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Abstract—In many dynamic systems, decisions on system operation are updated over time, and the decision maker requires an online
learning approach to optimize its strategy in response to the changing environment. When the loss and constraint functions are convex,
this belongs to the general family of online convex optimization (OCO). In existing OCO works, the environment is assumed to vary in a
time-slotted fashion, while the decisions are updated at each time slot. However, many wireless communication systems permit only
periodic decision updates, i.e., each decision is fixed over multiple time slots, while the environment changes between the decision
epochs. The standard OCO model is inadequate for these systems. Therefore, in this work, we consider periodic decision updates for
OCO. We aim to minimize the accumulation of time-varying convex loss functions, subject to both short-term and long-term constraints.
Feedback information about the loss functions within the current update period may be delayed and incomplete. We propose an
efficient algorithm, termed Periodic Queueing and Gradient Aggregation (PQGA), which employs novel periodic queues together with
possibly multi-step aggregated gradient descent to update the decisions over time. We derive upper bounds on the dynamic regret,
static regret, and constraint violation of PQGA. As an example application, we study the performance of PQGA for network
virtualization in a large-scale multi-antenna system shared by multiple wireless service providers. Simulation results show that PQGA
converges fast and substantially outperforms the current best alternative.

Index Terms—Online convex optimization, long-term constraint, periodic updates, massive MIMO, wireless network vir tualization.
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1 INTRODUCTION

IN many signal processing, resource allocation, and ma-
chine learning problems, system parameters and loss

functions vary over time under dynamic environments. On-
line learning has emerged as a promising solution to these
problems in the presence of uncertainty, where an online de-
cision strategy iteratively adapts to system variations based
on historical information [2]. Online convex optimization
(OCO) is a subclass of online learning, where the loss and
constraint functions are convex with respect to (w.r.t.) the
decision [3]. OCO can be seen as a sequential decision-
making process between a decision maker and the system.
Under the standard OCO setting, at the beginning of each
time slot, the decision maker selects a decision from a con-
vex feasible set. Only at the end of each time slot, the system
reveals information about the current convex loss function
to the decision maker. The goal of the decision maker is to
minimize the cumulative loss. Such an OCO framework has
many applications, e.g., wireless transmit covariance matrix
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design [4], dynamic network resource allocation [5], and
smart grids with renewable energy supply [6].

In OCO, due to the lack of in-time information about
the current convex loss function, the decision maker cannot
select an optimal decision at each time slot. Instead, the
decision maker aims at minimizing the regret [7], i.e., the
performance gap between the online decision sequence and
some performance benchmark. Most of the early OCO al-
gorithms were evaluated in terms of the static regret, which
compares the online decision sequence with a static offline
benchmark that has apriori information of all the convex
loss functions. However, when the environment changes
drastically, the static offline benchmark itself may perform
poorly. In this case, the static regret may not be a meaningful
performance measurement anymore. A more useful dynamic
regret measures the performance gap between the online
decision sequence and a time-varying sequence of per-time-
slot optimizers given knowledge of the current convex loss
function. The dynamic regret has been recognized as a more
attractive but harder-to-track performance measurement for
OCO.

In many practical systems, the decision maker often
collects the system parameters and makes decisions in a
periodic manner, e.g., to limit the computation and commu-
nication overhead. One application of interest is precoding
design in massive multiple-input multiple-output (MIMO)
systems, where the precoder is updated based on delayed
channel state information (CSI) feedback and is fixed for a
period, i.e., one or multiple resource block durations, while
the underlying channel may fluctuate fast over time. The
resource block duration is fixed in Long-Term Evolution
(LTE) and is allowed to change over time for a more flexible
network operation in 5G New Radio (NR) [8]. In mobile
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edge computing [9], due to the offloading and scheduling
latency, the cloud server may periodically collect the of-
floading tasks from the remote devices and design a fixed
computing resource allocation strategy for a certain time
period.

However, to the best of our knowledge, all existing
works on OCO require both the decision and feedback
information are updated at each time slot. Motivated by
this discrepancy, in this work, we consider a new con-
strained OCO problem with periodic updates, where the deci-
sion maker periodically collects information feedbacks and
makes online decisions to minimize the accumulated loss.
The duration of update period can be multiple time slots
and can vary over time. In the presence of periodic updates,
no other known work provides regret bound analysis for
OCO.

Furthermore, we consider both short-term and long-
term constraints, which are important in many practical
optimization problems. For example, in communication sys-
tems, the short-term constraint can represent the maximum
transmit power, while the long-term power constraint can
be seen as a limit on energy usage. An effective constrained
OCO algorithm should also bound the constraint violation,
which is the accumulated violation on the long-term con-
straints. The need to provide the constraint violation bound
further adds to the challenges of regret bound analysis.

The main contributions of this paper are as follows:

• We formulate a new constrained OCO problem with
periodic updates. Each update period may last for
multiple time slots and may vary over time. At
the beginning of each update period, the decision
maker selects a decision, fixed for the period, to
minimize the accumulated loss subject to both short-
term and long-term constraints. The feedback infor-
mation about the loss functions can be delayed for
multiple time slots and partly missing. As explained
above, this constrained OCO framework with pe-
riodic updates has broad applications in practical
communication and computation systems.

• We propose an efficient algorithm, termed Periodic
Queueing and Gradient Aggregation (PQGA) for the
formulated constrained OCO problem. In PQGA, we
propose a novel construction of periodic queues, which
converts the accumulated constraint violation in an
update period into queue dynamics. Furthermore,
PQGA collects and aggregates the delayed gradient
feedbacks in each update period to minimize the
accumulated loss. The periodic queues, together with
gradient aggregation, improve the efficacy of peri-
odic decision updates and facilitate the performance
bounding of PQGA.

• We analyze the performance of PQGA and study the
impact of the periodic queues and gradient aggrega-
tion. We prove that PQGA yields O(max{T

1+ν
2 , T δ})

dynamic regret, O(max{T
1
2 , T δ}) static regret, and

O(T
1
2 ) constraint violation, where T is the time hori-

zon, ν represents the growth rate of the accumulated
variation of the per-time-slot optimizer, and δ mea-
sures the level of variation of the update period. We
further show that, when the number of gradient de-

scent steps within each update period is sufficiently
large, PQGA provides improved O(max{T ν , T δ})
dynamic regret and O(1) constraint violation. For the
special case of per-time-slot updates, PQGA achieves
O(T ν) dynamic regret and O(1) constraint violation
bound.

• As an application, we use PQGA to solve an online
precoding design problem in massive MIMO systems
with multiple wireless service providers, where all
the antennas and wireless spectrum resources are
simultaneously shared by the service providers. In
this case, we show that PQGA only involves low-
complexity closed-form computation. Simulation re-
sults show that PQGA converges fast and substan-
tially outperforms the current best alternative.

Organizations: The rest of this paper is organized as
follows. In Section 2, we present the related work. Section 3
describes the mathematical model, problem formulation,
and performance measurement for constrained OCO with
periodic updates. We present PQGA, derive its performance
bounds, and discuss its performance merits in Section 4. The
application of PQGA to large-scale multi-antenna systems
with multiple wireless service providers is presented in
Section 5. Simulation results are provided in Section 6,
followed by concluding remarks in Section 7.

Notations: The transpose, Hermitian transpose, complex
conjugate, trace, Euclidean norm, Frobenius norm, L∞

norm, and L1 norm of a matrix A are denoted by AT ,
AH , A∗, tr{A}, ‖A‖, ‖A‖F , ‖A‖∞, and ‖A‖1, respectively.
The notation blkdiag{A1, . . . ,An} denotes a block diagonal
matrix with diagonal elements being matrices A1, . . . ,An,
E{∙} denotes expectation, <{∙} denotes the real part of
the enclosed parameter, I denotes an identity matrix, and
g ∼ CN (0, σ2I) means that g is a circular complex Gaussian
random vector with mean 0 and variance σ2I.

2 RELATED WORK

In this section, we survey existing works on online learning
and online optimization. The differences between the exist-
ing literature and our work are summarized in Table 1.

2.1 Online Learning and OCO

Online learning is a method of machine learning, where a
learner attempts to tackle some decision-making task by
learning from a sequence of data instances. As an impor-
tant subclass of online learning, OCO has been applied in
various areas such as wireless communications [4], cloud
networks [5], and smart grids [6]. In the seminal work of
OCO [7], a simple projected gradient descent algorithm
achieved O(T

1
2 ) static regret [7]. The static regret was

further improved to O(log T ) for strongly convex loss func-
tions [10]. Moreover, [11] and [12] examined the static regret
for OCO where information feedbacks of the loss functions
are delayed for multiple time slots.

The analysis of static regret was extended to that of
the more attractive dynamic regret in [7], [13], [14] for
general convex loss functions. Moreover, strong convexity
was shown to improve the dynamic regret bound in [15].
By increasing the number of gradient descent steps, the
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dynamic regret bound was further improved in [16]. Fur-
thermore, [17] studied the impact of inexact gradient on the
dynamic regret bound.

2.2 OCO with Long-Term Constraints

The above OCO works [7], [10]-[17] focused on online prob-
lems with short-term constraints represented by a feasible
set that must be strictly satisfied. However, long-term con-
straints arise in many practical applications such as energy
control in wireless communications, queueing stability in
cloud networks, and power balancing in smart grids. Ex-
isting algorithms for OCO with long-term constraints can
be categorized into saddle-point-typed algorithms [18]-[21]
and virtual-queue-based algorithms [22]-[25].

A saddle-point-typed algorithm was first proposed in
[18] and achieved O(T

1
2 ) static regret and O(T

3
4 ) constraint

violation. A follow-up work [19] provided O(Tmax{μ,1−μ})
static regret and O(T 1−μ

2 ) constraint violation, where μ ∈
(0, 1) is some trade-off parameter. This recovers the per-
formance bounds in [18] as a special case. In the presence
of multi-slot delay, [20] achieved O(T

1
2 ) static regret and

O(T
3
4 ) constraint violation. The saddle-point-typed algo-

rithm was further modified in [21] with dynamic regret
analysis.

As an alternative to saddle-point-typed algorithms, vir-
tual queues can be used to represent the backlog of con-
straint violation, which facilitates performance bounding
through the analysis of a drift-plus-penalty (DPP) like ex-
pression. A virtual-queue-based algorithm was first pro-
posed in [22] and established O(T

1
2 ) static regret and O(1)

constraint violation for OCO with fixed long-term con-
straints. For stochastic constraints that are independent and
identically distributed (i.i.d.), another virtual-queue-based
algorithm in [23] achieved O(T

1
2 ) static regret and O(T

1
2 )

constraint violation simultaneously. In [24], the virtual-
queue-based algorithm was further extended to provide a
dynamic regret bound. The impact of multi-slot feedback
delay on constrained OCO was considered in [25] with both
dynamic and static regret analyses.

However, all of the above works on constrained OCO
[18]-[25] are under the standard per-time-slot update set-
ting. No other known work considers periodic updates for
OCO. Furthermore, these works only performs single-step
gradient descent at each time slot, which does not take
full advantage of the potential computational capacity to
improve the system performance. In this paper, we propose
PQGA, which uses novel periodic queues with possibly
multi-step aggregated gradient descent to update the online
decision. We believe this is the first of its kind.

A part of this work has appeared as a short paper that
focuses only on the application of constrained OCO with
period updates to large-scale multi-antenna systems [1].
In the current manuscript, we have substantially extended
our prior work, generalizing the PQGA algorithm, enabling
multi-step gradient descent, deriving new regret and con-
straint violation bounds over time-varying update periods,
and providing other new derivation, proofs, and simulation
results.

