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Abstract—We study the problem of scheduling n tasks on m + m′ parallel processors, where the processing times on m processors

are known while those on the remaining m′ processors are not known a priori. This semi-online model is an abstraction of certain

heterogeneous computing systems, e.g., with the m known processors representing local CPU cores and the unknown processors

representing remote servers with uncertain availability of computing cycles. Our objective is to minimize the makespan of all tasks. We

initially focus on the case m′ = 1 and propose a semi-online algorithm termed Single Restart with Time Stamps (SRTS), which has time

complexity O(n logn). We derive its competitive ratio in comparison with the optimal offline solution. If the unknown processing times

are deterministic, the competitive ratio of SRTS is shown to be either always constant or asymptotically constant in practice, respectively

in cases where the processing times are independent and dependent on m. A similar result is obtained when the unknown processing

times are random. Furthermore, extending the ideas of SRTS, we propose a heuristic algorithm termed SRTS-Multiple (SRTS-M) for

the case m′ > 1. Finally, where tasks arrive dynamically with unknown arrival times, we extend SRTS to Dynamic SRTS (DSRTS) and

find its competitive ratio. Besides the proven competitive ratios, simulation results further suggest that SRTS and SRTS-M give superior

performance on average over randomly generated task processing times, substantially reducing the makespan over the best known

alternatives. Interestingly, the performance gain is more significant for task processing times sampled from heavy-tailed distributions.

Index Terms—Computational offloading, edge computing, mobile cloud computing, opportunistic computing, unknown processing

times, task restart, semi-online algorithms

✦

1 INTRODUCTION

The problem of parallel task processing on multiple proces-
sors has wide-ranging applications in computer science, in-
dustrial engineering, and information systems. It is essential
to contemporary computing and networking applications,
due to the prevalence of multi-core CPUs and the availabil-
ity of auxiliary resources for computational offloading. Ex-
isting studies in parallel task processing can be categorized
into three types: offline, where the processing times of all
tasks on all processors are known a priori; online, where
no processing time is known until after a task has been
processed; and semi-online, where some processing time
information is known. Scheduling decisions proposed in
the research literature generally aim to minimize makespan,
i.e., total time to finish the given tasks, or system cost in
task processing, or a combination of both. Most of such
optimization problems are known to be NP-hard and only
approximate solutions are available.

In this work, we study the problem of scheduling com-
puting tasks on m + m′ parallel processors, where the
task processing times on m processors (known processors)
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are known a priori, and the task processing times on the
remaining m′ processors (unknown processors) are unknown
before the tasks are processed. Under this semi-online set-
ting, we are interested in finding a schedule that minimizes
the makespan of n tasks that are either all given at time zero
or arrive dynamically in time.

The above semi-online scheduling model can be viewed
as an abstraction for several important practical systems.
The m processors may model parallel CPU cores in a
local device (e.g. smartphone, tablet etc.) or processors in
a local computing cluster. The unknown processors may
represent computational servers whose help is enlisted by
the local device or the local cluster. In particular, in mobile
cloud computing systems, the unknown processors may
be shared virtual machine instances in a public cloud [2],
[3]; in Mobile Edge Computing (MEC), they may be MEC
servers deployed by a cellular base station [4], [5], [6], [7];
and in cyber foraging/opportunistic computing, they may
be neighboring mobile devices or cloudlets onto which the
local device offloads its computational tasks [8], [9], [10],
[11], [12].

The scenario of not knowing the processing times on
the remote processors arises due to various factors. For
example, an MEC server is shared between network service
tasks and the offloaded user tasks from the subscribing
mobile devices. Thus, only a fraction of the MEC server’s
CPU cycles may be allocated to the mobile user. Similarly,
in opportunistic computing, a neighboring mobile device
may not dedicate all of its CPU cycles to the offloaded
tasks. Furthermore, there can be uncertain delays associated
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with offloading and processing the offloaded tasks. The
insights developed from our theoretical model can be used
to improve computational offloading in these systems.

Most of the previous studies on parallel processing have
focused on either the offline or the fully online scenarios.
Offline algorithms are clearly not applicable to our problem.
Furthermore, even in the simplest offline setting, makespan
minimization is known to be NP-hard [13]. On the other
hand, if we ignore the partial knowledge of processing times
in our problem, we may use existing online algorithms.
In the online setting, if all processors are identical, the

well-known List Scheduling (LS) algorithm has
(

2− 1
m+m′

)

competitive ratio [14]. However, in our case, the unknown
processors are not identical to the known ones. In fact, as
shown in Section 4.1, List Scheduling has infinite competitive
ratio for our problem. For online scheduling with non-
identical processors, Shmoys et. al. has proposed an iterative
algorithm that achieves O(log n) competitive ratio [15]. This
algorithm can be applied to our problem. However, as
shown in [16], [17], and in Section 7, Shmoys’ algorithm
does not perform well on average.

We note that List Scheduling and Shmoys’ algorithm
do not utilize the known processing times in our problem
thus leading to their inefficiency. Therefore, our objective
is to develop a semi-online algorithm that effectively uti-
lizes both the known and unknown processors, to provide
both a provable competitive ratio and satisfactory average
performance. Instead of deterministic scheduling such as
List Scheduling, we use the approach of task restarts similar
to [15], where a task scheduled on a processor may be
cancelled and re-scheduled possibly on a different processor.
Unlike [15], we observe that only one round of restarts is
sufficient for our problem. This is similar in design principle
to [16], [17], but as explained in Section 2, the problem we
consider, the proposed algorithm, and the competitive ratio
analysis are substantially different from those in [16], [17].

The main contributions of this work are as follows:

• We first show a negative result, that any semi-
online algorithm with a pre-determined scheduling
order has infinite competitive ratio. This motivates
the need for a more effective dynamic scheduling
algorithm.

• We first focus on the important case of m′ = 1, which
represents, e.g., the case of mobile cloud comput-
ing with m local CPU cores and a more powerful
remote cloud server. We propose an efficient Single
Restart with Time Stamps (SRTS) algorithm, which
has time complexity O(n logn). We derive its com-
petitive ratio in comparison with the optimal offline
solution, for the cases where the known processors
are identical and where they have different speeds.
If the unknown processing times are deterministic,
the competitive ratio of SRTS is shown to be always
constant when the processing times are independent
of m, and asymptotically constant in practice when
the processing times are dependent on m. We obtain
a similar result when the unknown processing times
are random.

• We extend SRTS to Dynamic SRTS (DSRTS) for the
case where tasks arrive dynamically and their arrival

times are not known a priori, and show that the
resulting algorithm has competitive ratio that differs
only by one with the competitive ratio of SRTS.

• Extending the ideas of SRTS, we further propose a
heuristic algorithm SRTS-Multiple (SRTS-M), for the
case where there are multiple unknown processors,
which also has O(n log n) time complexity.

• To evaluate the average performance of SRTS and
SRTS-M, we show using simulation that they provide
substantial gains in reducing the makespan over the
best known alternatives, for task processing times
generated from typical distributions. We further ob-
serve that the gains are much more significant for
heavy-tailed distributions.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the related work. The system model is
given in Section 3. The SRTS algorithm for identical known
processors is presented in Section 4, and its competitive ratio
is derived in Section 5. In Section 6, we generalize SRTS
to uniform known processors, dynamically arriving tasks,
and SRTS-M for the case of multiple unknown processors.
We discuss simulation results in Section 7 and conclude in
Section 8.

2 RELATED WORK

Scheduling independent tasks on parallel processors is a
well-studied problem in theoretical computer science, par-
ticularly from the perspective of approximation algorithms.
In the following we present relevant works from the litera-
ture under offline, online, and semi-online settings.

