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Communication overhead is a main bottleneck in federated learning (FL) especially in the wireless environment
due to the limited data rate and unstable radio channels. The communication challenge necessitates holistic
selection of participating clients that accounts for both the computation needs and communication cost, as
well as judicious allocation of the limited transmission resource. Meanwhile, the random unpredictable nature
of both the training data samples and the communication channels requires an online optimization approach
that adapts to the changing system state over time. In this work, we consider a general framework of online
joint client sampling and power allocation for wireless FL under time-varying communication channels. We
formulate it as a stochastic network optimization problem that admits a Lyapunov-typed solution approach.
This leads to per-training-round subproblems with a special bi-convex structure, which we leverage to propose
globally optimal solutions, culminating in a meta algorithm that provides strong performance guarantees.
We further study three specific FL problems covering multiple scenarios, namely with IID or non-IID data,
whether robustness against data drift is required, and with unbiased or biased client sampling. We derive
detailed algorithms for each of these problems. Simulation with standard classification tasks demonstrate that
the proposed communication-aware algorithms outperform their counterparts under a wide range of learning
and communication scenarios.
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1 INTRODUCTION
Distributed machine learning (ML), and in particular federated learning (FL), has become a popular
learning paradigm due to the vast amount of available data and continuously increasing computing
capabilities of commodity computers and mobile devices [13, 18, 28, 35]. We consider the problem
of training an ML model under the client-server system model where multiple resource-constrained
clients collaboratively train a single ML model with the assistance of a central server [2, 17, 20].
The local datasets at each client are not allowed to be transmitted and can be heterogeneous, i.e.,
generated from non-identical data distributions. Furthermore, only the model parameters and some
auxiliary control variables are shared during the training. In this setting, the standard learning
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objective is to minimize a global loss 𝑓 (𝒘), which is a 𝒑-weighted sum of the local losses 𝑓𝑛 (𝒘)
that can only be accessed at the corresponding client 𝑛, i.e.,

min
𝒘∈W

𝑓 (𝒘) :=
𝑁∑︁
𝑛=1

𝑝𝑛 𝑓𝑛 (𝒘), (1)

where 𝑁 is the number of clients, W is the set of feasible model parameter values, and 𝒑 ∈ {𝒑 ∈
R𝑁 :𝑝𝑛 ≥ 0,∀𝑛 ∈ [𝑁 ],∑𝑁

𝑛=1 𝑝𝑛 = 1} is the weight vector, where we define [𝑁 ] = {1, 2, . . . , 𝑁 }. A
typical choice of 𝒑 is setting 𝑝𝑛 =

𝐷𝑛∑𝑁
𝑖=1 𝐷𝑖

for each 𝑛 ∈ [𝑁 ], where 𝐷𝑛 is number of data points
at client 𝑛 [20]. Some canonical algorithms to solve (1) in the FL setting are federated stochastic
gradient descent (FedSGD) and federated averaging (FedAvg) [20]. However, other algorithms
tailored for different system settings have also been considered. For example, enabling arbitrary
and unbiased client sampling in [8, 19, 24] and biased client sampling in [9].

Although FedSGD, FedAvg, andmany of their variants are easy to implement, the communication
overhead remains a major obstacle in realistic settings of FL [13, 18, 35]. A large ML model may
take a long time to converge since the server needs to communicate with the clients by sending the
model parameters in each training round. This phenomenon is exaggerated when the data and the
communication conditions are heterogeneous, which is common for wireless FL in mobile edge
computing (MEC). Numerous communication reduction methods have thus been proposed. One
line of work is to directly control communication overhead in each round by reducing the size of
the model or gradients via compression techniques such as quantization [1] and sparsification [30].
Another line of work is to perform client sampling based on communication constraints such as
greedy selection [22] and adaptive sampling [6, 19]. However, client sampling in FL is strongly
coupled with communication design. For example, clients that have poor channel condition or are
starved of communication resource should have a lower likelihood of being chosen for participation.
Therefore, separating the design of client sampling and communication resource allocation will
lead to suboptimal learning performance.

The literature on joint optimization of client sampling and communication resource allocation is
scarce [7, 10, 24]. In [7] and [10] the client sampling and resource allocation decisions are fixed over
the training rounds, which does not account for any system dynamics. However, in wireless FL, the
channel conditions between the clients and server are often time varying. With no information
on future system states, which includes both the channel condition and the sampled subsets of
training data, an online optimization approach is more desirable to adapt to the system dynamics
over time. The recent work [24] has considered probabilistic client sampling together with online
stochastic network optimization, with time averaged transmission power as constraints to represent
the communication overhead. It is based on a simple learning scenario that does not take into
account different data ratios among clients or the gradient norms of the clients. It also has no
control over the number of sampled clients, which can be important in real-world systems that
have limited communication and computation capacity. Furthermore, it ignores the potential need
for robustness against data drift [16] or biased client sampling [9] in FL.

In this work, we aim to address all of the technical and practical concerns above, by proposing a
comprehensive general framework for online joint client sampling and power allocation in wireless
FL. It accounts for the data ratios among clients and the gradient norms, enables control over the
number of sample clients, allows consideration for robustness against data drift, and accommodates
both unbiased and biased client sampling. As far as we are aware, there is no other work in the
literature that considers such general online joint client sampling and power allocation for wireless
FL. The main contributions of this work are as follows:

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. XX, No. X, Article . Publication date: X 2024.



Clipper: Online Joint Client Sampling and Power Allocation for Wireless Federated Learning 3

• To overcome the challenge of unpredictable changes in the environment due to stochastic
data sampling and random fluctuation of the wireless channels, we adopt an online Lyapunov
optimization framework [21] that iteratively tracks the time-varying system state. Even
though the Lyapunov optimization technique is well known, the resultant subproblems in
each FL training round are non-convex. Nevertheless, even under a general FL formulation
where the subproblems can take various forms, we show that there is an efficient solution that
yields an optimal solution in each round. This enables our design of a novel meta algorithm,
termed Clipper (for joint CLIent samPling and PoER allocation), which can be applied to a
wide range of FL algorithms and objectives.

• We further investigate three specific scenarios of Clipper for different FL algorithms and
objectives. (i) Clipper-Unbiased: We consider the standard FL with unbiased client sampling
with time-varying communication channels. We provide convergence analysis for both IID
and non-IID data and integrate it with Clipper. (ii) Clipper-RobustFL: We consider the
problem of robust FL, where the target data distribution for inference can be different from
those of individual clients or of the aggregate training data set. We use a generalization
bound in learning to solve for the weight vector 𝒑, then we utilize our convergence analysis
of FL with unbiased client sampling over non-IID data for integration with Clipper. (iii)
Clipper-Biased: We further demonstrate how Clipper can also be applied to biased client
sampling in FL.

• We conduct experiment on standard datasets to show that our proposed communication-
aware FL algorithms outperform their corresponding communication-agnostic counterparts
for all three scenarios.

The rest of this paper is structured as follows. We provide related work of client sampling and
resource allocation in FL in Section 2. In Section 3, we present the optimization formulation and
solution that culminate in the meta algorithm Clipper. We then provide the three case studies on
FL with unbiased and biased client sampling in Section 4. We conduct simulation for each use case
in Section 5 and conclude the paper in Section 6.

2 RELATEDWORK
2.1 Federated Learning and Client Sampling
It has been well recognized that the communication overhead is a main bottleneck in real-world
FL deployment due to the large size of models and a large number of training rounds until con-
vergence [13, 18, 35]. One canonical means to reduce communication overhead is to run multiple
steps of local model updates before global model aggregation on the server. Many algorithms enjoy
this type of periodic model synchronization, including federated averaging (FedAvg) [20] and
local stochastic gradient descent (local SGD) [27], as well as many variants of these algorithms,
e.g., SCAFFOLD [15]. Another line of work to further reduce communication in FL is to send
only a compressed version of the gradients or the updated local models via techniques such as
quantization [1] and sparsification [30].

Beyond periodic model synchronization and compression techniques, system-aware client selec-
tion is a common means to further reduce communication overhead. An early work focusing on
client selection formulated an optimization problem whose objective is to maximize the number
of selected clients subject to some constraint such as the round time [22]. The authors proposed
a greedy client selection strategy that resulted in a model with competitive performance but in
a significantly shorter time, compared with full participation of clients. However, the proposed
algorithm was purely heuristic without theoretical guarantees or proof of correctness. A tier-based
client selection was proposed in [5], which divides clients into tiers based on performance and only

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. XX, No. X, Article . Publication date: X 2024.



4 Wen Xu, Ben Liang, Gary Boudreau, and Hamza Sokun

selects clients of the same tier in each round. However, these approaches use a deterministic client
selection strategy, which cannot accommodate fluctuation in the communication channels over
time.

It is possible to allow probabilistic client selection, for which the term client sampling is commonly
used. In fact, in the pioneering work introducing the term federated learning [20], the server
chooses a fraction of all clients for participation in each round in a uniformly random manner.
Client sampling with more general sampling probabilities has also been considered. For example,
it was proposed in [8] to set the probabilities by explicitly utilizing the norms of the gradients as
substitute for the importance of the data at different clients. Taking into account both the importance
of local data and communication overhead, an optimization to minimize an approximation of
the communication time was proposed and solved in closed-form in [36]. A meta algorithm of
geometrically increasing client participation to tackle stragglers was proposed in [25], where
theoretical analysis was provided to show that it can outperform standard FL for strongly convex
objectives.
Other methods have been proposed to further take into account realistic system heterogeneity

such as communication conditions and computation capabilities. A new optimization problem to
minimize the convergence time of FL, taking into account wireless communications and at the
same time optimizing the performance of FL, was formed and solved in [6]. However, though it
employed a probabilistic client sampling approach, it required a fixed client to always be connected
to the server at each communication round, which is not ideal as the channel condition of that
client can fluctuate and even make the client itself a straggler. Minimizing the expected wall-clock
time with constraints on convergence and sampling probabilities was considered in [19]. The
authors considered both the statistical and system heterogeneity and provided convergence bounds
for arbitrary sampling probabilities for smooth and convex objectives. However, their sampling
probabilities were fixed in all rounds, and they did not consider client sampling jointly with resource
allocation, which our work does. Furthermore, our work is explicitly designed to accommodate
time-varying communication channels, while [6] considered a fixed channel for each client and [19]
considered fixed communication delay per round for each client.

