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Abstract—We consider online distributed optimization where
a server and multiple devices collaborate to minimize a sequence
of time-varying global loss functions. To accommodate slow
devices that may require multiple time slots to compute their
local decisions, the server uses semi-asynchronous aggregation
of the local decisions, which complicates device scheduling and
performance optimization. In this work, we first analyze the
convergence of semi-asynchronous aggregation in the presence
of time-varying local update delays and loss-function weights.
Our analysis leads to an online scheduling problem to minimize
the accumulated age of information on the local decision updates,
subject to individual long-term constraints on the total weights
of the scheduled devices. We then design an efficient scheduling
policy, termed Age-of-Information Minimization with Weight
Limits (AIMWeL), through a modified Lyapunov optimization
approach that uses the weighted sum of linear age-of-information
values and quadratic virtual queues as a new Lyapunov function.
We show that AIMWeL has bounded optimality ratio, via a novel
double relaxation approach to handle the unique scheduling-
dependent communication indicator with time-varying proba-
bilities of completing local decision update caused by semi-
asynchronous aggregation. When AIMWeL is applied to semi-
asynchronous federated learning, our simulation results based on
standard image classification datasets demonstrate that AIMWeL
uses significantly less time to reach the same classification
accuracy achieved by the current best alternatives for both convex
logistic regression and non-convex convolutional neural networks.

Index Terms—Online distributed optimization, federated learn-
ing, semi-asynchronous aggregation, age of information.

I. INTRODUCTION

Modern wireless edge devices generate an enormous amount
of data that can be used to train machine learning models.
Together with the increasing computational capacity of wire-
less edge devices, distributed optimization has become an
essential tool for machine learning applications. The celebrated
federated learning (FL) scheme allows multiple local devices
to collaboratively optimize a global model based on their
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local private data, with the assistance of a central server [1].
Most existing works on FL assume synchronous aggregation,
i.e., the central server waits for all the selected devices to
finish updating their local models before aggregating the
global model [1]-[7]. However, the local computation time
may vary drastically among devices due to the heterogeneity in
computational capacity. This leads to the straggler issue since
the central server needs to wait for the slowest devices [8].

In asynchronous FL, the central server performs global
model update as soon as it receives one local model from a
local device, while the remaining devices continue to compute
and send their model updates [9]-[12]. Naturally, the slower
devices may participate in asynchronous aggregation much
less frequently than the fast devices, leading to significant
staleness of their local models relative to the global model. In
semi-asynchronous FL [13]-[16], the central server waits for a
certain number of local devices before global aggregation com-
mences. It works in a hybrid mode between the synchronous
and asynchronous modes, mitigating the negative impacts of
both straggler and staleness on the learning performance.

All existing works on semi-asynchronous FL focus on
offline optimization based on fixed datasets, which does not
allow streaming data or time-varying loss functions. However,
in many practical machine learning applications, e.g., real-
time video analysis [17], dynamic user profiling [18], and
network traffic classification [19], new data arrive in a stream-
ing fashion, and consequently the loss functions vary over
time. These applications require online optimization, where
decisions are continuously updated to adapt to the unknown
system dynamics over time [20]. Furthermore, with limited
communication capacity between the local devices and the
server in practical systems, not all devices that have finished
their local computation can be immediately scheduled by the
server to send their model updates. It is crucial to understand
how device scheduling impacts the performance of semi-
asynchronous aggregation.

The above issues motivate us to pose the following key
question: How to dynamically schedule the local devices over
time to improve the performance of semi-asynchronous online
distributed optimization? In particular, we are interested in de-
signing a scheduling policy that takes into account the impacts
of both the device information staleness and the time-varying
environment on semi-asynchronous aggregation, guided by
the aim to provide bounded guarantee on optimization per-
formance. To answer the question above, we must address
several main challenges: 1) We need to carefully account for
the impacts of random time-varying system behavior including
device computation time, partial device participation, and
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loss-function weights on distributed optimization. 2) Semi-
asynchronous aggregation among devices with heterogeneous
computing speeds leads to complex patterns of device infor-
mation staleness. 3) Device scheduling is coupled with both
computation and communication, creating non-independent
device status and decision updating sequences that further
complicate optimization design and analysis.

In this context, the contributions of this paper are as follows:

• We extend semi-asynchronous FL to the general online
distributed optimization setting, under which both the
local loss function and local weight are allowed to change
over time. We analyze the performance of the result-
ing semi-asynchronous online distributed optimization
framework, in the presence of time-varying partial device
participation and local update delays. This analysis is
unique in the literature as far as we are aware. From
the derived bound on optimality gap, we observe two
key factors that determine the performance of semi-
asynchronous aggregation: the local update delays and
loss-function weights.

• Motivated by the above analysis, we formulate an on-
line scheduling problem to improve the performance of
semi-asynchronous aggregation. We leverage the age-of-
information (AoI) metric to represent the local decision
staleness, due to their similarity in nature. Our goal is to
minimize the time-averaged expected weighted sum of
AoI subject to individual long-term weight constraints at
the local devices. We propose a new Age-of-Information
Minimization with Weight Limits (AIMWeL) scheduling
policy, which minimizes an upper bound of a modified
Lyapunov drift defined from a new Lyapunov function
that uses the weighted sum of linear AoI values and
quadratic virtual queues. The resulting scheduling deci-
sions are in closed form with low complexity.

• We analyze the performance of AIMWeL in terms of
constraint satisfaction and optimality guarantee. Unique
to our semi-asynchronous online distributed optimization
framework, the communication indicator of each local de-
vice i.e., a flag that indicates whether the device is ready
to transmit its computed local decision (see definition in
Section III-C), is dependent on the scheduling policy with
time-varying probabilities of completing local decision
updates, which has not been studied before. We therefore
propose a new double relaxation approach to bound the
optimality ratio of AIMWeL. In the special case of inde-
pendent and identically distributed (i.i.d.) communication
indicators with a fixed probability, AIMWeL recovers the
current best optimality ratio.

• For numerical evaluation, we apply AIMWeL to semi-
asynchronous FL. We experiment with standard image
classification datasets for both convex logistic regression
and non-convex convolutional neural networks. Our sim-
ulation results demonstrate that AIMWeL significantly
reduces the time to reach the same accuracy achieved
by the current best alternatives under various scenarios.

The rest of this paper is organized as follows. In Sec-
tion II, we present the related work. Section III describes

the system model for online distributed optimization with
semi-asynchronous aggregation. In Section IV, we present
AIMWeL and its performance analysis. The application to
semi-asynchronous FL is presented in Section V, followed by
concluding remarks in Section VI.

II. RELATED WORK

A. Semi-Asynchronous Federated Learning

Semi-asynchronous FL aims at overcoming the detrimental
effects of both the straggler in synchronous FL [1]-[7], and
the staleness in asynchronous FL [9]-[12]. In [13], the server
waits for a certain number of devices before performing global
model aggregation. Similarly, in [14], the server buffers the
updates from a minimum number of devices before aggre-
gation commences. The number of devices that the server
waits to perform global model aggregation was optimized by
minimizing a performance upper bound of semi-asynchronous
FL [15]. A multi-armed bandit based approach was proposed
in [16] to determine the numbers of model updates at the local
devices. However, these works focus on offline learning, as-
suming that the local datasets and weights are fixed during the
entire learning process. Furthermore, their heuristic schedul-
ing policies lack theoretical insights on how scheduling can
improve the performance of semi-asynchronous aggregation
and do not provide any scheduling performance guarantee.

B. Age of Information in Federated Learning

AoI measures the time that elapsed since the generation of
the information that was delivered to the destination, capturing
the information freshness [21]. AoI has been studied in areas
such as queueing networks, wireless scheduling, and energy
harvesting (see [22] for an overview). In [23], the communica-
tion round duration was measured by an age metric called age
of update (AoU) to represent the staleness of the global model
aggregation in synchronous FL. AoU based scheduling policy
was proposed in [24] to greedily minimize the aggregation
staleness while considering the channel conditions. The age-
optimal number of devices updating their local models and
participating in global aggregation was studied in [25]. These
works focus on synchronous FL and do not provide any theo-
retical analysis on the impact of AoI on the FL performance.

C. Constrained Age-of-Information Scheduling

More relevant to this work in scheduling theory is con-
strained AoI scheduling [26]-[30]. In [26], scheduling policies
were proposed to minimize the weighted sum of AoI subject
to throughput constraints in wireless sensor networks, where
multiple sensors share one single interference channel. Lya-
punov optimization was used in [27] to minimize the transmit
power subject to AoI constraints, and in [28] to minimize
the sampling and transmission costs under AoI constraints.
Constrained Markov decision techniques were used for AoI
minimization with power constraints over time-varying chan-
nels [29], and for throughput maximization subject to AoI
constraints over fading channels [30]. These works do not
consider the impact of AoI on the performance of online
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distributed optimization and assume the communication in-
dicator is independent of the scheduling policy with a fixed
probability. In this work, as will be shown in Section III-C, the
communication indicator sequence of each device is dependent
on the scheduling policy with time-varying probabilities of
completing local decision updates due to semi-asynchronous
aggregation. This brings new challenges to the scheduling
algorithm design and its performance analysis.

D. Online Optimization and Lyapunov Optimization

Due to the dynamic nature of semi-asynchronous online
distributed optimization, a part of our performance analysis
resembles online convex optimization (OCO) [20], especially
distributed OCO with consensus [31]-[34]. However, the dis-
tributed OCO framework mainly concerns synchronous con-
sensus over all devices at each time, which is inherently
different from our semi-asynchronous optimization framework
with decision aggregation over time-varying partial device
participation.

AIMWeL is also related to Lyapunov optimization [35],
since our online scheduling problem for optimizing the perfor-
mance of semi-asynchronous aggregation involves long-term
constraints. However, different from the standard Lyapunov
optimization techniques, we design a new Lyapunov function,
which is a weighted sum of linear AoI values and quadratic
virtual queues, to handle the policy-dependent communication
indicator sequence that is unique to our system. Furthermore,
we use a novel double relaxation approach to bound the
optimality ratio of AIMWeL, which is substantially different
from the standard Lyapunov optimization bounding approach.
Specifically, we keep relaxing the original online problem with
non-i.i.d. system states until an optimal stationary randomized
policy for solving a relaxed problem also achieves the optimal
objective value of a doubly-relaxed lower bound problem. In
standard Lyapunov optimization, the system states are assumed
to be i.i.d. or Markovian, and an optimal stationary randomized
solution to the original optimization problem readily exists.