2.1 Offline and Online Scheduling on Parallel Proces-

sors

Even in the simplest offline setting, where the processors are
identical, i.e., for each task the processing times are the same
on all processors, the problem is NP-hard [13]. The classical
Longest Processing Time (LPT) algorithm forms a list of the
tasks in the descending order of their processing times and
schedules the next task from the list on whichever processor
that becomes idle first. For m + m′ identical processors,

LPT provides
(

4
3 − 1

3(m+m′)

)

-approximation [18]. Other al-

gorithms with various time complexity and approximation
ratios are also available in the literature [19], [20]. For
the case of non-identical processors, where each task has
different processing times, a 2-approximation algorithm was
proposed in [21], [22]. Since in our problem the processing
times on one processor are not known a priori, none of the
above works are applicable.

In the online setting, List Scheduling (LS) lists the tasks in
an arbitrary order and schedules the next task on whichever

processor that becomes idle first. It provides a
(

2− 1
m+m′

)

competitive ratio for scheduling on m+m′ identical proces-
sors. LS can be applied to solve our problem, by ignoring the
known processing times. However, we will show later that,
due to the non-identical processing times among the pro-
cessors in our problem, a family of deterministic algorithms
that include LS has infinite competitive ratio.

Shmoys et. al. in [15] considered the general problem
of online scheduling of independent tasks on non-identical
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processors. Using an approach involving multiple rounds
of task restarts, they proposed an O(log n)-competitive
online algorithm. Similarly to LS, Shmoys’ algorithm can
be applied to our problem by simply ignoring the known
processing times. However, it has been shown in [16], [17]
that the average performance of Shmoys’ algorithm can
suffer due to the multiple rounds of task restarts. We will
show in Section 7 that even a semi-online improvement
of this algorithm can give substantially worse average per-
formance than the proposed SRTS algorithm. Furthermore,
by judiciously utilizing the known processing times, SRTS
achieves a competitive ratio that is independent of n.

2.2 Semi-online Scheduling on Parallel Processors

Studies under semi-online settings are comparatively scarce.
Even the definition of semi-online scheduling is not unified.
In [23], [24], [25], [26], it refers to the case where only
the total processing time of the tasks on each processor is
known. Furthermore, all of these works focus on the special
case of identical or uniform processors, so they are not
applicable to our problem.

To the best of our knowledge, the semi-online setting
most similar to ours is in [16], [17], which may be viewed as
having one processor with known processing times (which
actually was used to model some fixed usage cost in [16],
[17]) and m identical processors with unknown processing
times. However, the Greedy-One-Restart (GOR) algorithm
proposed in [16], [17] cannot be applied to our problem.
While GOR schedules tasks on the m unknown identical pro-
cessors using estimated processing times based on the single
known processor, SRTS schedules tasks on the m known
processors directly using the known processing times. Fur-
thermore, the estimation of the unknown processing times
for task restarting requires different methods. It depends
on m in GOR, while in SRTS the known processing times
are directly used as the estimate. Notably, as a result of
these differences, the competitive ratio of SRTS is constant
under general conditions, in contrast to O(

√
m) for GOR.

Furthermore, we consider the case of multiple unknown
processors that are non-identical in the SRTS-M algorithm.

2.3 Other Related Works

In mobile cloud computing systems [2], [3], where a mobile
device enlists the help of a remote processor in a remote
cloud, most current research is focused on the task offload-
ing problem with the objective of minimizing energy, e.g.,
[27], [28], [29], [30]. In addition, several empirical studies
have been conducted on task offloading from a mobile
device to remote servers [8], [9], [10], [11], [12]. Furthermore,
the hybrid cloud computing architecture, where tasks are
offloaded from a local cluster/cloud to a public cloud, has
been studied before; see for example [31], [32]. In [33],
[34], the authors have studied the problem of scheduling
scientific work flows on a subset of available resources
in a grid computing system with demand uncertainties.
However, all of these works have system models different
from ours, and none of them considers makespan as their
design objective. In this work, our focus is to provide a
general semi-online solution to the problem of makespan
minimization in parallel task scheduling, which may be

applied to cloud computing and other practical computing
and networked systems.

3 SYSTEM MODEL

In this section we describe the machine model, task process-
ing times and the makespan minimization problem.

3.1 Processor Model

For clarity of presentation, in Sections 4 and 5 we initially
focus on a heterogeneous system comprised of m iden-
tical “known” (or “local”) parallel processors indexed by
i ∈ Q = {1, . . . ,m} and a single “unknown” (or “remote”)
processor indexed by i = m + 1. Later, in Section 6 we
analyse the proposed SRTS algorithm for the case of uniform
processors, i.e., the ratio of the processing times of a task on
any two processors is a constant. Furthermore, we consider
the case of m′ > 1 unknown processors, for which we
propose SRTS-M.

3.2 Processing Times and Task Arrivals

Given n tasks, indexed by j ∈ T = {1, . . . , n}, our objective
is to minimize the makespan to process them. The tasks
are assumed independent and non-preemptive. Initially, we
focus on the case where all tasks are available at time zero.
In Section 6, we will extend this to the case of dynamic task
arrivals with unknown arrival times, for which we propose
DSRTS.

The processing time of task j on processors in Q is
denoted by aj and is assumed to be known a priori. This
may be obtained, for example, by checking the number of
instructions per task and the processor speed. The process-
ing time of task j on processor m + 1 is denoted by uj

and is assumed to be unknown until the task has been
executed to completion. This may arise in many scenarios
of practical interest. For example, a remote server may be
shared and only a fraction of the CPU cycles are allocated
to the offloaded tasks. There may also be other uncertain
delays in offloading and processing the tasks at a remote
server. We do not assume any relation between uj and
aj , but it is important to note that our results can serve
as a benchmark to evaluate the performance of algorithms
that do consider the relation between uj and aj . Since
uj and aj are independent, the system of local processors
and the remote processor falls under the unrelated parallel
processors model [22], i.e. the ratio

aj

uj
is not constant and is

specific to task j.

Note that even though uj is unknown, it may be de-
terministic, i.e., it remains the same independent of when
task j is processed. For example, this may model the case
where the remote CPU cycles allocated to the tasks do not
change frequently. However, uj may also be random, i.e., it
depends on when task j is processed. As shown in Section 5,
this distinction is important in performance analysis, since
the proposed SRTS algorithm may cancel and then restart a
task at a different time. In this work, we consider both cases.
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3.3 Semi-Online Scheduling and Competitive Ratio

Let s denote a schedule and S denote the set of all possible
schedules. The schedule s decides the placement of a task
on one of the known processors Q and the remote processor
m + 1. Given the set of tasks at time 0, the makespan of
a schedule s, denoted by Cmax(s), is defined as the time
when the processing of the last task is completed. It equals
maxi{Ci(s)}, where Ci(s) is the completion time of the
last task assigned to processor i. We are interested in the
following makespan minimization problem P :

minimize
s∈S

Cmax(s).

From Section 2, we see that even for the offline version of
P , where all parameter values of the tasks are known at
time zero, the problem is NP-hard [13]. We are interested in
the more complicated semi-online setting, where uj are not
known a priori.

The efficacy of an online algorithm is often measured
by its competitive ratio in comparison with an optimal
offline algorithm. We use the same measure for semi-online
algorithms as well. Let {P, {uj}} be a problem instance of
P , where P = {m,n, {aj}}. Let s(P, {uj}) be the schedule
given by a semi-online algorithm and s

∗(P, {uj}) be the
schedule given by an optimal offline algorithm. If uj are
deterministic, then the problem instance {P, {uj}} is a set
of constants and an optimal offline algorithm outputs the
minimum makespan Cmax(s

∗(P, {uj})). In this case the
semi-online algorithm is said to have a competitive ratio
θ if

sup
∀{P,{uj}}

Cmax(s(P, {uj}))
Cmax(s∗(P, {uj}))

≤ θ. (1)

If uj are random, it is not straightforward to extend the
competitive ratio definition in (1) for the proposed SRTS al-
gorithm, as it restarts some tasks. Toward this end, in the fol-
lowing we define a more general competitive ratio measure
for this case. Let {P, Fu} be a problem instance of P , where

Fu is the joint distribution of {uj}. For a given P , let {u(1)
j }

denote the task processing times without restart. Note that

the joint distribution of {u(1)
j } will be Fu. Let {u(2)

j } denote
the task processing times when tasks are restarted. We con-

sider {u(2)
j } to potentially have a different distribution from

Fu and are possibly correlated to {u(1)
j }. Let sSRTS denote the

schedule under SRTS, then the expected makespan under

SRTS is given by E[Cmax(s
SRTS(P, {u(1)

j }, {u(2)
j }))], where

the expectation is over the joint distribution of {u(1)
j } and

{u(2)
j }. For random uj , SRTS is said to have a competitive

ratio θ if

sup
∀{P,Fu}

E[Cmax(s
SRTS(P, {u(1)

j }, {u(2)
j })]

E[Cmax(s∗(P, {uj}))]
≤ θ. (2)

4 SINGLE RESTART WITH TIME STAMPS (SRTS)

In this section we focus on the important case of m′ = 1.
We first present our design consideration for SRTS, then
describe the algorithm details, and finally present an illus-
trative example to explain the working of SRTS.