2.2 Joint Client Sampling and Communication Resource Allocation
As explained in Section 1, for optimal FL performance one should jointly consider client sampling
and communication resource allocation. In [7], an optimization problem on joint learning, wireless
resource allocation, and client selection was formulated and solved, with consideration for delay
requirements, energy consumption, transmit power, and packet error rate. Another optimization
problem was proposed in [10] to capture the trade-off between the wall-clock convergence time
and energy consumption for wireless FL. Enabling probabilistic client sampling, a novel scheduling
policy was proposed to exploit both importance of learning by gradient divergence and channel
conditions was proposed in [26], sampling one client per round. However, in all these approaches,
they cannot capture the fluctuation in the communication channels over time.
To accommodate time-varying channel and other system conditions, several works proposed

to take into account the temporal perspective of client selection and resource allocation in wire-
less FL [24, 32, 37], utilizing Lyapunov-typed stochastic optimization [21]. In [32], a stochastic
optimization problem was formulated with long-term client energy constraints and an algorithm
was proposed to solve the joint client selection and bandwidth allocation problem. In [37], an
optimization problem was formulated, to minimize the total maximum training delay with con-
straints of long-term energy consumption and number of selected clients, and it was solved via
combinatorial multi-armed bandits. However, both proposed optimization problems in [32] and [37]
are mixed-integer nonlinear programming problems, which are hard to solve. To overcome this
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difficulty of combinatorial optimization, probabilistic client sampling can be utilized [24]. In [24],
joint optimization of the convergence and communication overhead of wireless FL was studied.
However, as explained in Section 1, the applicability of [24] is limited by its simple model for FL.
In this work, the proposed Clipper framework is a meta algorithm that has general applicability.
Depending on the underlying FL algorithm and objective, Clipper can be used for FL with IID
or non-IID data, with or without consideration for robustness against data drift during inference,
and with unbiased or biased client sampling. A part of this work has appeared in a conference
paper [33]. It roughly corresponds to the limited case of Clipper-Unbiased. It does not consider the
general meta algorithmic framework, or discuss the cases of robust FL and biased client sampling.

Finally, we note that time-varying channels were also widely considered in FL with over-the-air
computation [34]. For example, joint client selection and power control was studied in [11] and
joint client selection and uplink beamforming design was studied in [14]. However, these methods
are specific to FL with analog transmission and aggregation. They are not applicable to our work.

3 A GENERAL FRAMEWORK OF ONLINE JOINT CLIENT SAMPLING AND POWER
ALLOCATION

We present a general algorithmic framework for joint client sampling and power allocation in the
online setting, where both the stochastically sampled data and the communication channels of
clients are unknown ahead of time. We adopt a stochastic network optimization approach that
takes into both the clients’ computation towards learning convergence and their communication
delay in each round, as well as the communication and power constraints. We then propose a
general meta algorithm to solve the stochastic network optimization problem based on an optimal
solution to each per-round subproblem.

3.1 Wireless FL System Model
We consider a client-server FL model where a central server coordinates the training of a global
ML model with multiple resource-constrained clients, e.g., mobile or IoT devices [2, 17, 20]. All the
training data are locally stored at the clients. In each training round, (i) the server broadcasts the
current global model and some control variables to a selected subset of clients, (ii) each sampled
client performs local model updates utilizing its local data, (iii) each sampled client sends the
updated model, potentially also some control variables, back to the server, and (iv) the server
aggregates the updated models via weighted averaging and updates the control variables.

It is clear that in each training round, models and some control variables are transmitted between
the server and the clients. For communication, we model the uplink transmission rate 𝑟 (𝑡 )𝑛 between
client 𝑛 and the server in the training round 𝑡 by the Shannon bound, i.e.,

𝑟
(𝑡 )
𝑛 = 𝐵 log2

(
1 + ℎ

(𝑡 )
𝑛 𝑃

(𝑡 )
𝑛

𝑁0

)
, (2)

where 𝐵 is the bandwidth between the clients and the server, 𝑁0 is the noise power, ℎ (𝑡 )
𝑛 is the

channel power gain of client 𝑛, and 𝑃 (𝑡 )
𝑛 is the allocated transmission power of client 𝑛. We denote

the vector of the allocated transmission power of all clients in round 𝑡 as 𝑷 (𝑡 ) = [𝑃 (𝑡 )
1 , . . . , 𝑃

(𝑡 )
𝑁

] and
the vector of all channel power gains in round 𝑡 as 𝒉(𝑡 ) = [ℎ (𝑡 )

1 , . . . , ℎ
(𝑡 )
𝑁

]. Then the communication
time of any client 𝑛 in training round 𝑡 is

𝑇
(𝑡 )
comm,𝑛 =

𝑀

𝑟
(𝑡 )
𝑛

, (3)

where𝑀 is the size of the transmitted model and some potential control variables in bits.
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We assume each client 𝑛 is sampled to participate in the training with probability 𝑞 (𝑡 )
𝑛 in round 𝑡

as an independent Bernoulli trial with a success probability 𝑞 (𝑡 )
𝑛 . Let 𝒒 (𝑡 ) = [𝑞 (𝑡 )

1 , . . . , 𝑞
(𝑡 )
𝑁

]. We use
𝑎
(𝑡 )
𝑛 to denote the indicator function of the event that client 𝑛 is sampled in round 𝑡 . We consider
time division multiple access (TDMA), so the expected total communication time by all clients in
round 𝑡 is

E[𝑇 (𝑡 )
total] = E𝒒 (𝑡 )

[
𝑁∑︁
𝑛=1

𝑎
(𝑡 )
𝑛 𝑇

(𝑡 )
comm,𝑛

]

=

𝑁∑︁
𝑛=1

𝑞
(𝑡 )
𝑛

©«
𝑀

𝐵 log2

(
1 + ℎ

(𝑡 )
𝑛 𝑃

(𝑡 )
𝑛

𝑁0

) ª®®¬ . (4)

For downlink transmission, we assume the server can broadcast the model and the control
variables, making the downlink transmission time negligible compared with the uplink transmission
time. Furthermore, since the computation time is independent of communication time for sampled
clients, we do not need to explicitly consider the time for local computation.

3.2 General Online Optimization Formulation
Our optimization objective considers both some general objectives of learning and the expected
per-round communication time. Let Φ(𝒒 (𝑡 ) ) be an arbitrary expression that captures some desired
property of learning with respect to the client sampling probabilities. For analytical convenience,
we assume that Φ(𝒒 (𝑡 ) ) is convex in 𝒒 (𝑡 ) . We will see that this assumption holds in all case studies
in Section 4, covering a wide range of FL scenarios. We emphasize here that the loss function of FL
does not need to be convex, e.g., our work is applicable to FL with non-convex neural networks.
Combining the expected per-round communication time in Section 3.1, we define our overall

objective in round 𝑡 as

𝑦0 (𝑡) = Φ
(
𝒒 (𝑡 )

)
+ 𝜆𝑐

𝑁∑︁
𝑛=1

𝑞
(𝑡 )
𝑛

𝑀

𝐵 log2

(
1 + ℎ

(𝑡 )
𝑛 𝑃

(𝑡 )
𝑛

𝑁0

) , (5)

where 𝜆𝑐 is a hyperparameter that can be tuned to trade off the learning outcome and communication
time. Note that in our objective, 𝐵,𝑀 , and 𝑁0 are fixed and known constants while 𝒒 (𝑡 ) and 𝑷 (𝑡 )

are the optimization variables to be determined. The randomness of communication channel is
in its power gain, i.e., ℎ (𝑡 )

𝑛 , which is assumed independent among all 𝑛 ∈ [𝑁 ] and all training
rounds 𝑡 ∈ {0, . . . ,𝑇 − 1}. The randomness in learning is captured in Φ(𝒒 (𝑡 ) ), and we assume
this randomness is independent over 𝑡 . Thus, the objective 𝑦0 (𝑡) is revealed in an online fashion,
such that in round 𝑡 , only the current realization of all random quantities is known and no future
information beyond 𝑡 is revealed.
We consider constraints on the transmission power. The first is that all clients have maximum

transmission power 𝑃max. The second is that each client 𝑛 has a long-term average power budget
𝑃𝑛 , which captures the requirement of energy conservation for devices with limited battery capac-
ity. Furthermore, to account for the limited wireless communication capacity, we impose a soft
constraint on the number of sampled clients by setting its expected value to𝑚. Thus, we obtain the
following stochastic optimization problem:

P1: min
{𝒒 (𝑡 ) },{𝑷 (𝑡 ) }

lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0

𝑦0 (𝑡) (6)
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subject to lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0

𝑃
(𝑡 )
𝑛 𝑞

(𝑡 )
𝑛 ≤ 𝑃𝑛, ∀𝑛 ∈ [𝑁 ], (7)

0 ≤ 𝑃
(𝑡 )
𝑛 ≤ 𝑃max, ∀𝑛 ∈ [𝑁 ], (8)

𝑁∑︁
𝑛=1

𝑞
(𝑡 )
𝑛 =𝑚, (9)

0 ≤ 𝑞
(𝑡 )
𝑛 ≤ 1, ∀𝑛 ∈ [𝑁 ], (10)

where 𝑇 is the terminal round of FL training, (6) is a time average of 𝑦0 (𝑡), (7) is the time average
constraint on the expected power, i.e., 𝑃 (𝑡 )

𝑛 𝑞
(𝑡 )
𝑛 , (8) is the constraints on maximum client power

per-round, (9) specifies the expected number of sampled clients, and (10) ensures that 𝑞 (𝑡 )
𝑛 is a valid

sampling probability.

3.3 Per-round Subproblems and Solutions
We observe that the optimization problem in P1 is an online optimization problem where the
objective is a time-average and the constraints contain both time-average constraints and constraints
of action sets. It is easy to check that a stationary randomized solution exists. Therefore, the general
min drift-plus-penalty framework of stochastic network optimization [21] is applicable to our
problem, and we only need to design a solution to the resultant per-round subproblems.

