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Abstract—We consider online convex optimization (OCO) with
multi-slot feedback delay. An agent selects a sequence of online
decisions to minimize the accumulation of time-varying convex
loss functions, subject to short-term and long-term constraints
that may be time-varying. Both the convex loss function and the
long-term constraint function may experience multiple time slots
of feedback delay to be received by the agent. Existing works on
OCO under this general setting has focused on the static regret,
which measures the gap of losses between an online decision
sequence and a time-invariant static offline benchmark. In this
work, besides the static regret, we also consider a more practically
meaningful metric, the dynamic regret, where the benchmark is
a time-varying online optimal decision sequence. We propose
an efficient algorithm, termed Delay-Tolerant Constrained-OCO
(DTC-OCO), which uses a novel double regularization together
with a new penalty mechanism on the long-term constraint
violation, to tackle the asynchrony between information feedback
and decision updates. We obtain upper bounds for its static
regret, dynamic regret, and constraint violation, proving that
they are sublinear under mild conditions. Furthermore, we
consider a variation of DTC-OCO with multi-step gradient
descent, and show it provides improved dynamic regret and
constraint violation bounds for strongly convex loss functions.
For numerical demonstration, we apply DTC-OCO to a general
network resource allocation problem. Our simulation results
suggest substantial performance gain by DTC-OCO over the
current best alternative.

Index Terms—Online convex optimization, long-term con-
straint, multi-slot delay, dynamic regret, constraint violation,
online network resource allocation.

I. INTRODUCTION

Online convex optimization (OCO) is a promising solu-
tion to many system control, machine learning, and resource
allocation problems, such as prediction with expert advice,
spam filtering, target tracking, online regression, and network
routing [2], [3]. Under the standard OCO setup, an agent
selects a decision from a known convex set at the beginning
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of each time slot. At the end of each slot, the system reveals
information of the current convex loss function to the agent.
Due to the lack of in-time information of the current convex
loss function, it is impossible for an agent to make an
optimal decision at each time slot. Instead, the agent aims at
minimizing the regret, i.e., the accumulated performance gap
between the online decision sequence and some performance
benchmark over time.

Most of the early works on OCO studied the static regret,
which is the performance gap between the online decision
sequence and a static offline benchmark that is based on apriori
information of all the convex loss functions over the entire
time horizon. In the seminal work of OCO [4], an online
projected gradient descent algorithm was shown to achieve
O(T

1
2 ) static regret, where T is the time horizon. The static

regret was further reduced to O(log T ) in [5] for strongly
convex loss functions. However, in a dynamic environment,
the performance of the static offline benchmark may be far
from optimal. As a result, achieving sublinear static regret may
not be meaningful. In [4], a more useful metric, the dynamic
regret, was introduced to measure the difference between the
online decision sequence and a dynamic benchmark. Even the
dynamic regret is more difficult to analyze, it has received
increasing attention in recent works [6]-[11].

The above-mentioned works all focused on OCO with short-
term constraints that must be strictly satisfied at each time slot.
Long-term constraints are also common in many applications.
For example, the energy budget of an electronic device may be
viewed as a long-term constraint on its power usage. OCO with
long-term constraints was first considered in [12]. With such
constraints, constraint violation within a finite time period may
occur. Thus, in addition to achieving sublinear regret, OCO
algorithms should also provide sublinear constraint violation,
which indicates that the time-averaged violation of each long-
term constraint tends to zero as time approaches infinity.
Early works on constrained OCO assumed that the long-term
constraints are time-invariant [13], [14], while more recent
works [15]-[18] studied OCO with time-varying long-term
constraints.

In practical systems, the decision maker often gains access
to the system information only after some delay. For example,
in wireless communications, data transmission relies on chan-
nel state information, which is usually delayed for multiple
transmission frames due to limited feedback resources. In
machine learning, collecting training datasets and transmitting
the learning models over wireless links may induce feedback
delays from the mobile devices to the parameter server. In
smart grid, the large number of renewable energy sources can
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lead to feedback delays on the amount of power supply at
the central controller. In mobile computing, offloading tasks
from remote devices to the cloud via wireless channels can
cause feedback delay. Under standard OCO, the decision
maker receives information on the current loss function (and
if applicable the long-term constraint functions) at the end of
each time slot when the decision is made, i.e., the feedback
information is delayed for only one slot [4]-[18]. However,
such assumption is too restrictive for many practical applica-
tions. To address this, [19] initiated a study on OCO with
multi-slot feedback delay. Additional delay-adaptive OCO
algorithms were proposed in [20] and [21]. A recent work
[22] considered OCO with both time-varying constraints and
multi-slot feedback delay.

Despite the above research efforts, to the best of our knowl-
edge, all existing works on OCO with multi-slot feedback
delay focus on the static regret, which as explained above
may not be a meaningful performance metric for inherently
time-varying systems. In fact, the gap between the static
regret and dynamic regret can be as large as O(T ) [23]. In
the presence of multi-slot feedback delay, whether sublinear
dynamic regret is achievable for OCO is an open problem.
Adding to this challenge is our limited understanding on
system performance under long-term constraints (either time-
varying or time-invariant). In this work, we aim to address
these challenges. Our main contributions are as follows:

• We propose an efficient algorithm, termed Delay-Tolerant
Constrained-OCO (DTC-OCO), for OCO with multi-
slot feedback delay and with both short-term and long-
term constraints. All existing OCO algorithms update
current decisions using either no regularization or a
single-regularization approach based on either the one-
slot ahead decision or τ -slot ahead decision, where τ
is the feedback delay. In contrast, in DTC-OCO, we
propose a novel double-regularization approach to update
current decisions based on both one-slot ahead decision
and τ -slot ahead decision, to capture useful information
from both decisions to further minimize the accumulated
loss and constraint violation. The double-regularization
approach together with a new penalty mechanism on the
long-term constraint violation improves the performance
tolerance to multi-slot delay and facilitates the bounding
of the performance by DTC-OCO.

• We analyze the special structure of DTC-OCO under
the double regularization approach and show that the
algorithm achieves O(max{τ

1
2 T

1+δ
2 , T ν}) dynamic re-

gret and O(max{τ
1
2 T

1
2 , T ν}) static regret, where δ rep-

resents the growth rate of the accumulated variation of
the per-slot optimizer, and ν measures the accumulated
squared variation of the constraint functions. Further-
more, we show O(max{T

1−δ
2 , τT κ}) constraint violation

bound for DTC-OCO, where κ measures the accumu-
lated variation of the constraint functions. In the special
case of time-invariant constraints, DTC-OCO achieves
O(τ

1
2 T

1+δ
2 ) dynamic regret, O(τ

1
2 T

1
2 ) static regret, and

O(τ) constraint violation. To the best of our knowledge,
this is the first work to simultaneously provide dynamic

regret bound and constraint violation bound for OCO with
both multi-slot delay and long-term constraints.

• To further improve the performance of DTC-OCO, we
propose a variant with multi-step gradient descent. Our
analysis shows that, for strongly convex loss func-
tions, when the number of gradient descent steps at
each slot is large enough, DTC-OCO provides improved
O(max{τ2T δ, T ν}) dynamic regret bound and O(τT κ)
constraint violation bound. For the special case of time-
invariant constraints, the algorithm achieves O(τ2T δ)
dynamic regret and O(τ) constraint violation. We note
that, in prior works, even under the standard setting with
one-slot feedback delay, it was unknown whether or not
strong convexity helps improve the dynamic regret of
OCO with long-term constraints.

• As an application example, we apply DTC-OCO to a gen-
eral network resource allocation problem. For a specific
cloud computing system, our simulation demonstrates
that DTC-OCO is more tolerant to feedback delay and
achieves much smaller accumulated loss compared with
the current best alternative from [22]. Our simulation also
shows that enabling multi-step gradient descent in DTC-
OCO further reduces the accumulated loss.

Organizations: The rest of this paper is organized as fol-
lows. In Section II, we present the related work. Section III de-
scribes the problem formulation and performance metrics. We
present DTC-OCO and its performance analysis in Section IV.
Then, we consider multi-step gradient descent for DTC-OCO
and study its performance in Section V. The application of
DTC-OCO to network resource allocation is presented in
Section VI, followed by concluding remarks in Section VII.

Notations: The transpose, Euclidean norm, L∞ norm, and
L1 norm of a vector a are denoted by aT , ‖a‖, ‖a‖∞, and
‖a‖1, respectively. The notation I denotes an identity matrix,
0 denotes a vector of all 0’s, 1 denotes a vector of all 1’s, and
[N ] denotes the set {1, . . . , N}.

II. RELATED WORK

In this section, we survey existing works on OCO. The
differences between these works and our work are summarized
in Table. I.