4.1 Design Considerations

In this subsection we explain the failure of some existing
algorithms for our problem and derive insights into the
design of SRTS.

4.1.1 Failure of algorithms with pre-determined

scheduling order

We note that the celebrated LS algorithm can be used to
solve P as it does not require the processing times of
the tasks on any processor. Also, one can extend the LPT
algorithm to solve P by sorting tasks based on the known aj
values. In the rest of this paper we term this algorithm Semi-
Online LPT (SO-LPT). Both LS and SO-LPT belong to the
family of algorithms with a pre-determined scheduling order,
which is formally defined as algorithms that rank the tasks
according to some rule and then schedule them one after
another in that fixed order. In the following, we study the
performance of these algorithm.

In Section 2, we have noted that when all processors
are identical, LS has a constant competitive ratio. Also, if
all processors are identical and the processing times of the
tasks are known, then LPT has 4

3 approximation ratio [18].
Since our problem model has m known identical processors
with only one unknown processor, one may expect that
there exists some deterministic scheduling algorithm that
gives a low competitive ratio. However, in the following
theorem, we observe that the family of all algorithms with
a per-determined scheduling order are highly ineffective in
the worst case. Therefore, we need a more flexible dynamic
scheduling approach in our design of SRTS.

Theorem 1. Any algorithm with pre-determined scheduling
order has infinite competitive ratio with respect to P .

Proof. To prove the result it is sufficient to identify a problem
instance where the algorithm gives a makespan whose ratio
over the optimal makespan is infinite. Consider the follow-
ing family of problem instances: u1 = α, where α > 1 is an
arbitrary constant, uj = 1, ∀j ∈ {2, . . . , n}, and aj = 1, ∀j.
We further assume n is a multiple of m + 1. Since uj

are unknown, any algorithm using some pre-determined
order to schedule the tasks can only use the knowledge
of aj . However, since all aj are equal, the tasks cannot be
differentiated by such an algorithm. Therefore, in the worst
case, it may schedule task 1 on processor m + 1. This will
result in a makespan of at least α.

Note that in the above family of problem instances, the
processing time of any task on any processor is at least 1.
Since there are n tasks and m+ 1 processors, the offline op-
timal makespan cannot be less than n

m+1 . Furthermore, this
lower bound can be achieved by the following schedule. Use
LS to schedule tasks from {1, . . . , n − n

m+1} on processors
i ∈ Q and schedule all other tasks, {n− n

m+1 +1, . . . , n}, on
processor m + 1. Therefore, the offline optimal makespan
is n

m+1 and the makespan ratio of any algorithm with
pre-determined scheduling order is at least α(m + 1)/n.
The result follows as the value of α can be chosen to be
arbitrarily large.

4.1.2 Inefficiency of multiple rounds of restarts

In Section 2, we have noted that Shmoys’ online algo-
rithm is the only existing algorithm that can be applied
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to solve P with a provable competitive ratio. Shmoys’
algorithm initially estimates the unknown processing times
of the tasks and then uses any ρ-approximation offline
algorithm to schedule them. Tasks that are not completed
within the estimated time are cancelled and rescheduled
using an increased estimate for the unknown processing
times and the same offline algorithm. The procedure is
repeated until all tasks are completed. This algorithm has
(4ρ logn+4ρ log 2ρ+1) competitive ratio [15]. However, its
average performance may be unsatisfactory [16], [17], and
its competitive ratio still depends on n.

One might consider improving Shmoys’ algorithm to
a semi-online version to solve P , by incorporating the
information about known processing times aj . We term this
improved version Semi-Online Shmoys (SO-Shmoys) in the
rest of this paper. In SO-Shmoys, we use aj as the initial
estimate of the unknown processing time uj , and LPT as
the offline component algorithm. For each iteration, the esti-
mated processing time is doubled. In iteration k, since LPT
is applied to an offline problem where the processing time of
a task is aj on the first m processors and 2kaj on processor
(m+1), it yields 2 approximation [35] for all k. Thus, overall
SO-Shmoys remains O(log n)-competitive, and its average
performance is improved. However, as shown in Section 7,
we observe that SO-Shmoys does not perform better than
SO-LPT in terms of average performance. This is due to
the multiple rounds of task restarts, each penalizing the
makespan, since the time already spent on processing a
cancelled task is wasted.

Therefore, in SRTS we use only a single round of task
restarts. Cancelling a task with large uj on processor m+ 1
may allow some tasks that have smaller uj values to be
scheduled on that processor. At the same time, we avoid
the wastage of time in cancelling a task more than once. As
shown in Sections 5 and 7, our new design achieves both a
small competitive ratio and superior average performance.
A detailed description of SRTS is given below.

4.2 SRTS Algorithm Description

SRTS is comprised of two iterations. In the initial iteration,
it first uses aj as the estimate for the processing time of task
j on the unknown processor m+1. It forms a list according
to the ascending order of aj . When processor m+1 becomes
idle, it schedules the next available task from the end of
the list. If the task is not completed within duration aj , it
cancels the task and sets it aside. Whenever a processor in
the known processor set Q becomes idle, it schedules the
next available task from the start of the list. We note that the
above scheduling order of tasks is advantageous for tasks
that incur large aj and small uj values.

After going through all tasks in the first iteration above,
those tasks that are cancelled are again sorted, and a list is
formed in the ascending order of aj . In the second iteration,
this list is scheduled using the same procedure as above, but
this time we do not cancel a task, unless it is simultaneously
scheduled on two processors. Note that in both iterations
some tasks may be scheduled on both processor m+ 1 and
some processor in Q. In such a case we cancel the task on
one processor if it is either completed or cancelled on another
processor first.

SRTS can be readily implemented in practice by a sched-
uler in a local device or a local cluster. For example, this can
be achieved by assigning time stamps to the tasks that are
offloaded. A remote processor looks at the time stamp of
a task to determine when to discard it. The local scheduler
decides to restart an offloaded task if it does not receive
an acknowledgement or the output of the task within the
duration specified by time stamp.

The details of the algorithm are presented in Algo-
rithm 1, where l = 1 or 2 indicates the iteration number.
We note that SRTS runs in O(n log n) time due to the need
for sorting n tasks. We use s

SRTS to denote the resultant
schedule.

Algorithm 1: Single Restart with Time Stamps (SRTS)

1: T (1) = T
2: for l = 1 to 2 do
3: Sort T (l) in the ascending order of aj . WLOG,

re-index tasks such that a1 ≤ a2 ≤ . . . ≤ a|T (l)|.