We first transform the long-term power constraints into queue stability. Let

𝑦
(𝑡 )
𝑛 = 𝑃

(𝑡 )
𝑛 𝑞

(𝑡 )
𝑛 − 𝑃𝑛, ∀𝑛 ∈ [𝑁 ] . (11)

Let 𝑍 (𝑡 )
𝑛 be the backlog of virtual queue 𝑛 in round 𝑡 . Define virtual queue update rules

𝑍
(𝑡+1)
𝑛 = max

{
𝑍

(𝑡 )
𝑛 + 𝑦 (𝑡 )

𝑛 , 0
}
, ∀𝑛 ∈ [𝑁 ] . (12)

Stacking all the queue backlogs at time 𝑡 into one vector, we obtain a vector Θ(𝑡). We define the
following standard Lyapunov function:

𝐿(Θ(𝑡)) = 1
2
∥Θ(𝑡)∥2

2 =
1
2

𝑁∑︁
𝑛=1

(
𝑍

(𝑡 )
𝑛

)2
. (13)

Then, the Lyapunov drift is
Δ(Θ(𝑡)) = E[𝐿(Θ(𝑡 + 1)) − 𝐿(Θ(𝑡)) |𝐿(Θ(𝑡))], (14)

and the drift-plus-penalty expression is
Δ(Θ(𝑡)) +𝑉E[𝑦0 (𝑡) |Θ(𝑡)], (15)

where 𝑉 ∈ R+ balances the trade-off between the Lyapunov drift and minimizing the objective
function. By [21, Lemma 4.6], we have the following upper bound on the drift-plus-penalty expres-
sion:

Δ(Θ(𝑡)) +𝑉E [𝑦0 (𝑡) |Θ(𝑡)] ≤ 𝐵0 +𝑉E[𝑦0 (𝑡) |Θ(𝑡)] +
𝑁∑︁
𝑛=1

𝑍
(𝑡 )
𝑛 E

[
𝑦
(𝑡 )
𝑛 |Θ(𝑡)

]
, (16)

where 𝐵0 is a positive constant. This leads to the following per-round subproblem:

P2: min
𝒒 (𝑡 ) ,𝑷 (𝑡 )

𝑉𝑦0 (𝑡) +
𝑁∑︁
𝑛=1

𝑍
(𝑡 )
𝑛

(
𝑃
(𝑡 )
𝑛 𝑞

(𝑡 )
𝑛 − 𝑃𝑛

)
(17)

s. t. 0 ≤ 𝑃
(𝑡 )
𝑛 ≤ 𝑃max, ∀𝑛 ∈ [𝑁 ],
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𝑁∑︁
𝑛=1

𝑞
(𝑡 )
𝑛 =𝑚,

0 ≤ 𝑞
(𝑡 )
𝑛 ≤ 1, ∀𝑛 ∈ [𝑁 ] .

It is clear that P2 is not directly decomposable into per-client subproblems, as the constraint
on the sum of sampling probabilities in (9) coalesces different clients. However, when Φ(𝒒 (𝑡 ) ) is
convex in 𝒒 (𝑡 ) , we have the following special bi-convex structure that induces an efficient solution:

• Given 𝑷 (𝑡 ) , the objective and constraints are convex in 𝒒 (𝑡 ) .
• Given 𝒒 (𝑡 ) , the objective and constraints are convex in 𝑷 (𝑡 ) . Furthermore, we note that the
objective of P2 can be written as

𝑉

(
Φ(𝒒 (𝑡 ) ) + 𝜆𝑐

𝑁∑︁
𝑛=1

𝑞
(𝑡 )
𝑛

𝑀

𝐵 log2

(
1 + ℎ

(𝑡 )
𝑛 𝑃

(𝑡 )
𝑛

𝑁0

) )
+

𝑁∑︁
𝑛=1

𝑍
(𝑡 )
𝑛

(
𝑃
(𝑡 )
𝑛 𝑞

(𝑡 )
𝑛 − 𝑃𝑛

)
.

Since Φ(𝒒 (𝑡 ) ) is independent of 𝑷 (𝑡 ) , now the optimization over 𝑷 (𝑡 ) can be equivalently
decomposed into 𝑁 subproblems. More importantly, in each of these subproblems, after
removing the parts that do not depend on 𝑷 (𝑡 ) , 𝑞 (𝑡 )

𝑛 is a common factor in both terms of the
sum, so that its value does not impact the optimization of 𝑃 (𝑡 )

𝑛 .
Hence, the following two-step approach suffices to compute a globally optimal solution.

Step 1: For each client 𝑛 ∈ [𝑁 ], the subproblem to solve for 𝑃 (𝑡 )
𝑛 is

min
𝑃
(𝑡 )
𝑛

𝑀𝑉𝜆𝑐

𝐵 log2

(
1 + ℎ

(𝑡 )
𝑛 𝑃

(𝑡 )
𝑛

𝑁0

) + 𝑍
(𝑡 )
𝑛 𝑃

(𝑡 )
𝑛 (18)

s. t. 0 ≤ 𝑃
(𝑡 )
𝑛 ≤ 𝑃max. (19)

Problem (18) is a single-variable convex optimization problem with a convex objective and a box
constraint. We now derive a closed-form solution to this problem. For ease of presentation, define
𝐴1 =

𝑉𝜆𝑐𝑀 log (2)
𝐵

, 𝐴2 =
ℎ
(𝑡 )
𝑛

𝑁0
, and 𝐴3 = 𝑍

(𝑡 )
𝑛 , where log denotes the natural logarithm. The objective

in (18) becomes 𝐴1

log(1+𝐴2𝑃
(𝑡 )
𝑛 )

+𝐴3𝑃
(𝑡 )
𝑛 . Setting its derivative to zero, we have(

1 +𝐴2𝑃
(𝑡 )
𝑛

) (
log

(
1 +𝐴2𝑃

(𝑡 )
𝑛

))2
=
𝐴1𝐴2

𝐴3
. (20)

Let

𝑥 =
log (1 +𝐴2𝑃

(𝑡 )
𝑛 )

2
. (21)

Substituting 𝑥 into (20), we obtain

𝑥 exp (𝑥) =
√︂

𝐴1𝐴2

4𝐴3
, (22)

where exp (𝑥) = 𝑒𝑥 is the natural exponential function of 𝑥 . Therefore

𝑥 =𝑊0

(√︂
𝐴1𝐴2

4𝐴3

)
, (23)

where𝑊0 is the principal branch of the Lambert W function. Note that since
√︃

𝐴1𝐴2
4𝐴3

≥ 0, 𝑥 is
non-negative and unique.
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Now we can recover 𝑃 (𝑡 )
𝑛 from 𝑥 by inverting (21). If this 𝑃 (𝑡 )

𝑛 falls within the range [0, 𝑃max],
it is the optimal power. Otherwise, it is easy to derive from the KKT conditions that the optimal
power is 𝑃max. Summarizing the above, we have

𝑃
(𝑡 )
𝑛 = min

((
exp

(
2𝑊0

(√
𝐴

2

))
− 1

)
𝑁0

ℎ
(𝑡 )
𝑛

, 𝑃max

)
, (24)

where 𝐴 =
𝑉𝜆𝑐𝑀 log (2)ℎ (𝑡 )

𝑛

𝐵𝑍
(𝑡 )
𝑛 𝑁0

.

Step 2: With 𝑷 (𝑡 ) computed from Step 1, the optimization problem becomes

min
𝒒 (𝑡 )

𝑉

(
Φ(𝒒 (𝑡 ) ) +

𝑁∑︁
𝑛=1

𝜆𝑐𝑞
(𝑡 )
𝑛 𝑀

𝐵 log2

(
1 + ℎ

(𝑡 )
𝑛 𝑃

(𝑡 )
𝑛

𝑁0

) )

+
𝑁∑︁
𝑛=1

𝑃
(𝑡 )
𝑛 𝑞

(𝑡 )
𝑛 𝑍

(𝑡 )
𝑛 (25)

s. t.
𝑁∑︁
𝑛=1

𝑞
(𝑡 )
𝑛 =𝑚,

0 ≤ 𝑞
(𝑡 )
𝑛 ≤ 1, ∀𝑛 ∈ [𝑁 ] .

This is a convex optimization problem in 𝒒 (𝑡 ) as the objective is convex and the constraints are
affine. An optimal solution can be found efficiently via standard convex optimization solvers [4].

3.4 Clipper Meta Algorithm
We are now ready to present the proposed Clipper meta algorithm. It utilizes some arbitrarily
given FL algorithm A, as well as the optimal solutions to the per-round subproblems described in
Section 3.3. It outputs a sequence of model parameters𝒘 (𝑡 ) as in any FL algorithm, while taking
into consideration our probabilistic client sampling and power allocation requirements.
For each training round 𝑡 , the server first determines the quantity Φ(𝒒 (𝑡 ) ) corresponding to

the learning algorithm A. It then estimates the current channel conditions 𝒉(𝑡 ) and solves P2 to
obtain the optimal 𝒒 (𝑡 ) and 𝑷 (𝑡 ) . The server further selects clients S (𝑡 ) based on 𝒒 (𝑡 ) by running
an independent Bernoulli trial for each client 𝑛 with success probability 𝑞 (𝑡 )

𝑛 . It then broadcasts
𝒘 (𝑡 ) and 𝑃 (𝑡 )

𝑛 to each client 𝑛 ∈ S (𝑡 ) . Each client 𝑛 ∈ S (𝑡 ) performs local model updates based on
the FL algorithm A and sends back the updated model using the allocation power 𝑃 (𝑡 )

𝑛 . Finally, the
server computes an updated global model via the aggregation rule in A and updates the virtual
queues via (12).

The overall procedure of Clipper is summarized in Algorithm 1. Note that in this meta algorithm,
how the FL algorithm A operates, e.g., how local model update is performed or how the server
aggregates local models, is not specified. We will complete all details of the learning part in each of
our three use cases in Section 4.

From our analysis in Section 3.3, the per-round optimization solution can be efficiently obtained
with an arbitrary precision of optimality that depends on the numerical convex solver in Step 2.
Suppose for each per-round subproblem we achieve an 𝜖-optimal solution. From [21, Theorem 4.8],

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. XX, No. X, Article . Publication date: X 2024.



10 Wen Xu, Ben Liang, Gary Boudreau, and Hamza Sokun

Algorithm 1: Clipper Meta Algorithm
Input: an FL algorithm A.
Output: {𝒘 (𝑡 ) }𝑡 ∈T .
1: Server initializes𝒘 (0) and virtual queues {𝑍 (0)

𝑛 }𝑁𝑛=1.
2: for each round 𝑡 = 0, 1, . . . ,𝑇 − 1 do
3: Server obtains the learning related quantity Φ(𝒒 (𝑡 ) ).
4: Server estimates 𝒉(𝑡 ) .
5: Server calculates 𝒒 (𝑡 ) , 𝑷 (𝑡 ) from P2.
6: Server selects clients S (𝑡 ) for A using 𝒒 (𝑡 ) .
7: Server broadcasts𝒘 (𝑡 ) and 𝑃 (𝑡 )

𝑛 to client 𝑛 ∈ S (𝑡 ) .
8: for each client 𝑛 ∈ S (𝑡 ) do
9: update the local model via update rule in A;
10: send the updated model to the server using 𝑃 (𝑡 )

𝑛 .
11: end for
12: Server aggregates the locally updated models via the aggregation rule in A.
13: Server updates the virtual queues via (12).
14: end for

our solution provides the following performance guarantee:

lim sup
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0

E[𝑦0 (𝑡)] ≤ 𝑦
opt
0 + 𝐵0 + 𝜖

𝑉
, (26)

where 𝑦opt0 is the optimal value of the time-average objective in P1. Furthermore, it is guaranteed
that the meta algorithm satisfies all the time average constraints when 𝑇 → ∞.