1) OCO with Long-Term Constraints: Among the exist-
ing works on OCO with long-term constraints, a saddle-
point-typed algorithm was proposed in [12], which achieves
O(T

1
2 ) static regret and O(T

3
4 ) constraint violation for time-

invariant long-term constraints. A follow-up work [13] pro-
vided O(Tmax{ξ,1−ξ}) static regret and O(T 1− ξ

2 ) constraint
violation, where ξ ∈ (0, 1) is a trade-off parameter. A virtual-
queue-based algorithm was proposed in [14], which provides
O(1) constraint violation that is currently the best result for
OCO with time-invariant long-term constraints. For indepen-
dent and identically distributed (i.i.d.) long-term constraints,
virtual-queue-based algorithms were proposed in [15] and [16]
with the standard gradient descent update and general mirror
descent update, respectively. The analyses in [12]-[16] focus
on the static regret. Dynamic regret bounds were provided
in [17] and [18], by modifying the the saddle-point-typed
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TABLE I
SUMMARY OF RELATED WORKS ON OCO

Reference Type of benchmark Long-term constraint Multi-slot delay

[2], [3], [5] Static No No
[4] Static and dynamic No No

[6]-[11] Dynamic No No
[12]-[14] Static Invariant No
[15], [16] Static Varying No
[17], [18] Dynamic Varying No
[19]-[21] Static No Yes

[22] Static Varying Yes
DTC-OCO Static and dynamic Invariant and varying Yes

and virtual-queue-based algorithms respectively to deal with
general time-varying long-term constraints. The above works
all consider the standard OCO setting where the feedback
information is delayed for only one slot, while our work
considers the more challenging problem of multi-slot feedback
delay.

2) OCO with Multi-Slot Feedback Delay: Most existing
works on OCO with multi-slot feedback delay focus on online
decision design problems with only short-term constraints
[19]-[21]. In [19], the standard online gradient descent al-
gorithm [4] was extended to provide O(τ

1
2 T

1
2 ) static regret.

Delay-adaptive online gradient descent algorithms were pro-
posed in [20] and [21] to accommodate adversarial feedback
delay.

The impact of long-term constraints on OCO with multi-slot
feedback delay was considered in [22]. However, [22] only
studied the static regret. Furthermore, the constraint violation
bound provided in [22] was no less than O(T

3
4 ) even for

time-invariant long-term constraints. This constraint violation
performance is inherited from the saddle-point-typed algo-
rithm [12]. Thus, even for time-invariant long-term constraints,
whether an online algorithm can achieve a tighter constraint
violation bound in the presence of multi-slot delay is unknown.
Different from [22], in this work, we propose a novel double-
regularization approach together with a new penalty mecha-
nism on the long-term constraint violation. Furthermore, we
provide both dynamic and static regret bounds, as well as a
stronger constraint violation bound for the proposed algorithm.

3) Lyapunov Optimization: Constrained OCO is related
to Lyapunov optimization [24]. The latter uses the system
state and queueing information to implicitly learn the system
variations and adapt the online decisions accordingly without
knowing the system statistics. However, under the Lyapunov
optimization framework, the system states are commonly
assumed to be i.i.d. or Markovian, while OCO frameworks do
not have such restriction. Furthermore, the standard Lyapunov
optimization relies on the current and accurate system state
for decision updates. In the presence of feedback delay on the
system state, one can apply Lyapunov optimization by using
historical information to predict the current system state [25].
However, this way of dealing with feedback delay is equivalent
to extending the standard Lyapunov optimization to inaccurate
system states in [26] and [27]. As a result, with inaccurate
system state information, the performance gap between the
online decisions and the optimal decisions over time is O(σT ),

which grows linearly with T with σ being some measure of
system inaccuracy. Therefore, such an approach cannot lead
to the sublinear dynamic regret bound that we seek.

III. CONSTRAINED OCO WITH MULTI-SLOT DELAY

A. Problem Formulation

We consider a time-slotted system with time slots indexed
by t. Let ft(x) : Rn → R be a convex loss function at time
slot t. Let gt(x) be a vector of C convex long-term constraint
functions at time slot t, where gt(x) = [g1

t (x), . . . , gC
t (x)]T :

Rn → RC . The loss function ft(x) and the constraint function
gt(x) both may change over t. We further consider short-term
constraints represented by a compact convex set X0 ⊆ Rn. The
goal of constrained OCO is to select a sequence of decisions
{xt} from X0 to minimize the accumulated loss while also
meeting the long-term constraints, which expressed as the
following dynamic optimization problem:

P1 : min
{xt}

T∑

t=1

ft(xt)

s.t.
T∑

t=1

gt(xt) � 0, (1)

xt ∈ X0, ∀t (2)

where T is the time horizon. Note that if the constraint
functions are time-invariant, i.e., gt(x) = g(x), ∀t, then P1
is simplified to the time-invariant constrained OCO problem
considered in [12]-[14].

Under the standard constrained OCO setting [12]-[18],
feedback information on the loss function ft(x) and the
long-term constraint function gt(x) is assumed to only have
one time slot delay, and the feedback can be used to make
the new decision xt+1 for the next time slot.1 However, in
many practical applications, such as wireless transmission and
mobile computing mentioned in Section I, this one-slot delay
assumption is unrealistic as the feedback information typically
may experience a severe delay.

Therefore, in this work, we consider a general scenario
where the feedback information on ft(x) and gt(x) is delayed
by τ ≥ 1 slots to arrive at the decision maker at the end

1We note that, to have a well-posed problem, information on the short-
term constraints must be current. Furthermore, obviously delay is irrelevant
to time-invariant long-term constraints [12]-[14].



4

of slot t + τ − 1. The multi-slot feedback delay has also
been considered in [19]-[22]. Different from [19]-[21], where
only short-term constraints are considered, the additional long-
term constraints in (1) lead to a more complicated online
optimization problem as the decisions {xt} are correlated
over time. The problem is especially more challenging as the
underlying system state varies over time while decisions need
to be made based on the delayed feedback.

B. Performance Metrics

Due to the lack of in-time information of the current loss and
constraint functions under the OCO setting, it is very difficult,
if not impossible, to obtain an optimal solution to P1.2 Instead,
a time-varying constrained OCO algorithm aims at selecting
a sequence of online decisions {xt} that is asymptotically no
worse than some performance benchmarks.

One common static benchmark is given by

x? ∈ arg min
x∈X0

{
T∑

t=1

ft(x)|gt(x) � 0, ∀t

}

, (3)

where the decision x? is computed assuming all information
of {ft(x)} and {gt(x)} within T time slots is known in
advance.3 The performance gap between {xt} and x? is
referred to as the static regret, given by

REs(T ) ,
T∑

t=1

(ft(xt) − ft(x
?)) . (4)

This static regret was adopted in [22], while [12]-[14] used a
special case of it when time-invariant constraints are assumed.
However, as a rather coarse performance metric, the static
regret may not be a strong indicator of the actual performance
of an algorithm, especially when the underlying system is
inherently time-varying.

A more attractive performance benchmark for time-varying
constrained OCO is the dynamic benchmark {x?

t }, given by4

x?
t ∈ arg min

x∈X0

{ft(x)|gt(x) � 0}. (5)

In this case, the decision x?
t is computed using the in-

time information of ft(x) and gt(x) at each slot t. The
dynamic benchmark was originally proposed for OCO with
short-term constraints [4] and later was modified in [17] and
[18] to incorporate long-term constraints. The corresponding
performance gap, referred to as dynamic regret, is defined by

REd(T ) ,
T∑

t=1

(ft(xt) − ft(x
?
t )) . (6)

2In fact, even for the most basic OCO problem [4], i.e., without long-term
constraints (1), an optimal solution cannot be found [5].

3The static benchmark x? in (3) satisfies gt(x?) � 0 at
each time slot t. One may define the static benchmark as x◦ ∈
arg minx∈X0{

∑T
t=1 ft(x)|

∑T
t=1 gt(x) � 0}, which satisfies the long-

term constraints. However, even with one-slot feedback delay, [28] showed
via a counterexample that it is impossible to achieve sublinear static regret∑T

t=1 (ft(xt) − ft(x◦)) and sublinear constraint violations in (7) simulta-
neously.

4Similar to the discussion of static benchmark in Footnote 3, for dynamic
benchmark x◦

t ∈ arg minx∈X0{ft(x)|
∑T

t=1 gt(x) � 0}, it is also
impossible to achieve sublinear dynamic regret

∑T
t=1 (ft(xt) − ft(x◦

t )) and
sublinear constraint violations simultaneously.

The dynamic regret provides a more accurate measure of
performance. In some cases, the gap between REs(T ) and
REd(T ) can be as large as O(T ) [23]. In this work, for a
comprehensive performance study, we provide upper bounds
on both REs(T ) and REd(T ).

To measure the accumulated violation of the long-term
constraints, the constraint violation,5 for any c ∈ [C], is
defined as in [18], [22]:

VOc(T ) ,
T∑

t=1

gc
t (xt). (7)

Note that the constraint violation for time-invariant constraint
function g(x) defined in [12]-[14] is a special case of (7).
With (7), our study accommodates both time-varying and time-
invariant constraints.