2.3 Other Online Approaches

The general Lyapunov optimization technique has been
applied to develop online schemes for various applications
such as resource allocation [26], mobile computing [27], and
smart grid [28]. Note that PQGA is substantially different
from the conventional DPP algorithm for Lyapunov opti-
mization [29] in both the decision update and the virtual
queue update. Lyapunov optimization makes use of the
system state and queueing information to implicitly learn
and adapt to system variation with unknown statistics.
The standard Lyapunov optimization framework is limited
to per-time-slot updates [29]. It has been extended to ac-
commodate variable renewal frames in [30]. However, this
approach requires the system states to be i.i.d. or Markovian,
while the OCO framework does not have such restriction.
Furthermore, [30] assumes the system state to be fixed
within each renewal frame, while we allow the loss function
to change at each time slot within an update period.

Furthermore, the standard Lyapunov optimization relies
on the current accurate system state for decision updates
[29]. When the system state feedback is delayed, one can
apply Lyapunov optimization by using the historical in-
formation to predict the current system state with some
error [31]. However, this way of dealing with feedback
delay is equivalent to extending Lyapunov optimization to
inaccurate system states [32], [33]. In this case, the optimality
gap would be O(σT ), where σ is some inaccuracy measure.

The multi-armed bandit (MAB) approach [34] and the
partially observed Markov decision process (POMDP) [35]
have also been used in various works for online deci-
sion making [36]-[38]. Our OCO approach is substantially
different from these approaches in a few aspects. First,
the OCO approach does not require any assumption on
the distribution of the system information. In contrast, the
MAB approach generally requires the system distribution
to be fixed, and the POMDP approach generally assumes
the system states evolve as a Markov process. Also, our
OCO approach can deal with both long-term and short-
term constraints, while the MAB and POMDP approaches
generally cannot handle long-term constraints. Finally, OCO
algorithms generally perform gradient descent to minimize
the loss function, since the gradient of loss function is
often easy to compute. In contrast, the MAB and POMDP
approaches minimize the loss function directly, which can
be of high computational complexity if the loss function is
complicated.

3 CONSTRAINED OCO WITH PERIODIC UPDATES

In this section, we first detail the mathematical model of
constrained OCO with periodic updates. Then, we present
the performance metrics, including the static regret, dy-
namic regret, and constraint violation, for performance mea-
surement.

3.1 OCO Problem Formulation

We consider a time-slotted system with time indexed by t.
Let ft(x) : Rn → R be a general loss function at time
slot t ∈ T = {0, . . . , T − 1}, where T is the total time
slots considered for the problem. The loss function ft(x)
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TABLE 1
Summary of Related Works

Reference Type of benchmark Long-term constraint Periodic updates

[7] Static and dynamic No No
[10]-[12] Static No No
[13]-[17] Dynamic No No

[18]-[20], [22], [23] Static Yes No
[21], [24] Dynamic Yes No

[25] Static and dynamic Yes No
PQGA Static and dynamic Yes Yes

Fig. 1. A timeline illustrating OCO with periodic updates.

is convex and may change arbitrarily over time. The exact
expression of the loss function depends on the specific ap-
plications under consideration. Let xt ∈ Rn be the decision
vector at time slot t. The goal of the decision maker is
to provide online decisions xt under the given constraints
on {xt, t ∈ T } and available feedback to minimize the
accumulated loss

∑
t∈T ft(xt).

In standard OCO, it is assumed that the decision maker
can update xt at any t ∈ T , and information feedback is
received at each t. However, as explained in Section 1, these
two assumptions are often not possible to satisfy in many
practical systems. Therefore, in this paper, we consider the
more realistic scenario where the decision maker can only
update decisions once in several time slots, or in other
words, periodically. Furthermore, we assume information
feedback may be delayed and incomplete. Following these,
we consider periodic decision updates for OCO. Specifically,
based on delayed and possibly incomplete information feed-
back, the decision maker selects a decision in each update
period, which remains fixed until the next update, to mini-
mize the accumulated loss while satisfying the constraints.

Suppose the time horizon of T time slots is segmented
into I update periods, as shown in Fig. 1. Each update
period i ∈ I = {0, . . . , I − 1} has a duration of Ti ∈
{1, . . . , Tmax} time slots with Tmax being the maximum dura-
tion of an update period. We have T =

∑
i∈I Ti. The update

period is known at the decision maker. Let ti represent the
beginning time slot of update period i. The decision vector is
updated at the beginning of time slot ti. For ease of exposi-
tion, we slightly abuse the notation and use xi to denote this
decision vector. It remains unchanged within update period
i, i.e., xt = xi for any t ∈ Ti = {ti, ti + 1, . . . , ti + Ti − 1},
i ∈ I . Under this new per-period update setting, the
accumulated loss becomes

∑
i∈I

∑
t∈Ti

ft(xi).
Let ∇ft(∙), t ∈ Ti, be the possible gradient informa-

tion within update period i.1 We assume that there are
Si ∈ {1, . . . , Ti} gradient feedbacks received by the decision
maker within update period i. Let τ s

i , s ∈ Si = {1, . . . , Si},
represent the time slot at which the s-th gradient feedback

1. Gradient feedbacks are common in the OCO literature, since OCO
algorithms are usually based on gradient descent. In practice, gradient
feedbacks can be obtained in various methods depending on the ap-
plication. For our application to massive MIMO systems with multiple
service providers, we use the CSI feedbacks to obtain the gradients.

in update period i, denoted by ∇fτs
i
(∙), is sent. The decision

maker receives ∇fτs
i
(∙) after some delay that can last for

multiple time slots. Any feedback received after the next
decision xi+1 will be dropped. Due to random delays, the
gradient feedbacks may be received out of order.

Let X0 ⊆ Rn be a compact convex set that represents
the short-term constraints for any xt, t ∈ T . Besides X0,
we also consider long-term constraints on {xt}, which arise
in many practical applications as discussed in Section 1.
Let g(x) = [g1(x), . . . , gC(x)]T : Rn → RC be a vector
of C constraint functions. Then, the decision sequence is
subject to long-term constraints given in a vector form∑

t∈T g(xt) � 0. Under periodic decision updates {xi}, the
long-term constraints are equivalent to

∑
i∈I Tig(xi) � 0.

Thus, the goal of constrained OCO with periodic up-
dates is to select a sequence of decisions {xi}, to minimize
the accumulated loss functions while meeting both short-
term and long-term constraints. This leads to the following
optimization problem:

P1 : min
{xi}

∑

i∈I

∑

t∈Ti

ft(xi)

s.t.
∑

i∈I

Tig(xi) � 0, (1)

xi ∈ X0, ∀i ∈ I. (2)

Different from existing works on OCO with only short-
term constraints [7], [10]-[17], the additional long-term con-
straints in (1) of P1 lead to a more complicated online opti-
mization problem. The periodic decision updates add more
complication to the problem as the underlying system varies
over time while the online decision is fixed for a period.
Note that in the special case when update period Ti = 1
for any i ∈ I , P1 reduces to the standard constrained OCO
problem with per-time-slot updates as in [18], [19], [22].

3.2 Performance Metric

Due to the lack of in-time feedback of the current loss
functions under the OCO setting, an optimal solution to P1
cannot be obtained.2 We consider the performance measure-
ments typically adopted in the literature for developing the
solution for constrained OCO, namely static and dynamic
regrets, with a slight modification tailored to periodic up-
dates.

We aim at designing a decision sequence {xi} over up-
date periods, such that the accumulated loss in the objective
of P1 is competitive with some benchmark under the same

2. In fact, even for the simplest original OCO problem [7] (i.e., under
the per-time-slot update setting without long-term constraints (1)), an
optimal solution cannot be found [10].
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TABLE 2
Summary of Key Notations

Notation Description

T Set of time slots
I Set of update periods
Ti Set of time slots in update period i
Si Set of feedbacks in update period i
T Total number of time slots
I Total number of update periods
J Total number of gradient descent steps
Ti Duration of update period i
Tmax Maximum duration of an update period.
ti Beginning time slot of update period i
Si Number of feedbacks in update period i
τs

i Time slot of the s-th feedback in update period i
ft(x) Loss function at time slot t
∇fτs

i
(∙) The s-th gradient feedback in update period

X0 Set that represents the short-term constraints
g(x) Vector of C long-term constraint functions
gc(x) The c-th long-term constraint function
xi Decision vector in update period i

x̃j
i Decision after j-step gradient descent in period i

x? Static benchmark
{x◦

i } Dynamic benchmark
{x?

i } Dynamic benchmark subject to X0 only
REs(T ) Static regret over T time slots
REd(T ) Dynamic regret over T time slots
VOc(T ) Violation of the c-th constraint over T time slots
Qi Virtual queue vector in update period i
Qc

i The c-th virtual queue in update period i
Li Quadratic Lyapunov function in update period i
Δi Lyapunov drift in update period i
α, η, γ PQGA algorithm parameters
% Strongly convex constant of ft(x)
L Smoothness constant of ft(x)
D Bound on the gradient ∇ft(x)
β Lipschitz continuous constant of g(x)
G Bound on g(x)
ε Bound on the interior point of g(x)
R Bound on the radius of X0

ρ Gradient descent contraction constant
Πx◦ Accumulated variation of {x◦

i }
ΠT Accumulated variation of {Ti}
Π∇ Accumulate squared norm of gradient
Πx Accumulated distance between {x◦

i } and {x?
i }

ν Time variation measure of Πx◦

δ Time variation measure of ΠT

set of gradient feedbacks. Thus, for the static regret, we
consider the following static offline benchmark, which is
generalized from the per-time-slot one used in [18]-[20], [22],
[23] to accommodate periodic updates:

x? , arg min
x∈X

∑

i∈I

Ti

Si

∑

s∈Si

fτs
i
(x) (3)

where X , {x ∈ X0 : g(x) � 0}. Note that x? is computed
offline assuming all the loss functions fτs

i
(x), for all s ∈ Si

and i ∈ I , are known in advance. Then, the static regret is
the performance gap between {xi} and x?:

REs(T ) ,
∑

i∈I

Ti

Si

∑

s∈Si

(
fτs

i
(xi) − fτs

i
(x?)

)
. (4)

However, the static regret only provides a coarse perfor-
mance measure when the underlying system is time-varying

and may not be an attractive metric to use. A more useful
performance benchmark is the dynamic benchmark {x◦

i },
given by

x◦
i , arg min

x∈X

Ti

Si

∑

s∈Si

fτs
i
(x). (5)

For the case of per-time-slot updates, the dynamic bench-
mark has been originally proposed for OCO with short-
term constraints [7] and has been further modified in [21],
[24], [25] to incorporate long-term constraints. Here, we
generalize it to account for periodic updates. In (5), x◦

i

is computed using all the Si loss functions fτs
i
(x) in the

current update period i. Then, the dynamic regret is

REd(T ) ,
∑

i∈I

Ti

Si

∑

s∈Si

(
fτs

i
(xi) − fτs

i
(x◦

i )
)
. (6)

The gap between the static and dynamic regrets can be
as large as O(T ) [39]. In this paper, for comprehensive
performance analysis, we provide upper bounds for both
REs(T ) and REd(T ).