III. ONLINE DISTRIBUTED OPTIMIZATION WITH
SEMI-ASYNCHRONOUS AGGREGATION

A. Online Distributed Optimization Objective

We consider a distributed system consisting of N local
devices and a central server. At each time slot t ∈ T ≜
{1, . . . , T}, each local device n ∈ N ≜ {1, . . . , N} observes
a local loss function fn

t (xt) : Rd → R, where xt ∈ Rd is the
decision variable. Under the online optimization setting, the
local loss function fn

t (xt) is allowed to vary over time.
In our motivating example of FL, fn

t (xt) can be defined
as the average loss incurred by the learning model xt with
respect to the local dataset Bn

t , given by

fn
t (xt) ≜

1

βn
t

∑
i∈Bn

t

l(xt;µ
n,i
t , νn,it ) (1)

where βn
t is the cardinality of Bn

t and l(xt;µ
n,i
t , νn,it ) :

Rd → R is a sample-wise loss function to represent how the
learning model xt performs on each data sample (µn,i

t , νn,it )

in Bn
t , with µn,i

t being a data feature vector and νn,it being
its true label. Note that l(x;µ, ν) is generally defined, e.g.,
it can be the logistic regression loss (see Section V-B) or
the neural network loss (see Section V-C) to measure the
prediction accuracy. In the case of FL with streaming data
that sequentially arrive to the devices, Bn

t represents the
local streaming dataset collected by device n at time t. The
distribution of Bn

t may be unknown and vary over time, so that
the corresponding loss function fn

t (xt) is also time-varying.
The global loss function at time t is defined as the weighted

sum of the local loss functions, given by

ft(xt) ≜
∑
n∈N

wn
t f

n
t (xt) (2)

where wn
t > 0 is the weight on local device n with∑

n∈N wn
t = 1. In the FL example, when we set the local

weight as wn
t =

βn
t

βt
with βt =

∑
n∈N βn

t , the global loss
is equal to the average loss incurred by the global dataset
Bt =

⋃
n∈N {Bn

t }. Note that due to the unpredictable nature
of streaming data or device computation availability, each
device n may process different amounts of data samples {βn

t }
over time, leading to a sequence of time-varying weights
{wn

t }. We assume wn
t is mean stationary and let w̄n ≜ E{wn

t }.
Let x⋆

t ∈ argminx∈Rd ft(x) be the optimal global decision
that minimizes ft(x) at time t. The goal of online distributed
optimization is to compute at the central server a sequence
of global decisions {xt}, to minimize the difference between
the time-averaged global loss yielded by {xt} and the one by
the global optimal solution sequence {x⋆

t } over a finite time
horizon T , i.e.,

min
{xt}

1

T

∑
t∈T

[
ft(xt)− ft(x

⋆
t )
]
. (3)

Solving the above optimization problem is similar to minimiz-
ing the dynamic regret in the distributed OCO literature [31],
[33], [34]. Note that computing a sequence of global decisions
{xt} that satisfies limT→∞

1
T

∑
t∈T [ft(xt) − ft(x

⋆
t )] = 0

is equivalent to achieving sublinear dynamic regret, i.e.,∑
t∈T [ft(xt) − ft(x

⋆
t )] = o(T ). As mentioned in Sec-

tion II-D, the distributed OCO framework [31]-[34] is limited
to synchronous aggregation over all devices at each time. It
is a special case of our general semi-asynchronous online
distributed optimization framework with time-varying partial
device participation considered in Section III-B.

B. Semi-Asynchronous Aggregation

We extend semi-asynchronous FL [13]-[16], to a general
semi-asynchronous online distributed optimization framework,
allowing the loss function, local weight, device participation,
and update delay to vary over time. For each local device n,
if it receives a global decision xt from the central server at
the beginning of time slot t, it performs the following local
decision update via local gradient descent:

xn
t = xt − η∇fn

t (xt) (4)

where η > 0 is the step size (or learning rate).
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Most studies in FL assume all the local devices can finish
calculating their local gradients within one time slot. How-
ever, gradient calculation is computationally costly for high-
dimensional functions, and in practical distributed networks,
local gradient calculation could take more than one time slot
at slow devices. Therefore, in this work we consider a more
general setting, so that when device n is computing its local
gradient at any time slot t, it completes the computation within
the time slot with a probably 0 < pnt ≤ 1. This captures
the uncertainties both in gradient computation complexity
and in the availability of computation resource. We further
consider {pnt } as a random sequence and assume that it is
mean stationary and lower bounded, with p̄n ≜ E{pnt } and
0 < pnLB ≤ pnt , ∀t.1 Note that we do not require {pnt } to be
an i.i.d. sequence, i.e., we allow the computation time to be
non-memoryless.

Let Nt be the set of local devices from which the central
server receives local decisions at time t. As explained above,
the local decision uploaded by device n at time t may have
been delayed over multiple time slots. Let lnt be the time
when device n last received the global decision xlnt

from the
central server. The central server performs the following global
decision update via decision averaging at the end of each time
slot t, given by

xt+1 =
∑
n∈Nt

wn
t x

n
lnt

+
∑

m∈N\Nt

wm
t xt. (5)

In the first term, xn
lnt

is the local decision update from
device n ∈ Nt based on its last received global decision xlnt
at time lnt . The second term

∑
m∈N\Nt

wm
t xt in (5) ensures

the sum of local weights over all devices N is 1, to prevent
the global decision parameter values from approaching 0 due
to partial device participation. The intuition behind (5) is that
the central server performs decision averaging over the local
decisions {xn

lnt
} actually received from devices Nt, based on

the current weights {wn
t } at each time t. For each device

m ∈ N\Nt that has not finished updating xm
lmt

, the central
server treats the previous global decision xt as a virtually
received local decision to perform decision averaging in (5).
The central server then broadcasts the updated global decision
xt+1 to the local devices Nt at the beginning of time slot t+1.
Note that device m ∈ N\Nt has not finished calculating its
local decision xm

lmt
from its received latest global decision xlmt

and will continue the same calculation in the next time slot
t+ 1.

In Fig. 1, we illustrate the procedure of semi-asynchronous
aggregation with N = 3 devices. Let τnt be the elapsed time
from time slot lnt (when device n last received the global
decision xlnt

) to the current time slot t. For example, device 1
receives the global decision x2 at the beginning of time slot 2,
and takes τ13 = 2 time slots to finish updating x1

2 at time slot
t = 3. Device 1 then uploads x1

2, which was updated based
on its last received global model x2 at time slot l13 = 2, to the
central server at the end of time slot t = 3. Similarly, device 3

1In practical systems where each device n has non-zero computational
capacity to perform local decision updates, we have pnLB > 0. This will be used
to bound the impact of time-varying probabilities {pnt } on the performance
of AIMWeL in Sections IV-D and IV-E.

Fig. 1: An illustration of semi-asynchronous online distributed
optimization with N = 3 devices.

receives the global decision x1 at the beginning of time slot 1,
and takes τ33 = 3 time slots to finish updating x3

1 at time slot
t = 3. Device 3 then uploads x3

1, which was updated based
on its last received global model x1 at time slot l33 = 1, to the
central server at the end of time slot t = 3. After receiving
x1
2 and x3

1 from devices 1 and 3, the central server performs
global decision update to generate x4 = w1

3x
1
2+w3

3x
3
1+w2

3x3

(N3 = {1, 3}) and distribute it to devices 1 and 3. After
receiving x4 from the central server at the beginning of time
slot t = 4, devices 1 and 3 then start to generate their new
local decisions based on x4.

C. Device Scheduling Policy

Practical systems have limited communication capacity,
e.g., in wireless edge computing. Therefore, we consider the
general scenario where the central server can only select up
to K ≤ N devices to upload their local decisions. Let un

t

be the scheduling indicator such that un
t = 1 if the central

server selects device n to upload its local decision xn
lnt

, and
un
t = 0 otherwise. A scheduling policy controls the scheduling

decisions of the central server at the end of each time slot t,
which is represented by {un

t }. We consider non-anticipative
scheduling policies Π, i.e., a policy π ∈ Π does not utilize
any future information in decision making. Denote dnt as the
communication indicator such that dnt = 1 if device n has
finished updating its local decision xn

lnt
by the end of time t,

and dnt = 0 otherwise. If device n is ready to upload xn
lnt

to
the central server, i.e., dnt = 1, but the central server does not
select device n to participate in the global decision update at
time t, i.e., un

t = 0, then device n becomes idle and is also
ready to upload at the next time slot t + 1, i.e., dnt+1 = 1.
Otherwise, device n finishes its local decision update at time
t+ 1 with a probability pnt+1. Therefore, the evolution of the
communication indicator dnt follows

P{dnt+1 = 1} =

{
1, if dnt = 1, un

t = 0,
pnt+1, o.w. (6)

From (6), we can see that the evolution of dnt+1 depends
on un

t , and therefore E{dnt } is policy π-dependent. However,
E{dnt } is both upper and lower bounded as

pnLB ≤ E{dnt } ≤ 1. (7)
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As will be shown later in Section IV-D, the π-dependent
communication indicator sequence {dnt } in (6), with time-
varying probabilities {pnt } of completing local decision up-
dates brought by semi-asynchronous aggregation, requires new
techniques to design the scheduling algorithm and to bound
its performance. When device n is selected to upload its local
decision at time t, the local update delay, i.e., the elapsed time
since it last received the global decision at lnt , is

τnt = t− lnt + 1. (8)

Note that τnt depends on both the dnt and un
t sequences, so it is

also policy-dependent. If the central server does not receive a
local decision from device n at time t, then τnt+1 = τnt +1. On
the other hand, if the central server receives xn

lnt
from device n

at time t, then the update delay at the next time slot t + 1
reduces to τnt+1 = 1. Thus, the evolution of τnt follows

τnt+1 =

{
τnt + 1, if dnt u

n
t = 0,

1, o.w. (9)

or equivalently τnt+1 − τnt = −τnt d
n
t u

n
t + 1. We observe that

(9) is similar to the evolution of the AoI in nature.2 Therefore,
in the following, we use AoI to refer to τnt . In Table I, we
summarize our key notations.

In this work, we aim at finding a scheduling policy to
minimize the optimality gap in (3) under semi-asynchronous
aggregation. However, it is challenging to directly measure
the impact of the scheduling decisions {un

t } on (3), due to
the system dynamics such as time-varying local loss function
fn
t (xt), AoI τnt , weight wn

t , and communication indicator dnt .
To tackle this challenge, we first derive an upper bound on (3).
We then formulate an online scheduling problem to minimize
this upper bound.

IV. AOI MINIMIZATION WITH WEIGHT LIMITS

In this section, we present the Age-of-Information Mini-
mization with Weight Limits (AIMWeL) scheduling policy to
optimize the performance of semi-asynchronous aggregation
for online distributed optimization.

A. Performance Bound on Semi-Asynchronous Aggregation

We first derive a bound on (3) for the semi-asynchronous
online distributed optimization framework. We state the fol-
lowing assumptions required for our performance analysis.
These assumptions are common in existing works on FL and
distributed optimization [4], [7], [10], [15].