It is desirable to design a constrained OCO algorithm that
can provide both sublinear regrets, i.e., REd(T ) = o(T )
and REs(T ) = o(T ), and sublinear constraint violation,
i.e., VOc(T ) = o(T ). Sublinearity in regret and constraint
violation is important; it implies that the online decision is
asymptotically no worse than the corresponding benchmark in
terms of its time-averaged performance, and at the same time,
the long-term constraints are satisfied.

IV. DELAY-TOLERANT CONSTRAINED OCO

In this section, we present the details of DTC-OCO and
study the impact of multi-slot feedback delay on its perfor-
mance by deriving the regret and constraint violation bounds.
We further give sufficient conditions under which DTC-OCO
yields sublinear regret and sublinear constraint violation. Fi-
nally, we discuss the performance merits of DTC-OCO over
existing constrained OCO algorithms.

A. DTC-OCO Algorithm

We first introduce a novel virtual queue vector Qt =
[Q1

t , . . . , Q
C
t ]T for the long-term constraints in (1), with the

following updating rule for any c ∈ [C]:

Qc
t = max

{
−γgc

t−τ (xt), Q
c
t−1 + γgc

t−τ (xt)
}

(8)

where γ > 0 is a weighting factor on the constraint violation
that controls how fast the virtual queue varies over time. The
role of Qt is similar to a Lagrange multiplier vector associated
with constraints in (1) of P1 or a backlog queue for the
constraint violation that is used in [14]-[16], [18]. However,
unique to our proposed approach, gc

t−τ (xt) is the τ -slot
delayed constraint violation caused by the current decision;
also, it needs to be scaled by an appropriate γ factor.

In the basic form of DTC-OCO, we convert P1 into solving
a per-slot problem at each slot t > τ , with short-term
constraints only, given by

P2 : min
x∈X0

[∇ft−τ (xt−τ )]T (x − xt−τ )

5The constraint violation is referred to as dynamic fit Fit(T ) ,
‖[
∑T

t=1 gt(xt)]+‖ in [17], where [x]+ , max{x,0} is the entry-wise
positive projection operator. One can easily verify that the sublinearity of
VOc(T ), ∀c ∈ [C] implies Fit(T ) being sublinear, and vice versa.
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Fig. 1. An illustration of the update of xt by DTC-OCO using the proposed
double regularization. At each time t, as the result of solving P2 based on
xt−τ and xt−1, xt moves from a point on the line segment between xt−τ

and xt−1 towards x?
t−τ to track the dynamic benchmark {x?

t }.

+ [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (x)]

+ α‖x − xt−τ‖
2 + η‖x − xt−1‖

2

where α, η > 0 are two step-size parameters that control
the weights on the two regularization terms. Note that P2 is
a convex optimization problem and therefore can be solved
efficiently using existing optimization tools.

As seen from the first term of the objective in P2,
DTC-OCO uses the τ -slot delayed gradient ∇ft−τ (xt−τ )
for controlling ft−τ (xt) to minimize the accumulated loss
objective in P1. Compared with the original P1, the long-
term constraints in (1) are converted into a penalty term for
controlling gt−τ (xt) to maintain queue stability as shown in
the second term of the objective in P2. Minimizing these two
terms is equivalent to letting the new decision xt minimize
ft−τ (x) while satisfying gt−τ (x) � 0. In other words, the
new decision xt tries to track the dynamic benchmark x?

t−τ .
Note that due to the intractability of original P1 with τ -slot
delay, our goal is to track the dynamic benchmark {x?

t } for
dynamic regret minimization over time. However, due to τ -
slot delay, we can only track x?

t−τ instead at each time t.
Furthermore, for the third and fourth terms of the objective
in P2, we use a novel constraint penalty term containing
double regularization α‖x − xt−τ‖2 and η‖x − xt−1‖2 to
handle the asynchrony between information feedback and
decision updates. Compared with the single regularization
α‖x − xt−τ‖2 (or η‖x − xt−1‖2), this double regularization
shifts the starting point of the decision update from xt−τ (or
xt−1) to a point between xt−τ and x−1. The intuition behind
the double regularization is that both xt−τ and xt−1 provide
useful information in minimizing the accumulated loss and
constraint violation. Thus, it is desirable for the new decision
xt to be not too far away from either xt−τ or xt−1.

An illustrative example is shown in Fig. 1: With the pro-
posed double regularization, xt moves from a point on the
line segment between xt−τ and xt−1 towards x?

t−τ . This is in
contrast to existing works that update xt from either xt−τ

[19]-[21] or xt−1 [22]. We will show both analytically in
Sections IV-B and IV-C and numerically in Section VI, that
the double regularization provides DTC-OCO a substantial
performance advantage over existing algorithms in terms of
regret bounds and average performance.

Thus, DTC-OCO consists of three major steps: 1) Initialize
xt ∈ X0, ∀t ∈ [τ ], and set Qt = 0, ∀t ∈ [τ ] and g0(x) ≡ 0;
2) At the beginning of each slot t > τ , obtain the current
decision xt by solving P2; 3) At the end of each slot t > τ ,

Algorithm 1 The DTC-OCO Algorithm

1: Initialize α, η, γ > 0 and xt ∈ X0,Qt = 0, ∀t ∈ [τ ].
2: At the beginning of each slot t > τ , do:
3: Update the decision xt by solving P2.
4: Update the virtual queue Qt via (8).

update the virtual queue Qt via (8).6 Note that when τ is
unknown, in addition to ∇ft−τ (xt−τ ), gt−τ (x), the system
may need to feedback xt−τ . The pseudo code of DTC-OCO
is given in Algorithm 1. Recall that DTC-OCO has three
algorithm parameters α, η, and γ, whose choice depends
on our knowledge of the system. This will be discussed
in Section IV-C, after we derive the regret and constraint
violation bounds in Section IV-B. We will clarify the impact
of these algorithm parameters on those bounds.

Remark 1. The main difference between DTC-OCO and the
saddle-point-typed OCO algorithms in [12], [13], [17], [22] is
that DTC-OCO uses a virtual queue to track the constraint
violation. The virtual queue was also used in Lyapunov
optimization [24], and was later extended to OCO in [14]-
[16], [18]. Although we have borrowed some technique from
Lyapunov drift analysis in a small part of our performance
bound analysis, DTC-OCO is structurally different from Lya-
punov optimization as explained in Section II.

Remark 2. We point out that the virtual-queue-based OCO
algorithms in [14]-[16], [18] are limited to one-slot feedback
delay. In addition, in [14], only time-invariant constraints are
considered, and in [15], [16], time-varying constraints are
considered but required to be i.i.d. over time. In contrast,
DTC-OCO allows the constraints to vary arbitrarily over time.
Furthermore, [14]-[16] only provides static regret bounds,
while we will provide both static and dynamic regret bounds
for DTC-OCO in Section IV-B. Compared with [18], DTC-
OCO only uses the gradient of the loss functions at the past
decision points, instead of the complete information of the
past loss functions. In summary, the virtual queue construc-
tion, algorithm design, and performance bound analysis for
DTC-OCO are all substantially different from those in [14]-
[16], [18].

Remark 3. In this work, we focus on analyzing the impact
of feedback delay on OCO with both long-term and short-
term constraints. For this purpose, we study centralized OCO,
similar to the study in [22], which provide the current best
algorithms. We note that when the constraint functions gt(x)
are separable among different components or blocks of x, P2
can be equivalently decomposed into separate subproblems,
each corresponds to a component or block of x. In this case,
Algorithm 1 leads to fully distributed implementation. The
design of distributed OCO of general constraint functions is
beyond the scope of this work, and we refer the interested
readers to [29]-[33].

6If the information feedback of ft(x) and gt(x) are respectively delayed
by τ1 and τ2 slots where τ1 6= τ2, we can still apply DTC-OCO by setting
τ = max{τ1, τ2}.
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B. Regret and Constraint Violation Bounds

In this section, we derive the performance bounds of DTC-
OCO. In particular, we develop new techniques to account for
its constraint penalty with double regularization.

We make the following assumptions that are common in the
literature for constrained OCO [12]-[18], [22].

Assumption 1. The gradient ∇ft(x) is bounded: ∃D>0, s.t.,

‖∇ft(x)‖ ≤ D, ∀x ∈ X0, ∀t. (9)

Assumption 2. For any t, gt(x) satisfies the following:
2.1) gt(x) is Lipschitz continuous on X0: ∃B > 0, s.t.,

‖gt(x) − gt(y)‖ ≤ B‖x − y‖, ∀x,y ∈ X0, ∀t. (10)

2.2) gt(x) is bounded: ∃G > 0, s.t.,

‖gt(x)‖ ≤ G, ∀x ∈ X0, ∀t. (11)

2.3) Existence of an interior point: ∃ε>0 and x̃t ∈ X0, s.t.,

gt(x̃t) � −ε1, ∀t. (12)

Assumption 3. The radius of X0 is bounded: ∃R > 0, s.t.,

‖x − y‖ ≤ R, ∀x,y ∈ X0. (13)

We first provide bounds on the virtual queue vector in the
following lemma.