Note that with incomplete gradient feedbacks, i.e.,∑
i∈I Si = S < T , our regret definitions in (4) and (6) fully

utilize the feedback information. Our accumulated loss in
each period i is the average loss over those time slots when
the gradient feedbacks are provided, i.e., 1

Si

∑
s∈Si

fτs
i
(xi),

multiplied by the duration Ti of the update period i, for
i ∈ I . If the environment is mean stationary, i.e., E{ft(x)} =
E{ft′(x)} for any t, t′ ∈ T , then in the expectation sense, the
accumulated loss in our regret definitions is the same as that
in the objective of P1, i.e.,

E






∑

i∈I

Ti

Si

∑

s∈Si

(
fτs

i
(xi)

)




= E






∑

i∈I

∑

t∈Ti

(ft(xi))





.

In general, suppose there exists a constant d > 0 such
that |ft(x) − ft′(x)| ≤ d, for any x ∈ X0 and t, t′ ∈
Ti, i ∈ I . Then, the gap between the accumulated
loss in the regret definition and that in the objective is∑

i∈I
Ti

Si

∑
s∈Si

(fτs
i
(xi))−

∑
i∈I

∑
t∈Ti

(ft(xi)) = O(d(T −
S)). This measurement gap can be small if the system does
not fluctuate too much over time. Furthermore, the gap
approaches zero as the amount of feedback increases to
become complete, i.e., S → T .

Besides the accumulated loss, we also need to measure
the accumulated violation of each long-term constraint c ∈
C = {1, . . . , C}. Define the constraint violation as

VOc(T ) ,
∑

i∈I

Tig
c(xi), ∀c ∈ C. (7)

We point out that the constraint violation defined in [18]-
[25] is under the standard per-time-slot update setting. In
contrast, the constraint violation defined in (7) is in a more
general form that can accommodate updating periods with
varying durations.

4 THE PERIODIC QUEUEING AND GRADIENT AG-
GREGATION (PQGA) ALGORITHM

We now present an efficient algorithm, PQGA, to solve
the constrained OCO problem P1. The algorithm uses a
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periodic virtual queue for the online decisions to satisfy
the long-term constraints. It updates the online decision in
each update period by solving a per-period optimization
problem that is convex and hence practically solvable. We
then show that, despite being a simple algorithm, PQGA
provides provable performance guarantees in terms of dy-
namic regret, static regret, and constraint violation bounds.

4.1 PQGA Algorithm Description

In PQGA, we introduce a periodic virtual queue vector
Qi = [Q1

i , . . . , Q
C
i ]T in each update period i ∈ I , with the

following updating rule:

Qc
i+1 = max{−γTig

c(xi), Q
c
i + γTig

c(xi)}, ∀c ∈ C (8)

where γ > 0 is an algorithm parameter. The role of Qi is
similar to the Lagrange multiplier vector for the long-term
constraints in (1), and the value of Qi reflects the accumu-
lated violation of the long-term constraints. In (8), Tig

c(xi)
is the accumulated constraint violation in update period i,
which is then scaled by an appropriate factor γ. This way of
forming a virtual queue is unique to our proposed approach.
We point out here that Qc

i in (8) is different from the virtual
queues used in the standard Lyapunov optimization [29], as
the maximization in (8) is taken over the negative constraint
violation −γTig

c(xi) in stead of 0 in the standard form. The
periodic virtual queue is also different from existing works
on constrained OCO [22]-[25] that update the virtual queue
at each slot.

In the basic form of PQGA, instead of solving P1 directly,
we solve a per-period problem at the beginning of each
update period i + 1 for xi+1 with the short-term constraints
only. It is given by

P2 : min
x∈X0

Ti

Si

∑

s∈Si

[∇fτs
i
(xi)]

T (x − xi) + α‖x − xi‖
2

+ [Qi+1 + γTig(xi)]
T [γTi+1g(x)]

where α, γ > 0 are algorithm parameters. In the first term of
the above objective function, the gradient direction is aggre-
gated based on all the gradient feedbacks {∇fτs

i
(∙), s ∈ Si}

collected in the previous update period i. The second term
α‖x − xi‖2 is a regularization term, which controls how
much the new decision xi+1 can change from the previous
decision xi. The last term is an inner-product between the
predicted queue length in the next update period based on
xi and the weighted accumulated constraint violation in
update period i + 1. It represents the penalty of constraint
violation in g(x). As such, we convert the long-term con-
straints in (1) into a penalty term on g(x) as one part of the
objective function in P2.

The basic form of PQGA uses a single step of gradient
descent as shown in P2. In addition to this basic form, we
can further modify PQGA to enable multi-step gradient
descent. Multi-step gradient descent has previously been
shown to reduce the growth rate of the dynamic regret for
OCO with short-term constraints [16]. In this work, we will
verify that it also improves the performance of PQGA under
both short-term and long-term constraints. Specifically, at
the beginning of each update period i+1, after updating the
periodic virtual queue in (8), we initialize an intermediate

decision vector x̃0
i = xi. We then perform J -step aggregated

gradient descent to generate x̃J
i , for J ≥ 0. If J = 0, we

readily have x̃J
i = xi from initialization. Otherwise, for

each gradient descent step j ∈ J = {1, . . . , J}, we solve
the following optimization problem for x̃j

i :

min
x∈X0

Ti

Si

∑

s∈Si

[∇fτs
i
(x̃j−1

i )]T (x − x̃j−1
i ) + α‖x − x̃j−1

i ‖2.

The above problem is similar to the standard projected
gradient descent problem. Therefore, its solution is readily
available:

x̃j
i = PX0





x̃j−1

i −
1
2α



Ti

Si

∑

s∈Si

∇fτs
i
(x̃j−1

i )









(9)

where PX0{x} , arg miny∈X0{‖y − x‖2} is the projection
operator onto the convex feasible set X0, and α can be
viewed as the step-size parameter.

With both xi and x̃J
i , we modify P2 and have the

following per-period optimization problem for xi+1:

P2′ : min
x∈X0

Ti

Si

∑

s∈Si

[∇fτs
i
(x̃J

i )]T (x − x̃J
i ) + α‖x − x̃J

i ‖
2

+ η‖x − xi‖
2 + [Qi+1 + γTig(xi)]

T [γTi+1g(x)]

where α, η, γ > 0. Note that there are two regularization
terms in P2′ for xi and x̃J

i , respectively. The intuition behind
the double regularization is that both xi and x̃J

i provide
useful information in minimizing the accumulate loss and
constraint violation. Therefore, it is beneficial for the new
decision xi+1 to be not too far away from either of xi or x̃J

i .
In Section 4.2, this double regularization will be analytically
shown to provide PQGA a substantial performance advan-
tage over the existing methods (or algorithms) in terms of
performance bounds.

The PQGA algorithm is summarized in Algorithm 1.
During each update period i ∈ I , the decision maker
collects the delayed and possibly incomplete gradient infor-
mation ∇fτs

i
(∙), s ∈ Si. At the beginning of the next update

period i + 1, it first computes the accumulated constraint
violation caused by its previous decision xi and updates the
periodic virtual queue Qi+1 in (8). It then learns the gradient
descent direction from the collected gradient feedbacks over
period i and performs J -step aggregated gradient descent
to generate x̃J . Finally, based on gradient descent direction,
updated virtual queue, and both x̃J

i and xi, the per-period
optimization problem P2′ is solved to compute the deci-
sion xi+1.3 Note that PQGA has four algorithm parameters
α, η, γ, and J . We leave the discussion on the choice of their
values to Section 4.3, where after deriving the performance
bounds, we explain the impact of these parameters on these
bounds.

Algorithm Complexity Discussion

The computational complexity of the PQGA algorithm
mainly lies in the computational complexity in solving P2′

(or P2). It depends on the specific form of loss function
ft(x), constraint functions g(x), and feasible set X0. Note

3. When J = 0, the double regularization in P2′ on x̃J and xi can be
combined into a single regularization on xi, and P2′ is reduced to P2.
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Algorithm 1 The PQGA Algorithm

1: Initialization: α, η, γ > 0, J ≥ 0, x0 ∈ X0, and Q0 = 0.
2: At the beginning of each update period i + 1, do:
3: Update the periodic virtual queue Qi+1 via (8).
4: Initialize the intermediate decision vector x̃0

i = xi.
5: for j = 1 to J
6: Update x̃j via (9).
7: end for
8: Update the periodic decision xi+1 by solving P2′

using Qi+1, xi, and x̃J .

that the objective functions in P2′ and P2 are strongly
convex. Thus, in general, they can be solved efficiently
using existing convex optimization solvers. In Section 5, we
consider the application of PQGA to a massive MIMO sys-
tem visualization problem with multiple service providers,
where we will provide detailed computational complexity
analysis of PQGA in this application. In particular, we
show that in this case, P2′ has a closed-form solution for
the decision at each period update, and thus PQGA has
negligible computational complexity.

We also note that, if the constraint function g(x) is
separable w.r.t. x, P2 and P2′ can be decomposed into inde-
pendent subproblems of smaller size to solve. In this case,
PQGA can be implemented in a distributive fashion with
potentially significantly lower computational complexity.

4.2 Regret and Constraint Violation Bounds for PQGA

Existing analysis techniques for the standard per-time-slot
OCO setting with single-step gradient descent [18]-[25] are
inadequate for studying the performance of PQGA. In this
section, we present new techniques to derive the regret and
constraint violation bounds for PQGA. They are developed
to account for the periodic virtual queues and multi-step
aggregated gradient descent in the analysis. Although a
small part of our derivations uses techniques from Lya-
punov drift analysis, PQGA is structurally different from
Lyapunov optimization as explained in Section 2.

We first make the following assumptions that are com-
mon in the literature of OCO.

Assumption 1. For any t, the loss function ft(x) satisfies
the following:

1.1) ft(x) is 2%-strongly convex over X0: ∃ % > 0, s.t., for
any x,y ∈ X0 and t

ft(y) ≥ ft(x) + [∇ft(x)]T (y − x) + %‖y − x‖2. (10)

1.2) ft(x) is 2L-smooth over X0: ∃ L > 0, s.t., for any
x,y ∈ X0 and t

ft(y) ≤ ft(x) + [∇ft(x)]T (y − x) + L‖y − x‖2. (11)

Assumption 2. The gradient ∇ft(x) is bounded: ∃ D > 0,
s.t.,

‖∇ft(x)‖ ≤ D, ∀x ∈ X0, ∀t ∈ T . (12)

Assumption 3. The long-term constraint functions satisfy
the following:

3.1) g(x) is Lipschitz continuous on X0: ∃ β > 0, s.t.,

‖g(x) − g(y)‖ ≤ β‖x − y‖, ∀x,y ∈ X0. (13)

3.2) g(x) is bounded: ∃ G > 0, s.t.,

‖g(x)‖ ≤ G, ∀x ∈ X0. (14)

3.3) Existence of an interior point: ∃ ε > 0 and x′ ∈ X0,
s.t.,

g(x′) � −ε1. (15)

Assumption 4. The radius of X0 is bounded: ∃ R > 0, s.t.,

‖x − y‖ ≤ R, ∀x,y ∈ X0. (16)

Note that the assumption of the loss function ft(x) being
strongly convex in Assumption 1 holds in many practical
problems. Strongly convex loss functions arise in many ma-
chine learning and signal processing applications, such as
Lasso regression, support vector machine, softmax classifier,
and robust subspace tracking. Furthermore, for applications
with general convex loss functions, it is common to add a
simple regularization term such as μ‖x‖2, so that the overall
optimization objective becomes strongly convex [17].