4: j1 = |T (l)|, j0 = 0
5: Start processing task j1 on processor m+ 1
6: if l = 1 then
7: Cancel task j1 if its execution time

exceeds aj1 and include it in T (l+1)

8: end if
9: for k = 1 to min{m, |T (l)|} do

10: j0 = j0 + 1
11: Start processing task j0 on processor k.
12: end for
13: while T (l) 6= ∅ do
14: Wait until a processor becomes idle
15: if the idle processor is î ∈ Q then

16: Let task j be the last task completed on î
17: Cancel task j if it is scheduled on processor

m+ 1
18: T (l) = T (l)\{j}
19: j0 = j0 + 1
20: If task j0 is not completed or cancelled yet,

schedule it on processor î
21: else if the idle processor is m+ 1 then
22: Cancel task j1 if it is scheduled on some

processor from Q
23: T (l) = T (l)\{j1}
24: j1 = j1 − 1
25: If task j1 is not completed yet, schedule it on

processor m+ 1
26: if l = 1 then
27: Cancel task j1 if its execution time exceeds aj1

and include it in T (l+1)

28: end if
29: end if
30: end while
31: end for

4.3 Illustrative Examples

Example 1: In the following, we explain the working of SRTS
using the following family of problem instances considered
in the proof of Theorem 1: u1 = α > 1, uj = 1, ∀j ∈
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{2, . . . , n}, and aj = 1, ∀j. For simplicity of illustration, we
further assume that n is a multiple of m+1. Since aj = 1, ∀j,
SRTS do not differentiate the tasks. Let us consider the worst
case scenario, where task 1 is scheduled on processor m+1
in the first iteration of SRTS. Note that in the first iteration of
SRTS, any task scheduled on processor m + 1 is processed
for a duration of min{aj, uj}, which is equal to 1 for all
tasks. Therefore, task 1 will be cancelled after a duration
of 1. At the end of the first iteration, n − n

m+1 tasks will
be completed on the processors in Q and n

m+1 − 1 of them
will be completed on processor m + 1, with task 1 being
cancelled. Then, in the second iteration of SRTS, task 1 will
be completed on some processor in Q.

In the first iteration, the n− n
m+1 tasks on the processors

in Q require a duration of 1
m

(

n− n
m+1

)

= n
m+1 on each

processor. On processor m+1, the duration is also n
m+1 . The

duration of the second iteration is 1. Therefore, the make-
span of SRTS for these problem instances is n

m+1 +1, which
is independent of the unknown processing time α. Note
that, since the processing time of any task on any processor
is at least 1, the offline optimal makespan cannot be less
than n/(m + 1). This example illustrates that, by restarting
a task that has larger uj value, SRTS can effectively limit the
impact of that task on the makespan.

Example 2: We consider another example where there is
only one local processor and the remote processor. Three
tasks, indexed {1, 2, 3}, arrive at the local processor with
local processing times {5, 7, 8} and the unknown remote
processing times {3, 1, 20}, respectively. For this set of tasks
the schedule under SRTS is shown in Figure 4.3. The task
indices are labelled in red and are italicised, and the pro-
cessing durations are labelled in black. Since the known
processing times of the tasks are already sorted, in the first
iteration, SRTS schedules task 1 on the local processor and
task 3 on the remote processor with estimated processing
time of 8 units. When Task 1 is finished at time 5, task 2 is
scheduled on the local processor. Since task 3 is not finished
within the estimated time of 8 units, it will be cancelled on
the remote processor. Now that the remote processor is idle
and task 2 is not finished, SRTS schedules it on the remote
processor and thus task 2 is simultaneously scheduled on
both processors. The first iteration ends when the remote
processor finishes execution of task 2, at which point task
2 will be cancelled on the local processor. In the second
iteration the cancelled task 3 is executed to completion on
the local processor. Thus, SRTS achieves a makespan of 17
units for this example. We note that LS results in a makespan
of 20 units, in the worst case, by scheduling task 3 on
the remote processor and the other two tasks on the local
processor.

5 COMPETITIVE RATIO ANALYSIS

In this section, we first consider the case of deterministic uj

and derive a competitive ratio θ1 for SRTS. Then, we extend
the result to the case of random uj , showing that the same
competitive ratio θ1 holds with only minor modification.

5.1 Deterministic uj

In each iteration l of Algorithm 1, where l = 1 or 2, we
consider the following intermediate outcome of SRTS that

1 2

3 2

3

Fig. 1. SRTS schedule for an example problem.

will be used extensively in our analysis and proofs. Let sl
denote the intermediate schedule in iteration l obtained by
breaking the loop in Line 13 of Algorithm 1 as soon as j0
becomes equal to j1. We note that sl is a schedule over the
set T (l), and all the tasks from T (l) will be scheduled at
least once under sl. To understand this, in the while loop
from Line 13 of Algorithm 1, when j0 = j1 − 1, all the
|T (l)| tasks should have been scheduled on some processor.
Now, any more iterations in the while loop will only result
in scheduling a task that is already scheduled on processor
m+1 onto some processor in Q, or vice-versa. Since under sl
the while loop breaks when j0 = j1, there will be only one
task that is scheduled on both processor m + 1 and some
processor in Q. This will be the last task scheduled by sl in
iteration l, and we denote it by q(l) = j0 = j1.

We refer to the time to process the set of tasks T (l) in
iteration l as the schedule length of this iteration, denoted

by C
(l)
max. In the rest of this paper, to differentiate the terms

with respect to s
SRTS and sl, we append onto them the labels

of (sSRTS) and (sl), respectively. We note that in iteration
l, the schedule produced by s

SRTS improves on sl. To see
this, observe that sl stops scheduling when j0 = j1. The
step j0 = j1 also occurs under s

SRTS in both iterations.
However, s

SRTS may not stop at this step. If processor
m + 1 is faster and completes task q(l) − k first, where
k ∈ {0, 1, . . . ,min{q(l),m} − 1}, then s

SRTS schedules task
q(l) − k− 1, if it is not completed yet, onto processor m+ 1.
This will result in a schedule length no longer than that

given by sl, i.e., C
(l)
max(sSRTS) ≤ C

(l)
max(sl).

Note that, in the analysis and proofs that follow, we do
not explicitly mention problem instance {P, {uj}}, as the
results are valid over all possible problem instances. Also,
we simply use s

∗ to denote an optimal offline schedule and
C∗

max to denote the offline optimal makespan.
In Lemma 1, using load balancing arguments we estab-

lish a relation between C
(l)
max(sl) and the known processing

times aj . Recall that under schedule sl, q(l) is the last
task scheduled on processor m + 1 and some processor,

say î, from Q. Let C
(l)
max(sl) = C

(l)

ī
(sl) for some processor

ī ∈ Q ∪ {m+ 1}.

Lemma 1.

mC(l)
max(sl) ≤

∑

j∈T (l)

aj + (m− 1)aq(l) ,

where task q(l) is the last task scheduled, in iteration l, under
schedule sl.

Proof. In iteration l, let C
(l)
i denote the schedule length,

and T (l)
i denote the set of tasks scheduled on processor i.



7

We note that when a task is scheduled on two processors
simultaneously, it will be included in the task set of the
processor on which it is completed or cancelled first. We
consider the following cases.

Case 1: ī = m + 1. For this case, task q(l) is scheduled
both on processor m + 1 and processor î, but completed

or cancelled first on processor m + 1. Therefore, C
(l)
max(sl)

should be smaller than the sum of the processing times of
tasks scheduled on processor î plus aq(l) , i.e.,

C(l)
max(sl) ≤

∑

j∈T
(l)

î
(sl)

aj + aq(l) . (3)

Also, at time
∑

j∈T
(l)

î
(sl)

aj , all the processors in Q\{î}
should be busy executing some task, since otherwise the
task q(l) would have been scheduled on that processor
which is idle before this time. Therefore,

∑

j∈T
(l)

î
(sl)

aj ≤
∑

j∈T
(l)
i

(sl)

aj , ∀i ∈ Q\{î}

⇒ C(l)
max(sl) ≤

∑

j∈T
(l)
i

(sl)

aj + aq(l) , ∀i ∈ Q\{î}. (4)

In the second inequality above, we have used (3). Since task
q(l) is completed or cancelled first on processor m+1, q(l) ∈
T (l)
m+1(sl). Note that in Algorithm 1, the tasks are listed in

the ascending order of aj and then the tasks from the start
of the list are scheduled on processors in Q. This implies

∪i∈QT (l)
i (sl) = {1, . . . , q(l) − 1} ⊆ T (l). Now, summing (3)

and (4) for all i in Q\{î}, we obtain

mC(l)
max(sl) ≤

∑

i∈Q

∑

j∈T
(l)
i (sl)

aj +maq(l)

=
∑

j∈∪i∈QT
(l)
i

(sl)

aj +maq(l)

=

q(l)−1
∑

j=1

aj +maq(l) (5)

≤
∑

j∈T (l)

aj + (m− 1)aq(l) .