Lemma 1. The virtual queue vector produced by DTC-OCO
is bounded for any t > τ as follows:

Qt � 0, (14)

Qt + γgt−τ (xt) � 0, (15)

‖Qt‖ ≥ ‖γgt−τ (xt)‖, (16)

‖Qt‖ ≤ ‖Qt−1‖ + ‖γgt−τ (xt)‖. (17)

Proof: The proofs of (14)-(17) mainly follow from the
virtual queue dynamics in (8). Note that the virtual queue is
initialized as Qt = 0, ∀t ∈ [τ ]. By induction, we first assume
Qc

t−1 ≥ 0, ∀c ∈ [C], ∀t > τ . Form the virtual queue dynamics
in (8), we have Qc

t ≥ −γgc
t−τ (xt) if gc

t−τ (xt) < 0; otherwise,
we have Qc

t ≥ Qc
t−1 + γgc

t−τ (xt). Combining the two cases,
we have (14).

From (8), we have Qc
t ≥ −γgc

t−τ (xt), ∀c ∈ [C], ∀t > τ ,
which is (15).

From (8) and (14), for any c ∈ [C] and t > τ , we have
Qc

t ≥ Qc
t−1 + γgc

t−τ (xt) ≥ γgc
t−τ (xt) if γgc

t−τ (xt) ≥ 0;
otherwise, we have Qc

t ≥ −γgc
t−τ (xt). Combining the two

cases yields (Qc
t)

2 ≥ (γgc
t−τ (xt))2. Summing over c ∈ [C],

we have (16).
From (8), we have Qc

t ≤ Qc
t−1 + |γgt−τ (xt)|, ∀c ∈

[C], ∀t > τ . By the triangle inequality, we have ‖Qt‖ ≤√∑
c∈[C](Q

c
t−1 + |γgt−τ (xt)|)2 ≤ ‖Qt−1‖ + ‖γgt−τ (xt)‖,

which gives (17).
Define Lt , 1

2‖Qt‖2 as a quadratic Lyapunov function and
Δt , Lt+1 − Lt as the corresponding Lyapunov drift [24].
Using Lemma 1, we provide an upper bound on Δt in the
following lemma.

Lemma 2. The Lyapunov drift is upper bounded for any t > τ
as follows:

Δt−1 ≤ γQT
t−1gt−τ (xt) + ‖γgt−τ (xt)‖

2. (18)

Proof: For any c ∈ [C] and t > τ , we first prove
1
2
(Qc

t)
2 −

1
2
(Qc

t−1)
2 ≤ γQc

t−1g
c
t−τ (xt) + [γgc

t−τ (xt)]
2 (19)

by considering the following two cases from (8).
1) Qc

t−1+γgc
t−τ (xt) ≥ −γgc

t−τ (xt): We have Qc
t = Qc

t−1+
γgc

t−τ (xt) from (8). It then follows that

1
2
(Qc

t)
2 =

1
2
[Qc

t−1 + γgc
t−τ (xt)]

2

≤
1
2
(Qc

t−1)
2 + γQc

t−1g
c
t−τ (xt) + [γgc

t−τ (xt)]
2.

2) −γgc
t−τ (xt) > Qc

t−1 + γgc
t−τ (xt): We have Qc

t =
−γgc

t−τ (xt) from (8). It then follows that

1
2
(Qc

t)
2 ≤

1
2
[γgc

t−τ (xt)]
2 +

1
2
[Qc

t−1 + γgc
t−τ (xt)]

2

=
1
2
(Qc

t−1)
2 + γQc

t−1g
c
t−τ (xt) + [γgc

t−τ (xt)]
2.

Combining the above two cases, we have (19). Then, summing
(19) over c ∈ [C] yields (18).

We also require the following lemma, which is borrowed
from [2, Lemma 2.8].

Lemma 3. Let S ∈ Rn be a nonempty convex set. Let h(s) :
Rn → R be a 2%-strongly-convex function over S with respect
to (w.r.t.) a norm ‖ ∙ ‖. Let s? = arg mins∈S h(s). Then, for
any u ∈ S , we have h(s?) ≤ h(u) − %‖u − s?‖2.

A main goal of this paper is to examine the impact of
multi-slot feedback delay on the dynamic regret bound for
OCO with long-term constraints, which has not been addressed
in the existing literature. To this end, we need to quantify
the accumulated variations of the underlying time-varying
system. We define the accumulated variation of the dynamic
benchmark {x?

t } (commonly referred to as the path length [4])
as

Δx? ,
T∑

t=1

‖x?
t − x?

t−1‖. (20)

Furthermore, we define the accumulated variation of the
constraint function sequence {gt(x)} as

Δg ,
T∑

t=1

max
x∈X0

‖gt(x) − gt−1(x)‖. (21)

Another related quantity regarding the accumulated squared
variation of {gt(x)} is defined as

Δ2,g ,
T∑

t=1

max
x∈X0

‖gt(x) − gt−1(x)‖2
. (22)

Note that, in terms of the growth order, Δ2,g is usually smaller
than Δg for a constraint function sequence {gt(x)} that varies
sublinearly [18].7

7For instance maxx∈X0 {‖gt(x) − gt−1(x)‖} ∝ T ξ for any t, then
Δg = O(T 1+ξ) and Δ2,g = O(T 1+2ξ). For sublinear Δg or Δ2,g , we
have ξ < 0 and thus Δ2,g grows slower than Δg . In particular, if ξ = − 1

2
,

we have Δg = O(T
1
2 ) and Δ2,g = O(1).
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Using results in Lemmas 1-3, and with the tuning freedom
brought by the double regularization, we provide an upper
bound on the dynamic regret REd(T ) for DTC-OCO with τ -
slot feedback delay in the following theorem.

Theorem 1. Under Assumptions 1-3, if we choose η ≥ γ2B2,
the dynamic regret of DTC-OCO is upper bounded by

REd(T ) ≤
D2

4α
T +

γ2G2

2
+ γ2Δ2,g

+ (ατ + η)(R2 + 2RΔx?) + DRτ. (23)

Proof: The objective function of P2 is 2(α + η)-strongly-
convex over X0 w.r.t. Euclidean norm ‖ ∙ ‖ due to the double
regularization. Since xt minimizes P2 over X0 for any t > τ ,
we have

[∇ft−τ (xt−τ )]T (xt − xt−τ ) + α‖xt − xt−τ‖
2

+ [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (xt)]+η‖xt − xt−1‖

2

(a)

≤ [∇ft−τ (xt−τ )]T (x?
t−τ − xt−τ ) + α‖x?

t−τ − xt−τ‖
2

+ [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (x?

t−τ )]

+ η‖x?
t−τ − xt−1‖

2 − (α + η)‖xt − x?
t−τ‖

2 (24)
(b)

≤ [∇ft−τ (xt−τ )]T (x?
t−τ − xt−τ )

+ α(‖x?
t−τ − xt−τ‖

2 − ‖xt − x?
t−τ‖

2)

+ η(‖x?
t−τ − xt−1‖

2 − ‖xt − x?
t−τ‖

2), (25)

where (a) follows from Lemma 3; and (b) is because Qτ = 0,
g0(x) ≡ 0 by initialization, Qt + γgt−τ (xt) � 0, ∀t > τ , in
(15), γ > 0, and gt−τ (x?

t−τ ) � 0, ∀t > τ , in (5), such that
[Qt−1 + γgt−τ−1(xt−1)]T [γgt−τ (x?

t−τ )] ≤ 0, ∀t > τ .
Now, we bound the second and third terms in (25). From

‖a + b‖2 ≥ ‖a‖2 + ‖b‖2 − 2‖a‖‖b‖, we have

‖x?
t−τ − xt−τ‖

2 − ‖xt − x?
t−τ‖

2

≤ ‖x?
t−τ − xt−τ‖

2 − ‖x?
t − xt‖

2 − ‖x?
t−τ − x?

t ‖
2

+ 2‖x?
t − xt‖‖x

?
t−τ − x?

t ‖ ≤ Φt−τ + 2Rφt−τ , (26)

where Φt−τ , ‖x?
t−τ − xt−τ‖2 − ‖x?

t − xt‖2 and φt−τ ,
‖x?

t−τ − x?
t ‖. Similarly, we can show that

‖x?
t−τ − xt−1‖

2 − ‖xt − x?
t−τ‖

2

≤ Ψt−τ − ‖x?
t−τ − xt−τ+1‖

2 + 2Rψt−τ , (27)

where Ψt−τ , ‖x?
t−τ −xt−1‖2−‖x?

t−τ+1−xt‖2 and ψt−τ ,
‖x?

t−τ − x?
t−τ+1‖.