4.2.1 Bounding the Dynamic Regret

A main goal of this paper is to analyze the impact of variable
update periods and multi-step aggregated gradient descent
on the dynamic regret for constrained OCO, which has not
been studied in the existing literature. To this end, we define
the accumulated variation of the dynamic benchmark {x◦

i }
(referred to as the path length in [7]) as

Πx◦ ,
∑

i∈I

‖x◦
i − x◦

i+1‖. (17)

Also, we define the accumulated variation of the variable
update periods {Ti} as

ΠT ,
∑

i∈I

(Ti − Ti+1)
2. (18)

We first provide bounds on the periodic virtual queues
{Qi} produced by PQGA in the following lemma.

Lemma 1. The following statements hold for any i ∈ I :

Qi � 0, (19)

Qi+1 + γTig(xi) � 0, (20)

‖Qi+1‖ ≥ ‖γTig(xi)‖, (21)

‖Qi+1‖ ≤ ‖Qi‖ + ‖γTig(xi)‖. (22)

Proof: The periodic virtual queue vector is initialized as
Q0 = 0. For any c ∈ C and i ∈ I , by induction, we first
assume Qc

i ≥ 0. From the periodic virtual queue dynamics
in (8), if γT ig

c(xi) ≥ 0, then Qc
i+1 ≥ Qc

i + γT ig
c(xi) ≥ 0;

otherwise, we have Qc
i+1 ≥ −γTig

c(xi) ≥ 0. Combining the
above two cases, we have (19).

From (8), for any c ∈ C and i ∈ I , we have Qc
t+1 ≥

−γTig
c(xi), which yields (20).

For any c ∈ C and i ∈ I , from (8) and Qc
i ≥ 0 in (19), if

γT ig
c(xi) ≥ 0, then Qc

i+1 ≥ Qc
i + γT ig

c(xi) ≥ γT ig
c(xi);

otherwise, we have Qc
i+1 ≥ −γTig

c(xi). Therefore, we have
Qc

i+1 ≥ |γTig
c(xi)|. Squaring both sides and summing over

c ∈ C yields (21).
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From (8), for any c ∈ C and i ∈ I , we have Qc
i+1 ≤ Qc

i +
|γTig

c(xi)|. Since Qc
i ≥ 0 in (19), by the triangle inequality,

we have ‖Qi+1‖ ≤
√∑

c∈C(Qc
i + |γTigc(xi)|)2 ≤ ‖Qi‖ +

‖γTig(xi)‖, which yields (22). �

Define Li ,
1
2‖Qi‖2 as the quadratic Lyapunov function

and Δi , Li+1 − Li as the Lyapunov drift for each update
period i ∈ I . Based on Lemma 1, we provide an upper
bound on the Lyapunov drift Δi in the following lemma.

Lemma 2. The Lyapunov drift is upper bounded for any
i ∈ I as follows:

Δi ≤ QT
i [γTig(xi)] + ‖γTig(xi)‖

2. (23)

Proof: For any c ∈ C and i ∈ I , we first prove

1
2
(Qc

i+1)
2 −

1
2
(Qc

i )
2 ≤ Qc

i [γTig
c(xi)] + [γTig

c(xi)]
2 (24)

by considering the following two cases.
1) Qc

i +γT ig
c(xi) ≥ −γTig

c(xi): From the virtual queue
dynamics in (8), we have Qc

i+1 = Qc
i + γT ig

c(xi). It then
follows that

1
2
(Qc

i+1)
2 =

1
2
[Qc

i + γT ig
c(xi)]

2

≤
1
2
(Qc

i )
2 + Qc

i [γTig
c(xi)] + [γTig

c(xi)]
2.

2) Qc
i + γT ig

c(xi) < −γTig
c(xi): We have Qc

i+1 =
−γTig

c(xi) from (8). It then follows that

1
2
(Qc

i+1)
2 ≤

1
2
[γTig

c(xi)]
2 +

1
2
[Qc

i + γTig
c(xi)]

2

=
1
2
(Qc

i )
2 + Qc

i [γTig
c(xi)] + [γTig

c(xi)]
2.

Combining the above two cases, we have (24). Summing
both sides of (24) over c ∈ C, we have (23). �

Based on Lemmas 1-2, we provide a dynamic regret
bound for PQGA in the following theorem.

Theorem 1. For J = 0, if α > β2γ2T 2
max and γ > 0, the

dynamic regret of PQGA is upper bounded by

REd(T ) ≤
D2Tmax

4(α − β2γ2T 2
max)

T + α(R2 + 2RΠx◦)

+ γ2G2(T 2
max + ΠT ). (25)

Proof: We first state the following property of a 2%-
strongly convex function, which is shown in Lemma 2.8
in [3]:

Lemma 3. ([3, Lemma 2.8]) Let Z ⊆ Rn be a nonempty
convex set. Let h(z) : Rn → R be a 2%-strongly-convex
function over Z w.r.t. ‖∙‖. Let w = arg minz∈Z{h(z)}. Then,
for any u ∈ Z , we have h(w) ≤ h(u) − %‖u − w‖2.

For J = 0, PQGA solves P2 for xi+1. The objective
function of P2 is 2α-strongly convex over X0 w.r.t. ‖ ∙ ‖ due
to the regularization term α‖x − xi‖2. Recall that x◦

i is the
dynamic benchmark. Since xi+1 minimizes P2 over X0 for
any i ∈ I , we have

Ti

Si

∑

s∈Si

[∇fτs
i
(xi)]

T (xi+1 − xi) + α‖xi+1 − xi‖
2

+ [Qi+1 + γTig(xi)]
T [γTi+1g(xi+1)]

(a)

≤
Ti

Si

∑

s∈Si

[∇fτs
i
(xi)]

T (x◦
i − xi) + α‖x◦

i − xi‖
2

+ [Qi+1 + γTig(xi)]
T [γTi+1g(x◦

i )] − α‖x◦
i − xi+1‖

2

(b)

≤
Ti

Si

∑

s∈Si

[∇fτs
i
(xi)]

T (x◦
i − xi)

+ α(‖x◦
i − xi‖

2 − ‖x◦
i − xi+1‖

2) (26)
(c)

≤
Ti

Si

∑

s∈Si

[∇fτs
i
(xi)]

T (x◦
i − xi) + α(Ψi + 2Rψi) (27)

where (a) follows from Lemma 3, (b) is because of Qi+1 +
γTig(xi) � 0 in (20) and g(x◦

i ) � 0 for x◦
i ∈ X defined in

(5), which yields [Qi+1 + γTig(xi)]T [γTi+1g(x◦
i )] � 0 for

any i ∈ I , and (c) follows from ‖a + b‖2 ≥ ‖a‖2 + ‖b‖2 −
2‖a‖‖b‖ and (16) in Assumption 4, which lead to

‖x◦
i − xi‖

2 − ‖x◦
i − xi+1‖

2

≤ ‖x◦
i − xi‖

2 − ‖x◦
i+1 − xi+1‖

2 − ‖x◦
i − x◦

i+1‖
2

+ 2‖x◦
i+1 − xi+1‖‖x

◦
i − x◦

i+1‖

≤ Ψi − ‖x◦
i − x◦

i+1‖
2 + 2Rψi (28)

where Ψi , ‖x◦
i − xi‖2 − ‖x◦

i+1 − xi+1‖2 and ψi , ‖x◦
i −

x◦
i+1‖.

Add Ti

Si

∑
s∈Si

fτs
i
(xi) to both sides of (27). Then, from

the convexity of fτs
i
(x) for any s ∈ Si, we note that

fτs
i
(xi) + [∇fτs

i
(xi)]T (x◦

i − xi) ≤ fτs
i
(x◦

i ). Following this
and rearranging terms, we have

Ti

Si

∑

s∈Si

(
fτs

i
(xi) − fτs

i
(x◦

i )
)

≤ −
Ti

Si

∑

s∈Si

[∇fτs
i
(xi)]

T (xi+1 − xi) − α‖xi+1 − xi‖
2

−[Qi+1+γTig(xi)]
T [γTi+1g(xi+1)]+α(Ψi+2Rψi). (29)

We now bound the right-hand side (RHS) of (29). Note
that

− [Qi+1 + γTig(xi)]
T [γgTi+1(xi+1)]

(a)

≤ −Δi+1 + ‖γTi+1g(xi+1)‖
2− [γTig(xi)]

T [γTi+1g(xi+1)]

(b)
= −Δi+1 +

γ2

2
(‖Ti+1g(xi+1)‖

2 − ‖Tig(xi)‖
2

︸ ︷︷ ︸
,Φi

)

+
γ2

2
‖Tig(xi) − Ti+1g(xi+1)‖

2

(c)

≤ −Δi+1 +
γ2

2
Φi + β2γ2T 2

i ‖xi+1 − xi‖
2

+ γ2G2(Ti − Ti+1)
2 (30)

where (a) is because of (23) in Lemma 2, which leads to
−QT

i+1[γTi+1g(xi+1)] ≤ −Δi+1 + ‖γTi+1g(xi+1)‖2, (b) is
due to aT b = 1

2 (‖a‖2 + ‖b‖2 − ‖a − b‖2), and (c) follows
from 1

2‖a+b‖2 ≤ ‖a‖2 +‖b‖2 and Assumption 3 that g(x)
is Lipschitz continuous in (13) and bounded in (14) such that

1
2
‖Tig(xi) − Ti+1g(xi+1)‖

2

≤ ‖Tig(xi) − Tig(xi+1)‖
2 + ‖Tig(xi+1) − Ti+1g(xi+1)‖

2

≤ β2T 2
i ‖xi − xi+1‖

2 + G2(Ti − Ti+1)
2.
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Applying (30) to the third term at the RHS of (29) and
rearranging the terms on both sides of (29), we have

Ti

Si

∑

s∈Si

(
fτs

i
(xi) − fτs

i
(x◦

i )
)

(a)

≤
D2Tmax

4(α − β2γ2T 2
max)

Ti + α(Ψi + 2Rψi) − Δi+1 +
γ2

2
Φi

+ γ2G2(Ti − Ti+1)
2 (31)

where (a) follows from Assumption 2 that ∇ft(x) is
bounded in (12) and therefore

−
Ti

Si

∑

s∈Si

[∇fτs
i
(xi)]

T(xi+1−xi)−(α−β2γ2T 2
i )‖xi+1−xi‖

2

= −
Ti

Si

∑

s∈Si






∥
∥
∥
∥
∥
∥

∇fτs
i
(xi)

2
√

α−β2γ2T 2
i

Ti

+

√
α − β2γ2T 2

i

Ti
(xi+1 − xi)

∥
∥
∥
∥
∥
∥

2

−
Ti

∥
∥∇fτs

i
(xi)

∥
∥2

4(α−β2γ2Ti)

)

≤
D2Tmax

4(α − β2γ2T 2
max)

Ti.

Summing both sides of (31) over i ∈ I , we have

REd(T ) =
∑

i∈I

Ti

Si

∑

s∈Si

(
fτs

i
(xi) − fτs

i
(x◦

i )
)

(a)

≤
D2Tmax

4(α−β2γ2T 2
max)

T +α

(

‖x◦
0−x0‖

2+2R
∑

i∈I

‖x◦
i −x◦

i+1‖

)

+ L1 +
γ2

2
‖TIg(xI)‖

2 + γ2G2
∑

i∈I

(Ti − Ti+1)
2

(b)

≤
D2Tmax

4(α−β2γ2T 2
max)

T + α
(
R2 + 2RΠx◦

)

+ γ2G2(T 2
max + ΠT ) (32)

where (a) follows by noting that Ψi, Δi+1, and Φi are
telescoping terms, and their respective summations over
i ∈ I are upper bounded by ‖x◦

0−x0‖2, L1, and ‖TIg(xI)‖2;
(b) follows from (16) in Assumption 4, L1 = 1

2‖Q1‖2 =
1
2‖γg(x0)T0‖2 ≤ 1

2γ2G2T 2
max, and ‖TIg(xI)‖2 ≤ G2T 2

max.�

The dynamic regret bound (25) in Theorem 1 is for
PQGA under single-step gradient descent. Next, we provide
another dynamic regret bound for PQGA with multi-step
gradient descent for J being sufficiently large.