Assumption 1. The optimal global decision x⋆
t ∈

argminx∈Rd ft(x) has zero gradient and lower bounded loss,
i.e., for any t

∇ft(x
⋆
t ) = 0, (10)

ft(x
⋆
t ) > −∞. (11)

2The classic AoI evolution commonly assumes the communication indicator
dnt , e.g., the communication channel on and off indicator, is i.i.d. with a known
mean E{dnt }, and thus is policy π-independent, [26]-[30], [36]. Our model
here is more general.

TABLE I: Summary of Key Notations

Notation Description

T Set of time slots
N Set of local devices
T Total number of time slots
N Total number of local devices
fn
t (x) Local loss function of device n at time t

ft(x) Global loss function at time t

wn
t Local function weight of device n at time t

xn
t Local decision of device n at time t

xt Global decision of central server at time t

x⋆
t Optimal global decision that minimizes ft(x)

Nt Set of devices that server receives decisions at time t

η Gradient descent step size (or learning rate)
lnt Time when device n last received xlnt

from server
τn
t AoI (or decision update delay) of device n at time t

un
t Scheduling indicator of device n at time t

dnt Communication indicator of device n at time t

pnt Probability that device n finishes updating at time t

pnLB Lower bound constant on pnt
µ Strongly convex constant of fn

t (x)

L Smoothness constant of fn
t (x)

ϵ Dissimilarity constant of local gradient ∇fn
t (x)

∆fUB Upper bound of global loss function variation
∇fUB Upper bound of local gradient on optimal decision
τUB Upper bound on AoI
wLB Lower bound on sum weight of scheduled devices
ρ Contraction constant on global loss
δ Residual constant on global loss
αn Weight on the AoI of device n

qn Minimum time-averaged weight limit of device n

K Maximum number of scheduled devices at time t

π Scheduling policy
Π Set of non-anticipative scheduling policies
P Online scheduling problem with weight limits
OPT⋆ Optimal objective value of P
OPTπ Objective value of P achieved by policy π

Qn
t Virtual queue of device n at time t

Lt Modified Lyapunov function at time t

U Weight on AoI in Lt

∆t Modified Lyapunov drift at time t

St System state at time t

Pt Per-slot optimization problem that AIMWeL solves
Wn

t Weight AIMWeL calculates for device n at time t

Assumption 2. The local loss function fn
t (x) is µ-strongly

convex: ∃µ > 0, s.t., for any x,y ∈ Rd, n, and t

fn
t (y)− fn

t (x) ≥ ⟨∇fn
t (x),y − x⟩+ µ

2
∥y − x∥2 (12)

where ⟨a,b⟩ represents the inner product of vectors a and b,
and ∥ · ∥ represents the Euclidean norm.

Assumption 3. The local loss function fn
t (x) is L-smooth:

∃L > 0, s.t., for any x,y ∈ Rd, n, and t

fn
t (y)− fn

t (x) ≤ ⟨∇fn
t (x),y − x⟩+ L

2
∥y − x∥2. (13)
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Assumption 4. The gradient of the local loss function ∇fn
t (x)

is ϵ-dissimilar to the gradient of the global loss function
∇ft(x): ∃ϵ > 0, s.t., for any x ∈ Rd, n, and t

⟨∇fn
t (x),∇ft(x)⟩ ≥ ϵ∥∇ft(x)∥2. (14)

Assumption 4 is weaker than a more common bounded
gradient variance assumption that ∃γ ∈ [0, 1), s.t., ∥∇fn

t (x)−
∇ft(x)∥2 ≤ γ∥∇ft(x)∥2, ∀x ∈ Rd, n, t. We can show that
Assumption 4 can be derived from setting ϵ = 1−γ

2 .
Unlike many existing works that consider only fixed datasets

(or fixed loss functions), we examine the joint impact of time-
varying loss function fn

t (x), local weight wn
t , partial device

participation Nt, and AoI τnt on the performance of semi-
asynchronous aggregation. To this end, we need to quantify
the amount of variations in the underlying system. Let the
variation of the global loss function be upper bounded for any
x ∈ Rd and t by

|ft(x)− ft+1(x)| ≤ ∆fUB. (15)

Furthermore, we need to quantify the heterogeneity in local
loss functions. Let the local gradient on the globally optimal
decision be upper bounded for any n and t by

∥∇fn
t (x

⋆
t )∥2 ≤ ∇fUB. (16)

The following theorem provides a performance upper bound
on semi-asynchronous online distributed optimization.

Theorem 1. If the step size is set as η < 2µϵ
L2 in the local

decision update (4), the final global decision xT satisfies

fT (xT )− fT (x
⋆
T ) ≤ ρT

[
f1(x1)− f1(x

⋆
1)
]
+ δ (17)

where ρ < 1 is a contraction constant given by

ρ ≜
[
1− η

(
2µϵ− ηL2

)
wLB

] 1
τUB , (18)

and δ ≥ 0 is a residual constant given by

δ ≜
2τUB∆fUB + η2L∇fUB

η
(
2µϵ− ηL2

)
wLB

, (19)

with τUB ≥ τnt , ∀n,∀t being an upper bound on the AoI and
wLB ≤

∑
n∈Nt

wn
t , ∀t being a lower bound on the sum weights

of the scheduled devices.

Proof: See Appendix A.
Theorem 1 provides a performance bound for the final

global decision xT . As T approaches infinity, the final loss is
δ-optimal. Note that δ can be small, e.g., in the special case of
offline distributed optimization that the local loss functions (or
datasets in FL) are fixed over time, i.e., ∆fUB = 0, and the local
loss functions are the same among devices, i.e., ∇fUB = 0, we
have δ = 0. The following corollary provides a bound on
the optimality gap (3) yielded by the sequence of the global
decisions {xt}.

Corollary 1. The time-averaged loss yielded by the sequence
of global decisions {xt} is upper bounded by

1

T

∑
t∈T

[
ft(xt)− ft(x

⋆
t )
]
≤ f1(x1)− f1(x

⋆
1)

(1− ρ)T
+ δ. (20)

Proof: See Appendix B.
Corollary 1 implies that the time-averaged loss converges to
a δ-neighbourhood of the optimum at an O( 1

T ) rate.

Remark 1. (Bounded AoI and Weight) In practical systems
where each device n uploads its local decisions within finite
time, its AoI is bounded above, i.e., τnt ≤ τUB < ∞, ∀n, ∀t.
Also, when as least one device participate in decision av-
eraging at each time t, the sum weights of the scheduled
devices is bounded below, i.e.,

∑
n∈Nt

wn
t ≥ wLB > 0, ∀t. In

Section IV-E, we will prove that AIMWeL provides a bounded
optimality ratio of the weighted sum AoI. We can then prove
by contradiction that AIMWeL guarantees the existence of τUB.
Furthermore, in Section IV-C, we will see that if there is at
least one device ready to upload its local decision at each
time t, AIMWeL guarantees the existence of wLB. Furthermore,
AIMWeL does not need the values of τUB and wLB to run.

B. AoI Minimization with Weight Limits

From Theorem 1, we can see that the performance of semi-
asynchronous aggregation improves as the contraction constant
ρ in (18) and the residual constant δ in (19) decrease. We
further observe the following two key factors that determine
the value of ρ and δ:3

• AoI τnt : Each device n should have small τnt such that
more devices can contribute in-time information to global
decision update (5).

• Function weight wn
t : More devices with larger weights

should be scheduled to participate in global decision
update (5), such that

∑
n∈Nt

wn
t is large.

Based on these two observations, we aim at making a
sequence of scheduling decisions {un

t } at the central server to
minimize the long-term time-averaged expected weighted sum
of AoI, subject to individual long-term weight constraints. This
leads to the following online scheduling optimization problem:

P : OPT⋆ =min
π∈Π

{
lim

T→∞

1

T

∑
t∈T

∑
n∈N

αnE{τnt }
}

(21a)

s.t. lim
T→∞

1

T

∑
t∈T

E{wn
t d

n
t u

n
t } ≥ qn, ∀n, (21b)∑

n∈N
un
t ≤ K, ∀t (21c)

where αn > 0 is the scaling factor for AoI on device n with∑
n∈N αn = 1, qn > 0 is the average minimum weight limit,

and K ≤ N is the maximum number of participating local
devices at each t as explained in Section III-C.

For a given network setup (N,K,αn, {wn
t }, {pnt }, qn), let

π⋆ ∈ Π be the optimal online scheduling policy for solving
P. Let OPT⋆ be the optimal objective of P achieved by π⋆.
Similarly, let OPTπ be the objective of P achieved by some
policy π ∈ Π. The optimality ratio of π to π⋆ is defined as

OPTπ

OPT⋆ . (22)

3The constants ∆fUB and ∇fUB in δ are determined by the underlying
system and are independent of the scheduling decisions. Scheduling devices
to minimize τnt and maximize

∑
n∈Nt

wn
t helps to reduce τUB and increase

wLB, leading to improved performance as seen in Theorem 1.
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We assume constraint (21b) in P is strictly feasible, i.e.,
there exists a set of scheduling probabilities {ṽn} that satisfy∑

n∈N ṽn ≤ K and

w̄npnLBṽ
n − qn ≥ σ, ∀n (23)

where w̄n and pnLB are defined in Section III-A and Sec-
tion III-B, respectively, and σ > 0 is a Slater’s constant for
the long-term weight constraints (21b).

C. AIMWeL Scheduling Policy

We now present the design details of AIMWeL for solving
P. Different from the standard Lyapunov optimization [35], we
introduce a new form of Lyapunov function that is a weighted
sum of linear AoI values and quadratic virtual queues to han-
dle the policy-dependent communication indicator sequence
dnt with a time-varying probability pnt of completing local
decision update.

We first introduce a virtual queue Qn
t at each device n to

account for the long-term weight constraints (21b) in P, with
the following updating rule:

Qn
t+1 ≜ tqn −

t∑
τ=1

wn
t d

n
t u

n
t , ∀n,∀t (24)

or equivalently Qn
t+1 − Qn

t = qn − wn
t d

n
t u

n
t , ∀n,∀t. The

concept of virtual queues was also used in [26], [36] for
constrained AoI minimization. Unique to our virtual queue in
(24), the communication indicator sequence dnt is dependent
on the scheduling decision sequence un

t with a time-varying
probability pnt . Define [·]+ = max{·, 0} as a projection
operator that computes the positive part of a scalar. From
Theorem 2.8 in [35], strong stability of the virtual queue

lim
T→∞

1

T

∑
t∈T

E
{
[Qn

t ]+
}
< ∞, ∀n (25)

is sufficient to satisfy (21b) in P.
Let St ≜ {{τnt }n∈N , {Qn

t }n∈N } denote the system state at
time t. Note that it contains both the AoI values and the virtual
queues. We define a new Lyapunov function as follows:

Lt ≜ U
∑
n∈N

αnτnt +
1

2

∑
n∈N

[Qn
t ]

2
+, ∀t (26)

where U > 0 is a weight on the AoI. Different from the
standard Lyapunov function that is a quadratic function on Qn

t

only, Lt in (26) is a weighted sum of the linear AoI values
and the quadratic virtual queues. Define the corresponding
modified Lyapunov drift as

∆t ≜ Lt+1 − Lt, ∀t. (27)

We provide an upper bound on its conditional expectation in
the following lemma.