Substituting (26) and (27) into (25) and adding ft−τ (xt−τ )
on both sides, we have

ft−τ (xt−τ ) + [∇ft−τ (xt−τ )]T (xt − xt−τ ) + α‖xt − xt−τ‖
2

+ [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (xt)]+η‖xt − xt−1‖

2

≤ ft−τ (xt−τ ) + [∇ft−τ (xt−τ )]T (x?
t−τ − xt−τ )

+ α(Φt−τ + 2Rφt−τ ) + η(Ψt−τ + 2Rψt−τ ). (28)

Applying the first-order condition of convexity

ft−τ (xt−τ ) + [∇ft−τ (xt−τ )]T (x?
t−τ − xt−τ ) ≤ ft−τ (x?

t−τ )

to the right-hand side (RHS) of (28), and rearranging terms,
we have

ft−τ (xt−τ ) − ft−τ (x?
t−τ )

≤ −[∇ft−τ (xt−τ )]T (xt − xt−τ ) − α‖xt − xt−τ‖
2

− [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (xt)]−η‖xt − xt−1‖

2

+ α(Φt−τ + 2Rφt−τ ) + η(Ψt−τ + 2Rψt−τ ). (29)

We now bound the right-hand side of (29). Note that

− [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (xt)]

(a)

≤ −Δt−1 + ‖γgt−τ (xt)‖
2 − γ2gT

t−τ−1(xt−1)gt−τ (xt)

(b)
= −Δt−1 +

γ2

2
(‖gt−τ (xt)‖

2 − ‖gt−τ−1(xt−1)‖
2)

+
γ2

2
‖gt−τ (xt) − gt−τ−1(xt−1)‖

2

(c)

≤ −Δt−1 + γ2

(
1
2
ϕt−τ + B2‖xt − xt−1‖

2 + $t−τ

)

,(30)

where ϕt−τ , ‖gt−τ (xt)‖2 − ‖gt−τ−1(xt−1)‖2 and
$t−τ , ‖gt−τ (xt−1) − gt−τ−1(xt−1)‖2. Here, (a) fol-
lows from rearranging terms of (18) in Lemma 2 such that
−γQT

t−1gt−τ (xt) ≤ −Δt−1 + ‖γgt−τ (xt)‖2, (b) is because
aT b = 1

2 (‖a‖2 + ‖b‖2 − ‖a − b‖2), and (c) follows from
gt(x) being Lipschitz continuous in (10) and the fact that
1
2‖a + b‖2 ≤ ‖a‖2 + ‖b‖2.

Substituting (30) into (29), we have

ft−τ (xt−τ ) − ft−τ (x?
t−τ )

≤ −[∇ft−τ (xt−τ )]T (xt − xt−τ ) − α‖xt − xt−τ‖
2

+ (γ2B2 − η)‖xt − xt−1‖
2 − Δt−1 +

γ2

2
ϕt−τ + γ2$t−τ

+ α(Φt−τ + 2Rφt−τ ) + η(Ψt−τ + 2Rψt−τ )
(a)

≤
D2

4α
− Δt−1 +

γ2

2
ϕt−τ + γ2$t−τ

+ α(Φt−τ + 2Rφt−τ ) + η(Ψt−τ + 2Rψt−τ ), (31)

where (a) follows from η ≥ γ2B2, the bound on ∇ft(x) in
(9), and completing the square such that

− [∇ft−τ (xt−τ )]T (xt − xt−τ ) − α‖xt − xt−τ‖
2

=−

∥
∥
∥
∥
∇ft−τ (xt−τ )

2
√

α
+
√

α(xt−xt−τ )

∥
∥
∥
∥

2

+
1
4α

‖∇ft−τ (xt−τ )‖2

≤
1
4α

‖∇ft−τ (xt−τ )‖2 ≤
D2

4α
. (32)

Summing (31) over t ∈ [τ + 1, T ], we have

T∑

t=τ+1

ft−τ (xt−τ ) − ft−τ (x?
t−τ ) =

T−τ∑

t=1

ft(xt) − ft(x
?
t )

(a)

≤
D2

4α
T +

γ2G2

2
+ γ2Δg + (ατ + η)(R2 + 2RΔx?), (33)

where (a) follows from Δt−1, ϕt−τ , $t−τ , Φt−τ , φt−τ , Ψt−τ

and ψt−τ all being telescoping terms such that their sums over
t ∈ {τ + 1, . . . , T } are upper bounded by 0, G2, Δ2,g, τR2,
τΔx? , R2, and Δx? , respectively.
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Finally, adding
∑T

t=T−τ+1 ft(xt)−ft(x?
t ) on both sides of

(33), and noting that the convexity of ft(x) implies

ft(xt) − ft(x
?
t ) ≤ ‖∇ft(xt)‖‖x

?
t − xt‖ ≤ DR, (34)

we complete the proof.
Next, we provide an upper bound on the static regret REs(T )

yielded by DTC-OCO.

Theorem 2. Under Assumptions 1-3, if we choose η ≥ γ2B2,
the static regret of DTC-OCO is upper bounded by

REs(T ) ≤
D2

4α
T +

γ2G2

2
+γ2Δ2,g+(ατ +η)R2+DRτ. (35)

Proof : To show (35), we use the techniques in the proof
for the dynamic regret REd(T ) in Theorem 1. Replacing all
the per-slot optimizers with the static benchmark x? in the
proof of Theorem 1, we can show that (31) still holds by
redefining Φt−τ , ‖x? − xt−τ‖2 − ‖x? − xt‖2, φt−τ , 0,
Ψt−τ , ‖x?−xt−1‖2−‖x?−xt‖2, and ψt−τ , 0. Summing
the above version of (31) over t ∈ {τ +1, . . . , T }, noting that
Φt−τ and Ψt−τ are still telescoping, and leveraging (34), we
complete the proof.

We now proceed to provide an upper bound on the constraint
violation VOc(T ) for DTC-OCO. We first relate the virtual
queue vector QT to VOc(T ) in the following lemma.

Lemma 4. The virtual queue vector produced by DTC-OCO
satisfies the following inequality for any c ∈ [C]:

VOc(T ) ≤
1
γ
‖QT ‖ + τΔg + Gτ. (36)

Proof: From (8), we have Qc
t ≥ Qc

t−1 +γgc
t−τ (xt), ∀t > τ .

Summing it over t ∈ {τ + 1, . . . , T } and rearranging terms,
we have

T∑

t=τ+1

gc
t−τ (xt) ≤

1
γ

T∑

t=τ+1

Qc
t − Qc

t−1 =
1
γ

Qc
T .

From the above inequality and the definition of VOc(T ) in
(7), we have

VOc(T ) ≤
1
γ

Qc
T +

T−τ∑

t=1

[gc
t+τ (xt+τ )− gc

t (xt+τ )] +
τ∑

t=1

gc
t (xt).

Noting ‖a‖∞ ≤ ‖a‖, the bound on gt(x) in (11), and the
definition of Δg in (21), we complete the proof.

From Lemma 4, we see that one can bound the constraint
violation VOc(T ) by bounding the virtual queue vector QT .
Following this, we obtain an upper bound on the constraint
violation for DTC-OCO in the following theorem.

Theorem 3. Under Assumptions 1-3, the constraint violation
of DTC-OCO for any c ∈ [C] is upper bounded by

VOc(T ) ≤2G+
2γ2G2+DR+(α+η)R2

εγ2
+τΔg+Gτ. (37)

Proof : From Lemma 3, we can show that inequality (24)
still holds for any t > τ after replacing the per-slot optimizer
x?

t−τ with the interior point x̃t−τ . We have

[Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (x̃t−τ )]

TABLE II
DYNAMIC REGRET AND CONSTRAINT VIOLATION BOUNDS OF DTC-OCO

Constraint Know δ? REd(T ) VOc(T )

Varying Yes O(max{τ
1
2 T

1+δ
2 , T ν}) O(max{T

1−δ
2 , τT κ})

Varying No O(max{τ
1
2 T

1
2+δ , T ν}) O(max{T

1
2 , τT κ})

Invariant Yes O(max{τ
1
2 T

1+δ
2 }) O(τ)

Invariant No O(max{τ
1
2 T

1
2 +δ}) O(τ)

(a)

≤ −εγ[Qt−1 + γgt−τ−1(xt−1)]
T 1

(b)

≤ −εγ‖Qt−1 + γgt−τ−1(xt−1)‖
(c)

≤ −εγ(‖Qt−1‖ − ‖γgt−τ−1(xt−1)‖), (38)

where (a) follows from the existence of interior point in
(12) and the virtual queue bound in (15), (b) is because
‖a‖ ≤ ‖a‖1, and (c) follows from |‖a‖ − ‖b‖| ≤ ‖a − b‖.
Applying (38) to the aforementioned version of (24) with x̃t−τ

and rearranging terms, we have

γQT
t−1gt−τ (xt)

≤ −εγ(‖Qt−1‖ − ‖γgt−τ−1(xt−1)‖) − α‖xt − xt−τ‖
2

− [γgt−τ−1(xt−1)]
T [γgt−τ (xt)] − η‖xt − xt−1‖

2

+ [∇ft−τ (xt−τ )]T (x̃t−τ − xt) + α‖x̃t−τ − xt−τ‖
2

+ η‖x̃t−τ − xt−1‖
2 − (α + η)‖xt − x̃t−τ‖

2

(a)

≤ −εγ‖Qt−1‖ + εγ2G + γ2G2 + DR + (α + η)R2, (39)

where (a) follows from the Cauchy-Schwartz inequality
|aT b| ≤ ‖a‖‖b‖, the bound on ∇ft(x) in (9), the bound
on gt(x) in (11), and the bound on X0 in (13). Substituting
(39) into (18) in Lemma 2 and noting that ‖gt−τ (xt)‖2 ≤ G2

from (11) yields

Δt−1 ≤ −εγ‖Qt−1‖ + εγ2G + 2γ2G2 + DR + (α + η)R2.