Theorem 2. For J > log
1
8
ρ with ρ = α−%

α+% < 1, if α ≥ TmaxL,
η ≥ max{α, β2γ2T 2

max}, and γ > 0, then for any ξ > 0, the
dynamic regret of PQGA is upper bounded by

REd(T ) ≤
1
4ξ

Π∇+
L + ξ

1 − 8ρJ

[

(5 + 2Tmax)Δx + R2 +
D2

2α2
T

+
2η

α

(
R2 + 2RΠx◦

)
+

2γ2

α
G2(T 2

max + ΠT )
]

(33)

where Π∇ ,
∑

i∈I ‖Ti

Si

∑
s∈Si

∇fτs
i
(x◦

i )‖
2 is the accumu-

lated squared norm of gradient and Δx ,
∑

i∈I ‖x◦
i −

x?
i ‖

2 is the accumulated squared distance between two
dynamic benchmarks {x◦

i } and {x?
i }, in which x?

i ,
arg minx∈X0

Ti

Si

∑
s∈Si

fτs
i
(x) is the dynamic benchmark un-

der the short-term constraints.

Proof: From the property of smooth functions, we have

REd(T ) =
∑

i∈I

Ti

Si

∑

s∈Si

(
fτs

i
(xi) − fτs

i
(x◦

i )
)

(a)

≤
∑

i∈I



Ti

Si

∑

s∈Si

[∇fτs
i
(x◦

i )]
T (xi − x◦

i ) + L‖xi − x◦
i ‖

2





(b)

≤
1
4ξ

Π∇ + (L + ξ)
∑

i∈I

‖xi − x◦
i ‖

2 (34)

where (a) follows from (11) in Assumption 1, and (b) is
because of aT b ≤ 1

4ξ‖a‖
2 + ξ‖b‖2 for any ξ > 0.

We now bound the term
∑

i∈I ‖xi − x◦
i ‖

2 at the RHS of
(34). By the inequality ‖a + b‖2 ≤ 2(‖a‖2 + ‖b‖2) and (16)
in Assumption 4, we have

∑

i∈I

‖xi − x◦
i ‖

2 = ‖x0 − x◦
0‖

2 +
∑

i∈I

‖xi+1 − x◦
i+1‖

2

≤ R2 + 2
∑

i∈I

(
‖xi+1 − x◦

i ‖
2 + ‖x◦

i − x◦
i+1‖

2
)
. (35)

To bound
∑

i∈I ‖xi+1 − x◦
i ‖

2 at the RHS of (35), recall
that PQGA solves P2′ for xi+1 for J > 0. The objective func-
tion of P2′ is 2(α+η)-strongly convex over X0 w.r.t. ‖∙‖ due
to the double regularization terms. Since xi+1 minimizes P2′

over X0 for any i ∈ I , similar to the derivations in (26), we
can show that

Ti

Si

∑

s∈Si

[∇fτs
i
(x̃J

i )]T (xi+1 − x̃J
i ) + α‖xi+1 − x̃J

i ‖
2

+ [Qi+1 + γTig(xi)]
T [γTi+1g(xi+1)] + η‖xt+1 − xi‖

2

≤
Ti

Si

∑

s∈Si

[∇fτs
i
(x̃J

i )]T (x◦
i − x̃J

i )

+ α(‖x◦
i − x̃J

i ‖
2 − ‖x◦

i − xi+1‖
2)

+ η(‖x◦
i − xi‖

2 − ‖x◦
i − xi+1‖

2). (36)

From (11), since fτs
i
(x) is 2L-smooth over X0, we have

fτs
i
(xi+1) ≤ fτs

i
(x̃J

i ) + [∇fτs
i
(x̃J

i )]T (xi+1 − x̃J
i )

+ L‖xi+1 − x̃J
i ‖

2, ∀s ∈ Si. (37)

Since fτs
i
(x) is convex over X0, we have

fτs
i
(x◦

i ) ≥ fτs
i
(x̃J

i ) + [∇fτs
i
(x̃J

i )]T (x◦
i − x̃J

i ), ∀s ∈ Si. (38)

Applying (37) and (38) to the left-hand side (LHS) and RHS
of (36), respectively, and rearranging terms on both sides,
we have

α‖x◦
i − xi+1‖

2

≤
Ti

Si

∑

s∈Si

(
fτs

i
(x◦

i ) − fτs
i
(xi+1)

)
− (α−TiL)‖xi+1 − x̃J

i ‖
2

− [Qi+1 + γTig(xi)]
T [γTi+1g(xi+1)] − η‖xi+1 − xi‖

2

+ η(‖x◦
i −xi‖

2−‖x◦
i −xi+1‖

2) + α‖x◦
i − x̃J

i ‖
2. (39)

We now bound the RHS of (39). For the first term on the
RHS of (39), we have

Ti

Si

∑

s∈Si

(
fτs

i
(x◦

i )−fτs
i
(xi+1)

) (a)

≤
Ti

Si

∑

s∈Si

(
fτs

i
(x◦

i )−fτs
i
(x?

i )
)
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(b)

≤
Ti

Si

∑

s∈Si

[∇fτs
i
(x◦

i )]
T(x◦

i −x?
i )

(c)

≤
D2

4α
Ti+αTi‖x

◦
i −x?

i ‖
2 (40)

where (a) follows from the definition of x?
i below (33)

that Ti

Si

∑
s∈Si

fτs
i
(x?

i ) ≤ Ti

Si

∑
s∈Si

fτs
i
(xi+1), (b) is be-

cause of the convexity of fτs
i
(x), and (c) follows from

aT b ≤ 1
4α‖a‖

2 + α‖b‖2 for any α > 0 and ∇fτs
i
(x) being

bounded in (12) in Assumption 2. The bounds for the third
and fifth terms at the RHS of (39) are given in (30) and (28),
in the proof of Theorem 1, respectively.

To bound the last term at the RHS of (39), we first note
that the aggregated loss function Ti

Si

∑
s∈Si

fτs
i
(x) is Ti%-

strongly convex and TiL-smooth. We provide the following
property of a 2%-strongly convex and 2L-smooth function,
which is shown in Lemma 1 in [16]:

Lemma 4. ([16, Lemma 1]) Let Z ⊆ Rn be a nonempty
convex set. Let h(z) : Rn → R be a 2%-strongly-
convex and 2L-smooth function over Z w.r.t. ‖ ∙ ‖. Let
v = arg minz∈Z{[∇h(u)]T (z − u) + υ‖z − u‖2} and
w = arg minz∈Z{h(z)}. Then, for any υ ≥ L, we have
‖w − v‖2 ≤ υ−%

υ+%‖w − u‖2.

Applying Lemma 4 to the update of x̃j
i in (9), for any

α ≥ TiL, we have

‖x?
i − x̃j

i‖
2 ≤

α − Ti%

α + Ti%
‖x?

i − x̃j−1
i ‖2, ∀j ∈ J .

Note that the constant for strong convexity % is smaller than
the constant for gradient Lipschitz continuity, i.e., % ≤ L
[15]. Therefore, we have α−Ti%

α+Ti%
≥ 0 in the above J in-

equalities. Combining the above J inequalities and noting
that x̃0

i = xi, and 1 ≤ Ti ≤ Tmax. Combining the above J
inequalities and choosing α ≥ TmaxL such that α−Ti%

α+Ti%
≤ ρ,

we have

‖x?
i − x̃j

i‖
2 ≤ ρJ‖x?

i − xi‖
2 (41)

From (41) and ‖a + b‖2 ≤ 2(‖a‖2 + ‖b‖2), we have

‖x◦
i − x̃J

i ‖
2 ≤ 2‖x?

i − x̃J
i ‖

2 + 2‖x◦
i − x?

i ‖
2

≤ 2ρJ‖x?
i − xi‖

2 + 2‖x◦
i − x?

i ‖
2

≤ 4ρJ‖x◦
i − xi‖

2 + (4ρJ + 2)‖x◦
i − x?

i ‖. (42)

Applying (28), (30), (40), (42) to the respective terms at
the RHS of (39), we have

α‖x◦
i − xi+1‖

2

≤ −(α−TiL)‖xi+1 − x̃J
i ‖

2 − (η − β2γ2T 2
i )‖xi+1 − xi‖

2

+ 4αρJ‖x◦
i − xi‖

2 + α(4ρJ + 2 + Ti)‖x
◦
i − x?

i ‖
2

+
D2

4α
Ti − Δi+1 +

γ2

2
Φi + γ2G2(Ti − Ti+1)

2

+ η(Ψi − ‖x◦
i − x◦

i+1‖
2 + 2Rψi). (43)

Note that we set the step-size parameters as α ≥ TmaxL
and η ≥ β2γ2T 2

max. Thus, the first two terms at the RHS of
(43) are non-positive. Dividing both sides of (43) by α and
summing it over i ∈ I , we have
∑

i∈I

‖x◦
i − xi+1‖

2

(a)

≤ 4ρJ
∑

i∈I

‖x◦
i − xi‖

2 + (4ρJ + 2 + Tmax)
∑

i∈I

‖x◦
i − x?

i ‖
2

+
D2

4α2
T −

η

α

∑

i∈I

‖x◦
i − x◦

i+1‖
2 +

η

α

(
R2 + 2RΠx◦

)

+
γ2

α
G2(T 2

max + ΠT ) (44)

where (a) follows from steps (a) and (b) of the derivations
in (32).

Applying (44) to the third term at the RHS of (35) and
rearranging terms, we have

(1 − 8ρJ)
∑

i∈I

‖xi − x◦
i ‖

2

≤ 2(4ρJ + 2 + Tmax)
∑

i∈I

‖x◦
i − x?

i ‖
2 + R2 +

D2

2α2
T

− 2
( η

α
− 1
)∑

i∈I

‖x◦
i − x◦

i+1‖
2 +

2η

α

(
R2 + 2RΠx◦

)

+
2γ2

α
G2(T 2

max + ΠT ). (45)

For 8ρJ < 1 and η ≥ α, we divide both sides of (45) by
1 − 8ρJ and apply it to the second term at the RHS of (34).
Then, we have (33). �

4.2.2 Bounding the Static Regret

Using the techniques in the proof for the dynamic regret
REd(T ) in Theorem 1, we provide an upper bound on the
static regret REs(T ) generated by PQGA in the following
theorem.

Theorem 3. For J = 0, if α > β2γ2T 2
max and γ > 0, the

static regret generated by PQGA is upper bounded by

REs(T )≤
D2Tmax

4(α − β2γ2T 2
max)

T +αR2+γ2G2(T 2
max+ ΠT ). (46)

Proof: The proof is similar to that for Theorem 1. Here,
we only provide an outline. Replacing all the per-period
optimizers {x◦

i } with the static offline benchmark x? in the
proof of Theorem 1, we can show that for any α > β2γ2T 2

max
and γ > 0, the bound in (31) still holds by redefining Ψi ,
‖x? −xi‖2 −‖x? −xi+1‖2 and ψi = 0. Summing both sides
of (31) over i ∈ I , and noting that Ψi is a telescoping term,
we have (46). �

4.2.3 Bounding the Constraint Violation

We now proceed to provide an upper bound on the con-
straint violation VOc(T ) for PQGA. We first relate the
virtual queue vector QI to VOc(T ) in the following lemma.