Case 2: ī = î. Since q(l) is the last task scheduled on

processor î, at time C
(l)
max − aq(l) all processors in Q\{î}

should be busy executing some task. Therefore,

C(l)
max(sl) ≤

∑

j∈T
(l)
i

aj + aq(l) , ∀i ∈ Q\{î}. (6)

Summing (6) and C
(l)
max(sl) =

∑

j∈T
(l)

î

aj , and noting that

∪i∈QT (l)
i = {1, . . . , q(l)} ⊆ T (l) for this case, we obtain the

intended result.
Case 3: ī /∈ {î, m + 1}. We claim that for this case task

q(l) is completed or cancelled first on processor m+1. Note
that processors from Q are identical, and tasks are sorted
in the ascending order of aj and re-indexed such that a1 ≤
a2 ≤ . . . ≤ aq(l) . This implies that task q(l) has the largest
processing time among the tasks scheduled on processors
in Q, and it has the latest starting time. If task q(l) were

completed on processor î, then C
(l)
max(sl) = C

(l)

î
(sl), which

would be a contradiction for this case since ī 6= î.
Now, completing task q(l) on processor î would have

increased the schedule length. Further, task q(l) is scheduled
on processor î because at the time when processor î becomes
idle and q(l) is the next task to be scheduled, all other
processors are busy executing some task. The above two
observations imply that scheduling and completing task
q(l) on any of the processors in Q would have increased
the schedule length. This results in same inequalities as in
Case 1, and using the same manipulation we can obtain the
intended result.

In the first iteration of SRTS, task j scheduled on proces-
sor m + 1 is processed for duration min{uj, aj}, since it is
cancelled if its processing duration exceeds aj . We use this

fact and Lemma 1 to derive an upper bound for C
(1)
max(sSRTS),

which is given in Lemma 2.

Lemma 2.

C(1)
max(s

SRTS) ≤ min

{

2 +
βmax − 2

m+ 1
,m+ 1

}

C∗
max,

where βmax = maxj
aj

uj
.

Proof. We use C
(1)
i and T (1)

i as defined in the proof of
Lemma 1.

Consider m + 1 hypothetical processors on which the
processing time of any task j is min{aj , uj}. Assume that
each task j can be arbitrarily divided into smaller chunks
and processed on these processors. Then the minimum
makespan in this case is 1

m+1

∑

j∈T min{aj , uj}. This im-

plies C∗
max ≥ 1

m+1

∑

j∈T min{aj, uj}.
In the first iteration of SRTS, a task j scheduled on pro-

cessor m+1 is executed for the duration min{aj, uj}. SRTS
does better than a schedule that statically schedules all tasks
on processor m + 1, because it greedily schedules the tasks
using all processors and simultaneously execute some tasks
between processor m + 1 and other processors for a pos-

sible reduction in makespan. This implies C
(1)
max(sSRTS) ≤

∑

j∈T min{aj , uj}. Therefore, C
(1)
max(sSRTS) ≤ (m+1)C∗

max.
To obtain the other part of the bound, we first establish

a new lower bound for C∗
max. Let T ∗

i ⊆ T denote the set of
tasks scheduled on processor i under an optimal schedule
s
∗. We have the following inequalities:

C∗
max ≥

∑

j∈T ∗
i

aj , ∀i ∈ Q, (7)

and

C∗
max ≥

∑

j∈T ∗
m+1

uj ≥ min
j

(

uj

aj

)

∑

j∈T ∗
m+1

aj

⇒ βmaxC
∗
max ≥

∑

j∈T ∗
m+1

aj . (8)

Summing the inequalities in (7), for all i ∈ Q, and (8), we
get

(m+ βmax)C
∗
max ≥

n
∑

j=1

aj . (9)

Since C
(1)
max(sSRTS) ≤ C

(1)
max(s1), it is sufficient to estab-

lish the other part of the bound for C
(1)
max(s1). Now, using
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l = 1 in Lemma 1, we have mC
(1)
max(s1) ≤

∑

j∈T (1) aj+(m−
1)aq(1) . In the following we further improve this inequality.
We claim that

(m+ 1)C(1)
max(s1) ≤

∑

T (1)

aj +maq(1) . (10)

To prove the claim we consider the following cases. Recall
that ī is the processor that finishes last and î is the processor
from Q on which q(1) is scheduled.

Case 1: ī ∈ {î, m+ 1}. For this case we claim that

C(1)
max(s1) ≤

∑

j∈T
(1)
m+1(s1)

aj . (11)

Note that in the first iteration, any task j is run for at most
aj duration. This is because SRTS cancels the execution of
task j if its processing time on processor m+ 1 exceeds aj .
Clearly, (11) holds for ī = m+ 1.

If ī = î, then task q(1) is finished on î and is cancelled on
processor m + 1. In other words, if task q(1) is executed on
processor m+1 until it is finished or it exceeds time duration

aj , then C
(1)
m+1(s1) would have exceeded C

(1)
max(s1). Since in

this case C
(1)
m+1(s1) is at most

∑

j∈T
(1)
m+1(s1)

aj , we conclude

that (11) holds for ī = î. Now, summing (11) and (5) for

l = 1, and noting that T (1)
m+1(s1) ⊆ {q(1), q(1)+1, . . . , n}, we

obtain (10).
Case 2: ī ∈ Q\{î}. We note that in this case q(1)−1 is the

last task that finishes on ī, because under s1 this is the latest
task scheduled on a processor from Q before q(1). At time

C
(1)
max(s1) − aq(1)−1, all the processors {Q\{ī}} ∪ {m + 1}

would have been busy. Therefore, we have

C(1)
max(s1) =

∑

j∈T
(1)

ī
(s1)

aj ,

C(1)
max(s1)− aq(1)−1 ≤

∑

j∈T
(1)
i (s1)

aj , ∀i ∈ {Q\{ī}} ∪ {m+ 1}.

In the last inequality above we have used the fact that the
processing time of a task j scheduled on processor m + 1
does not exceed aj . Summing the above two inequalities
for all i ∈ Q ∪ {m + 1}, noting that aq(1)−1 ≤ aq(1) , and

∪iT (1)
i (s1) = T (1) we obtain (10).
Now, using (9) in (10) we obtain

C(1)
max(s1) ≤

(

m

m+ 1
+

βmax

m+ 1

)

C∗
max +

m

m+ 1
aq(1) .

To complete the proof, it is sufficient to compare C∗
max and

aq(1) . Toward this end, we first note from the above inequal-
ity that, if C∗

max ≥ aq(1) , then the lemma is true. Next, we

argue that if C∗
max < aq(1) , then C∗

max ≥ C
(1)
max(s1), in which

case the lemma is already true. Recall that we re-indexed the
task such that a1 ≤ a2 ≤ . . . ≤ an. Suppose C∗

max < aq(1) ,
then the only possibility is that, under the optimal schedule
s
∗, we have T ∗

m+1 ⊇ T ′ = {q(1), q(1) + 1, . . . , n}, i.e., all
the tasks from T ′ should have been executed on processor
m + 1. Otherwise, if one of those tasks were scheduled by
s
∗ on a processor in Q, then we would have C∗

max ≥ aq(1) .