Lemma 1. The modified Lyapunov drift is upper bounded by

E
{
∆t|St

}
≤−

∑
n∈N

Uαnτnt E
{
dnt u

n
t |St

}
−

∑
n∈N

[Qn
t ]+E

{
wn

t d
n
t u

n
t |St

}
+Bt (28)

where Bt ≜
∑

n∈N qn[Qn
t ]+ + U + CN

2 with C ≜
max{(qmax)2, (wmax−qmin)2}, qmax ≜ max

n
{qn}, qmin ≜ min

n
{qn},

and wmax ≜ max
t,n

{wn
t }.

Proof: Substituting Lt in (26) into ∆t in (27) and taking
conditional expectation over the system state St, we have

E{∆t|St} = U
∑
n∈N

αnE
{
τnt+1 − τnt |St

}
+

1

2

∑
n∈N

E
{
[Qn

t+1]
2
+ − [Qn

t ]
2
+|St

}
. (29)

From the equivalent AoI evolution below (9), we have

E
{
τnt+1 − τnt |St

}
= −τnt E

{
dnt u

n
t |St

}
+ 1 (30)

From the equivalent virtual queue updating rule below (24),
we have

[Qn
t+1]

2
+ ≤

[
max{[Qn

t ]+ + qn − wn
t d

n
t u

n
t , 0}

]2
≤

[
[Qn

t ]+ − (wn
t d

n
t u

n
t − qn)

]2
. (31)

Rearranging the terms of (31), we have

[Qn
t+1]

2
+ − [Qn

t ]
2
+

≤ −2[Qn
t ]+(w

n
t d

n
t u

n
t − qn) + (wn

t d
n
t u

n
t − qn)2. (32)

Taking conditional expectation over St and noting that
(wn

t d
n
t u

n
t − qn)2 ≤ C yields

E
{
[Qn

t+1]
2
+ − [Qn

t ]
2
+|St

}
≤ −2[Qn

t ]+
[
E{wn

t d
n
t u

n
t |St} − qn

]
+ C. (33)

Substituting (30) and (33) into (29), we have

E{∆t|St} ≤ −U
∑
n∈N

αnτnt E
{
dnt u

n
t |St

}
+ U

∑
n∈N

αn

−
∑
n∈N

[Qn
t ]+E

{
wn

t d
n
t u

n
t |St

}
+

∑
n∈N

qn[Qn
t ]+ +

1

2

∑
n∈N

C

which proves (28).
Note that Bt in (28) is not affected by the scheduling

decision un
t . We solve the following per-slot optimization

problem Pt to minimize the modified Lyapunov drift upper
bound in Lemma 1

Pt : min
{un

t }
−

∑
n∈N

Uαnτnt d
n
t u

n
t + wn

t [Q
n
t ]+d

n
t u

n
t

s.t.
∑
n∈N

un
t ≤ K, ∀t. (21c)

It is easy to see that the solution to Pt is selecting the top-K
local devices with the highest value of

Wn
t ≜ Uαnτnt d

n
t + wn

t [Q
n
t ]+d

n
t . (34)

This provides the desired scheduling policy.
We summarize the AIMWeL algorithm in Algorithms 1

and 2 at the server side and the local device side, respectively.
We will further show that AIMWeL provides guarantees on
both the long-term weight constraint and the optimality ratio
in Sections IV-D and IV-E.
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Algorithm 1 AIMWeL: central server’s algorithm

1: Initialize U > 0, {αn > 0}, {τn1 = 1}, {Qn
1 = 0}.

2: Receive {wn
t } and {dnt } from devices N .

3: Send{un
t =1} to devices Nt with K-largest {Wn

t } in (34).
4: Receive xn

lnt
from devices Nt.

5: Update global decision xt+1 via (5).
6: Broadcast xt+1 to devices Nt.
7: Update {τnt+1} for devices N via (9).
8: Update {Qn

t+1} for devices N via (24).

Remark 2. (Computational Complexity) In each time slot,
AIMWeL requires only the updating of N virtual queues,
closed-form calculation of {Wn

t }, and finding of top K out
of N values, with computational complexity O(N), O(N),
and O(N + K logK), respectively. Therefore, the overall
computational complexity of AIMWeL is O(N + K logK).
It is in the same order of computational complexity as some
simple huristic AoI minimization methods, e.g., calculating N
AoI values and then selecting K devices with the largest AoI.

Remark 3. (Communication Cost) In each time slot, the
communication cost of AIMWeL is dominated by the upload-
ing of at most K local decisions {xn

lnt
} from the scheduled

local devices Nt, and the receiving of an equal number of
global decisions xt+1 from the central server. Thus, both
the uplink and downlink communication cost of AIMWeL
is O(Kd), with d being the number of decision parame-
ters. Note that since d is usually large in modern machine
learning applications, e.g., it can be thousands for logistic
regression in Section V-B and millions for neural network in
Section V-C, the O(N) communication cost of uploading the
function weights {wn

t } and communication indicators {dnt } is
negligible. Furthermore, the scalar values of {wn

t } and {dnt }
can be efficiently communicated over K uplink channels via
time division.

D. Bound on Weight Constraints via Modified Lyapunov Drift

We bound the weight constraint violation by AIMWeL, via
a modified Lyapunov drift analysis to provide an upper bound
on the virtual queue. We require the following lemma, which
states that for any n and t, dnt and un

t are uncorrelated.

Lemma 2. For any policy π ∈ Π, we have

E{dnt un
t } = E{dnt }E{un

t }, ∀n,∀t. (35)

Proof: See Appendix C.
In the following theorem, we show AIMWeL guarantees

strong stability of the virtual queues in (24) and thus satisfies
the individual long-term weight constraints (21b) in P.

Theorem 2. The AIMWeL scheduling policy satisfies the
individual long-term weight constraints (21b) in P for any
strictly feasible {qn}. Specifically, we have

lim
T→∞

1

T

∑
t∈T

∑
n∈N

E
{
[Qn

t ]+
}
≤ 1

σ

(
U +

CN

2

)
< ∞. (36)

Algorithm 2 AIMWeL: local device’s algorithm

1: Initialize x1 = 0.
2: Send wn

t , d
n
t to central server.

3: if Received xt then
4: Update local decision xn

t via (4).
5: else Continue to update xn

lnt
.

6: if dnt un
t = 1 then

7: Upload xn
lnt

to central server.
8: Update dnt+1 via (6).

Proof: Consider a stationary randomized policy πSR with
scheduling probabilities {vn}. The modified Lyapunov drift is
bounded by

E{∆t|St}
(a)

≤ −
∑
n∈N

Uαnτnt E{dnt vn|St}

−
∑
n∈N

[Qn
t ]+E{wn

t d
n
t v

n − qn|St}+ U +
CN

2

(b)

≤ −U
∑
n∈N

pnLBv
nαnτnt −

∑
n∈N

(w̄npnLBv
n − qn)[Qn

t ]+

+ U +
CN

2
(37)

where (a) is because AIMWeL greedily minimizes the modi-
fied Lyapunov drift upper bound in (28) at every time slot t,
and therefore any other policy π ∈ Π yields a larger (or equal)
right hand side (RHS) of (28); and (b) follows from the lower
bound on E{dnt } in (7) and (35) in Lemma 2.

Taking the expectation of (37) over St, summing it over
t ∈ T , and then dividing it by T , we have

LHS1 + LHS2 ≤ − 1

T

∑
t∈T

E{∆t}+ U +
CN

2
(38)

where

LHS1 ≜
1

T

∑
t∈T

∑
n∈N

(w̄npnLBv
n − qn)E{[Qn

t ]+}, (39)

and

LHS2 ≜
U

T

∑
t∈T

∑
n∈N

pnLBv
nαnE{τnt }. (40)

Let vn = ṽn, where ṽn is defined in Section IV-B, and
applying the Slater’s condition (23) to LHS1 in (39), we have

LHS1 ≥ σ

T

∑
t∈T

∑
n∈N

E{[Qn
t ]+}. (41)

Substituting it into (38), noting that

− 1

T

∑
t∈T

E{∆t} ≤ E{L1}
T

, (42)

LHS2 ≥ 0, (43)

and taking the limit T → ∞, we have

lim
T→∞

1

T

∑
t∈T

∑
n∈N

E{[Qn
t ]+} ≤ lim

T→∞

E{L1}
Tσ

+
1

σ

(
U +

CN

2

)
.

Further noting that L1 is upper bounded, we prove strong
stability of the virtual queues in (36), which implies (21b)
is satisfied.
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Fig. 2: An illustration of the double relxation approach to
bound the optimality ratio of AIMWeL.

E. Bound on Optimality Ratio via Double Relaxation

We bound the optimality ratio of AIMWeL via a novel
double relaxation approach, to handle the policy-dependent
communication indicator sequence dnt caused by semi-
asynchronous aggregation. As illustrated in Fig. 2, the intuition
behind the double relaxation approach is to keep relaxing
the original problem P (21), until the optimal stationary
randomized policy π⋆

SR ∈ ΠSR for solving a single-relaxed
problem PR (44) — the solution to the stationary randomized
equivalent problem PSR (48) — also achieves the optimal
objective value of a doubly-relaxed lower bound problem
PLB (46). This stationary randomized policy π⋆

SR builds a bridge,
connecting AIMWeL and the optimal policy π⋆ to bound the
optimality ratio.

1) Double Relaxation: Existing constrained AoI scheduling
policies [26]-[30], [36], do not consider the case where the
communication indicator sequence dnt is policy-dependent
with a time-varying probability pnt of completing local deci-
sion update, so we cannot apply their techniques. Instead, we
first use the upper bound on E{dnt } in (7) to relax P by setting
dnt = 1, and then relax the deterministic constraint (21c) to the
expectation form. This leads to the following relaxed problem
of P

PR : OPTR =min
π∈Π

{
lim

T→∞

1

T

∑
t∈T

∑
n∈N

αnE{τnt }
}

(44a)

s.t. lim
T→∞

1

T

∑
t∈T

w̄nE{un
t } ≥ qn, ∀n, (44b)∑

n∈N
E{un

t } ≤ K. (44c)

Let πR ∈ Π be an optimal online policy for PR, we have

OPTR ≤ OPT⋆. (45)

The following lemma provides a lower bound problem to
PR, by relating the scheduling decision un

t with the AoI τnt .
Our proof extends the results of Theorem 1 in [26], which
considers scheduling over a single i.i.d. interference channel,
i.e., at most K = 1 user can be scheduled at each time, to
the more general case that K ≥ 1 devices can be scheduled
at each time.