Thus, a sufficient condition for Δt−1 < 0 is

‖Qt−1‖ > γG +
2γ2G2 + DR + (α + η)R2

εγ
. (40)

If (40) holds, we have ‖Qt‖ < ‖Qt−1‖, i.e., the virtual queue
decreases; otherwise, from the virtual queue bound in (17),
there is a maximum increase from ‖Qt−1‖ to ‖Qt‖ since
‖Qt‖− ‖Qt−1‖ ≤ ‖γgt−τ (xt)‖ ≤ γG. Therefore, the virtual
queue is upper bounded for any t > τ by

‖Qt‖ ≤ 2γG +
2γ2G2 + DR + (α + η)R2

εγ
. (41)

Substituting (41) into (36), we complete the proof.

C. Discussion on the Regret and Constraint Violation Bounds

With the regret and constraint violation bounds obtained
above, we now discuss the sufficient conditions for DTC-
OCO to yield sublinear regret and constraint violation. We
also highlight several prominent advantages of DTC-OCO
over existing constrained OCO algorithms. For clarity, we
summarize the performance bounds of DTC-OCO in terms
of the growth rate over T for general convex loss functions
under different conditions in Table II.
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1) Sublinear Regret and Constraint Violation: From The-
orems 1-3, we derive the following corollaries regarding the
growth rates of the regret and constraint violation over T .
We assume the time variabilities of the dynamic benchmark
{x?

t } and constraint functions {gt(x)} satisfy Δx? = O(T δ),
Δg = O(T κ), and Δ2,g = O(T ν), for some constant
parameters δ, ν, κ ≥ 0 [17], [18]. Corollaries 1 and 2 provide
two sets of performance bounds depending on whether the
value of δ is known to set the step-size parameter α in DTC-
OCO. The proofs of these two corollaries can be obtained from
substituting the corresponding algorithm parameters α, η, γ,
specified in each corollary into the bounds in (23), (35), (37);
Thus, they are omitted for brevity.

Corollary 1. Suppose the value of δ is known. If feedback
delay τ is known, let α = τ− 1

2 T
1−δ
2 , η = B2γ2, and γ = 1

in DTC-OCO. Then,

REd(T ) = O
(
max

{
τ

1
2 T

1+δ
2 , T ν

})
, (42)

REs(T ) = O
(
max

{
τ

1
2 T

1
2 , T ν

})
, (43)

VOc(T ) = O
(
max

{
T

1−δ
2 , τT κ

})
. (44)

If feedback delay τ is unknown, let α = T
1−δ
2 , η = B2γ2,

and γ = 1 in DTC-OCO. Then,

REd(T ) = O
(
max

{
τT

1+δ
2 , T ν

})
, (45)

REs(T ) = O
(
max

{
τT

1
2 , T ν

})
, (46)

VOc(T ) = O
(
max

{
T

1−δ
2 , τT κ

})
(47)

In particular, if τ = O(1), δ < 1, ν < 1, and κ < 1, both
the dynamic and static regrets are sublinear in T , and the
constraint violation is sublinear in T .

In Corollary 1, we set the step-size parameter α in DTC-
OCO with the knowledge of T and δ. When T is unknown,
the standard doubling trick [2], [7] can applied to adjust T
over time. The value of δ may be estimated over time through
some expert-tracking algorithm [34].

Corollary 2. Suppose the value of δ is unknown. If feedback
delay τ is known, let α = τ− 1

2 T
1
2 , η = B2γ2, and γ = 1 in

DTC-OCO. Then,

REd(T ) = O
(
max

{
τ

1
2 T

1
2+δ, T ν

})
, (48)

REs(T ) = O
(
max

{
τ

1
2 T

1
2 , T ν

})
, (49)

VOc(T ) = O
(
max

{
T

1
2 , τT κ

})
. (50)

If feedback delay τ is unknown, let α = T
1
2 , η = B2γ2, and

γ = 1 in DTC-OCO. Then,

REd(T ) = O
(
max

{
τT

1
2+δ, T ν

})
, (51)

REs(T ) = O
(
max

{
τT

1
2 , T ν

})
, (52)

VOc(T ) = O
(
max

{
T

1
2 , τT κ

})
. (53)

In particular, if τ = O(1), δ < 1
2 , ν < 1, and κ < 1, both

the dynamic and static regrets are sublinear in T , and the
constraint violation is sublinear in T .

From Corollaries 1 and 2, a sufficient condition for DTC-
OCO to yield sublinear dynamic and static regrets and sublin-
ear constraint violation is that the accumulated variation Δx?

of the dynamic benchmark {x?
t } and the accumulated varia-

tions Δg and Δ2,g of the constraints {gt} evolve sufficiently
slowly. This is the case for many online applications, where the
system tends to stabilize over time. Otherwise, if the system
varies too drastically, it has been shown via a counter example
in [23] and stated in [17], [18] that, no online algorithm can
track the system due to the lack of in-time information.

We now highlight some advantages of DTC-OCO over the
online algorithm in [22]. The performance analysis in [22]
focuses on the static regret. In contrast, we provide both
dynamic and static regret bounds for DTC-OCO. Further-
more, to show sublinear static regret and constraint violation
bounds, [22] requires that T is sufficiently large to satisfy
(1+C) max{D,B}2+2√

τT
+[(5C +1)max{D,B}2 +2]

√
τ
T ≤

√
1
3 .

In comparison, our performance bounds for DTC-OCO hold
for any T . Finally, to compute the optimal step-sizes in [22]
require knowledge of the values of C and D, which we do
not need for DTC-OCO.

2) Special Case of One-Slot Feedback Delay: No existing
algorithm provides a dynamic regret bound for constrained
OCO with multi-slot feedback delay. Thus, to compare our
dynamic regret bound with existing ones, we consider the
special case of one-slot feedback delay, and compare DTC-
OCO with [17] and [18] under this setting.

We point out a few differences of the dynamic regrets
obtained by DTC-OCO and that in [17], and highlight the ad-
vantages of DTC-OCO. The dynamic regret and constraint vi-
olation bounds achieved by [17] rely on a key assumption that
the slack constant ε is larger than the maximum variation of the
constraints, i.e., ε > maxt∈[T ] maxx∈X0 ‖gt(x) − gt−1(x)‖,
which may be difficult to satisfy in general. In contrast, DTC-
OCO only assumes ε > 0 as indicated in (12). Furthermore,
the optimal step-sizes used in [17] require the knowledge
of the accumulated variation measure κ on the constraint
function sequence {gt(x)}. In comparison, DTC-OCO only
needs an upper bound B on the gradient ∇gt(x), which is
much easier to acquire than κ. Finally, when δ is unknown,
[17] achieves O(max{T

1
3+δ, T

1
3+κ, T

2
3 }) dynamic regret and

O(T
2
3 ) constraint violation, both being at least O(T

2
3 ). In

contrast, the performance bounds of DTC-OCO decreases
smoothly to O(T

1
2 ) if the system variation is sufficiently

small.
We now compare the condition to achieve sublinear dynamic

regret in DTC-OCO and that in the online algorithm in [18].
To achieve sublinear dynamic regret and constraint violation,
[18] relies on two additional assumptions: the accumulated
variation of the convex loss functions {ft(x)} is sublinear
regardless of the trajectory of the online decision sequence,
i.e.,

∑T
t=1 maxx∈X0 ‖ft(x) − ft−1(x)‖ = o(T ), and the

accumulated variation of the optimal dual points {λ?
t } of

the optimization problem P1 is sublinear, i.e.,
∑T

t=1 ‖λ
?
t+1 −
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λ?
t ‖ = o(T ). The two assumptions are not required for DTC-

OCO. In terms of information needed for the online update,
DTC-OCO requires only the gradient information ∇ft(xt)
of the loss function ft(xt) at the online decision point xt.
In contrast, instead of a gradient-based algorithm, the online
algorithm in [18] directly minimizes the loss function ft(x),
which requires complete information feedback of ft(x).