In each round of Clipper, the computational complexity is dominated by the convex optimization
solver in Step 2 to achieve a 𝜖-optimal solution, which is of complexity O(poly(𝑁 ) log(1/𝜖)), where
poly(𝑁 ) represents a polynomial of 𝑁 . There are well-studied numerical methods to solve convex
optimization problems in polynomial time, such as the interior point method. Details of their
operation and complexity can be found in standard references such as [4]. We emphasize here that
our solution requires a numerical solver only in Step 2.

4 CLIPPER CASE STUDIES
We now consider three representative scenarios of FL and show how they can be integrated with
Clipper. For each use case of Clipper, we derive a specific algorithm based on both the meta
algorithm and the original FL algorithm denoted by A.
Here, we first formalize the learning setting of FL that is common to all three use cases. We

consider distributed supervised learning. Let X be the input space and Y be the output space.
The space of data points isZ = X × Y. Any data distribution P is defined overZ. We consider
𝑁 unknown underlying data distributions P1, . . . ,P𝑁 , where each P𝑛 is the underlying data
distribution at client 𝑛 and can be different from the distribution of the other clients. The available
training datasetD𝑛 at each client 𝑛 is a finite-size independent sample of its underlying distribution
P𝑛 of size 𝐷𝑛 , i.e., D𝑛 = {𝑧𝑛,1, . . . , 𝑧𝑛,𝐷𝑛

}.
The hypothesis class F ⊆ {𝑓𝒘 | 𝑓𝒘 : X → Y} is a subset of all functions fromX toY. We assume

each hypothesis is parameterizable with parameters𝒘 ∈ W. We will use𝒘 and 𝑓𝒘 interchangeably
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in the paper. We define the loss function as
ℓ : F ×Z → R+,

where R+ is the set of all non-negative real numbers. The loss function ℓ (𝑓𝒘, 𝑧) measures the
discrepancy between the prediction 𝑓𝒘 (𝑥) and the actual label 𝑦 for any 𝑓𝒘 ∈ F and 𝑧 = (𝑥,𝑦) ∈ Z.
We also define the local loss function

𝑓𝑛 (𝒘) =
1

|D𝑛 |
∑︁
𝑖∈D𝑛

ℓ (𝒘, 𝑧𝑖 ),

which represents the local loss for any model𝒘 on local dataset D𝑛 . The learning objective is to
solve the optimization problem min𝒘∈W 𝑓 (𝒘) = ∑𝑁

𝑛=1 𝑝𝑛 𝑓𝑛 (𝒘) as shown in (1).
In all three of our use cases, we consider the common local model update rule in [20], which is

sometimes under the name local SGD [27]. Each sampled client 𝑛 ∈ S (𝑡 ) performs model updates
using local data via 𝐽 steps of local stochastic gradient descent (SGD), each step with a mini-batch
of uniformly sampled local data points. We let𝒘 (𝑡 )

𝑛,𝑗+1 be the local model after 𝑗 steps of SGD update.
For any mini-batch B𝑛 ⊆ D𝑛 , we define the mini-batch loss

𝑓𝑛 (𝒘 (𝑡 )
𝑛,𝑗

;B𝑛) =
1

|B𝑛 |
∑︁
𝑖∈B𝑛

ℓ (𝒘, 𝑧𝑖 ).

The local update rule of 𝑗-th local step is

𝒘 (𝑡 )
𝑛,𝑗+1 = 𝒘 (𝑡 )

𝑛,𝑗
− 𝜂∇𝑓𝑛

(
𝒘 (𝑡 )
𝑛,𝑗

;B (𝑡 )
𝑛,𝑗

)
, (27)

where 𝜂 is the learning rate and B (𝑡 )
𝑛,𝑗

⊆ D𝑛 is the uniformly at random sampled mini-batch in step
𝑗 of round 𝑡 . After 𝐽 steps of local updates, each sampled client sends back𝒘 (𝑡 )

𝑛,𝐽
to the server.

Note that the above FL local updating rule is used only for the purpose of illustration in these
case studies. Clipper can accommodate other updating rules.

4.1 Case One: Federated Learning with Unbiased Sampling
In this case, we consider an FL setting with unbiased aggregation on either IID or non-IID data
distributions. We use an unbiased scheme for model aggregation which renders the client sampling
also unbiased.

In such unbiased model aggregation, we need to compensate for the sampling probability 𝑞 (𝑡 )
𝑛 in

the aggregation rule as follows.

𝒘 (𝑡+1) = 𝒘 (𝑡 ) +
𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

(
𝒘 (𝑡 )
𝑛,𝐽

−𝒘 (𝑡 )
)
, (28)

where 𝑎 (𝑡 )𝑛 is an indicator function that evaluates to 1 if client 𝑛 ∈ S (𝑡 ) and 0 otherwise. Note that
𝒘 (𝑡+1) is an unbiased estimator of

∑𝑁
𝑛=1 𝑝

(𝑡 )
𝑛 𝒘 (𝑡 )

𝑛,𝐽
since

E𝒒 (𝑡 )
[
𝒘 (𝑡+1) ] = E𝒒 (𝑡 )

[
𝒘 (𝑡 ) +

𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

(
𝒘 (𝑡 )
𝑛,𝐽

−𝒘 (𝑡 )
)]

= 𝒘 (𝑡 ) +
𝑁∑︁
𝑛=1

𝑝𝑛

(
𝒘 (𝑡 )
𝑛,𝐽

−𝒘 (𝑡 )
)

=

𝑁∑︁
𝑛=1

𝑝𝑛𝒘
(𝑡 )
𝑛,𝐽

,
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where the second equality is by the linearity of expectation and the fact that E
𝑞
(𝑡 )
𝑛
[𝑎 (𝑡 )𝑛 ] = 𝑞

(𝑡 )
𝑛 for

any 𝑛.
We now provide convergence analysis for both the IID and non-IID data. We consider general

non-convex loss functions, which allow us to capture popular learning models such as neural
networks. The derived convergence bounds will then be used to construct Φ(𝒒 (𝑡 ) ).

4.1.1 Convergence Analysis: IID Data. We provide convergence analysis for the IID case, where we
assume P = P𝑛 for all 𝑛 ∈ [𝑁 ]. We make the following commonly used assumptions [3, 24, 29, 33].

Assumption 1 (Lower Boundedness). The global loss 𝑓 is lower bounded, i.e., there exists 𝑓 ∗

such that

𝑓 (𝒘) ≥ 𝑓 ∗, (29)

holds for all𝒘 ∈ W. 𝑓 ∗ is the optimal value of (1).

Assumption 2 (Smoothness). The global loss 𝑓 is 𝛽-smooth, i.e., there exists a positive 𝛽 such that

∥∇𝑓 (𝒘1) − ∇𝑓 (𝒘2)∥ ≤ 𝛽 ∥𝒘1 −𝒘2∥, (30)

holds for all𝒘1,𝒘2 ∈ W.

Assumption 3 (Unbiased local stochastic gradient). The stochastic gradient ∇𝑓𝑛 over any
mini-batch B𝑛 ⊆ D𝑛 is an unbiased estimator of the full gradient for the global loss 𝑓 , i.e.,

E[∇𝑓𝑛 (𝒘 ;B𝑛)] = ∇𝑓 (𝒘), (31)

holds ∀𝒘 ∈ W and ∀𝑛 ∈ [𝑁 ].

Assumption 4 (Bounded stochastic gradients). There exist 𝐺 > 0 such that

E[∥∇𝑓𝑛 (𝒘 ;B𝑛)∥2] ≤ 𝐺2, (32)

holds for all𝒘 ∈ W, all 𝑛 ∈ N , and all mini-batch B𝑛 ⊆ D𝑛 .

We obtain the following theorem by modifying the standard convergence analysis techniques
for stochastic optimization [3] and unbiased client sampling [24], with further consideration of
data sizes [33].

Theorem 1. Suppose Assumptions 1, 2, 3, and 4 hold, we have

1
𝑇

𝑇−1∑︁
𝑡=0

E[∥∇𝑓 (𝒘 (𝑡 ) )∥2] ≤ 2(𝑓 (𝒘 (0) ) − 𝑓 ∗)
𝜂𝑇 𝐽

+ 𝜂2𝛽2 (𝐽 − 1) (2𝐽 − 1)𝐺2

6

+ 𝛽𝜂𝐽

𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

𝑝𝑛

𝑞
(𝑡 )
𝑛

(
𝐺

(𝑡 )
𝑛

)2
, (33)

where 𝒘 (0) is the initial model parameters, 𝐺 (𝑡 )
𝑛 = E

[√︂∑𝐽 −1
𝑗=0

∇𝑓𝑛 (𝒘 (𝑡 )
𝑛,𝑗

;B (𝑡 )
𝑛,𝑗

)
2

]
, and 𝑓 ∗ is the

optimal solution of (1).

Proof. See Appendix A. □
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4.1.2 Convergence Analysis: non-IID Data. In the non-IID case, P𝑛’s can be different among the
clients. We require the same lower boundedness assumption in Assumption 1 as the IID case, but
Assumptions 2-4 need to be modified as follows.

Assumption 5 (Smoothness). Each 𝑓𝑛 is 𝛽-smooth, i.e., there exists a positive 𝛽 such that

∥∇𝑓𝑛 (𝒘1) − ∇𝑓𝑛 (𝒘2)∥ ≤ 𝛽 ∥𝒘1 −𝒘2∥,
holds ∀𝒘1,𝒘2 ∈ W.

Assumption 6 (Unbiased local stochastic gradient). The stochastic gradient ∇𝑓𝑛 over any
mini-batch B𝑛 ⊆ D𝑛 is an unbiased estimator of the full gradient for any local loss 𝑓𝑛 , i.e.,

E[∇𝑓𝑛 (𝒘 ;B𝑛)] = ∇𝑓𝑛 (𝒘), (34)

holds ∀𝒘 ∈ W and ∀𝑛 ∈ [𝑁 ].
Remark 1. Unlike the IID case, the local stochastic gradient is no longer an unbiased estimator

of the full gradient of the global loss. Instead, it is an unbiased estimator of the full gradient of the
corresponding local loss.