Lemma 3. Any optimal online policy πLB ∈ Π for the follow-
ing optimization problem provides a lower bound OPTLB ≤
OPTR to PR:

PLB : OPTLB =min
π∈Π

{
1

2

∑
n∈N

αn

cn
+

1

2

}
(46a)

s.t. w̄ncn ≥ qn, ∀n, (46b)∑
n∈N

E{un
t } ≤ K (44c)

where cn ≜ limT→∞
1
T

∑
t∈T E{un

t } is the long-term time-
averaged expected number of schedules for device n.

Proof: See Appendix D.
Thus, the original scheduling problem P can be relaxed

twice to PLB. We will next show that PLB admits a stationary
randomized (i.e., AoI-independent) policy that achieves its
optimal objective value OPTLB. We require the following
lemma on the long-term time-averaged AoI for any stationary
randomized policy when the communication indicator dnt is
always 1. The proof proceeds by noting that the probability
of receiving a local decision from device n is vn and then
applying renewal theory [37].

Lemma 4. Consider a stationary randomized policy πSR with
scheduling probabilities {vn}. When dnt = 1,∀n, ∀t, the long-
term time-averaged expected AoI is

lim
T→∞

1

T

∑
t∈T

E{τnt } =
1

vn
, ∀n. (47)

Proof: See Appendix E.
Applying Lemma 4 to problem PR, we have the following

optimization problem PSR, where ΠSR denotes the class of
stationary randomized algorithms

PSR : OPTSR = min
π∈ΠSR

{ ∑
n∈N

αn

vn

}
(48a)

s.t. w̄nvn ≥ qn, ∀n, (48b)∑
n∈N

vn ≤ K. (48c)

Let π⋆
SR be an optimal stationary randomized policy that

solves the above PSR. The following lemma shows that π⋆
SR

also achieves the optimal objective value of PLB. The proof
follows from noting that π⋆

SR is also a feasible solution to PLB,
and then comparing OPTSR with OPTLB and the objective value
of PLB achieved by π⋆

SR.

Lemma 5. The scheduling probabilities of the optimal station-
ary randomized policy π⋆

SR ∈ ΠSR for solving PSR are {cnLB}n∈N ,
where cnLB is the long-term time-averaged expected number of
schedules for device n under the optimal policy πLB ∈ Π that
solves PLB. Furthermore, π⋆

SR achieves the optimal objective
value OPTLB of PLB.

Proof: Consider a stationary randomized policy πSR ∈ ΠSR

with scheduling probabilities {cnLB}n∈N . It follows that policy
πSR satisfies constraints (46b) and (44c) in PLB, and achieves
the optimal objective value OPTLB in (46a). Note that policy
πSR with scheduling probabilities {cnLB}n∈N also satisfies con-
straints (48b) and (48c) in PSR, and thus is a feasible solution
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to PSR. Let the objective value of PSR achieved by policy πSR be
OBJSR. Comparing the object of PLB in (46a) with the object
of PSR in (48a), we have

OBJSR

2
< OPTLB. (49)

We now prove by contradiction that the optimal stationary
randomized policy π⋆

SR for solving PSR is {cnLB}n∈N , i.e.,

OBJSR = OPTSR. (50)

Suppose there exists another stationary randomized policy with
scheduling probabilities {ṽn}n∈N that satisfies constraints
(48b) and (48c) in PSR, and achieves a lower objective value for
PSR than {cnLB}n∈N . From (49), it follows that the scheduling
policy with cn = ṽn, ∀n satisfies constraints (46b) and (44c)
in PLB, and achieves a lower objective value for PLB than πLB.
This contradicts to πLB being the optimal scheduling policy for
solving PLB. Therefore, the optimal stationary randomized pol-
icy π⋆

SR for solving PSR has scheduling probabilities {cnLB}n∈N ,
and thus (50) holds.

2) Optimality Ratio of AIMWeL: The stationary randomized
policy π⋆

SR ∈ ΠSR connects AIMWeL and an optimal policy
π⋆ ∈ Π for solving problem P, to bound the optimality ratio
of AIMWeL. The following theorem provides an optimality
ratio of AIMWeL, where OPTAIMWeL is the objective of problem
P achieved by AIMWeL.

Theorem 3. The optimality ratio yielded by AIMWeL is upper
bounded by

OPTAIMWeL

OPT⋆ ≤ cmax
LB

pmin
LB c

min
LB

[
2 +

CN

U

][ (1− pmin
LB )q

max

σ
+ 1

]
(51)

where cmin
LB ≜ min

n
{cnLB}, cmax

LB ≜ max
n

{cnLB}, pmin
LB ≜ min

n
{pnLB},

and qmax ≜ max
n

{qn}.

Proof: From the definition of LHS1 (39) in the proof of
Theorem 2, we have

LHS1 =
1

T

∑
t∈T

∑
n∈N

(w̄npnLBv
n − qn)E{[Qn

t ]+}

=
1

T

∑
t∈T

∑
n∈N

pnLB(w̄
nvn − qn)E{[Qn

t ]+}

− 1

T

∑
t∈T

∑
n∈N

(1− pnLB)q
nE{[Qn

t ]+}. (52)

Substituting vn = cnLB into (52) and noting that w̄ncnLB ≥ qn,
we have

−LHS1 =
1

T

∑
t∈T

∑
n∈N

(1− pnLB)q
nE{[Qn

t ]+}

− 1

T

∑
t∈T

∑
n∈N

pnLB(w̄
ncnLB − qn)E{[Qn

t ]+}

≤ 1

T

∑
t∈T

∑
n∈N

(1− pnLB)q
nE{[Qn

t ]+}

≤ (1− pmin
LB )qmax

T

∑
t∈T

∑
n∈N

E{[Qn
t ]+}. (53)

Dividing both sides of (38) in the proof of Theorem 2 by
U , taking T → ∞, and rearranging terms, we have

lim
T→∞

LHS2

U
= lim

T→∞

1

T

∑
t∈T

∑
n∈N

pnLBc
n
LBα

nE{τnt }

≤ − lim
T→∞

LHS1

U
− lim

T→∞

1

UT

∑
t∈T

E{∆t}+ 1 +
CN

2U

(a)

≤ (1− pmin
LB )q

max

U
lim

T→∞

1

T

∑
t∈T

∑
n∈N

E{[Qn
t ]+}+

1

2

[
2 +

CN

U

]
(b)

≤ (1− pmin
LB )q

max

2σ

[
2 +

CN

U

]
+

1

2

[
2 +

CN

U

]
=

1

2

[
2 +

CN

U

][ (1− pmin
LB )q

max

σ
+ 1

]
(54)

where (a) follows from the bound on −
∑

t∈T E{∆t} in (42)
and the bound on −LHS1 in (53), and (b) follows from the
virtual queue upper bound in (36). Dividing both sides of (54)
by pmin

LB c
min
LB , we have

OPTAIMWeL = lim
T→∞

1

T

∑
t∈T

∑
n∈N

αnE{τnt }

≤ 1

2pmin
LB c

min
LB

[
2 +

CN

U

][ (1− pmin
LB )q

max

σ
+ 1

]
. (55)

From the objective (46a) in PLB, we have

OPTLB =
1

2

∑
n∈N

αn

cnLB

+
1

2
≥

∑
n∈N αn

2cmax
LB

+
1

2
≥ 1

2cmax
LB

. (56)

Comparing (55) with (56), we have

OPTAIMWeL

OPTLB

≤ cmax
LB

pmin
LB c

min
LB

[
2 +

CN

U

][ (1− pmin
LB )q

max

σ
+ 1

]
. (57)

Further noting that OPTLB ≤ OPTR ≤ OPT⋆, we have

OPTAIMWeL

OPT⋆ ≤ OPTAIMWeL

OPTR

≤ OPTAIMWeL

OPTLB

. (58)

Combining (56) and (58), we complete the proof.
The following corollary provides an upper bound on the

optimality ratio yielded by AIMWeL for the special case
where the communication indicator sequence dnt is i.i.d. and
is independent of the scheduling decision sequence un

t .

Corollary 2. For i.i.d. communication indicator sequence dnt
that is independent of the scheduling decision sequence un

t ,
AIMWeL provides an optimality ratio

OPTAIMWeL

OPT⋆ ≤ c̃max
LB

c̃min
LB

[
2 +

CN

U

]
(59)

where c̃max
LB ≜ maxn{c̃nLB} and c̃min

LB ≜ minn{c̃nLB} with c̃nLB being
the long-term time-averaged expected number of schedules for
device n achieved by the optimal policy π̃LB for solving a lower
bound problem P̃LB to P.

Proof: See Appendix F.
As a point of comparison, the drift-plus-penalty (DPP)

policy proposed in [26] for device scheduling over a single
K = 1 i.i.d. interference channel and a policy-independent
communication indicator sequence, is shown to be 2-optimal.
In Corollary 2, the additional constant c̃max

LB
c̃min

LB
is caused by
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scheduling multiple K ≥ 1 devices at each time t. As the
network heterogeneity reduces and U is set large enough,
AIMWeL becomes 2-optimal.

Remark 4. (Comparison with Existing Works) As observed
earlier, the assumption of i.i.d. and policy-independent dnt
is a highly-simplified case that is nevertheless common in
existing works [26]-[30], [36]. Specifically, the policies pro-
posed in [26] are for device scheduling over a single i.i.d.
interference channel with fixed transmission success proba-
bilites at the devices, i.e., K = 1 and pnt = pn, ∀t, while
we consider scheduling multiple K > 1 devices with time-
varying probabilities pnt of finishing their local updates at
each time t. Furthermore, different from the standard quadratic
only Lyapunov function used in [26], we use the weighted
sum of linear AoI values and quadratic virtual queues as
a new Lyapunov function, to handle the policy-dependent
communication indicator sequence. In addition, we propose a
novel double relaxation approach to bound the optimality ratio
of AIMWeL with policy-dependent and thus non-i.i.d. com-
munication indicator sequence, which is also different from
the bounding approach in [26] for i.i.d. systems. Finally, we
emphasize here that AIMWeL together with its performance
analysis is applicable to general constrained AoI scheduling
problems with policy-dependent communication states under
time-varying state transition probabilities.

V. APPLICATION TO SEMI-ASYNCHRONOUS FL

As an example to study the performance of AIMWeL,
we apply it to semi-asynchronous FL. We present numerical
results to demonstrate the performance advantage of AIMWeL
over the current best alternatives, based on standard image
classification datasets for both logistic regression and neural
network training.