Further, we note that T (1)
m+1(s1) ⊆ T ′, as s1 schedules tasks

from the end of the list {1, 2, . . . , n} on processor m+1 and

task q(1) is the last task that is completed or cancelled on
processor m+ 1. From the above analysis we have

C(1)
max(s1) ≤

∑

j∈T
(1)
m+1(s1)∪{q(1)}

min{aj, uj} ≤
∑

j∈T ′

min{aj , uj}

≤
∑

j∈T ∗
m+1

uj ≤ C∗
max.

In the first inequality, we have again used the fact that in
the first iteration of SRTS, a task j is executed for duration
min{aj , uj} on processor m+ 1. Hence the result.

A task j scheduled in the second iteration has the prop-
erty uj > aj . Using this fact along with Lemma 1, we arrive
at Lemma 3.

Lemma 3. C
(2)
max(sSRTS) ≤ 2C∗

max

Proof. Since the tasks scheduled from T (2) are cancelled
in the first iteration, we have uj > aj , for all j ∈ T (2).
Therefore,

C∗
max ≥ 1

m+ 1

∑

j∈T (2)

min{aj, uj} =
1

m+ 1

∑

j∈T (2)

aj . (12)

Using l = 2 in Lemma 1 and noting that C
(2)
max(sSRTS) ≤

C
(2)
max(s2), we have

mC(2)
max(s

SRTS) ≤
∑

j∈T (2)

aj + (m− 1)aq(2) . (13)

Using (12) and C∗
max ≥ aj , for all j ∈ T (2), in (13), we obtain

mC(2)
max(s

SRTS) ≤ (m+ 1)C∗
max + (m− 1)C∗

max

⇒ C(2)
max(s

SRTS) ≤ 2C∗
max.

Noting that Cmax(s
SRTS) = C

(1)
max(sSRTS) + C

(2)
max(sSRTS),

the following theorem immediately follows from Lemmas 2
and 3:

Theorem 2. For deterministic uj , SRTS is θ1-competitive for P ,
where

θ1 = min

{

4 +
βmax − 2

m+ 1
,m+ 3

}

. (14)

From Theorem 2 it can be observed that SRTS yields
a competitive ratio with some interesting features. First,
unlike in the case of SO-Shmoys, θ1 is independent of n.
This is important, since the number of tasks in common
applications such as cloud computing can be large.

Second, if βmax is independent of m, then a simple upper
bound for θ1 in terms of βmax can be obtained by solving for
m in the following equation:

4 +
βmax − 2

m+ 1
= m+ 3.

The solution is given by m =
√
βmax − 1. Substituting this

value in (14) and noting that m ≥ 1, we obtain

θ1 ≤
{

4, 0 < βmax < 2√
βmax − 1 + 3, βmax ≥ 2.

Therefore, in this case SRTS has constant competitive ratio
independent of m.
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Third, consider the case where βmax is a function of m. As
an example, this may happen if we assume that the capacity
of the remote processor is always at a similar level as the
combined capacity of all m local processors. From (14), we
observe that as long as βmax is O(m), θ1 is O(1). In other
words, if the unknown processing speed is O(m) times
the processing speed of each known processor, SRTS has
asymptotically constant competitive ratio. Note that in most
practical parallel computing systems, the speed difference
between the unknown (e.g., cloud) processor and a known
(e.g., local) processor is not excessive. Therefore, in this case
we expect SRTS to have asymptotically constant competitive
ratio in general.

5.2 Worst Case Bound for Random uj

In the case of random uj , if a task is restarted on processor
m + 1 under SRTS, it acquires a different processing time.
Therefore, C∗

max and Cmax(s
SRTS) are not directly comparable.

Nevertheless, we may compare their expected values over
the random realizations of uj . Here, we observe that Theo-
rem 2 can be generalized to the competitive ratio definition
in (2).

Theorem 3. For random uj , SRTS has the following upper bound
for the expected makespan ratio:

E[Cmax(s
SRTS(P, {u(1)

j }, {u(2)
j }))]

E[Cmax(s∗(P, {uj})]
≤ θ2,

where

θ2 = min

{

4 +
maxj(

aj

νmin
)− 2

m+ 1
,m+ 3

}

and νmin > 0 is the minimum value in the sample space from
which uj are drawn.

Proof. Recall that when a task is restarted on processor m+1
under SRTS, it acquires a different processing time. For a

given {P, Fu}, let {ν(1)j } denote the realization of {u(1)
j }

and {ν(2)j } denote the realization of {u(2)
j }. We observe an

important fact that the realization of {uj} experienced in
the second iteration of SRTS does not appear in the proofs
of Lemmas 1, 2, 3 and Theorem 2. Since Theorem 2 holds for
the deterministic problem instance P with processing times

{ν(1)j }, using the above observation, we obtain

Cmax(s
SRTS(P, {ν(1)j }, {ν(2)j }))

≤ min







4 +

maxj(
aj

ν
(1)
j

)− 2

m+ 1
,m+ 3







Cmax(s
∗(P, {ν(1)j }))

≤ θ2Cmax(s
∗(P, {ν(1)j })), (15)

where we have used maxj(aj/ν
(1)
j ) ≤ maxj(aj/νmin), for

all {ν(1)j } and for all j. We note that the inequality in (15) is

valid for any realizations {ν(1)j } and {ν(2)j }. Therefore, we
have

Cmax(s
SRTS(P, {u(1)

j }, {u(2)
j })) ≤ θ2Cmax(s

∗(P, {u(1)
j }))

⇒E[Cmax(s
SRTS(P,{u(1)

j },{u(2)
j }))]≤θ2E[Cmax(s

∗(P,{uj}))]

For the second step above, we have taken expectations with

respect to the joint distribution of {u(1)
j } and {u(2)

j } on both

sides and used the fact that {u(1)
j } and {uj} have the same

distribution Fu.

Remark: We note that the result in Theorem 3 is valid for
generally distributed task processing times {uj}. More inter-

estingly, it is valid for any distribution for {u(2)
j }, and {u(2)

j }
and {u(1)

j } can be correlated; for example for deterministic
{uj} both realizations are the same. This result stems from
the fact that, after the first iteration of SRTS, using a simple
schedule where all the restarted tasks are scheduled locally
still results in (15). Thus, the processing times of tasks in the
second iteration does not effect the result.

The competitive ratio θ2 is loose when compared with
θ1 as it constitutes the term maxj(

aj

νmin
). Nevertheless, θ2

has the same properties of θ1, namely, θ2 is independent
of n, is constant if maxj(

aj

νmin
) is independent of m, and is

asymptotically constant if maxj(
aj

νmin
) is dependent of m.

6 EXTENSIONS

In this section we present three important extensions to
SRTS. First, we extend the competitive ratio results proved
in Section 5 for the case of uniform known processors.
Second, we present a method to extend SRTS for tasks
that arrive dynamically in time, whose arrival times may
not be known a priori. Third, using the ideas of SRTS
we propose SRTS-M for the case where there are multiple
remote processors.

6.1 Uniform Known Processors

Under the uniform known processors model, the processing
time of a task j on a processor i is given by ρiaj , where
ρi is the slow-down factor of processor i. Our motivation
for considering this extension is that it allows us to model
systems with heterogeneous processors, which are quite
prevalent today. The following are potential use cases we
can model using this extension: 1) ARM big.LITTLE CPU
chip in a mobile device where different processor cores
have different speeds; 2) a hybrid cloud system, where
a small scale enterprises owns a set of local processors
(heterogeneous) and also subscribes to a public cloud for
more computing power; and 3) a group of mobile devices
in proximity collaborate to perform computation and may
enlist the help of an edge device for offloading. In the above
use cases, using the model of uniform parallel processors
for the local processors is more accurate.

Without loss of generality, we consider ρ1 = 1, and
ρ1 ≤ ρ2 ≤ . . . ≤ ρm, where ρmax = ρm. This implies that
processor 1 is the fastest and processor m is the slowest.

Theorem 4. If the known processors are uniform and the slowest
processor is ρmax times slower than the fastest processor, then
SRTS is ρmaxθ1-competitive for P .