Assumption 7 (Bounded stochastic gradients). For each 𝑛 ∈ [𝑁 ], there exist 𝐺𝑛 > 0 such
that

E[∥∇𝑓𝑛 (𝒘 ;B𝑛)∥2] ≤ 𝐺2
𝑛,

holds for all𝒘 ∈ W and all mini-batch B𝑛 ⊆ D𝑛 .

With these assumptions, we are able to derive a convergence bound for any non-convex objectives,
which is stated in Theorem 2.

Theorem 2. Suppose Assumptions 1, 5, 6, and 7 hold, we have

1
𝑇

𝑇−1∑︁
𝑡=0

E[∥∇𝑓 (𝒘 (𝑡 ) )∥2] ≤ 2(𝑓 (𝒘 (0) ) − 𝑓 ∗)
𝜂𝑇 𝐽

+ 𝜂2𝛽2 (𝐽 − 1) (2𝐽 − 1)
6

𝑁∑︁
𝑛=1

𝑝𝑛𝐺
2
𝑛

+ 𝛽𝜂𝐽

𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

𝑝𝑛

𝑞
(𝑡 )
𝑛

(
𝐺

(𝑡 )
𝑛

)2
, (35)

where 𝒘 (0) is the initial model parameters, 𝐺 (𝑡 )
𝑛 = E

[√︂∑𝐽 −1
𝑗=0

∇𝑓𝑛 (𝒘 (𝑡 )
𝑛,𝑗

;B (𝑡 )
𝑛,𝑗

)
2

]
, and 𝑓 ∗ is the

optimal solution of (1).

Proof. See Appendix B. □

4.1.3 Clipper-Unbiased Algorithm Design. We observe that only the third term of the upper bounds
in Theorem 1 and in Theorem 2 is related to the sampling probability 𝒒. To minimize these upper
bounds, without any further assumption on any 𝒒 (𝑡 ) , we set 𝑞 (𝑡 )

𝑛 = 1 for all 𝑛 ∈ [𝑁 ] and 𝑡 ∈ T ,
since all 𝑝𝑛 (𝐺 (𝑡 )

𝑛 )2 are positive as well as 𝛽 , 𝜂, 𝐽 and 𝑇 . This is the case where all clients participate
in all training rounds. If we impose some constraints on the sampling probability, such as the
summation of sampling probabilities in all rounds being given, we can have a closed-form solution
as shown in Appendix C, which is similar to the work of optimal client sampling in FL [8]. To
further take into account communication as in Section 3, we set

Φ(𝒒 (𝑡 ) ) =
𝑁∑︁
𝑛=1

𝑝𝑛

𝑞
(𝑡 )
𝑛

(
𝐺

(𝑡 )
𝑛

)2
. (36)
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Algorithm 2: Clipper-Unbiased
Input: learning rate 𝜂, local epochs 𝐿, global rounds 𝑇 .
Output: {𝒘 (𝑡 ) }𝑇−1

𝑡=0 .
1: Server initializes𝒘 (0) and {𝑍 (0)

𝑛 }𝑁𝑛=1.
2: for each round 𝑡 = 0, 1, . . . ,𝑇 − 1 do
3: Server broadcasts current model𝒘 (𝑡 ) to all clients.
4: for each client 𝑛 do
5: run 𝐽 steps of training via (27).
6: send 𝐺 (𝑡 )

𝑛 to the server.
7: end for
8: Server estimates 𝒉(𝑡 ) .
9: Server calculates 𝒒 (𝑡 ) , 𝑷 (𝑡 ) from P2.
10: Server selects clients S (𝑡 ) based on 𝒒 (𝑡 ) .
11: Server broadcasts 𝑃 (𝑡 )

𝑛 to client 𝑛 ∈ S (𝑡 ) .
12: for each selected client 𝑛 ∈ S (𝑡 ) do
13: send the local model to the server use power 𝑃 (𝑡 )

𝑛 ;
14: end for
15: Server aggregates the local models via (28).
16: Server updates the virtual queues via (12).
17: end for

Note that Φ(𝒒 (𝑡 ) ) is a function of not only 𝒒 (𝑡 ) but also {𝐺 (𝑡 )
𝑛 }𝑁𝑛=1, which depends on the sampling

of previous rounds. However, the dependency is weak in general. When such dependency is
negligible, our analysis in Section 3 still applies. The effectiveness of using this form of Φ(𝒒 (𝑡 ) ) is
also empirically verified in our experiments in Section 5.1.
Combining our meta algorithm in Algorithm 1 and our choice of the FL algorithm in this case,

we arrive at a new algorithm, which we term Clipper-Unbiased. Its pseudo-code is given in
Algorithm 2. Note that in Clipper-Unbiased, in order to calculate 𝐺 (𝑡 )

𝑛 , the server should first
broadcast the model to all the clients and then the clients send back their estimated 𝐺 (𝑡 )

𝑛 . This is a
scalar, whose transmission overhead is negligible in comparison with the overhead of sending the
large global model that the client also needs to send.

4.2 Case Two: Robust Federated Learning
In real-world FL deployment, the data or statistical heterogeneity is another major issue. Due

to different user patterns or data collection procedures, it is natural that the data distribution
for inference may be different from that of training. Therefore, here we consider a robust FL
setting where our objective is to train a global model that generalizes well on an arbitrary reference
distribution. We adopt the framework of robust learning from [16] and extend it to FL with unbiased
probabilistic client sampling and model aggregation. Thus, we also assume that the server has a
small reference dataset, drawn from some arbitrary reference distribution, and each client has its
own local dataset from a potentially different source distribution.

4.2.1 Optimization Induced by Generalization Bound. In this case, we consider bounded loss func-
tions, which can be either convex or non-convex, so that we can solve for 𝒑 that will be integrated
into our algorithm of robust FL. Let P𝑟 and D𝑟 denote the underlying reference distribution and its
finite-sample dataset, respectively. From [16], we have a generalization bound on the excess risk of
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Algorithm 3: Clipper for Robust Federated Learning (Clipper-RobustFL)
Input: learning rate 𝜂, local epochs 𝐿, global rounds 𝑇 .
Output: {𝒘 (𝑡 ) }𝑡 ∈T .
1: // Phase (1)
2: Server broadcasts D𝑟 to all clients.
3: for each client 𝑛 ∈ [𝑁 ] in parallel do
4: Client 𝑛 estimates 𝑑F (D𝑟 ,D𝑛).
5: Client 𝑛 sends 𝑑F (D𝑟 ,D𝑛) to the server.
6: end for
7: Server solves 𝒑∗ via P3.
8:
9: // Phase (2)
10: Server initializes𝒘 (0) and {𝑍 (0)

𝑛 }𝑁𝑛=1.
11: for each round 𝑡 = 0, 1, . . . ,𝑇 − 1 do
12: Server broadcasts current model𝒘 (𝑡 ) to all clients.
13: for each client 𝑛 do
14: run 𝐽 steps of training via (27).
15: send 𝐺 (𝑡 )

𝑛 to the server.
16: end for
17: Server estimates 𝒉(𝑡 ) .
18: Server calculates 𝒒 (𝑡 ) , 𝑷 (𝑡 ) from P2.
19: Server selects clients S (𝑡 ) based on 𝒒 (𝑡 ) .
20: Server broadcasts 𝑃 (𝑡 )

𝑛 to client 𝑛 ∈ S (𝑡 ) .
21: for each selected client 𝑛 ∈ S (𝑡 ) do
22: send the local model to the server use power 𝑃 (𝑡 )

𝑛 .
23: end for
24: Server aggregates the local models via (41).
25: Server updates the virtual queues via (12).
26: end for

the optimal solution to problem (1) in terms of the reference distribution via Rademacher complexity
of the function class of bound losses induced by the models. By minimizing this generalization
upper bound of learning, we formulate the following optimization problem:

P3: min
𝒑

2
𝑁∑︁
𝑛=1

𝑝𝑛𝑑F (D𝑛,D𝑟 ) + 𝜆𝑟

√√√
𝑁∑︁
𝑛=1

𝑝2
𝑛

𝐷𝑛

(37)

s. t.
𝑁∑︁
𝑛=1

𝑝𝑛 = 1, (38)

0 ≤ 𝑝𝑛 ≤ 1, ∀𝑛 ∈ [𝑁 ], (39)

where 𝜆𝑟 ≥ 0 is a hyper-parameter and

𝑑F (D𝑛,D𝑟 ) = sup
𝑓𝒘 ∈F

(����� 1
𝐷𝑛

∑︁
𝑖∈D𝑛

ℓ (𝑓𝒘, 𝑧𝑖 ) −
1
𝐷𝑟

∑︁
𝑖∈D𝑟

ℓ (𝑓𝒘, 𝑧𝑖 )
�����
)
, (40)
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which measures the discrepancy between any two datasets D𝑛 and D𝑟 with respect to W. The
optimization problem P3 in (37)-(39) is convex as the objective is a convex function of 𝒑 and the
constraints form a convex set of 𝒑. We can solve it by using any standard convex optimization
solver efficiently [4]. Given an optimal solution 𝒑∗, we can use any suitable distributed algorithm,
e.g., FedAvg [20], to solve the resultant FL optimization problem (1).
Thus, the optimization problem P3 induces a robust FL algorithm A with arbitrary client

sampling. It has two phases as follows.
Phase 1: The server first broadcasts the reference dataset D𝑟 to all clients. Each client then

calculates its corresponding 𝑑F (D𝑟 ,D𝑛), and sends it back to the server. The server solves the
optimization problem P3 to get 𝒑∗.
Phase 2: The 𝒑-weighted empirical risk is minimized in a distributed manner by 𝑇 rounds of

training. We will use similar design choices as our previous use case: sampling each client 𝑛 with
probability 𝑞 (𝑡 )

𝑛 in training round 𝑡 , updating local models via (27), and aggregating the updated
local models via an unbiased aggregation rule:

𝒘 (𝑡+1) = 𝒘 (𝑡 ) +
𝑁∑︁
𝑛=1

𝑝∗𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

(
𝒘 (𝑡 )
𝑛,𝐽

−𝒘 (𝑡 )
)
. (41)

4.2.2 Clipper-RobustFL Algorithm Design. We observe that phase 2 of the robust FL above performs
FL over non-IID data distributions as in our previous use case. Since local datasets D1,D2, . . . ,D𝑁

and D𝑟 can be different, we can also apply the convergence analysis for non-IID data distributions
in Theorem 2, where 𝑝𝑛 is replaced by 𝑝∗𝑛 . Still, only the third term of the upper bound is related to
the sampling probability 𝒒. Hence, we set

Φ(𝒒 (𝑡 ) ) =
𝑁∑︁
𝑛=1

𝑝∗𝑛

𝑞
(𝑡 )
𝑛

(
𝐺

(𝑡 )
𝑛

)2
. (42)

Similar to (36), this form of Φ(𝒒 (𝑡 ) ) also depends on {𝐺 (𝑡 )
𝑛 }𝑁𝑛=1, but its effectiveness is empirically

verified in our experiments in Section 5.2. Thus integrating the Clipper meta algorithm with the
robust FL algorithm A above, we obtain a new algorithm termed Clipper-RobustFL. Its pseudo-
code is given in Algorithm 3. Note that in Clipper-RobustFL, we need to estimate 𝑑F (D𝑟 ,D𝑛) for
all 𝑛 to solve 𝒑∗ from P3. However, this is performed only once before the training, and each client
only transmits one float number to the server.