A. Simulation Setup

We consider a FL system with N = 10 devices and a server.
We evaluate our results on the popular MNIST dataset [38] and
Fashion-MNIST dataset [39]. Each of their training dataset D
consists of 6 × 104 data samples, and their test dataset E
consists of 1 × 104 data samples. Each data sample (µ, ν)
represents an image with 28 × 28 pixels and 10 possible
labels, i.e., µ ∈ R784 and ν ∈ {1, . . . , 10}. We study the
scenario where the local datasets {Bn

t } contain data samples of
different labels among devices, such that the data is non-i.i.d.
We consider unbalanced and streaming data at the devices,
and set the number of arriving data samples βn

t as uniformly
distributed U [1, 4] for n ∈ {1, 2}, U [1, 5] for n ∈ {3, 4, 5},
U [6, 8] for n ∈ {6, 7}, and U [6, 10] for n ∈ {8, 9, 10}. We
also consider network heterogeneity in computational capacity
and set p̄n = 3

4 for n ∈ {1, . . . , 5}, and p̄n = 1
4 for

n ∈ {6, . . . , 10}. We set equal AoI scaling factor αn = 1
10 for

each device. All programming codes will be provided along
with the final version of this paper.

We compare AIMWeL with the following schemes.
• Select All: The server schedules all devices that are ready

to upload their local models {xn
lnt
}. It represents the

idealized aggregation scenario without any limits on the
number of participating devices, i.e., K = N .

• AoI-MaxWeight: The server selects K devices with the
largest weight U αnpn

2 τnt (τ
n
t + 1) + pn[Qn

t ]+. It is a
modification of the max weight policy in [26] to handle
multi-user scheduling over i.i.d. channels. Also, we use
the same virtual queue updating rule in (24) for the max
weight policy to take into account the local weights wn

t .
• AoI-DPP: The server selects K devices with the largest

DPP value U αnpn

2 τnt +pn[Qn
t ]+. It represents a Lyapunov

optimization based scheduling policy similar to the one
in [26]. The DPP policy has been extended to also use
the same virtual queue updating rule in (24) as AIMWeL.

• Random: The server randomly schedules up to K de-
vices that are ready to upload their local models. This
policy is commonly adopted by existing works on semi-
asynchronous FL [13]-[15].

We detail the adaptations needed to apply the AoI-
MaxWeight and AoI-DPP methods of [26] to solve our prob-
lem.

• AoI-MaxWeight and AoI-DPP are designed for schedul-
ing over a single i.i.d. interference channel, i.e., K = 1
and dnt is i.i.d. In contrast, AIMWeL is for multi-user
scheduling, i.e., K ≥ 1, over policy-dependent and time-
varying communication environment, i.e., the communi-
cation indicator sequence {dnt } depends on the scheduling
decision sequence {un

t } and has a time-varying and un-
known probability pnt of being 1. To run AoI-MaxWeight
and AoI-DPP in our simulation, we have extended them
to multi-user scheduling and assume P{dnt = 1} = p̄n is
constant and known.

• AoI-MaxWeight and AoI-DPP do not consider time-
varying weights wn

t in the long-term constraints. Here we
have used the same virtual queue updating rule in (24)
as AIMWeL for AoI-MaxWeight and AoI-DPP to take
into account the local weights. Note that in this work we
have used a novel double relaxation approach to show
that AIMWeL provides a bounded optimality ratio of the
weighted sum AoI and satisfies the individual long-term
weight constraints. In contrast, AoI-MaxWeight and AoI-
DPP do not provide any performance guarantee to our
problem.

B. Convex Logistic Regression

We consider the cross-entropy loss for multinomial
logistic regression, given by l(x;µ, ν) = −

∑
j∈V 1{ν =

j} log exp(⟨x[j],µ⟩)∑
k∈V exp(⟨x[k],µ⟩) , where x = [x[1]T , . . . ,x[10]T ]T

with x[j] ∈ R784 being the model for label j.
The entire model is thus of dimension d = 7, 840.
Our computation performance metrics are the time-
averaged test accuracy over E given by Ā(T ) =
1

|E|T
∑

t∈T
∑

i∈E 1{argmax
j

{log exp(⟨xt[j],µ
i⟩)∑

k∈V exp(⟨xt[k],µi⟩)} = νi}
and the time-averaged training loss over {Bn

t } given by
f̄(T ) = 1

T

∑
t∈T

∑
n∈N

wn
t

βn
t

∑
i∈Bn

t
l(xt;µ

n,i
t , νn,it ). Our

scheduling performance metrics are the time-averaged
weighted sum of AoI given by τ̄(T ) = 1

T

∑
t∈T

∑
n∈N αnτnt
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Fig. 3: Test accuracy Ā(T ), training loss f̄(T ), AoI τ̄(T ), and
data sample β̄(T ) vs. T for logistic regression on MNIST.

and the time-averaged total number of data samples given by
β̄(T ) = 1

T

∑
t∈T

∑
n∈N βn

t d
n
t u

n
t .4

Fig. 3 shows Ā(T ), f̄(T ), τ̄(T ), and β̄(T ) versus time T
over MNIST. We set the learning rate η = 1× 10−5, U = 1,
qn = βnpnK

N , and K = 2. We see that the learning per-
formance yielded by AIMWeL outperforms AoI-MaxWeight,
AoI-DPP, and Random, and is close to the idealized Select
All. AoI-MaxWeight and AoI-DPP achieve nearly the same
performance, which is consistent with the simulation results
in [26]. We observe that AIMWeL incurs over 20% less time to
reach the same 88% accuracy that AoI-MaxWeight and AoI-
DPP reach at the end. Furthermore, AIMWeL yields lower
averaged AoI at the same time processes more data samples
than AoI-MaxWeight and AoI-DPP.

C. Non-Convex Neural Network Training

To further validate the performance of AIMWeL for non-
convex loss functions, we train a convolutional neural network,
with a convolutional layer with 10 filters each of size 9 × 9,
a ReLU hidden layer with 100 neurons, and a softmax output
layer. The total number of model parameters is d = 101, 810.
We set the learning rate η = 0.1. Under the same settings as
Fig. 3, we compare the test accuracy Ā(T ) and the training
loss f̄(T ) among AIMWeL, Select All, AoI-MaxWeight, AoI-
DPP, and Random on both MNIST and Fashion-MNIST in
Fig. 4. The AoI τ̄(T ) and data sample β̄(T ) plots are not in-
cluded since they are similar to the ones in Fig. 3. We see that
AoI-MaxWeight and AoI-DPP have nearly the same learning
performance as Random. AIMWeL substantially outperforms
AoI-MaxWeight, AoI-DPP, and Random, incurring over 25%

4As explained in Section III-A, the local weight is commonly set as wn
t =

βn
t

βt
,∀n ∈ N for FL. In our simulation, we replace wn

t with βn
t , and use the

time averaged number of data samples as equivalent constraint for FL.
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(a) Ā(T ) and f̄(T ) vs. T on MNIST.
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Fig. 4: Ā(T ) and f̄(T ) vs. time T for neural network training
on MNIST and Fashion-MNIST. The plots for τ̄(T ) and β̄(T )
are not included since they are similar to Fig. 3b.

less time to reach the same accuracy as these policies on
MNIST, and over 50% less time on Fashion-MNIST.

VI. CONCLUSIONS

We consider device scheduling for semi-asynchronous ag-
gregation in online distributed optimization. We propose an
efficient AIMWeL scheduling policy via a modified Lyapunov
drift design that uses the weighted sum of linear AoI values
and quadratic virtual queues as a new Lyapunov function, to
minimize the accumulated AoI on the local decision updates,
under both individual long-term weight constraints and a
number of devices constraint. Through a novel double re-
laxation approach to decouple the dependency between the
communication indicator sequence and the scheduling deci-
sion sequence under time-varying probabilities of completing
local decision updates due to semi-asynchronous aggregation,
we show that AIMWeL provides guaranteed optimality ratio
and no long-term weight constraint violation. When applying
AIMWeL to semi-asynchronous FL, our experimental results
demonstrate substantial performance advantage of AIMWeL
over the current best approaches, in terms of both improved
final classification accuracy and reduced training time for both
convex and non-convex loss functions.

APPENDIX A
PROOF OF THEOREM 1

Proof: Our proof consists of six major steps.
Step 1: Bound on Dt+1 ≜ ft+1(xt+1) − ft+1(x

⋆
t+1). We

have

Dt+1
(a)
= ft+1

( ∑
n∈Nt

wn
t x

n
lnt

+
∑

m∈N\Nt

wm
t xt

)
− ft+1(x

⋆
t+1)
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(b)

≤
∑
n∈Nt

[
wn

t ft+1(x
n
lnt
)
]
+

∑
m∈N\Nt

[
wm

t ft+1(xt)
]
− ft+1(x

⋆
t+1)

(c)
=

∑
m∈N\Nt

wm
t

[
ft+1(xt)− ft+1(x

⋆
t+1)

]
+

∑
n∈Nt

wn
t

[
ft+1(x

n
lnt
)− ft+1(x

⋆
t+1)

]
︸ ︷︷ ︸

≜A1

(d)
=

∑
m∈N\Nt

wm
t

[
ft(xt)− ft(x

⋆
t )
]︸ ︷︷ ︸

=Dt

+
∑

m∈N\Nt

wm
t

[
ft+1(xt)− ft(xt)

]
︸ ︷︷ ︸

≜E1

+
∑

m∈N\Nt

wm
t

[
ft(x

⋆
t )− ft+1(x

⋆
t+1)

]
︸ ︷︷ ︸

≜E2

+A1

=
∑

m∈N\Nt

wm
t Dt + E1 + E2 +A1 (60)

where (a) follows from the global decision updating rule in
(5) and lnt = t+1−τnt in (8), (b) is because of the convexity of
ft+1(x), (c) is because the sum of the local weights satisfies∑

n∈N wn
t = 1, and (d) follows from

ft+1(xt)− ft+1(x
⋆
t+1) =

[
ft(xt)− ft(x

⋆
t )
]

+
[
ft+1(xt)− ft(xt)

]
+
[
ft(x

⋆
t )− ft+1(x

⋆
t+1)

]
.

Step 2: Bound on A1 in (60). We have

A1 =
∑
n∈Nt

wn
t

[
ft+1(x

n
lnt
)− ft+1(x

⋆
t+1)

]
(a)
=

∑
n∈Nt

wn
t

[
flnt (xlnt

)− flnt (x
⋆
lnt
)
]︸ ︷︷ ︸

=Dlnt

+
∑
n∈Nt

wn
t

[
flnt (x

⋆
lnt
)− ft+1(x

⋆
t+1)

]
︸ ︷︷ ︸

≜E3

+
∑
n∈Nt

wn
t

[
ft+1(x

n
lnt
)− flnt (xlnt

)
]

(b)
=

∑
n∈Nt

wn
t Dlnt

+ E3 +
∑
n∈Nt

wn
t

[
ft+1(x

n
lnt
)− flnt (x

n
lnt
)
]

︸ ︷︷ ︸
≜E4

+
∑
n∈Nt

wn
t

[
flnt (x

n
lnt
)− flnt (xlnt

)
]

︸ ︷︷ ︸
≜A2

=
∑
n∈Nt

wn
t Dlnt

+ E3 + E4 +A2 (61)

where (a) follows from

ft+1(x
n
lnt
)− ft+1(x

⋆
t+1) = [flnt (xlnt

)− flnt (x
⋆
lnt
)]

+ [flnt (x
⋆
lnt
)− ft+1(x

⋆
t+1)] +

[
ft+1(x

n
lnt
)− flnt (xlnt

)
]
,

and (b) is because

ft+1(x
n
lnt
)− flnt (xlnt

)

=
[
ft+1(x

n
lnt
)− flnt (x

n
lnt
)
]
+

[
flnt (x

n
lnt
)− flnt (xlnt

)
]
.