3) Special Case of Time-invariant Constraints: When the
constraints are time-invariant, the following corollary suggests
that the static regret of DTC-OCO is the same as the current
best O(τ

1
2 T

1
2 ) static regret for unconstrained OCO with multi-

slot delay [19]; Furthermore, in the special case of one-slot
feedback delay, the static regret and constraint violation of
DTC-OCO are the same as the current best O(T

1
2 ) static regret

and O(1) constraint violation [14], respectively.

Corollary 3. If δ is known, let α = γ2 = τ− 1
2 T

1−δ
2 and

η = B2γ2 in DTC-OCO. Then, REd(T ) = O(τ
1
2 T

1+δ
2 ),

REs(T ) = O(τ
1
2 T

1
2 ), and VOc(T ) = O(τ). In particular,

if τ = O(1) and δ < 1, both the dynamic regret REd(T )
and static regret REs(T ) are sublinear, and the constraint
violation VOc(T ) is upper bounded by a constant. If δ is
unknown, let α = γ2 = τ− 1

2 T
1
2 and η = B2γ2 in DTC-

OCO. Then, REd(T ) = O(τ
1
2 T

1
2+δ), REs(T ) = O(τ

1
2 T

1
2 ),

and VOc(T ) = O(τ).

We further compare the constraint violation bound of DTC-
OCO and those in [17], [22] under time-invariant constraints.
The constraint violation bound in [17] is no less than O(T

2
3 )

under one-slot feedback delay. In [22], the constraint violation
is no less than O(τ

1
4 T

3
4 ) under τ -slot delay. In contrast, for

DTC-OCO, the constraint violation VOc(T ) is O(τ) under τ -
slot delay, which is smaller than the ones in [17], [22] as T
is usually much greater than τ .

V. DELAY-TOLERANT CONSTRAINED OCO
WITH MULTI-STEP GRADIENT DESCENT

In the previous section, we have proposed DTC-OCO and
derived its performance bounds for general convex loss func-
tions. In this section, we propose a variation of DTC-OCO to
enable multi-step gradient descent in the objective of the per-
slot optimization problem P2. With this algorithm, we obtain
improved bounds on both the dynamic regret and constraint
violation for strongly convex loss functions.

A. DTC-OCO with Multi-Step Gradient Descent

It has been shown in [11] that, for strongly-convex loss func-
tions, multi-step gradient descent provides stronger bounding
performance for OCO with short-term constraints, under the
standard one-slot feedback delay setting. In this work, we will
further show that, when the loss functions are strongly convex,
performing multi-step gradient descent can achieve smaller
dynamic regret bound and constraint violation bound for OCO
with long-term constraints and multi-slot feedback delay.

Below, we show how to configure DTC-OCO to incorporate
multi-step gradient descent. At the beginning of each slot t >
τ , we first initialize an intermediate decision x̂0

t−τ = xt−τ .
Then, we perform M -step gradient descent to generate x̂M

t−τ

Fig. 2. An illustration of updating xt by DTC-OCO under the double
regularization and multi-step gradient descent. At each time t, under the M -
step gradient descent, x̂m

t−τ moves from x̂m−1
t−τ towards xst

t−τ to track the
dynamic benchmark {xst

t }. As the result of solving P̂2 based on x̂M
t−τ and

xt−1, xt moves from a point on the line segment between x̂M
t−τ and xt−1

towards x?
t−τ to track the dynamic benchmark {x?

t }.

for any M > 0. Note that if M = 0, we readily have x̂M
t−τ =

xt−τ . For each additional gradient descent step m ∈ [M ], we
update x̂m

t−τ by solving the following optimization problem:

min
x∈X0

[∇ft−τ (x̂m−1
t−τ )]T (x − x̂m−1

t−τ ) + α‖x − x̂m−1
t−τ ‖2.

The solution to the above optimization problem is the standard
projected gradient descent, given by

x̂m
t−τ = PX0

{

x̂m−1
t−τ −

1
2α

∇ft−τ (x̂m−1
t−τ )

}

(54)

where PX0{x} , arg miny∈X0 ‖y − x‖2 is the projection
operator to project x onto the set X0, and α > 0 can be
seen as a step-size parameter.

To quantify the impact of multi-step gradient descent on the
dynamic regret, we define the dynamic benchmark {xst

t } that
is obtained assuming the short-term constraints only, given by

xst
t ∈ arg min

x∈X0

ft(x). (55)

The benefit of using the multi-step gradient descent is that
each gradient descent step helps track the dynamic benchmark
{xst

t }. We will show analytically in Section V-B that at each
gradient descent step m, the distance between x̂m

t−τ and xst
t−τ

is strictly less than the distance between x̂m−1
t−τ and xst

t−τ in
the previous step.

Note that the update of x̂m
t−τ in (54) is obtained by only

considering the short-term constraints in X0. For the long-term
constraints in (1) of P1, we use the same virtual queue dynam-
ics in (8) as the basic form of DTC-OCO. We then replace
xt−τ with x̂M

t−τ in P2 to obtain the following optimization
problem to find the decision xt for time slot t:

P̂2 : min
x∈X0

[∇ft−τ (x̂M
t−τ )]T (x − x̂M

t−τ )

+ [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (x)]

+ α‖x − x̂M
t−τ‖

2 + η‖x − xt−1‖
2

where α, η, γ,M > 0 are four algorithm parameters. Different
from the basic form of DTC-OCO, the double regularization
in P̂2 is on x̂M

t−τ and xt−1, instead of on xt−τ and xt−1

as in P2. An illustrative example for updating xt is shown
in Fig. 2: With the M -step gradient descent, x̂m

t−τ moves
from x̂m−1

t−τ towards xst
t−τ to track the dynamic benchmark

{xst
t }. Note that the difference between the two dynamic

benchmarks {xst
t } in (55) and {x?

t } in (5) is that {x?
t } satisfies

both the long-term and short-term constraints while {xst
t }

only satisfies the short-term constraints. When the long-term
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Algorithm 2 DTC-OCO with Multi-Step Gradient Descent

1: Initialize α, η, γ,M > 0 and xt ∈ X0,Qt = 0, ∀t ∈ [τ ].
2: At the beginning of each slot t > τ , do:
3: Initialize intermediate decision x̂0

t−τ = xt−τ .
4: for m = 1 to M
5: Update x̂m

t−τ via (54).
6: end for
7: Update the decision xt by solving P̂2.
8: Update the virtual queue Qt via (8).

constraints are relatively loose as compared with the short-
term constraints, {xst

t } is close to {x?
t }. Thus, tracking {xst

t }
also helps minimize the dynamic regret. With the double
regularization, xt moves from a point on the line segment
between xt−1 and x̂M

t−τ towards x?
t−τ to track the dynamic

benchmark {x?
t } for dynamic regret minimization. We will

show analytically in the next two subsections and numerically
in Section VI that this method of utilizing multi-step gradient
descent together with double regularization will improve the
performance bounds and averaged performance of DTC-OCO
for strongly convex loss functions.

DTC-OCO with multi-step gradient descent is summarized
in Algorithm 2. The algorithm consists of four major steps:
1) Initialize xt ∈ X0, ∀t ∈ [τ ], and set Qt = 0, ∀t ∈ [τ ] and
g0(x) ≡ 0; 2) At the beginning of each slot t > τ , perform
M -step gradient descent to generate x̂M

t−τ ; 3) With both x̂M
t−τ

and xt−1, obtain the current decision xt by solving P̂2; 4)
At the end of each slot t > τ , update the virtual queue Qt

via (8). Note that this algorithm has four algorithm parameters
α, η, γ,M . Their choice will be discussed in Section V-C, after
we derive the regret bound and constraint violation bound in
the next subsection.

B. Dynamic Regret and Constraint Violation Bounds

We now derive the performance bounds of Algorithm 2
for strongly convex loss function ft(x). Note that strongly
convex loss functions arise in many system control and signal
processing applications, e.g., support vector machine, Lasso
regression, softmax classifier, and robust subspace tracking.
Furthermore, for general applications with convex loss func-
tions, adding a regularization term μ‖x‖2 can make the
overall objective function strongly convex without significantly
impacting on the system performance [10].

In Sections V-B and V-C, we make the following assump-
tions that are common in existing works on OCO with strongly
convex loss functions [8]-[11].

Assumption 4. The loss function ft(x) satisfies the following
conditions:

4.1) ft(x) is 2μ-strongly convex over X0: ∃ μ > 0, s.t., for
any x,y ∈ X0 and t

ft(y) ≥ ft(x) + [∇ft(x)]T (y − x) + μ‖y − x‖2. (56)

4.2) ft(x) is 2L-smooth over X0: ∃ L > 0, s.t., for any
x,y ∈ X0 and t

ft(y) ≤ ft(x) + [∇ft(x)]T (y − x) + L‖y − x‖2. (57)

For our analysis, we need the following lemma, which is
borrowed from [11, Lemma 5].