Proof. To prove the result we consider a hypothetical system
of m + 1 processors, where m processors are identical
to processor 1 and the (m + 1)-th processor is identical
to the remote processor in the original system. Note that
any feasible schedule for the original system is a feasible
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schedule for the hypothetical system and vice-versa. Given a
schedule s, we use CI

max(s) to denote the resulting makespan
in the hypothetical system.

For any schedule s, we claim that Cmax(s) ≤
ρmaxC

I
max(s), where Cmax(s) is the makespan in the original

system. To see this, note that ρi ≤ ρmax, for all i ∈ Q
and the same schedule is used to schedule tasks both in
the hypothetical and the original systems. This implies the
completion times on the processors in the original system
cannot be greater than ρmax times the completion times on
the processors in the hypothetical system. Using the above
claim, we obtain

Cmax(s
SRTS) ≤ ρmaxC

I
max(s

SRTS). (16)

Let s
∗I denote the optimal schedule for the hypothetical

system. Using the result in Theorem 2 for the schedules in
the hypothetical system, we obtain

CI
max(s

SRTS) ≤ θ1C
I
max(s

∗I). (17)

Also, we have

CI
max(s

∗I) ≤ CI
max(s

∗), (18)

where CI
max(s

∗) is the makespan in the hypothetical system
when s

∗ is used. By the construction of the hypothetical
system we have

CI
max(s

∗) ≤ Cmax(s
∗). (19)

The result follows from (16), (17) (18) and (19).

Theorem 5. For random uj , if the known processors are uniform
and the slowest processor is ρmax times slower than the fastest
processor, then SRTS has the following upper bound for the
expected makespan ratio:

E[Cmax(s(P, {uj}))]
E[Cmax(s∗(P, {uj})]

≤ ρmaxθ2.

Proof. The proof is similar to the proof of Theorem 4 and is
omitted.

6.2 Dynamic Task Arrivals

In P , we have assumed that all tasks arrive at time zero.
However, in general, tasks may arrive dynamically in time,
and their arrival times may not be known a priori. In this
case, we denote the generalized problem by Pr . In the offline
setting, the arrival times of all the tasks and their processing
times on all processors are known at time zero, and we use
Cr∗

max to denote the minimum makespan.
Again, we first focus on the case where uj are determin-

istic. Given a θ-competitive online or semi-online algorithm
for solving P , an algorithm that provides 2θ competitive
ratio for Pr was proposed in [15]. In [36], Sgall pointed
out that if we know the release time of the last task, then
accumulating the tasks till the last task arrival and then
scheduling all tasks using the θ-competitive algorithm will
result in a schedule with competitive ratio θ+1. However, it
can be noted that waiting till the last task arrival to schedule
the tasks is inefficient. Instead, we propose an algorithm that
does not wait till the last task arrival to schedule the tasks
and still achieves θ + 1 competitive ratio for Pr.

Given that there is an indication that a task is the last
task when it arrives, our algorithm is obtained by modifying
the algorithm proposed in [15]. As in [15], a θ-competitive
algorithm is used for scheduling the tasks that arrive at
time zero. The tasks that are arriving are accumulated till
the time at which all the tasks scheduled at time zero are
finished. All the accumulated tasks are then schedule using
the θ-competitive algorithm and the procedure is repeated.
In contrast to [15], when the last task arrives all tasks that are
under processing are cancelled. The cancelled tasks and the
last task are scheduled using the θ-competitive algorithm.

We present our algorithm for solving Pr in Algorithm 2.
It uses the following definitions. Let Aθ be a θ-competitive
algorithm for solving P . Let Bt be the set of tasks available
but not yet scheduled at time t, and τt be the resultant
schedule length when tasks from Bt are scheduled by Aθ .
Without loss of generality, we assume the first task arrive at
time t = 0.

Algorithm 2: General algorithm for solving Pr

1: At t = 0, schedule B0 using algorithm Aθ and observe
schedule length τ0.

2: repeat
3: Wait until time t+ τt or the last task arrival,

whichever happens first
4: if the last task has arrived then
5: Cancel any task under execution
6: Schedule all unfinished tasks using Aθ

7: Exit
8: end if
9: Schedule tasks from Bt using Aθ .

10: until all n tasks are finished

Denote by s
R the schedule given by Algorithm 2. The

following proposition expresses its competitive ratio.

Lemma 4. Cmax(s
R) ≤ (θ + 1)Cr∗

max

Proof. Let tn denote the arrival time of the last task n, and
C∗ be the optimal makespan if all tasks were available at
time zero. We know that Btn is the set of all unfinished
tasks from T at time tn. When tasks from Btn are scheduled
using Aθ, the resultant schedule length τtn cannot be greater
than θC∗, because Btn ⊆ T and θC∗ is the upper bound for
the makespan produced by Aθ for scheduling tasks from T
under the assumption that all of them are available at time
zero. Therefore, we have

Cmax(s
R) = τtn + tn ≤ (θ + 1)Cr∗

max,

where we have used the fact that Cr∗
max cannot be smaller

than the arrival time of the last task and Cr∗
max ≥ C∗.

When SRTS is used as Aθ , we refer to Algorithm 2
as Dynamic SRTS (DSRTS). From Theorems 2 and 4 and
Lemma 4, we immediately arrive at the following result.

Theorem 6. DSRTS is (θ1 + 1)-competitive for Pr, where θ1 is
given by (14). If the known processors are uniform, then DSRTS
is (ρmaxθ1 + 1)-competitive for Pr .

For the case of random uj , a performance bound for
DSRTS is presented in the following theorem.
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Theorem 7. Let tj denote the arrival time of job j and
{Pr, {uj}} be a problem instance of Pr , where Pr =
{m,n, {aj}, {tj}}. For random uj , DSRTS has the following
upper bound for the expected makespan ratio:

E[Cmax(s(Pr, {uj}))]
E[Cmax(s∗(Pr, {uj})]

≤ θ2 + 1.

Proof. The result can be obtained by applying the same
arguments from the proof of Lemma 4 and Theorem 3 for a
single realization of {uj} and then taking expectation. The
proof is omitted.

6.3 Multiple Unknown Processors

In this section, we consider the problem where multiple
remote processors with unknown processing times are avail-
able for offloading the computational tasks. We consider the
general case where the remote processors are non-identical
and index them by i ∈ Q′ = {m + 1, . . . ,m + m′}. Recall
that Shmoys’ algorithm can be applied to this case and is
O(log n)-competitive if the processing times are determinis-
tic. However, as noted before it has very poor average per-
formance. Instead, learning from the proven ideas of SRTS,
we propose a heuristic SRTS-Multiple (SRTS-M) algorithm
to solve this problem.

Similar to SRTS, SRTS-M also has two iterations. The
tasks are listed in the ascending order of aj values. Without
loss of generality, consider a1 ≤ a2 ≤ . . . ≤ an. In the
first iteration of SRTS-M, whenever a known processor
becomes idle, it is given a task from the start of the list.
Similarly, whenever a remote processor becomes idle it is
given a task from the end of the list. A task j1 that is
scheduled on a remote processor is cancelled in the first
iteration if its processing on the remote processors exceeds
the estimation time

∑n
j=j1

aj . The rationale behind this
choice of the estimation times is the following. Consider a
hypothetical powerful single remote processor in place of
the set of remote processors, and we use SRTS to schedule
the tasks. In this case, in the first iteration of SRTS, the
time that any offloaded task j1 is completed or cancelled
is upper bounded by

∑n
j=j1

aj . We note that our choice of
estimation time

∑n
j=j1

aj for any offloaded task j1 in SRTS-
M is greater than or equal to the estimation time aj1 used
in SRTS. This higher estimation time in SRTS-M potentially
avoids unnecessary restarts on multiple remote processors.