Step 3: Bound on A2 in (61). We have

A2 =
∑
n∈Nt

wn
t

[
flnt (x

n
lnt
)− flnt (xlnt

)
]

(a)

≤
∑
n∈Nt

wn
t

〈
∇flnt (xlnt

),xn
lnt

− xlnt

〉
+

L

2

∑
n∈Nt

wn
t ∥xn

lnt
− xlnt

∥2

(b)
= −η

∑
n∈Nt

wn
t

〈
∇flnt (xlnt

),∇fn
lnt
(xlnt

)
〉

+ η2L
∑
n∈Nt

wn
t

2
∥∇fn

lnt
(xlnt

)∥2︸ ︷︷ ︸
≜A3

(c)

≤ −ηϵ
∑
n∈Nt

wn
t ∥∇flnt (xlnt )

∥2 +A3 (62)

where (a) follows from ft(x) being L-smooth in (13), (b)
is because the local decision updating rule in (4) that xn

lnt
=

xlnt
−η∇fn

lnt
(xlnt

), and (c) follows from (14) in Assumption 4.
Step 4: Bound on A3 in (62). We require the following

lemma, which is borrowed from Lemma 1 in [10].
Lemma 6 (Lemma 1, [10]). For a µ-strongly convex

loss function f(x) : Rd → R, if f(x⋆) > −∞ where
x⋆ ∈ argminx∈Rd f(x), we have for any x ∈ Rd

⟨∇f(x),x− x⋆⟩ ≤ f(x)− f(x⋆) ≤ ∥∇f(x)∥2

2µ
. (63)

Also, the co-coercivity of a L-smooth function f(x) : Rd →
R implies that for any x,y ∈ Rd

∥∇f(x)−∇f(y)∥2 ≤ L⟨∇f(x)−∇f(y),x− y⟩. (64)

We now bound A3 on the RHS of (62). We have

A3 = η2L
∑
n∈Nt

wn
t

2
∥∇fn

lnt
(xlnt

)∥2

(a)

≤ η2L
∑
n∈Nt

wn
t ∥∇fn

lnt
(xlnt

)−∇fn
lnt
(x⋆

lnt
)∥2

+ η2L
∑
n∈Nt

wn
t ∥∇fn

lnt
(x⋆

lnt
)∥2︸ ︷︷ ︸

≜E5

(b)

≤ η2L2
∑
n∈Nt

wn
t

〈
∇fn

lnt
(xlnt

)−∇fn
lnt
(x⋆

lnt
),xlnt

− x⋆
lnt

〉
+ E5

= η2L2
∑
n∈Nt

wn
t

[〈
∇fn

lnt
(xlnt

),xlnt
− x⋆

lnt

〉
−
〈
∇fn

lnt
(x⋆

lnt
),xlnt

− x⋆
lnt

〉]
+ E5

= η2L2
∑
n∈Nt

wn
t

∑
m∈N

wm
t

[〈
∇fm

lnt
(xlnt

),xlnt
− x⋆

lnt

〉
−

〈
∇fm

lnt
(x⋆

lnt
),xlnt

− x⋆
lnt

〉]
+ E5

− η2L2
∑
n∈Nt

wn
t

∑
m∈N ,m̸=n

wm
t

[〈
∇fm

lnt
(xlnt

),xlnt
− x⋆

lnt

〉
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−
〈
∇fm

lnt
(x⋆

lnt
),xlnt

− x⋆
lnt

〉]
(c)
= η2L2

∑
n∈Nt

wn
t

〈
∇flnt (xlnt

),xlnt
− x⋆

lnt

〉
− η2L2

∑
n∈Nt

⟨∇flnt (x
⋆
lnt
),xlnt

− x⋆
lnt

〉
+ E5

− η2L2
∑
n∈Nt

wn
t

∑
m∈N ,m̸=n

wm
t

[〈
∇fm

lnt
(xlnt

)

−∇fm
lnt
(x⋆

lnt
),xlnt

− x⋆
lnt

〉]
(d)

≤ η2L2
∑
n∈Nt

wn
t

〈
∇flnt (xlnt

),xlnt
− x⋆

lnt

〉
− η2L2

∑
n∈Nt

⟨∇flnt (x
⋆
lnt
),xlnt

− x⋆
lnt

〉
+ E5

(e)

≤ η2L2

2µ

∑
n∈Nt

wn
t ∥∇flnt (xlnt

)∥2 + E5 (65)

where (a) is because 1
2∥a+ b∥2 ≤ ∥a∥2 + ∥b∥2, (b) follows

from the co-coercivity of the L-smooth function in (64), (c)
is because ft(x) =

∑
n∈N fn

t (x) in (2), (d) follows from the
co-coercivity of ft(x) in (64) such that

− L
〈
∇fm

lnt
(xlnt

)−∇fm
lnt
(x⋆

lnt
),xlnt

− x⋆
lnt

〉
≤ −∥∇fm

lnt
(xlnt

)−∇fm
lnt
(x⋆

lnt
)∥2 ≤ 0,

and (e) follows from applying (63) in Lemma 6 and
∇ft(x

⋆
t ) = 0 in (10) of Assumption 1.

Substituting the bounds on A1, A2, A3 in (61), (62), (65)
into the bound on Dt+1 in (60), we have

Dt+1 ≤
∑

m∈N\Nt

wm
t Dt +

∑
n∈Nt

wn
t Dlnt

−
(
ηϵ− η2L2

2µ

) ∑
n∈Nt

wn
t ∥∇flnt (xlnt

)∥2

+ E1 + E2 + E3 + E4 + E5

(a)

≤
∑

m∈N\Nt

wm
t Dt +

∑
n∈Nt

wn
t

[
1− η(2µϵ− ηL2)

]
Dlnt

+ E1 + E2 + E3 + E4 + E5 (66)

where (a) follows from η < 2µϵ
L2 such that ηϵ− η2L2

2µ > 0 and
applying (63) in Lemma 6 again such that

−∥∇flnt (xlnt
)∥2 ≤ −2µ

[
flnt (xlnt

)− flnt (x
⋆
lnt
)
]
= −2µDlnt

.

Step 5: Bound on E1 + E2 + E3 + E4 + E5 in (66). We
first bound E1 + E4 as

E1 + E4 =
∑

m∈N\Nt

wm
t

[
ft+1(xt)− ft(xt)

]
+

∑
n∈Nt

wn
t

[
ft+1(x

n
lnt
)− flnt (x

n
lnt
)
]

=
∑

m∈N\Nt

wm
t

[
ft+1(xt)− ft(xt)

]
+

∑
n∈Nt

wn
t

τn
t∑

i=1

[
ft+2−i(x

n
lnt
)− ft+1−i(x

n
lnt
)
]

(a)

≤
∑

m∈N\Nt

wm
t ∆fUB + τnt

∑
n∈Nt

wn
t ∆fUB

(b)

≤ τUB∆fUB (67)

where (a) follows from the definition of ∆fUB in (15)
and (b) is because of the definition of τUB under (19) and∑

m∈N\Nt
wm

t +
∑

n∈Nt
wn

t = 1.
We then bound E2 + E3 as

E2 + E3 =
∑

m∈N\Nt

wm
t

[
ft(x

⋆
t )− ft+1(x

⋆
t+1)

]
+

∑
n∈Nt

wn
t

[
flnt (x

⋆
lnt
)− ft+1(x

⋆
t+1)

]
=

∑
m∈N\Nt

wm
t

[
ft(x

⋆
t )− ft+1(x

⋆
t+1)

]
+

∑
n∈Nt

wn
t

τn
t∑

i=1

[
ft+1−i(x

⋆
t+1−i)− ft+2−i(x

⋆
t+2−i)

]
(a)

≤
∑

m∈N\Nt

wm
t ∆fUB + τnt

∑
n∈Nt

wn
t ∆fUB

(b)

≤ τUB∆fUB (68)

where (a) follows from ft(x) bing convex, ∇ft(x
⋆
t ) = 0 in

(10), and the definitions of ∆fUB in (15), such that

ft(x
⋆
t )− ft+1(x

⋆
t+1)

=
[
ft(x

⋆
t )− ft(x

⋆
t+1)

]
+
[
ft(x

⋆
t+1)− ft+1(x

⋆
t+1)

]
≤

〈
∇ft(x

⋆
t ),x

⋆
t − x⋆

t+1

〉
+∆fUB = ∆fUB,

and (b) is because of the definition of τUB under (19) and∑
n∈N wn

t = 1.
For E5, from the definition of ∇fUB in (16), we have

E5 = η2L
∑
n∈Nt

wn
t ∥∇fn

lnt
(x⋆

lnt
)∥2

≤ η2L
∑
n∈Nt

wn
t ∇fUB ≤ η2L∇fUB. (69)

Substituting the bounds on E1 + E4, E2 + E3, and E5 in
(67), (68), and (69) into (66), we have

Dt+1 ≤
∑

m∈N\Nt

wm
t Dt +

∑
n∈Nt

wn
t

[
1− η(2µϵ− ηL2)

]︸ ︷︷ ︸
≜λn

t

Dlnt

+ 2τUB∆fUB + η2L∇fUB︸ ︷︷ ︸
≜∆

. (70)

Let θt ≜
∑

m∈N\Nt
wm

t +
∑

n∈Nt
λn
t , where λn

t is defined in
(70). We have

θt =
∑

m∈N\Nt

wm
t +

∑
n∈Nt

wn
t

[
1− η(2µϵ− ηL2)

]
=

∑
n∈N

wn
t − η(2µϵ− ηL2)

∑
n∈Nt

wn
t

≤ 1− η(2µϵ− ηL2)wLB︸ ︷︷ ︸
≜θUB

(a)
< 1 (71)

where (a) follows from η < 2µϵ
L2 and wLB ≤

∑
n∈Nt

wn
t .

Step 6: Relate Dt to D1. We prove by induction that the
following inequality holds for any t

Dt ≤ ρtD1 + δ (72)
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where ρ = θ
1

τUB
UB and δ = ∆

1−θUB
are defined in (18) and (19).