4.3 Case Three: Biased Client Sampling
In this case, we consider an FL algorithm with biased client sampling. Bias is introduced when

we perform model aggregation at the server without compensating for the sampling probability
𝑞
(𝑡 )
𝑛 as follows:

𝒘 (𝑡+1) = 𝒘 (𝑡 ) +
∑︁

𝑛∈S (𝑡 )

𝑝𝑛

(
𝒘 (𝑡 )
𝑛,𝐽

−𝒘 (𝑡 )
)
, (43)

where S (𝑡 ) is the set of sampled clients with potentially different sampling probabilities, and𝒘 (𝑡 )
𝑛,𝐽

is
the updated model from client 𝑛. Clearly,𝒘 (𝑡+1) is no longer an unbiased estimator of

∑𝑁
𝑛=1 𝑝

(𝑡 )
𝑛 𝒘 (𝑡 )

𝑛,𝐽
.

Specifically, we consider a state-of-the-art biased client sampling algorithm called Power-of-
Choice [9]. The original idea of [9] is to select clients with top𝑚 largest local loss of the current
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Algorithm 4: Clipper-Biased
Input: learning rate 𝜂, local epochs 𝐿, global rounds 𝑇 .
Output: {𝒘 (𝑡 ) }𝑡 ∈T .
1: Server initializes𝒘 (0) and {𝑍 (0)

𝑛 }𝑁𝑛=1.
2: for each round 𝑡 = 0, 1, . . . ,𝑇 − 1 do
3: Server broadcasts current model𝒘 (𝑡 ) to all clients.
4: for each client 𝑛 do
5: pick a mini-batch of samples B (𝑡 )

𝑛 ∈ D𝑛 .
6: send loss estimation 𝑓𝑛 (𝒘 (𝑡 ) ;B (𝑡 )

𝑛 ) to the server.
7: end for
8: Server estimates 𝒉(𝑡 ) .
9: Server calculates 𝒒 (𝑡 ) , 𝑷 (𝑡 ) from P2.
10: Server selects clients S (𝑡 ) based on 𝒒 (𝑡 ) .
11: Server broadcasts 𝑃 (𝑡 )

𝑛 to client 𝑛 ∈ S (𝑡 ) .
12: for each selected client 𝑛 ∈ S (𝑡 ) do
13: run 𝐽 steps of training via (27).
14: send the local model to the server use power 𝑃 (𝑡 )

𝑛 .
15: end for
16: Server aggregates the local models via (43).
17: Server updates the virtual queues via (12).
18: end for

model in each round 𝑡 . The problem can be formulated as the following maximization:

P4: max
𝒒 (𝑡 )

𝑁∑︁
𝑛=1

𝑞
(𝑡 )
𝑛 𝑓𝑛

(
𝒘 (𝑡 ) ;B (𝑡 )

𝑛

)
(44)

s. t.
𝑁∑︁
𝑛=1

𝑞
(𝑡 )
𝑛 =𝑚, (45)

𝑞
(𝑡 )
𝑛 ∈ {0, 1}, ∀𝑛 ∈ [𝑁 ] . (46)

Note that here 𝑞 (𝑡 )
𝑛 only takes values of zero or one, resulting in a mixed integer programming

problem, which does not allow the general probabilistic client sampling. Therefore, we relax the
integer constraints to allow sampling with a flexible probability. The new optimization problem is
as follows:

P5: min
𝒒 (𝑡 )

−
𝑁∑︁
𝑛=1

𝑞
(𝑡 )
𝑛 𝑓𝑛

(
𝒘 (𝑡 ) ;B (𝑡 )

𝑛

)
(47)

s. t.
𝑁∑︁
𝑛=1

𝑞
(𝑡 )
𝑛 =𝑚, (48)

0 ≤ 𝑞
(𝑡 )
𝑛 ≤ 1, ∀𝑛 ∈ [𝑁 ], (49)

Then we can set Φ(𝒒 (𝑡 ) ) to be the objective (47) in P5, i.e.,

Φ(𝒒 (𝑡 ) ) = −
𝑁∑︁
𝑛=1

𝑞
(𝑡 )
𝑛 𝑓𝑛

(
𝒘 (𝑡 ) ;B (𝑡 )

𝑛

)
. (50)
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(a) test accuracy (b) training loss

Fig. 1. Comparison of algorithms on IID data in the homogeneous communication setting.

(a) test accuracy (b) training loss

Fig. 2. Comparison of algorithms on IID data in the heterogeneous communication setting.

This allows us to integrate Clipper with biased client sampling to produce a new algorithm
termed Clipper-Biased. Its pseudo code is given in Algorithm 4. Here Φ(𝒒 (𝑡 ) ) is a function of not
only 𝒒 (𝑡 ) but also𝒘 (𝑡 ) , which weakly depends on the sampling of previous rounds. The effectiveness
of this form of Φ(𝒒 (𝑡 ) ) is empirically verified in our experiments in Section 5.3. Note that in Clipper-
Biased, the clients do not need to estimate and send the norms of the gradients. However, each
client still needs to estimate the local loss and transmit it to the server in each training round.
Fortunately, such extra communication consists of only a single float number for each client.

5 NUMERICAL EVALUATION
We conduct experiments on classification problems using the Fashion-MNIST dataset [31]. For the
learning model, we use a 2-layer MLP, with 300 and 100 neurons in the layers, and ReLU activation
functions. We use PyTorch version 2.0.1 [23] as the programming framework.
For communication modeling, we set parameters similar to [24]. We assume bandwidth 𝐵 = 22

MHz and noise power 𝑁0 = 2× 10−8 W. The communication channels are time-varying. Specifically,
we consider an independent Rayleigh fading channel from each client to the server, resulting in
ℎ
(𝑡 )
𝑛 following an exponential distribution. Furthermore, we experiment with both homogeneous
and heterogeneous communication settings. For the homogeneous setting, the mean of each ℎ (𝑡 )

𝑛 is
fixed at 2 × 10−5. For the heterogeneous setting, ℎ (𝑡 )

𝑛 is 2 × 10−5 for half of the clients while ℎ (𝑡 )
𝑛 is

2 × 10−6 for the other half of the clients, representing the scenario where the distances between
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(a) test accuracy (b) training loss

Fig. 3. Comparison of algorithms on non-IID data in the homogeneous communication setting.

(a) test accuracy (b) training loss

Fig. 4. Comparison of algorithms on non-IID data in the heterogeneous communication setting.

clients and the server can be different. We set the long-term power constraints 𝑃𝑛 = 0.01 W for all
𝑛, and maximum power 𝑃max = 1 W. We set 𝑉 = 1.

We consider the following benchmarks, which do not explicitly consider communication in client
sampling.

• Uniform [20]: it is our probablistic client sampling version of FedAvg [20] with uniform
sampling probabilities. This is the main comparison benchmark for Clipper-Unbiased.

• Robust [16]: it first solves P3 to get 𝒑 and then performs FL with unbiased aggregation
and uniform sampling probabilities. This is the main comparison benchmark for Clipper-
RobustFL.

• Power-of-Choice [9]: it selects top𝑚 clients with highest loss in each round. This is the
main comparison benchmark for Clipper-Biased.

• OCS [8]: it finds sampling probabilities via (64), which optimizes the convergence rate with
constraints on the expected number of clients.

• All Clients: it selects all clients for participation in all rounds. It utilizes all data but neither
considers robustness nor communication overhead.

To satisfy the long-term power constraints of these benchmarks that do not consider power
allocation, each sampled client transmits with power 𝑃𝑛/𝑞 (𝑡 )

𝑛 in round 𝑡 . Note that we do not
numerically compare with [24] here since it does not control the expected number of sampled
clients and hence cannot be applied in our system.
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(a) test accuracy (b) training loss

Fig. 5. Comparison of algorithms on drifted data distributions in the heterogeneous communication setting.

5.1 Clipper-Unbiased
We consider FL over both IID and non-IID data with unbiased aggregation. Each client 𝑛 contains
5000 data points independently drawn from the whole training dataset uniformly at random for
the settings of IID data, while each client 𝑛 only contains 5000 data points of the 𝑛th label for the
settings of non-IID data. In each round, we sample on average𝑚 = 5 clients from a total of 𝑁 = 10
clients. We set the number of communication rounds 𝑇 = 50000, batch size to 1, the learning rate
to 0.001, and 𝜆𝑐 = 10.

The results of Uniform, OCS, All Clients, and Clipper-Unbiased over IID data are shown in
Fig. 1 and Fig. 2, respectively for homogeneous and heterogeneous communication settings. For the
homogeneous communication setting, we observe that Clipper-Unbiased achieves similar model
performance after 50000 rounds compared with OCS, Uniform, and All Clients. However, it saves
a significant amount of communication overhead, so that it reaches the same accuracy in much
shorter wall-clock time. For the heterogeneous communication setting, Clipper-Unbiased still
outperforms all other algorithms. Similar results over non-IID data are observed in Fig. 3 and Fig. 4,
respectively for homogeneous and heterogeneous communication settings. For example, as shown
in Fig. 3, to reach 74% accuracy in the homogeneous communication setting, Clipper-Unbiased
requires only 31613 seconds, which is 24.77% reduction from the 42027 seconds for Uniform, 17.64%
reduction from the 38382 seconds for OCS, and more than 47.31% reduction from All Clients,
which does not even reach the desired accuracy in 60000 seconds. Similarly, as shown in Fig. 4, to
reach 74% accuracy in the heterogeneous communication setting, Clipper-Unbiased takes only
61345 seconds, which is 34.44% reduction from the 93567 seconds for Uniform, 23.91% reduction
from the 80623 seconds for OCS, and more than 38.66% reduction from All Clients, which does
not reach the desired accuracy in 100000 seconds .