Lemma 5. The periodic virtual queue vector yielded by
PQGA satisfies the following inequality:

VOc(T ) ≤
1
γ
‖QI‖, ∀c ∈ C. (47)

Proof: From the periodic virtual queue dynamics in (8),
for any c ∈ C and i ∈ I , we have

γT ig
c(xi) ≤ Qc

i+1 − Qc
i . (48)

Summing (48) over i ∈ I , we have

VOc(T ) =
∑

i∈I

Tig
c(xi) ≤

1
γ

∑

i∈I

(Qc
i+1 − Qc

i )
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=
1
γ

(Qc
I − Qc

0)
(a)
=

1
γ

Qc
I

(b)

≤
1
γ
‖QI‖ (49)

where (a) follows from Qc
0 = 0 by initialization, and (b) is

because ‖a‖∞ ≤ ‖a‖. �

Using Lemma 5, we can bound the constraint violation
VOc(T ) through an upper bound on the virtual queue
vector QI . The result is stated in the following theorem.

Theorem 4. For any J ≥ 0 and α, η, γ > 0, the constraint
violation produced by PQGA for any c ∈ C is upper
bounded by

VOc(T ) ≤ 2GTmax+
(α+η)R2+DRT 2

max+2γ2G2Tmax

εγ2
. (50)

Proof: For any i ∈ I , since xi+1 is the solution for P2′, we
have

Ti

Si

∑

s∈Si

[∇fτs
i
(x̃J

i )]T (xi+1 − x̃J
i ) + α‖xi+1 − x̃J

i ‖
2

+ [Qi+1 + γTig(xi)]
T [γTi+1g(xi+1)] + η‖xi+1 − xi‖

2

≤
Ti

Si

∑

s∈Si

[∇fτs
i
(x̃J

i )]T (x′ − x̃J
i ) + α‖x′ − x̃J

i ‖
2

+ [Qi+1 + γTig(xi)]
T [γTi+1g(x′)] + η‖x′ − xi‖

2 (51)

where x′ is an interior point of X defined below (3) that
satisfies g(x′) � ε1 from Assumption 3.3). Also, note that

[Qi+1 + γTig(xi)]
T [γTi+1g(x′)]

(a)

≤ −εγTi+1[Qi+1 + γTig(xi)]
T 1

(b)

≤ −εγTi+1‖Qi+1 + γT ig(xi)‖
(c)

≤ −εγTi+1(‖Qi+1‖ − ‖γTig(xi)‖) (52)

where (a) follows from (15) and (20), (b) is because of ‖a‖ ≤
‖a‖1, and (c) follows from |(‖a‖ − ‖b‖)| ≤ ‖a−b‖ and (21).

Applying (52) to the third term at the RHS of (51) and
rearranging the terms on both sides of (51), we have

QT
i+1[γTi+1g(xi+1)]

≤ −εγTi+1(‖Qi+1‖ − ‖γTig(xi)‖) + α‖x′ − x̃J
i ‖

2

+ η‖x′ − xi‖
2 +

Ti

Si

∑

s∈Si

[∇fτs
i
(x̃J

i )]T (x′ − xi+1)

− [γTig(xi)]
T [γTi+1g(xi+1)]

(a)

≤ −εγTi+1‖Qi+1‖ + εγ2Ti+1‖Tig(xi)‖ + α‖x′ − x̃J
i ‖

2

+ η‖x′ − xi‖
2 +

Ti

Si

∑

s∈Si

‖∇fτs
i
(x̃J

i )‖‖x′ − xi+1‖

+ γ2‖Tig(xi)‖‖Ti+1g(xi+1)‖
(b)

≤ −εγTi+1‖Qi+1‖ + εγ2GTi+1Ti + (α + η)R2

+ DRTi + γ2G2Ti+1Ti (53)

where (a) is because of |aT b| ≤ ‖a‖‖b‖, and (b) follows
from the bound on g(x) in (14), the bound on X0 in (16),
and the bound on ∇ft(x) in (12). From (23) in Lemma 2, we
have

Δi+1 ≤ QT
i+1[γTi+1g(xi+1)] + ‖γTi+1g(xi+1)‖

2

≤ QT
i+1[γTi+1g(xi+1)] + γ2G2T 2

i+1. (54)

Applying (53) to the first term at the RHS of (54), we have

Δi+1 ≤ −εγTi+1‖Qi+1‖ + εγ2GTi+1Ti + (α + η)R2

+ DRTi + γ2G2Ti+1Ti + γ2G2T 2
i+1. (55)

Since 1 ≤ Ti ≤ Tmax for any i ∈ I , from (55), the
sufficient condition for Δi+1 < 0 is

‖Qi+1‖ > γGTmax +
(α + η)R2 + DRT 2

max + 2γ2G2Tmax

εγ
.

If the above inequality holds, we have ‖Qi+2‖ ≤ ‖Qi+1‖,
i.e., the virtual queue length decreases; otherwise, by (22),
the increment from ‖Qi+1‖ to ‖Qi+2‖ is upper bounded,
since ‖Qi+2‖ ≤ ‖Qi+1‖ + ‖γg(xi+1)Ti+1‖ ≤ ‖Qi+1‖ +
γGTmax. It follows that, the virtual queue vector QI for the
last updating period I − 1 is upper bounded by

‖QI‖ ≤ 2γGTmax +
(α + η)R2 + DRT 2

max + 2γ2G2Tmax

εγ
.

Applying the above inequality into (47) in Lemma 5, we
have (50). �

4.3 Discussion on the Performance Bounds

We now provide some further discussions on the regret and
constraint violation bounds of PQGA obtained in Section 4.2
and the choice of algorithm parameters. To describe the level
of time variation in the dynamic benchmark and update
periods, we define parameters ν ≥ 0 and δ ≥ 0 such that
the time variations of the system in (17) and (18) can be
respectively expressed as

Πx◦ = O(T ν), ΠT = O(T δ). (56)

We show below that suitable values of parameters α, η, and
γ for PQGA depend on whether ν is known. Furthermore,
the growth behavior of the regret and constraint violation
over time also depends on the number of aggregated gradi-
ent descent steps J . We summarize the growth behavior of
the regret and constraint violation yielded by PQGA under
different values of J in Tables 3 and 4.

4.3.1 Regret and Constraint Violation Bounds for J = 0
From Theorems 1, 3, and 4, we obtain the following two
corollaries regarding the regret and constraint violation
bounds for J = 0. The results can be easily derived by
substituting the chosen parameters α and γ into the general
performance bounds in (25), (46), and (50), and thus we omit
the derivation details to avoid repetition.

Corollary 1. (Algorithm parameters with knowledge of ν)
Let γ = 1 in PQGA. Then, for J = 0, REd(T ) =
O(max{T

1+ν
2 , T δ}) if α = T

1−ν
2 + β2γ2T 2

max, and REs(T ) =
O(max{T

1
2 , T δ}) if α = T

1
2 + β2γ2T 2

max. In both cases,
VOc(T ) = O(T

1
2 ). Therefore, for any 0 ≤ ν < 1 and

0 ≤ δ < 1, the dynamic and static regrets are sublinear,
and the constraint violation are sublinear.

Corollary 2. (Algorithm parameters without knowledge
of ν) Let α = T

1
2 + β2γ2T 2

max and γ = 1 in PQGA.
Then, for J = 0, REd(T ) = O(max{T

1
2+ν , T δ}), REs(T ) =

O(max{T
1
2 , T δ}), and VOc(T ) = O(T

1
2 ).
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TABLE 3
Dynamic Regret, Static Regret, and Constraint Violation Bounds of PQGA for J = 0 (Πx◦ = O(T ν) and ΠT = O(T δ))

ΠT = O(1) Require ν REd(T ) REs(T ) VOc(T )

No Yes O(max{T
1+ν
2 , T δ}) O(max{T

1
2 , T δ}) O(T

1
2 )

No No O(max{T
1
2+ν , T δ}) O(max{T

1
2 , T δ}) O(T

1
2 )

Yes Yes O(T
1+ν
2 ) O(T

1
2 ) O(1)

Yes No O(T
1
2+ν) O(T

1
2 ) O(1)

TABLE 4
Improved Dynamic Regret and Constraint Violation Bounds of PQGA for J � 0 (Πx◦ = O(T ν) and ΠT = O(T δ))

ΠT = O(1) Require ν REd(T ) VOc(T )

No No O(max{T ν , T δ}) O(1)
Yes No O(T ν) O(1)

Corollaries 1 and 2 indicate that a sufficient condition for
PQGA to yield sublinear regrets under periodic updates is
that the time variation measures Πx◦ and ΠT of the system
grow sublinearly over time. Note that the sublinearity of
the system variation measures is necessary to have sublinear
dynamic regret for OCO [10]. Otherwise, if the system varies
too fast over time, no online algorithm can track it due to
the lack of in-time information. This can be seen from the
dynamic regret bounds derived in [7], [13]-[17], [21], [24],
[25] even under the standard per-time-slot update setting.
In practice, for many online applications, the system tends
to stabilize over time, resulting in sublinear time variation
and thus sublinear regrets under our proposed algorithm.

4.3.2 Improved Dynamic Regret Bound for J � 0

Using Theorems 2 and 4, we obtain the following corollar-
ies regarding the dynamic regret and constraint violation
bounds for PQGA, when the number of aggregated gradient
descent steps J is sufficiently large.

Corollary 3. Suppose Π∇ = O(T ν) and Δx = O(T ν). Let
α = T

1
2 + TmaxL, η = max{α, β2γ2T 2

max}, and γ2 = T
1
2 .

Then, for J > log
1
8
ρ , REd(T ) = O(max{T ν , T δ}) and

VOc(T ) = O(1). Therefore, for any 0 ≤ ν < 1 and
0 ≤ δ < 1, both the dynamic regret and the constraint
violation are sublinear.

Compared with the growth rate of the dynamic re-
gret O(max{T

1+ν
2 , T δ}) for J = 0 in Corollary 1 (or

O(max{T
1
2+ν , T δ}) in Corollary 2), Corollary 3 shows that

when J is sufficiently large, the growth rate of the dynamic
regret reduces to O(max{T ν , T δ}), and the growth rate of
the constraint violation is reduced from O(T

1
2 ) to O(1).

Note that the choice of algorithm parameters in Corollary 1
requires the knowledge of the time variation measure of the
system ν. In contrast, setting the algorithm parameters in
Corollary 3 does not require such knowledge of the system
variation. We further note that the accumulated squared
norm of gradient Π∇ in Corollary 3 can be very small [16]. In
particular, we have Π∇ = 0 if x◦

i is an interior point of X0 (or
there is no short-term constraint), i.e.,

∑
s∈Si

∇fτs
i
(x◦

i ) = 0
for any i ∈ I . In addition, the accumulated squared distance
Δx between the two dynamic benchmarks {x◦

i } and {x?
i }

can also be small. Specifically, if the distance between x◦
i

and x?
i satisfies ‖x◦

i − x?
i ‖ ∝ T

ν−1
2 , ∀i ∈ I , then we have

Δx = O(T ν).

4.3.3 A Special Case of Bounded ΠT

We also have the following results on the regret and con-
straint violation bounds when the accumulated variation
of update periods is upper bounded by a constant, i.e.,
ΠT = O(1). In particular, the bounded ΠT includes the case
when the update periods are fixed over time. These results
are obtained by setting δ = 0 in Corollaries 1-3, respectively,
and we omit the proofs for brevity.