The details of SRTS-M are presented in Algorithm 3.
Similarly to SRTS, SRTS-M runs in O(n logn) time and can
be readily implemented in practice by a local scheduler.
However, it is challenging to derive its competitive ratio, be-
cause restarting an offloaded task on an unknown processor
does not reveal any information about its processing time
on another unknown processor, thereby making it difficult
to derive an upper bound expression for the makespan.
Instead, in Section 7, we show using simulation that it
significantly out performs the best existing alternatives.
Further, when SRTS-M is used as Aθ in Algorithm 2, we
call it Dynamic SRTS-M (DSRTS-M) and study its average
performance in Section 7.

Algorithm 3: SRTS-M

1: T (1) = T
2: for l = 1 to 2 do
3: Sort T (l) in the ascending order of aj . WLOG,

re-index tasks such that a1 ≤ a2 ≤ . . . ≤ a|T (l)|.

4: j1 = |T (l)|+ 1, j0 = 0
5: for k = m+ 1 to m+min{m′, |T (l)|} do
6: j1 = j1 − 1
7: Start processing task j1 on processor k
8: if l = 1 then
9: Cancel task j1 if its execution time

exceeds
∑n

j=j1
aj1 and include it in T (l+1)

10: end if
11: end for
12: for k = 1 to min{m, |T (l)|} do
13: j0 = j0 + 1
14: Start processing task j0 on processor k.
15: end for
16: while T (l) 6= ∅ do
17: Wait until next event E occurs
18: if E = a processor î ∈ Q becomes idle then

19: Let task j be the last task completed on î
20: Cancel task j if it is scheduled on some

processor from Q′

21: T (l) = T (l)\{j}
22: j0 = j0 + 1
23: If task j0 is not completed or cancelled yet,

schedule it on processor î
24: else if E =a processor î ∈ Q′ becomes idle then
25: Cancel task j1 if it is scheduled on some

processor from Q
26: T (l) = T (l)\{j1}
27: j1 = j1 − 1
28: If task j1 is not completed yet, schedule it on

processor î
29: if l = 1 then
30: Cancel task j1 if its execution time exceeds

∑n
j=j1

aj1 and include it in T (l+1)

31: end if
32: end if
33: end while
34: end for

7 EVALUATION OF AVERAGE PERFORMANCE

In addition to the competitive ratios derived for SRTS
in Section 5, we are interested in studying the average
performance of SRTS and SRTS-M over general parameter
values. Toward this end, we conduct simulation in MATLAB
for evaluation and comparison with several well-known
alternatives.

7.1 Single Remote Processor

We compare SRTS with LS, SO-LPT, and SO-Shmoys. In
addition, we also consider a Semi-Online Shortest Processing
Time (SO-SPT) algorithm, which is the same as SO-LPT
except that the known process times aj are listed in as-
cending order. For Figures 2 and 3, aj and uj are generated
independently from an exponential distribution. We set the
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Fig. 2. Effect of varying E[uj ]. Single remote processor.

number of tasks n = 1500. For each data point, we average
the makespan over 10, 000 runs, combining 100 realizations
each for {aj} and {uj}. In Figure 2, we set m = 10,
E[aj ] = 60, and vary E[uj ]. In Figure 3, we set E[aj ] = 60,
E[uj ] = 6, and vary m. We choose E[aj ] larger than E[uj ]
to reflect the practical scenario where the remote server is
often faster than the local processors. We observe that SRTS
outperforms all other algorithms. It provides a makespan
reduction up to 30% compared with the best alternatives of
SO-LPT and SO-Shmoys.

Similar performance trends have been observed when
we use other distributions. In general, the performance
advantage of SRTS is more pronounced when the distri-
bution of aj and uj has a heavier tail. This is because a
heavier tail implies more chances for some extremely long
processing times, which can clog an unknown processor
in algorithms with deterministic scheduling order, such as
LS and SO-LPT, and lead to high inefficiency in algorithms
with multiple restarts and no simultaneous processing, such
as SO-Shmoys. This is illustrated in Figure 4, where we
generate {aj} and {uj} using the Pareto distribution. The
Pareto scale parameters of {aj} and {uj} are given by the
Pareto tail index multiplied by 60 and 6, respectively. We
note that as the Pareto tail index parameter increases, the
heaviness of the tail decreases.

7.2 Uniform Local Processors and Multiple Remote

Processors

In this subsection we consider the system of uniform lo-
cal processors and multiple remote processors and study
the average performance of SRTS-M. The processing times
aj and uj are generated independently from exponential
distributions. The slow down factors ρi are chosen uni-
formly from the set {1, 2, . . . , 20}. The default parameters
are m = 4, m′ = 4, E[aj ] = 60, and E[uj ] = 60. In Figures 5
and 6 we compare the average performance of SRTS-M
with the alternate algorithms mentioned in Section 7.1. We
observe that SRTS-M provides 20 − 30% reduction in the
average makespan over a wide range of E[uj] and m′ values.
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Fig. 3. Effect of the number of local processors. Single remote proces-
sor.
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Fig. 4. Effect of the tail of distribution, for m = 4. Single remote
processor.

For task processing times generated using heavy-tailed
distributions as in the previous section, we observe that
SRTS-M significantly reduces the makespan when com-
pared with the alternatives. This is illustrated in Figure 7.
We also note that the performance of SO-Shmoys degrades
significantly with multiple unknown processors because of
the multiple rounds of restarts on all the unknown proces-
sors.

7.3 Dynamic Task Arrivals

We study the scenario of dynamic task arrivals for the
system of uniform local processors and multiple remote
processors. For dynamic task arrivals, the processing time
of a task in on a local processor is not known until it arrives.
Therefore, except LS, other alternatives SO-LPT, SO-SPT and
SO-Shmoys cannot be directly used for this scenario. For
Figures 8 and 9, the same parameter values are used from
Section 7.2, except we simulate for the makespan of 105

task arrivals for each data point, with two different arrival
processes. The first is a single-task arrival process with inter-
arrival times between tasks chosen from an exponential



13

E[uj ]
20 30 40 50 60 70 80 90 100

A
ve
ra
ge

m
ak
es
p
an

×104

0

1

2

3

4

5

6

7

LS
SO-SPT
SO-Shmoys
SO-LPT
SRTS-M

Fig. 5. Effect of varying E[uj ]. Multiple remote and uniform local proces-
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Fig. 6. Effect of the number of remote processors. Uniform local proces-
sors.

distribution with mean 0.1, and the second is a batched-
periodic-arrival process in which inter-arrival time between
batches is set to 1 and the number of arrivals per batch
is chosen uniformly from the set {1, 2, . . . , 10}. These two
processes are labelled as Exp. arrivals and Batched arrivals,
respectively, in the figures. We observe that compared to LS,
DSRTS-M provides a reduction in makespan of up to 13%
for the case of varying mean processing times, and up to
45% for the case of varying number of remote processors.

8 CONCLUSION

We have proposed SRTS for semi-online scheduling of n
tasks on m known (or local) processors and one unknown
(or remote) processor, aiming to reduce the makespan of
processing all tasks. If the unknown task processing times
are deterministic, the competitive ratio of SRTS is shown to
always be constant when the processing times are indepen-
dent of m, and asymptotically constant in practice when the
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Fig. 7. Effect of the tail of distribution, for m = 4, and m′ = 4. Uniform
local processors.

20 30 40 50 60 70 80 90 100

E[uj ]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
a
k
es
p
a
n

×10
6

LS, Exp. arrivals

DSRTS-M, Exp. arrivals

LS, Batched arrivals

DSRTS-M, Batched arrivals

Fig. 8. Effect of varying E[uj ], for dynamic task arrivals. Multiple remote
and uniform local processors

processing times are dependent on m. We derive a similar
result for the case where the unknown task processing times
are random. We have extended SRTS for the case where
tasks arrive dynamically over time and proved a compet-
itive ratio that is one more than the competitive ratio of
SRTS. We have also extended SRTS for the case of multiple
unknown processors and proposed SRTS-M. Our simulation
results show that SRTS and SRTS-M provide substantial per-
formance improvement over existing alternatives in terms of
the average makespan, and the performance improvement
is more pronounced if the task processing times follow
heavy-tailed distributions.
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