Obviously, (72) holds when t = 1, i.e., D1 ≤ ρD1 + δ,
since ρ < 1 and δ ≥ 0. Suppose (72) holds for t = 1, . . . , t′,
we now prove (72) also holds for t = t′ + 1. From (70) and
lnt′ = t′ + 1− τnt′ , we have

Dt′+1 ≤
∑

m∈N\Nt′

wm
t′ Dt′ +

∑
n∈Nt′

λn
t′Dln

t′
+∆

(a)

≤
∑

m∈N\Nt′

wm
t′
[
ρt

′
D1 + δ

]
+

∑
n∈Nt′

λn
t′
[
ρl

n
t′D1 + δ

]
+∆

=

( ∑
m∈N\Nt′

wm
t′ +

∑
n∈Nt′

λn
t′ρ

1−τn
t′

)
ρt

′
D1

+

( ∑
m∈N\Nt′

wm
t′ +

∑
n∈Nt′

λn
t′

)
δ +∆ (73)

where (a) follows from the induction.
We now bound the RHS of (73). Note that∑

m∈N\Nt′

wm
t′ +

∑
n∈Nt′

λn
t′ρ

1−τn
t′

(a)

≤
∑

m∈N\Nt′

wm
t′ +

∑
n∈Nt′

λn
t′ρ

1−τUB

(b)
=

∑
m∈N\Nt′

wm
t′ +

∑
n∈Nt′

λn
t′(θUB)

− τUB−1

τUB

(c)

≤
( ∑

m∈N\Nt′

wm
t′ +

∑
n∈Nt′

λn
t′

)
(θUB)

− τUB−1

τUB

(d)

≤ θUB(θUB)
− τUB−1

τUB = (θUB)
1

τUB = ρ (74)

where (a) follows from τnt ≤ τUB, (b) is because ρ = θ
1

τUB
UB ,

(c) is because θUB < 1 and τUB ≥ 1 such that (θUB)
− τUB−1

τUB > 1,
and (d) follows from the definition of θUB.

Also, we have( ∑
m∈N\Nt′

wm
t′ +

∑
n∈Nt′

λn
t′

)
δ +∆

(a)

≤ θUBδ +∆
(b)
= θUBδ + (1− θUB)δ = δ (75)

where (a) follows from the definition of θUB and (b) is because
δ = ∆

1−θUB
.

Substituting (74) and (75) into (73), we have

Dt′+1 ≤ ρt
′+1D1 + δ, (76)

which proves that (72) holds for t = t′ + 1.
Therefore, by induction, we have (72) holds for any t. It

then follows that (17) holds.

APPENDIX B
PROOF OF COROLLARY 1

Summing (72) in the proof of Theorem 1 over t ∈ T and
dividing both sides by T , we have

1

T

∑
t∈T

[
ft(xt)− ft(x

⋆
t )
]
=

1

T

∑
t∈T

Dt

(a)

≤ 1

T

∑
t∈T

[
ρtD1 + δ

]
=

[
1− ρT

][
f1(x1)− f1(x

⋆
1)
]

(1− ρ)T
+ δ

≤ f1(x1)− f1(x
⋆
1)

(1− ρ)T
+ δ. (77)

where (a) follows from (72) in the proof of Theorem 1.

APPENDIX C
PROOF OF LEMMA 2

Proof: From the iterated law of expectation and by conduct-
ing two case studies on un

t , we have

E{dnt un
t } = E

{
E{dnt un

t |un
t }

}
= E{dnt un

t |un
t =0}P{un

t =0}+ E{dnt un
t |un

t =1}P{un
t =1}

(a)
= E{dnt |un

t = 1}P{un
t = 1}

(b)
= E{dnt }P{un

t = 1} (c)
= E{dnt }E{un

t }. (78)

where (a) follows from dnt u
n
t = 1 with probability 0 when

un
t = 0 such that E{dnt un

t |un
t = 0} = 0, and (b) is because

dnt = 1 with probability E{dnt } when un
t = 1 such that

E{dnt |un
t = 1} = E{dnt }.

APPENDIX D
PROOF OF LEMMA 3

Proof: Consider a policy π ∈ Π that satisfies (44b) and
(44c). Let Dn

T ≜
∑

t∈T un
t be the number of times that device

n is scheduled over T time slots. Let Inm be the number of
slots between the m−1-th and the m-th schedule of device n,
for any m ∈ {1, . . . , Dn

T }. Let the number of remaining time
slots be Rn after the Dn

T -th schedule of device n. The AoI
area associated with the m-th schedule is

∑In
m

i=1 i =
(In

m+1)In
m

2 .
From this equality, the time-averaged AoI of each device n can
be expressed as

1

T

∑
t∈T

τnt =
1

T

[ Dn
T∑

m=1

(Inm + 1)Inm
2

+
(Rn + 1)Rn

2

]

=
1

2T

[ Dn
T∑

m=1

(Inm)2 + (Rn)2 +

Dn
T∑

m=1

Inm +Rn

]
(a)
=

1

2

[
Dn

T

T

( 1

Dn
T

Dn
T∑

m=1

(Inm)2
)
+

(Rn)2

T
+ 1

]
(b)

≥ 1

2

[
Dn

T

T

( 1

Dn
T

Dn
T∑

m=1

Inm

)2

+
(Rn)2

T
+ 1

]
(c)
=

1

2

[
(T −Rn)2

TDn
T

+
(Rn)2

T
+ 1

]
(d)

≥ 1

2

[
T

Dn
T + 1

+ 1

]
(79)

where (a) follows from T =
∑Dn

T
m=1 I

n
m + Rn, ∀n, (b) is

because of the Jensen’s inequality, (c) is because
∑Dn

T
m=1 I

n
m =

T−Rn, and (d) follows from setting Rn = T
Dn

T+1 to minimize
(T−Rn)2

Dn
T

+ (Rn)2.
Taking expectation on both sides of (79), we have

1

T

∑
t∈T

E{τnt } ≥ 1

2

[
1

1
T E{D

n
T }+

1
T

+ 1

]
. (80)



16

Multiplying both sides of (80) by αn, summing over n ∈ N ,
and take the limit T → ∞, we have

lim
T→∞

1

T

∑
t∈T

∑
n∈N

αnE{τnt }

(a)

≥ 1

2

∑
n∈N

αn

limT→∞
1
T

∑
t∈T E{un

t }
+

1

2
(81)

where (a) follows from Dn
T =

∑
t∈T un

t and
∑

n∈N αn = 1.
Further noting that cn = limT→∞

1
T

∑
t∈T E{un

t }, the RHS
of (81) is the objective of PLB, and (46b) is equivalent to (44b),
we have that PLB provides a lower bound to PR.

APPENDIX E
PROOF OF LEMMA 4

Proof: At any time slot t, device n is scheduled with
probability vn. When dnt = 1,∀t, the number of time slots Inm
between the m− 1-th and the m-th schedule of device n are
i.i.d. with P{Inm = r} = vn(1− vn)r−1. The sequence of de-
cision uploads at each device n is therefore a renewal process.
From the generalization of the elementary renewal theorem for
renewal process in [37], we have limT→∞

1
T

∑
t∈T E{τnt } =

E{(In
m)2}

E{In
m} + 1

2 = 1
vn , ∀n.

APPENDIX F
PROOF OF COROLLARY 2

Proof: For i.i.d. communication indicator sequence dnt , we
do not need the double relaxation approach in Section IV-E to
find a lower bound problem for P. Let d̄n = P{dnt = 1}. Sim-
ilar to the proof of Lemma 3, we can show that the following
optimization problem provides a lower bound ÕPTLB ≤ OPT⋆

to the original scheduling problem P when dnt is i.i.d.:

P̃LB : ÕPTLB =min
π∈Π

{
1

2

∑
n∈N

αn

d̄ncn
+

1

2

}
(82a)

s.t. w̄nd̄ncn ≥ qn, ∀n, (82b)∑
n∈N

E{un
t } ≤ K (44c)

where cn is defined below PLB. Let c̃nLB be the long-term time-
averaged expected number of schedules of device n under the
optimal policy π̃LB that solves P̃LB.

Similar to the proof of Lemma 4, we can show that for i.i.d.
dnt , the long-term time-averaged expected AoI achieved by
a stationary randomized policy with scheduling probabilities
{vn} becomes limT→∞

1
T

∑
t∈T E{τnt } = 1

d̄nvn . Applying
the above inequality to P, we have the following equivalent
optimization problem P̃SR over ΠSR:

P̃SR : ÕPTSR = min
π∈ΠSR

{ ∑
n∈N

αn

d̄nvn

}
(83a)

s.t. w̄nd̄nvn ≥ qn, ∀n, (83b)∑
n∈N

vn ≤ K. (83c)

Following the proof of (37) in Theorem 2 and noting that
E{dnt } = d̄n, we have

E{∆t|St} ≤ −U
∑
n∈N

d̄nvnαnτnt

−
∑
n∈N

(w̄nd̄nvn − qn)[Qn
t ]+ + U +

CN

2
. (84)

Taking the expectation of (84) over St, summing it over t ∈ T ,
and then dividing it by T , we have

L̃HS1 + L̃HS2 ≤ − 1

T

∑
t∈T

E{∆t}+ U +
CN

2
(85)

where

L̃HS1 ≜
1

T

∑
t∈T

∑
n∈N

(w̄nd̄nvn − qn)E{[Qn
t ]+}, (86)

L̃HS2 ≜
U

T

∑
t∈T

∑
n∈N

d̄nvnαnE{τnt }. (87)

Let vn = c̃nLB in (85) and note that w̄nd̄nc̃nLB − qn ≥ 0 from
(82b), we have L̃HS1 ≥ 0. Dividing both sides of (85) by U
and taking T → ∞, we have

lim
T→∞

L̃HS2

U
= lim

T→∞

1

T

∑
t∈T

∑
n∈N

d̄nc̃nLBα
nE{τnt }

≤ − lim
T→∞

1

UT

∑
t∈T

E{∆t}+
1

2

[
2 +

CN

U

]
. (88)

Dividing both sides of (88) by dminc̃min
LB , where dmin ≜ minn{d̄n}

and c̃min
LB ≜ minn{c̃nLB}, noting that dmin ≤ 1, and from the bound

on − 1
T

∑
t∈T E{∆t} in (42), we have

OPTAIMWeL = lim
T→∞

1

T

∑
t∈T

∑
n∈N

αnE{τnt }≤
1

2c̃min
LB

[
2+

CN

U

]
. (89)

Substituting c̃nLB into P̃LB, we have

ÕPTLB =
1

2

∑
n∈N

αn

d̄nc̃nLB

+
1

2
≥

∑
n∈N αn

2dmaxc̃max
LB

+
1

2
≥ 1

2c̃max
LB

(90)

where dmax ≜ maxn{d̄n} and c̃max
LB ≜ maxn{c̃nLB}.

Comparing (89) with (90), we have

OPTAIMWeL

ÕPTLB

≤ c̃max
LB

c̃min
LB

[
2 +

CN

U

]
. (91)

Further note that ÕPTLB ≤ OPT⋆, we complete the proof.
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