Corollary 4. (Algorithm parameters with knowledge of ν)
Let γ2 = T

1
2 in PQGA. Then, for J = 0, REd(T ) = O(T

1+ν
2 )

if α = T
1−ν
2 + β2γ2T 2

max, and REs(T ) = O(T
1
2 ) if α =

T
1
2 + β2γ2T 2

max. In both cases, VOc(T ) = O(1).

Corollary 5. (Algorithm parameters without knowledge of
ν) Let γ2 = T

1
2 and α = T

1
2 + β2γ2T 2

max in PQGA. Then,
for J = 0, REd(T ) = O(T

1
2+ν), REs(T ) = O(T

1
2 ), and

VOc(T ) = O(1).

Corollary 6. Suppose Π∇ = O(T ν) and Δx = O(T ν). Let
α = T

1
2 + TmaxL, η = max{α, β2γ2T 2

max}, and γ = T
1
2 .

Then, for J > log
1
8
ρ , REd(T ) = O(T ν) and VOc(T ) = O(1).

From the above results, we see that by increasing J ,
the growth rate of the dynamic regret yielded by PQGA is
reduced from O(T

1+ν
2 ) in Corollary 4 to O(T ν) in Corollary

6, while O(1) growth rate of the constraint violation is
maintained. To the best of our knowledge, even under
the standard per-time-slot update setting, no existing algo-
rithms for constrained OCO have simultaneously achieved
O(T ν) dynamic regret and O(1) constraint violation.

Note that PQGA can be applied to the special case of
per-time-slot updates [18]-[25], where Ti = Tmax = 1 for
all i’s. In this case, from Corollaries 4 and 5, we see that
PQGA achieves O(T

1
2 ) growth rate of the static regret and

O(1) growth rate of the constraint violation, which are the
current best results provided in [22]. We point out that [22]
does not provide any dynamic regret bound. In contrast, we
show that PQGA can achieve O(T

1+ν
2 ) growth rate of the
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dynamic regret.4

5 APPLICATION TO NETWORK VIRTUALIZATION IN

MASSIVE MIMO SYSTEMS

In many wireless systems, CSI is only available after a
sequence of channel estimation, quantization, and feedback
processes. The resulting feedback delay on the CSI is espe-
cially severe for massive MIMO systems, where the channel
state space is large and the channel state may fluctuate fast
over time. For such massive MIMO systems, PQGA can be
applied to solve a variety of problems in the presence of
time-varying system states and delayed information feed-
back.

As an example to study the algorithm performance in
practical systems, we apply PQGA to online network virtu-
alization in massive MIMO systems, where multiple service
providers (SPs) simultaneously share all the antennas and
spectrum resource provided by an infrastructure provider
(InP). Most of the existing works on MIMO virtualization
have focused on static optimization problems [40]-[45]. Fur-
thermore, these works have adopted strict physical isolation
among the SPs. Such physical isolation approach does not
take full advantage of spatial spectrum sharing enabled
by MIMO precoding. In contrast, in [33] and [46], spatial
isolation approach via MIMO precoding has been adopted
to achieve virtualization, where the SPs share all antenna
and spectrum resource simultaneously. The virtualization
solutions in [33] and [46] are online strategies. However,
they are based on Lyapunov optimization and require the
current CSI. Furthermore, neither of them considers periodic
precoder updates, which are essential to practical wireless
networks, such as LTE and 5G NR.

5.1 Online Precoding-Based Massive MIMO Network
Virtualization

We consider an InP performing network virtualization in a
massive MIMO cellular network. In each cell, the InP owns
a base station (BS) equipped with N antennas, serving M
SPs. Let M = {1, . . . ,M}. Each SP m has Km users. The
total number of users in the cell is K =

∑
m∈M Km. The

system is time slotted with time indexed by t.

5.1.1 Precoding-Based Network Virtualization

Let Hm
t ∈ CKm×N be the local CSI between the BS and

the Km users of SP m at time t. For ease of exposition,
we first consider an idealized massive MIMO virtualization
framework, where CSI feedback per time slot experiences
no delay, as shown in Fig. 2. At each time slot t, the InP
shares the corresponding local CSI Hm

t with SP m and
allocates transmit power Pm to the SP. The power allocation
is limited by the total transmit power budget Pmax, i.e.,∑

m∈M Pm ≤ Pmax. Using Hm
t , each SP m designs its own

precoding matrix Wm
t ∈ CN×Km based on the service needs

4. The performance analysis in [22] is for convex loss functions, while
our focus is on the strongly convex loss function case. Nonetheless, one
can easily verify that the proofs of Theorems 1, 3, and 4 also hold for

the convex loss function case. Therefore, PQGA still achieves O(T
1+ν
2 )

dynamic regret, O(T
1
2 ) static regret, and O(1) constraint violation for

convex loss functions.

Fig. 2. An illustration of idealized massive MIMO virtualization in a cell
with one InP and two SPs serving users in their respective virtual cell.

of its users, while ensuring ‖Wm
t ‖2

F ≤ Pm. The SP then
sends Wm

t to the InP as its service demand. Note that each
SP m designs Wm

t based only on its local CSI without the
knowledge of users of the other SPs. For SP m, its desired
received signal vector ỹm

t at its Km users is given by

ỹm
t = Hm

t Wm
t sm

t , ∀m ∈ M

where sm
t is the transmitted signal vector from SP m

to its Km users. Let ỹt , [ỹ1
t
H

, . . . , ỹM
t

H
]H be the

desired received signal vector at all K users, Dt ,
blkdiag{H1

tW
1
t , . . . ,H

M
t WM

t } be the virtualization de-
mand from all the SPs, and st , [s1

t
H

, . . . , sM
t

H
]H . Then

we have ỹt = Dtst. We assume that the transmitted
signals to all users are independent to each other, with
E{stsH

t } = I, ∀t.
At each time slot t, the InP has the global CSI Ht =

[H1
t
H

, . . . ,HM
t

H
]H ∈ CK×N and designs the actual global

downlink precoding matrix Vt , [V1
t , . . . ,V

M
t ] ∈ CN×K

to serve all K users, where Vm
t ∈ CN×Km is the actual

downlink precoding matrix for SP m. Then, the actual
received signal vector ym

t at the users of SP m is given by

ym
t = Hm

t Vm
t sm

t +
∑

l 6=m,l∈M

Hm
t Vl

ts
l
t, ∀m ∈ M

where the second term is the inter-SP interference from the
other SPs to the users of SP m. The actual received signal

vector yt , [y1
t
H

, . . . ,yM
t

H
]H at all K users is given by

yt = HtVtst.
For downlink massive MIMO network virtualization, the

InP designs the precoding matrix Vt to mitigate the inter-SP
interference in order to meet the virtualization demand Dt

received from the SPs. The expected deviation of the actual
received signals from that of the SPs’ virtualization demand
is given by E{‖yt − ỹt‖2} = ‖HtVt − Dt‖2

F . As such, we
define the precoding deviation between any precoding matrix
V and the virtualization demand Dt as:

ft(V) , ‖HtV − Dt‖
2
F , ∀t ∈ T , (57)

which we use as the design metric for massive MIMO
network virtualization. Note that ft(V) measures the dif-
ference between the actual global precoder executed at the
BS and the virtual local precoders demanded by the SPs.
Furthermore, it is strongly convex in V.
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5.1.2 Online Precoding Optimization with Periodic Updates

Under a typical cellular network architecture, such as LTE
and 5G NR, we consider an online periodic virtualization
demand-response mechanism. An update period may corre-
spond to the duration of one or multiple resource blocks and
may vary over time. Within each update period i ∈ I , the
InP, which is the decision maker as defined in Section 3, re-
ceives multiple delayed CSI Ht and virtualization demand
Dt feedbacks for t ∈ Ti. At the beginning of each update
period i, the InP determines Vi in the compact convex set

V0 , {V : ‖V‖2
F ≤ Pmax} (58)

to meet the short-term transmit power constraint. We also
consider a long-term transmit power constraint as in (1),
where

g(V) , ‖V‖2
F − P̄ (59)

is the transmit power constraint function, and P̄ ≤ Pmax is
the average transmit power budget. As a result, our online
optimization problem for massive MIMO network virtual-
ization has the same form as P1, with the loss function,
short-term constraint, and long-term constraint function
given in (57), (58), and (59), respectively.

5.2 Online Precoding Solution

Using the proposed PQGA algorithm in Algorithm 1, at the
beginning of each update period i + 1, we first initialize an
intermediate precoder Ṽ0

i = Vi. If J > 0, for each j ∈ J ,
we solve the following precoder optimization problem for
Ṽj

i :

min
V∈V0

Ti

Si

∑

s∈Si

2<{tr{[∇Ṽj−1∗
i

fτs
i
(Ṽj−1

i )]H(V−Ṽj−1
i )}}

+ α‖V − Ṽj−1
i ‖2

F

where ∇Ṽj−1∗
i

fτs
i
(Ṽj−1

i ) = HH
τs

i
(Hτs

i
Ṽj−1

i − Dτs
i
). The

optimal solution to the above projected gradient descent
problem can be directly obtained from the closed-form
expression provided in (9), and is given by

Ṽj
i =






X̃j
i , if ‖X̃j

i‖
2
F ≤ Pmax

√
Pmax

X̃j
i

‖X̃j
i‖F

, o.w.
(60)

where X̃j
i = Ṽj−1

i − Ti

αSi

∑
s∈Si

HH
τs

i
(Hτs

i
Ṽj−1

i − Dτs
i
).

After performing J -step aggregated gradient descent,
we obtain both ṼJ and Vi. Then, we solve the following
precoder optimization problem for the precoding matrix
Vi+1 at the InP:

P3′ : min
V∈V0

Ti

Si

∑

s∈Si

2<{tr{[∇ṼJ∗
i

fτs
i
(ṼJ

i )]H(V − ṼJ
i )}}

+α‖V−ṼJ
i ‖

2
F +η‖V−Vi‖

2
F +[Qi+1+γTig(Vi)][γTi+1g(V)]

where Qi+1 is a periodic virtual queue with updating rule
given in (8). Since P3′ is a convex optimization problem, we
can solve it via Karush-Kuhn-Tucker (KKT) conditions [47].
The Lagrangian for P3′ is

L(V, λ) =
Ti

Si

∑

s∈Si

2<{tr{[∇ṼJ∗
i

fτs
i
(ṼJ

i )]H(V−ṼJ
i )}}

+ α‖V−ṼJ
i ‖

2
F + [Qi+1 + γTig(Vi)][γTi+1g(V)]

+ η‖V−Vi‖2
F + λ(‖V‖2

F − Pmax)

where λ is the Lagrange multiplier associated with the
short-term transmit power constraint in (58). The KKT con-
ditions for (V?, λ?) are given by ‖V?‖2

F −Pmax ≤ 0, λ? ≥ 0,
λ?(‖V?‖2

F − Pmax) = 0, and

V? =
αṼJ

i + ηVi − Ti

Si

∑
s∈Si

HH
τs

i
(Hτs

i
ṼJ

i − Dτs
i
)

α + η + [Qi+1 + γT ig(Vi)]γTi+1 + λ?
, (61)

where (61) is obtained by setting ∇V∗L(V, λ) = 0. From
these KKT conditions and by noting that λ? serves as a
power regularization factor for V? in (61), we have a closed-
form solution for Vi+1, given by

Vi+1 =

{
Xi, if ‖Xi‖2

F ≤ Pmax√
Pmax

Xi

‖Xi‖F
, o.w. (62)

where Xi =
αṼJ

i +ηVi−
Ti
Si

∑
s∈Si

HH
τs

i
(Hτs

i
ṼJ

i −Dτs
i
)

α+η+[Qi+1+γTig(Vi)]γTi+1
.

