults of this comparison, in terms of the weighted sum
of scheduled tasks versus deadline. This figure suggests
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Fig. 6. Comparison between JOTSAS and JOTASA without joint
optimization.
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Fig. 7. Comparison of the weighted sum of scheduled tasks
versus deadline.

that joint scheduling of observation and transmission can
significantly improve the performance of ASNs.

In this subsection, we compare the performance of JOT-
SAS with that of the heuristic algorithm (HA) devised by
[26]. We set the number of tasks to 100 and Rtr = 100
Mbit/s. Furthermore, we present two scenarios to test the
performance of JOTSAS. In particular, we adopt DRS 1,
Kashi, SanYa, and MiYun for data sinks to guarantee enough
transmission resources in the small-area scenario.

Fig. 7 compares JOTSAS with HA for different sizes of
OTWs and deadlines in terms of the weighted sum of sched-
uled tasks. From Fig. 7(a), we observe that both JOTSAS and
HA with the larger value of α achieve a lager weighted
sum of scheduled tasks. This is because a larger OTW
alleviates the observation conflicts within it. In addition, it is
observed from Fig. 7(a) that JOTSAS achieves significantly
better performance than HA. This is because the small-
area scenario reinforces the overlap among various OTWs,
thereby significantly exacerbating the observation conflicts.
Furthermore, the transmission resources are sufficient to
download the imaging data of scheduled tasks in the small
area scenario. Particularly, JOTSAS enables the start time to
image each target at any time within its associated OTWs,
thereby significantly reducing observation conflicts.

Moreover, Fig. 7(b) shows that JOTSAS still outperforms
HA in the big-area scenario. This is because JOTSAS is ca-
pable of efficiently allocating transmission resources. In this
scenario, the observation conflicts are not obvious, while
the transmission conflicts are intense. Nevertheless, JOTSAS
jointly schedules observation and transmission resources to
significantly boost the performance of ASNs.

To further verify the performance of JOTSAS, a approx-
imate multi-resource schedule (AMRS) proposed in [22] is
adopted as a baseline algorithm in an experiment with a
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Fig. 8. Comparison between JOTSAS and AMRS in terms of the
weighted sum of scheduled tasks.

larger number of tasks. In particular, AMRS is proposed
to solve the problem of integrated observation and trans-
mission scheduling in non-agile EOSs. That is, AMRS can
be considered a simple approach with one pitching angle
of AEOSs. Therefore, it can be used in our joint scheduling
problem. In Fig. 8, we compare JOTSAS with AMRS in terms
of the weighted sum of scheduled tasks versus the number
of tasks. It is observed from Fig. 8 that JOTSAS outperforms
AMRS in terms of the weighted sum of scheduled tasks. This
is because JOTSAS coordinates multiple pitching angles of
AEOSs to reduce observation conflicts, thereby facilitating
observation data collection. It is therefore that AEOSs have
a higher network performance over non-agile EOSs.

We plot Fig. 9 to check the performance gap between
JOTSAS and an upper bound of optimum with various
task number. The upper bound of optimum is obtained
through the following two steps: First, we use the software
STK to calculate the set of targets successfully observed by
the AEOSs. Then, we calculate the weighted sum of these
targets. As shown in Fig. 9, we observe that the performance
gap is small.

6 CONCLUSION

In this paper, we have investigated the joint resource
scheduling problem considering observation and transmis-
sion time windows for ASNs. Specifically, we formulate the
studied problem as a weighted sum maximization problem
under the constraint of diverse time windows through joint
optimization of observation and transmission resources. To
tackle this problem, we first utilize the SDR method to
devise a joint resource scheduling algorithm, termed SDR-
JOTSAS. Then, to reduce the computation complexity, we
further develope a fast yet efficient joint scheduling algo-
rithm, termed JOTSAS, through combining parts of SDR-
JOTSAS and a GA approach that utilizes a new method
for population initialization. Our simulation results exhibit
the performance advantage of JOTSAS and the impact of its
design components.
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