5.2 Clipper-RobustFL
To reduce the complexity in estimating 𝑑F (D𝑛,D𝑟 ), we follow the approach in [16] to focus on
binary classification problems. We combine the original classes 0 to 4 as the new class 0, and the
original classes 5 to 9 as the new class 1. We set 𝑁 = 10 clients, where each client contains 5000 data
points independently drawn from the new training dataset uniformly at random. However, unlike
the IID or non-IID setting in Section 5.1, we further flip 50% of the labels at a random client to model
distribution drift. The reference dataset contains 5000 data points drawn uniformly at random from
the remaining training dataset. We set the number of communication rounds 𝑇 = 20000, the batch
size to 1, the learning rate to 0.001,𝑚 = 5, 𝜆𝑟 = 1, and 𝜆𝑐 = 100.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. XX, No. X, Article . Publication date: X 2024.



Clipper: Online Joint Client Sampling and Power Allocation for Wireless Federated Learning 21

(a) test accuracy (b) training loss

Fig. 6. Comparison of algorithms with biased sampling in the homogeneous communication setting.

(a) test accuracy (b) training loss

Fig. 7. Comparison of algorithms with biased sampling in the heterogeneous communication setting.

The results of Uniform, Robust, Clipper-RobustFL, and All Clients are shown in Fig. 5 for
the heterogeneous communication setting. Here, the test accuracy refers to testing over data drawn
from the distribution of the reference dataset. We observe that, in both cases, Clipper-RobustFL
does not produce the lowest training loss. Yet it reaches the highest accuracy with the least amount
of wall-clock time, owning to its proper prediction of the differing data distributions. Specifically,
to reach 88% accuracy in the heterogeneous communication setting, Clipper-RobustFL takes 5884
seconds, which is a 63.80% reduction from the 16257 seconds for Uniform, a 60.10% reduction from
the 14748 seconds for Robust, and 80.51% from the 30188 seconds for All Clients. Results of the
homogeneous communication setting are similar and thus omitted here.

5.3 Clipper-Biased
The results of Power-of-Choice, Clipper-Biased, and All Clients are shown in Fig. 6 and
Fig. 7, respectively for homogeneous and heterogeneous communication settings. We observe that
in both homogeneous and heterogeneous communication settings, as in the previous cases, all
tested algorithms are able to reach the highest accuracy, but Clipper-Bias do so with substantially
reduced training time. For example, to reach 88% accuracy, it requires only 664 seconds in the
homogeneous communication setting, compared with the 1042 seconds for Power-of-Choice and
the 3389 seconds for All Clients. In the heterogeneous communication setting, Clipper-Bias
requires only 1925 seconds, which is a 69.75% reduction from the 6362 seconds for All Clients
and is competitive with Power-of-Choice.
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6 CONCLUSION
In this work, we propose a general framework for online optimization in wireless FL that jointly
considers client sampling and power allocation with considerations for both learning and commu-
nication time. We develop an efficient meta algorithm, termed Clipper, based on optimal solutions
to the per-round subproblems resulting from a Lyapunov optimization approach. Then, we discuss
three different use cases of wireless FL in detail, demonstrating that Clipper can be integrated with
a diverse range of FL algorithms and objectives. Our experiments show that our communication-
aware online client sampling and power allocation approach can significantly reduce the wall-clock
training time in all use cases. We remark here that while we have presented three representative
use cases, the general applicability of Clipper is not limited by these examples.
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A PROOF OF THEOREM 1
Proof. For ease of notation, we use 𝑔𝑛 (𝒘) to represent the stochastic gradient of 𝑓𝑛 (𝒘). By the

unbiased aggregation rule in (28), we have

𝒘 (𝑡+1) = 𝒘 (𝑡 ) +
𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

(𝒘 (𝑡 )
𝑛,𝐿

−𝒘 (𝑡 )
𝑛,0 )

= 𝒘 (𝑡 ) − 𝜂

𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

). (51)

From the 𝛽-smoothness of 𝑓 in Assumption 2 and substituting the update rule in (51), we have

𝑓 (𝒘 (𝑡+1) ) − 𝑓 (𝒘 (𝑡 ) )

≤ ∇𝑓 (𝒘 (𝑡 ) )𝑇 (𝒘 (𝑡+1) −𝒘 (𝑡 ) ) + 𝛽

2
∥𝒘 (𝑡+1) −𝒘 (𝑡 ) ∥2

≤ −∇𝑓 (𝒘 (𝑡 ) )𝑇 (𝜂
𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)) + 𝛽𝜂2

2
∥

𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2. (52)

Taking expectation over (52), we have

E[𝑓 (𝒘 (𝑡+1) )] − 𝑓 (𝒘 (𝑡 ) )

≤ −∇𝑓 (𝒘 (𝑡 ) )𝑇 (E[𝜂
𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)]) + 𝛽𝜂2

2
E[∥

𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2]

(𝑎)
= −∇𝑓 (𝒘 (𝑡 ) )𝑇 (𝜂

𝑁∑︁
𝑛=1

𝑝𝑛

𝐽 −1∑︁
𝑗=0

E[∇𝑓 (𝒘 (𝑡 )
𝑛,𝑗

)]) + 𝛽𝜂2

2
E[∥

𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2]

= 𝜂

𝐽 −1∑︁
𝑗=0

−E[∇𝑓 (𝒘 (𝑡 ) )𝑇 (
𝑁∑︁
𝑛=1

𝑝𝑛∇𝑓 (𝒘 (𝑡 )
𝑛,𝑗

))]︸                                      ︷︷                                      ︸
𝐴

+𝛽𝜂
2

2
E[∥

𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2]︸                                  ︷︷                                  ︸
𝐵

,

where (𝑎) is by the facts that 𝑎 (𝑡 )𝑛 and 𝑔𝑛 (·) are independent, E[𝑎 (𝑡 )𝑛 ] = 𝑞
(𝑡 )
𝑛 , and E[𝑔𝑛 (𝒘 (𝑡 )

𝑛,𝑗
)] =

E[∇𝑓 (𝒘 (𝑡 )
𝑛,𝑗

)] as in Assumption 3.
We now give a bound on 𝐴 as follows

− E[∇𝑓 (𝒘 (𝑡 ) )𝑇 (
𝑁∑︁
𝑛=1

𝑝𝑛∇𝑓 (𝒘 (𝑡 )
𝑛,𝑗

))]

= −E[∇𝑓 (𝒘 (𝑡 ) )𝑇 (
𝑁∑︁
𝑛=1

𝑝𝑛∇𝑓 (𝒘 (𝑡 )
𝑛,𝑗

) − ∇𝑓 (𝒘 (𝑡 ) ) + ∇𝑓 (𝒘 (𝑡 ) ))]
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= E[∇𝑓 (𝒘 (𝑡 ) )𝑇 (∇𝑓 (𝒘 (𝑡 ) ) −
𝑁∑︁
𝑛=1
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2
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2
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)∥2] − 1
2
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𝑛,𝑗
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2
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2
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2
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2
E[∥∇𝑓 (𝒘 (𝑡 ) )∥2], (53)

where (𝑎) is by 𝒂𝑇𝒃 ≤ (𝒂2 + 𝒃2)/2, (𝑏) is by Jensen’s inequality, (𝑐) is by the 𝛽-smoothness of
𝑓 in Assumption 2, (𝑑) is by the substituting the local update rule in (27), and (𝑒) is by Jensen’s
inequality.
We then give a bound on 𝐵 as follows
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≤
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)∥2]
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=
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𝑝𝑛
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𝑛
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𝑗=0

𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2]

(𝑑 )
≤ 𝐽

𝑁∑︁
𝑛=1

𝑝𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

E[∥𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2], (54)

where (𝑎) is by Jensen’s inequality, (𝑏) is by the independence of 𝑎 (𝑡 )𝑛 and 𝑔𝑛 (·), (𝑐) is by the fact
that E[(𝑎 (𝑡 )𝑛 )2] = 𝑞

(𝑡 )
𝑛 , and (𝑑) is by Jensen’s inequality again.

Combining the bounds of 𝐴 in (53) and 𝐵 in (54), we obtain

E[𝑓 (𝒘 (𝑡+1) )] − 𝑓 (𝒘 (𝑡 ) )

≤ 𝜂3𝛽2

2

𝑁∑︁
𝑛=1

𝑝𝑛

𝐽 −1∑︁
𝑗=0

𝑗

𝑗−1∑︁
𝑖=0

E[∥𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑖

)∥2] − 𝜂𝐽

2
E[∥∇𝑓 (𝒘 (𝑡 ) )∥2]
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+ 𝛽𝜂2 𝐽

2

𝑁∑︁
𝑛=1

𝑝𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

E[∥𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2] . (55)

Rearranging terms, summing over 𝑡 from 0 to 𝑇 − 1, taking total expectation, we have

1
𝑇

𝑇−1∑︁
𝑡=0

E[∥∇𝑓 (𝒘 (𝑡 ) )∥2]

≤ 2(𝑓 (𝒘 (0) ) − 𝑓 ∗)
𝜂𝑇 𝐽

+ 𝜂2𝛽2

𝑇 𝐽

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

𝑝𝑛

𝐽 −1∑︁
𝑗=0

𝑖

𝑗−1∑︁
𝑖=0

E[∥𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑖

)∥2]

+ 𝛽𝜂

𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

𝑝𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

E[∥𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2]

≤ 2(𝑓 (𝒘 (0) ) − 𝑓 ∗)
𝜂𝑇 𝐽

+ 𝜂2𝛽2 (𝐽 − 1) (2𝐽 − 1)𝐺2

6

+ 𝛽𝜂𝐽

𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

𝑝𝑛

𝑞
(𝑡 )
𝑛

(𝐺 (𝑡 )
𝑛 )2 . (56)

□

B PROOF OF THEOREM 2
Proof. We first show that the global loss 𝑓 is also 𝛽-smooth under Assumption 5. For all𝒘1 and