Algorithm Complexity Analysis

For implementing PQGA in this massive MIMO virtualiza-
tion problem, the online precoding solutions are obtained
in closed-form as in (60) and (62). The computational com-
plexity is mainly from matrix multiplication, which is in the
order of O(NK2). Note that it is similar to the complexity
of the zero forcing (ZF) precoding scheme commonly em-
ployed for multi-antenna transmission in practical systems.
Since only closed-form computation is involved, the overall
computational complexity in PQGA in Algorithm 1 is very
low for the InP.

We also note that additional short-term per-antenna
transmit power constraints can be incorporated in the con-
vex set V0. In this case, both precoder optimization problems
can be equivalently decomposed into N subproblems, each
with a closed-form solution similar to (60) and (62).

5.3 Performance Bounds

We assume that the channel gain is bounded by a constant
B > 0 at any time t, given by

‖Ht‖F ≤ B, ∀t ∈ T . (63)

In the following lemma, we show that our online massive
MIMO network virtualization problem satisfies Assump-
tions 1-4 for OCO in Section 4.2. The proof directly follows
from the bounded channel gain in (63) and the short-term
transmit power limits Pmax and Pm on Vt and Wm

t , and
thus is omitted for brevity.

Lemma 6. Assume the bounded channel gain in (63). Then,
Assumptions 1-4 hold with the corresponding constants
given by % = 2, L = B2, D = 4B2

√
Pmax, β = 2

√
Pmax,

G =
√

max{P̄ 2, (Pmax − P̄ )2}, ε = P̄ , and R = 2
√

Pmax.

Following the results in Theorems 1-4, the performance
bounds yielded by {Vi} are given by (25), (33), (46), and
(50), with the corresponding values of %, L,D, β,G, ε, R
given in Lemma 6.
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Fig. 3. f̄(T ), P̄ (T ), and R̄(T ) vs. T with different Ti values.

6 SIMULATION RESULTS

In this section, we study the performance of PQGA applied
to online precoding-based massive MIMO network virtual-
ization under typical urban micro-cell LTE network settings.

6.1 Simulation Setup

We consider an urban hexagon micro-cell of radius 500 m.
An InP owns the BS, equipped with N = 32 antennas
by default. The InP performs network virtualization and
serves M = 4 SPs. We focus on the radio channel over
one subcarrier with bandwidth BW = 15 kHz. Over this
channel, each SP m ∈ M serves Km = 2 users, who are
uniformly distributed in the cell, with a total of K = 8 users
in the cell. As the default system parameters, we set the
maximum transmit power limit Pmax = 33 dBm, the time-
averaged transmit power limit P̄ = 30 dBm, noise power
spectral density N0 = −174 dBm/Hz, and noise figure
NF = 10 dB.

We model the fading channel as a first-order Gaussian-
Markov process hk

t+1 = αhhk
t + zk

t , ∀k ∈ K = {1, . . . ,K},
where hk

t ∼ CN (0, βkI), with βk[dB] = −31.54 −
33 log10(dk) − ψk capturing the path-loss and shadowing,
with dk being the distance from the BS to user k, and
ψk ∼ CN (0, σ2

φ) modeling the shadowing with σφ = 8
dB; also, αh ∈ [0, 1] is the channel correlation coefficient,
and zk

t ∼ CN (0, (1 − α2
h)βkI) is the innovation sequence

independent of hk
t . We set αh = 0.997 by default, which

under the standard LTE transmission structure, correspond-
ing to the pedestrian speed 1 m/s [48]. 5 We set the time slot
duration Δt = 1

BW
= 66.6 μs, such that an update period of

8 time slots is similar to one resource block time duration in
LTE. We set the total time horizon T = 400. We simulate the
proposed PQGA algorithm using MATLAB on a MacBook
Pro laptop, Apple M1 Pro CPU, with 16 GB memory.

5. We emphasize here that the Gauss-Markov channel model is used
for illustration only. PQGA can be applied to any arbitrary wireless
environment, and the InP does not need to know the channel statistics.
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Fig. 4. f̄ (T), P̄ (T ), and R̄(T ) vs. T with different J values.

We assume that each SP m ∈ M uses ZF precoding
scheme $m

t Hm
t

H(Hm
t Hm

t
H)−1 to design its virtual precod-

ing matrix Wm
t , where $m

t is a power normalizing factor
such that ‖Wm

t ‖2
F = Pm = Pmax

M . For the performance eval-
uation, we define the time-averaged precoding deviation
normalized against the virtualization demand as f̄(T ) ,
1
T

∑
i∈I

∑
t∈Ti

ft(Vi)
‖Dt‖2

F
, the time-averaged transmit power as

P̄ (T ) , 1
T

∑
i∈I Ti‖Vi‖2

F , and the time-averaged per-user

rate as R̄(T ) , 1
TK

∑
i∈I

∑
t∈Ti

∑
k∈K log2

(
1 + SINRik

t

)
,

where SINRik
t = |hk

t
T
vk

i |
2

∑
j 6=k,j∈K |hk

t
T vj

i |
2+σ2

n

, with hk
t and vk

i

being the channel vector at time slot t and precoding vec-
tor in the i-th update period for user k, respectively, and
σ2

n = N0BW + NF being the noise power.

6.2 Impact of Update Periods

We first fix the update periods {Ti} over time, and consider
only one CSI feedback is received at the beginning of each
update period i. Fig. 3 shows f̄(T ), P̄ (T ), and R̄(T ) versus
T for different values of the update period Ti. We observe
that PQGA converges fast, usually within 50-150 time slots
for Ti ranging from 1 to 8. As expected, the convergence
rate becomes slower as Ti increases. Also, as Ti increases, the
steady-state value of the time-averaged precoding deviation
f̄(T ) yielded by PQGA increases from around 7% to 17%,
and the steady-state value of the time-averaged per-user
rate R̄(T ) decreases from around 5 bpcu to 3 bpcu. This
demonstrates how the system performance is affected by
the channel variation over time, as the precoder updates
become less frequent. In all values of Ti, the time-averaged
transmit power P̄ (T ) quickly converges to the average
transmit power limit P̄ .

6.3 Impact of Number of Aggregated Gradient Descent
Steps

For fixed update period Ti = 8 and one CSI feedback,
Fig. 4 shows f̄(T ), P̄ (T ) and R̄(T ) versus T for different
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Fig. 5. Performance comparison on f̄ and R̄ vs. αh.

numbers of the aggregated gradient descent steps J . We
observe that as J increases, the steady-state value of the
time-averaged precoding deviation f̄(T ) decreases, and the
steady-state value of the time-averaged per-user rate R̄(T )
increases. These demonstrate the performance gain brought
by performing multi-step gradient descent. We see that the
impact of J on the time-averaged transmit power P̄ (T ) is
small. We also observe that the steady-state values of f̄(T )
and R̄(T ) do not change much when J is close to 8. As such,
in the simulation results presented below, we set J = 8 as
the default parameter for PQGA.

6.4 Performance Comparison

For performance comparison, we consider the following
method and performance benchmarks.

• Yu et al.: We use the online algorithm from [22]
for the InP to compute the precoding matrix Vi at
each update period i. Note that [22] achieves the
current best O(T

1
2 ) static regret and O(1) constraint

violation bounds under standard OCO setting with
per-time-slot updates. It has also been demonstrated
in [22] that this algorithm outperforms the ones in
[18] and [19]. In order to apply the algorithm in
[22] to the periodic update scenario in our problem
setting, we treat each update period of Ti time slots
as one super time slot. Besides this, [22] consid-
ers only one gradient feedback at each time slot.
Therefore, to apply the algorithm to accommodate
multiple gradient feedbacks, we treat the averaged
gradient as a single gradient feedback. For a fair
comparison, we optimize the algorithm parameters
of both PQGA and Yu et al. to achieve their respective
best performance.

• Per-period optimal: At the beginning of each update
period i, the InP receives the CSI feedback from the
current update period i and uses V◦

i in (5).
• Delayed optimal: At the beginning of each update

period i, the InP collects the delayed CSI feedback
from the previous update period i− 1 and usesV◦

i−1

in (5).
• Offline fixed: The InP has the complete CSI over I

update periods beforehand, and uses V? in (3) at
each update period i.
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Fig. 6. Performance comparison on f̄ and R̄ vs. N .

We assume the update periods {Ti} keep switching
between 8 and 4 time slots. When Ti = 8, CSI feedback
occurs at the first and fifth time slot, i.e., Si = 2. Otherwise,
CSI feedback only occurs at the first time slot, i.e., Ti = 4 and
Si = 1. Therefore, both the update periods {Ti} and the
numbers of CSI feedback instances in each update period
{Si} are time varying.

In Fig. 5, we compare the steady-state precoding de-
viation f̄ and per-user rate R̄ of PQGA with those of
other methods for different values of the channel correlation
coefficient αh. We see that there is a large performance
gap between the per-period optimal method in (5) and the
offline fixed method in (3). This indicates that the commonly
used static benchmark for OCO may not be a meaningful
comparison target for dynamic systems. As αh increases, the
normalized time-averaged precoding deviation f̄ yielded by
PQGA decreases. This is due to slower channel variation
over time and the accumulated system variation decreases.
When αh > 0.993, which corresponds to the pedestrian
speed 2.5 m/s, f̄ yielded by PQGA becomes smaller than
that by the delayed optimal method. Note that the per-
period optimal method uses the current CSI and has a semi-
closed-form solution. In contrast, PQGA only uses the de-
layed CSI and its solution is in closed-form. We also observe
that, as αh increases, f̄ yielded by PQGA approaches that
of the per-period optimal method. Furthermore, f̄ yielded
by PQGA is more robust to channel variation than that of
Yu et al. under the periodic update setting. Here, we note
that although the time-averaged per-user rate R̄ is not the
optimization objective of PQGA, R̄ yielded by PQGA can
still be higher than that of the per-period optimal method
when αh is large.

With the same setting as Fig. 5, Fig. 6 shows the impact
of the number of antennas N on the performance of PQGA
and the other methods. As N increases, the InP has more
degrees of freedom for downlink beamforming to mitigate
the inter-SP interference, and thus the precoding deviation
from the virtualization demand f̄ decreases. As N increases,
f̄ yielded by PQGA becomes smaller than that of the de-
layed optimal method; It approaches the per-period optimal
method. Furthermore, the per-user rate R̄ of PQGA is higher
than that of the per-period optimal method when N is large.
Finally, we see that PQGA substantially outperforms Yu et
al. for both f̄ and R̄ in a wide range of N values.
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7 CONCLUSIONS

This paper considers a new constrained OCO problem with
periodic updates, where the gradient feedbacks may be
partly missing over some time slots and the online decisions
are updated once in each update period, which may last
for multiple time slots. We present an efficient algorithm
termed PQGA, which uses periodic queues together with
gradient aggregation to handle the possibly time-varying
feedback delay within update periods. We provide bounds
on the dynamic regret, static regret, and constraint violation
of PQGA. Our analysis takes into account the impact of
the new periodic constraint penalty structure and possibly
multi-step aggregated gradient descent on the performance
guarantees of PQGA. As an application, we apply PQGA
to the online network virtualization problem in massive
MIMO systems. In addition to the benefits in terms of re-
gret and constraint violation bounds, our simulation results
further demonstrate the effectiveness of PQGA in terms of
the time-averaged performance.
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