𝒘2 in W, we have

∥∇𝑓 (𝒘1) − ∇𝑓 (𝒘2)∥
(𝑎)
= ∥

𝑁∑︁
𝑛=1

𝑝𝑛∇𝑓𝑛 (𝒘1)−
𝑁∑︁
𝑛=1

𝑝𝑛∇𝑓𝑛 (𝒘2)∥

(𝑏 )
≤

𝑁∑︁
𝑛=1

𝑝𝑛 ∥∇𝑓𝑛 (𝒘1) − ∇𝑓𝑛 (𝒘2)∥

(𝑐 )
≤

𝑁∑︁
𝑛=1

𝑝𝑛𝛽 ∥𝒘1 −𝒘2∥

= 𝛽 ∥𝒘1 −𝒘2∥, (57)

where (𝑎) is by the definition of global loss 𝑓 in (1), (𝑏) is by triangle inequality, and (𝑐) is by the
𝛽-smoothness of each 𝑓𝑛 .
Similarly to the proof of Theorem 1, where we leverage the 𝛽-smoothness of 𝑓 and the update

rule in (51), we have

E[𝑓 (𝒘 (𝑡+1) )] − 𝑓 (𝒘 (𝑡 ) )

≤ −∇𝑓 (𝒘 (𝑡 ) )𝑇 (E[𝜂
𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)]) + 𝛽𝜂2

2
E[∥

𝑁∑︁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2]

(𝑎)
= −∇𝑓 (𝒘 (𝑡 ) )𝑇 (𝜂

𝑁∑︁
𝑛=1

𝑝𝑛

𝐽 −1∑︁
𝑗=0

E[∇𝑓𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)]) + 𝐵
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= 𝜂

𝐽 −1∑︁
𝑗=0

−E[∇𝑓𝑛 (𝒘 (𝑡 ) )𝑇 (
𝑁∑︁
𝑛=1

𝑝𝑛∇𝑓 (𝒘 (𝑡 )
𝑛,𝑗

))]︸                                       ︷︷                                       ︸
𝐶

+𝐵, (58)

where (𝑎) is by the facts that 𝑎 (𝑡 )𝑛 and 𝑔𝑛 (·) are independent, E[𝑎 (𝑡 )𝑛 ] = 𝑞
(𝑡 )
𝑛 , and E[𝑔𝑛 (𝒘 (𝑡 )

𝑛,𝑗
)] =

E[∇𝑓𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)]; and 𝐵 = E[∥∑𝑁
𝑛=1

𝑝𝑛𝑎
(𝑡 )
𝑛

𝑞
(𝑡 )
𝑛

∑𝐽 −1
𝑗=0 𝑔𝑛 (𝒘

(𝑡 )
𝑛,𝑗

)∥2] has the same definition as in the proof of
Theorem 1 in Appendix A.
We now give a bound on 𝐶 as follows

− E[∇𝑓 (𝒘 (𝑡 ) )𝑇 (
𝑁∑︁
𝑛=1

𝑝𝑛∇𝑓𝑛 (𝒘 (𝑡 )
𝑛,𝑗

))]

= −E[∇𝑓 (𝒘 (𝑡 ) )𝑇 (
𝑁∑︁
𝑛=1

𝑝𝑛∇𝑓𝑛 (𝒘 (𝑡 )
𝑛,𝑗

) − ∇𝑓 (𝒘 (𝑡 ) ) + ∇𝑓 (𝒘 (𝑡 ) ))]

= E[∇𝑓 (𝒘 (𝑡 ) )𝑇 (∇𝑓 (𝒘 (𝑡 ) ) −
𝑁∑︁
𝑛=1

𝑝𝑛∇𝑓𝑛 (𝒘 (𝑡 )
𝑛,𝑗

))] − E[∇𝑓 (𝒘 (𝑡 ) )𝑇∇𝑓 (𝒘 (𝑡 ) )]

(𝑎)
≤ 1

2
E[∥∇𝑓 (𝒘 (𝑡 ) )∥2] − E[∥∇𝑓 (𝒘 (𝑡 ) )∥2] + 1

2
E[∥∇𝑓 (𝒘 (𝑡 ) ) −

𝑁∑︁
𝑛=1

𝑝𝑛∇𝑓𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2]

=
1
2
E[∥

𝑁∑︁
𝑛=1

𝑝𝑛 (∇𝑓𝑛 (𝒘 (𝑡 ) ) − ∇𝑓𝑛 (𝒘 (𝑡 )
𝑛,𝑗

))∥2] − 1
2
E[∥∇𝑓 (𝒘 (𝑡 ) )∥2]

(𝑏 )
≤ 1

2

𝑁∑︁
𝑛=1

𝑝𝑛E[∥∇𝑓𝑛 (𝒘 (𝑡 ) ) − ∇𝑓𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2] − 1
2
E[∥∇𝑓 (𝒘 (𝑡 ) )∥2]

(𝑐 )
≤ 𝛽2

2

𝑁∑︁
𝑛=1

𝑝𝑛E[∥𝒘 (𝑡 ) −𝒘 (𝑡 )
𝑛,𝑗

∥2] − 1
2
E[∥∇𝑓 (𝒘 (𝑡 ) )∥2]

(𝑑 )
≤ 𝛽2

2

𝑁∑︁
𝑛=1

𝑝𝑛E[∥
𝑗−1∑︁
𝑖=0

𝜂𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑖

)∥2] − 1
2
E[∥∇𝑓 (𝒘 (𝑡 ) )∥2]

(𝑒 )
≤ 𝜂2𝛽2 𝑗

2

𝑁∑︁
𝑛=1

𝑝𝑛

𝑗−1∑︁
𝑖=0

E[∥𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑖

)∥2] − 1
2
E[∥∇𝑓 (𝒘 (𝑡 ) )∥2], (59)

where (𝑎) is by 𝒂𝑇𝒃 ≤ (𝒂2 + 𝒃2)/2, (𝑏) is by Jensen’s inequality, (𝑐) is by the 𝛽-smoothness of each
𝑓𝑛 in Assumption 5, (𝑑) is by the substituting the local update rule in (27), and (𝑒) is by Jensen’s
inequality.

Combining the bounds of 𝐶 in (59) and 𝐵 in (54), we obtain

E[𝑓 (𝒘 (𝑡+1) )] − 𝑓 (𝒘 (𝑡 ) )

≤ 𝜂3𝛽2

2

𝑁∑︁
𝑛=1

𝑝𝑛

𝐽 −1∑︁
𝑗=0

𝑗

𝑗−1∑︁
𝑖=0

E[∥𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑖

)∥2] − 𝜂𝐽

2
E[∥∇𝑓 (𝒘 (𝑡 ) )∥2]

+ 𝛽𝜂2 𝐽

2

𝑁∑︁
𝑛=1

𝑝𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

E[∥𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2] .
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Rearranging terms, summing over 𝑡 from 0 to 𝑇 − 1, taking total expectation, we have

1
𝑇

𝑇−1∑︁
𝑡=0

E[∥∇𝑓 (𝒘 (𝑡 ) )∥2]

≤ 2(𝑓 (𝒘 (0) ) − 𝑓 ∗)
𝜂𝑇 𝐽

+ 𝜂2𝛽2

𝑇 𝐽

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

𝑝𝑛

𝐽 −1∑︁
𝑗=0

𝑖

𝑗−1∑︁
𝑖=0

E[∥𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑖

)∥2] + 𝛽𝜂

𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

𝑝𝑛

𝑞
(𝑡 )
𝑛

𝐽 −1∑︁
𝑗=0

E[∥𝑔𝑛 (𝒘 (𝑡 )
𝑛,𝑗

)∥2]

≤ 2(𝑓 (𝒘 (0) ) − 𝑓 ∗)
𝜂𝑇 𝐽

+ 𝜂2𝛽2 (𝐽 − 1) (2𝐽 − 1)
6𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

𝑝𝑛𝐺
2
𝑛 + 𝛽𝜂𝐽

𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

𝑝𝑛

𝑞
(𝑡 )
𝑛

(𝐺 (𝑡 )
𝑛 )2.

□

C CLOSED FORM SOLUTIONWITH CONSTRAINTS ON EXPECTED NUMBER OF
SAMPLED CLIENTS

Suppose we want to select𝑚 ∈ (0, 𝑁 ] clients on average in each training round. For simplicity,
let 𝐴𝑛 = 𝑝𝑛 (𝐺 (𝑡 )

𝑛 )2 > 0, 𝑥𝑛 = 𝑞
(𝑡 )
𝑛 , and 𝒙 = [𝑥1, . . . , 𝑥𝑁 ]. The general optimization problem can be

formulated as

min
𝒙

𝑁∑︁
𝑛=1

𝐴𝑛

𝑥𝑛
(60)

s. t.
𝑁∑︁
𝑛=1

𝑥𝑛 =𝑚 (61)

0 ≤ 𝑥𝑛 ≤ 1, ∀𝑛 ∈ [𝑁 ] . (62)
It is a convex optimization problem and any solution satisfying the KKT conditions is optimal.
Closed-form solutions can be derived from the KKT conditions (similar to [12, Lemma 2]). Without
loss of generality, we assume 0 < 𝐴1 ≤ 𝐴2 ≤ · · · ≤ 𝐴𝑁 . Let 𝑘 be the largest integer such that
0 < 𝑚 + 𝑘 − 𝑁 ≤

∑𝑘
𝑖=1

√
𝐴𝑖√

𝐴𝑘
, which always holds for 𝑘 = 𝑁 −𝑚 + 1. Then the closed-form solution of

𝑥𝑛 is:

𝑥𝑛 =

{
(𝑚 + 𝑘 − 𝑁 )

√
𝐴𝑛∑𝑘

𝑖=1
√
𝐴𝑖

, if 𝑛 ≤ 𝑘,

1, if 𝑛 > 𝑘,
(63)

In our case, we have

𝑞
(𝑡 )
𝑛 =


(𝑚 + 𝑘 − 𝑁 )

√
𝑝𝑛𝐺

(𝑡 )
𝑛∑𝑘

𝑖=1
√
𝑝𝑖𝐺

(𝑡 )
𝑖

, if 𝑛 ≤ 𝑘,

1, if 𝑛 > 𝑘,

(64)

where 𝑘 is the largest integer such that 0 < 𝑚 + 𝑘 − 𝑁 ≤
∑𝑘

𝑖=1
√
𝑝𝑖𝐺

(𝑡 )
𝑖√

𝑝𝑘𝐺
(𝑡 )
𝑘

holds. Hence, a subset of

clients is assigned with sampling probability 1, and the others are assigned sampling probability
proportional to √

𝑝𝑛𝐺
(𝑡 )
𝑛 .
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