Lemma 5. Let S ∈ Rn be a nonempty convex set. Let h(s) :
Rn → R be a 2%-strongly convex and 2ζ-smooth function over
S w.r.t. a norm ‖ ∙ ‖. Let v = arg mins∈S{[∇h(u)]T (s−u)+
υ‖s − u‖2} and s? = arg mins∈S h(s). Then, for any υ ≥ ζ ,
we have ‖v − s?‖2 ≤ υ−%

υ+%‖u − s?‖2.

Similar to Proposition 2 in [8], Lemma 5 shows that for
strongly convex and smooth loss function h(s), the distance
between the new decision v and the optimum s? is strictly
smaller than the distance between the previous decision u and
s?, i.e., ‖v − s?‖ < ‖u − s?‖. This indicates that performing
multi-step gradient descent help the updated decision approach
the optimal decision faster than the decision yielded by one-
step gradient descent. Such property is utilized in [8]-[11]
to improve the dynamic regret for OCO with short-term
constraints under one-slot feedback delay.

We now examine the effect of multi-step gradient descent
on the dynamic regret of OCO with long-term constraints and
multi-slot delay. We define the accumulated squared difference
between the dynamic benchmarks {x?

t } in (5) and {xst
t } in (55)

as

Πx ,
T∑

t=1

‖xst
t − x?

t ‖
2. (58)

Note that x?
t satisfies gt(x?

t ) � 0, while xst
t is only subject to

the short term constraints xst
t ∈ X0. Therefore, Πx naturally

quantifies the impact of the long-term constraint functions
{gt(x)} on the dynamic benchmark {x?

t }.
In the following theorem, we provide a dynamic regret

bound for DTC-OCO with multi-step gradient descent. To
prove the theorem, we have used the techniques in the proof of
Theorem 1, the results in Lemma 5, as well as the properties
of strong convexity and smoothness.

Theorem 4. Under Assumptions 1-4, if we choose α ≥ L,
η ≥ max{γ2B2, ατ 2}, and M > logρ(

1
8 ) with ρ , α−μ

α+μ <
1, the dynamic regret yielded by DTC-OCO with multi-step
gradient descent is upper bounded by

REd(T )≤
1
4ξ

Π∇+
L + ξ

1 − 8ρM

[
D2

2α2
T +

γ2

α
G2+

2γ2

α
Δ2,g+7Πx

+
2η

α
(R2+2RΔx?)+

(
2η

α
+1

)

τR2

]

, ∀ξ > 0 (59)

where Π∇ ,
∑T

t=1 ‖∇ft(x?
t )‖

2 is the accumulated squared
gradients at the dynamic benchmark x?

t , t ∈ [T ].

Proof: Under Assumption 4, we have

REd(T )
(a)

≤
T∑

t=1

(
[∇ft(x

?
t )]

T (xt − x?
t ) + L‖xt − x?

t ‖
2
)

(b)

≤
1
4ξ

Π∇ + (L + ξ)
T∑

t=1

‖xt − x?
t ‖

2 (60)

where (a) is because ft(x) is 2L-smooth in (57), and (b)
follows from aT b ≤ 1

4ξ‖a‖
2 + ξ‖b‖2 for any ξ > 0.
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We now bound the RHS of (60). Note that
T∑

t=1

‖xt − x?
t ‖

2 ≤
τ∑

t=1

‖xt − x?
t ‖

2 +
T∑

t=τ+1

‖xt − x?
t ‖

2

(a)

≤ τR2 +
T∑

t=τ+1

‖xt − x?
t−τ + x?

t−τ − x?
t ‖

2

(b)

≤ τR2 + 2
T∑

t=τ+1

(
‖xt − x?

t−τ‖
2 + ‖x?

t − x?
t−τ‖

2
)

(c)

≤ τR2 + 2
T∑

t=τ+1

‖xt − x?
t−τ‖

2 + 2τ2
T∑

t=1

‖x?
t − x?

t−1‖
2(61)

where (a) follows from (13) that X0 is assumed to be bounded,
(b) is because ‖a − b‖2 ≤ 2(‖a‖2 + ‖b‖2), and (c) follows
from ‖

∑n
i=1 ai‖2 ≤ n

∑n
i=1 ‖ai‖2, which leads to ‖x?

t −
x?

t−τ‖
2 ≤ τ

∑τ
i=1 ‖x

?
t−τ+i − x?

t−τ+i−1‖
2.

We then bound the second term at the RHS of (61). The
objective function of P̂2 is 2(α + η)-strongly convex over X0

for any t > τ due to the double regularization. We now show
that (25) in the proof of Theorem 1 still holds by replacing
xt−τ with x̂M

t−τ :

[∇ft−τ (x̂M
t−τ )]T (xt − x̂M

t−τ ) + α‖xt − x̂M
t−τ‖

2

+ [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (xt)]+η‖xt − xt−1‖

2

≤ [∇ft−τ (x̂M
t−τ )]T (x?

t−τ − x̂M
t−τ )

+ α(‖x?
t−τ − x̂M

t−τ‖
2 − ‖xt − x?

t−τ‖
2)

+ η(‖x?
t−τ − xt−1‖

2 − ‖xt − x?
t−τ‖

2). (62)

Note from (57) that ft−τ (x) is 2L-smooth over X0, and we
set α ≥ L. Thus, we have

ft−τ (xt) − ft−τ (x̂M
t−τ ) − α‖xt − x̂M

t−τ‖
2

≤ [∇ft−τ (x̂M
t−τ )]T (xt − x̂M

t−τ ). (63)

From the convexity of ft−τ (x), we have

[∇ft−τ (x̂M
t−τ )]T (x?

t−τ − x̂M
t−τ ) ≤ ft−τ (x?

t−τ ) − ft−τ (x̂M
t−τ ).
(64)

Applying (63) and (64) to the LHS and RHS of (62),
respectively, we have

ft−τ (xt) − ft−τ (x̂M
t−τ ) − α‖xt − x̂M

t−τ‖
2 + α‖xt − x̂M

t−τ‖
2

+ [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (xt)]+η‖xt − xt−1‖

2

≤ ft−τ (x?
t−τ ) − ft−τ (x̂M

t−τ )

+ α(‖x?
t−τ − x̂M

t−τ‖
2 − ‖xt − x?

t−τ‖
2)

+ η(‖x?
t−τ − xt−1‖

2 − ‖xt − x?
t−τ‖

2). (65)

Rearranging terms of (65), we have

α‖xt − x?
t−τ‖

2

≤ α‖x̂M
t−τ − x?

t−τ‖
2 + ft−τ (x?

t−τ ) − ft−τ (xt)

− [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (xt)]−η‖xt − xt−1‖

2

+ η(‖x?
t−τ − xt−1‖

2 − ‖xt − x?
t−τ‖

2). (66)

We next bound the first term on RHS of (66). Applying
Lemma 5 to the update of x̂m

t−τ in (54), for any α ≥ L, we
have

‖x̂m
t−τ − xst

t−τ‖
2 ≤ ρ‖x̂m−1

t−τ − xst
t−τ‖

2, ∀m ∈ [M ]

where ρ = α−μ
α+μ < 1. Combining the above M inequalities

and noting that x̂0
t−τ = xt−τ by initialization, we have

‖x̂M
t−τ − xst

t−τ‖
2 ≤ ρM‖xt−τ − xst

t−τ‖
2.

From the above inequality and using ‖a + b‖2 ≤ 2(‖a‖2 +
‖b‖2), we have

‖x̂M
t−τ − x?

t−τ‖
2 ≤ 2‖x̂M

t−τ − xst
t−τ‖

2 + 2‖xst
t−τ − x?

t−τ‖
2

≤ 2ρM‖xt−τ − xst
t−τ‖

2 + 2‖xst
t−τ − x?

t−τ‖
2

≤ 4ρM‖xt−τ − x?
t−τ‖

2 + (4ρM + 2)‖xst
t−τ − x?

t−τ‖
2. (67)

For the second and third terms at the RHS of (66), we have

ft−τ (x?
t−τ ) − ft−τ (xt)

(a)

≤ ft−τ (x?
t−τ ) − ft−τ (xst

t−τ )
(b)

≤[∇ft−τ (x?
t−τ )]T (xst

t−τ−x?
t−τ )

(c)

≤
D2

4α
+α‖xst

t−τ−x?
t−τ‖

2 (68)

where (a) follows from the definition of xst
t in (55), (b) is

because ft(x) is convex over X0, and (c) follows from aT b ≤
1
4α‖a‖

2+α‖b‖2 for any α > 0 and Assumption 1 that ∇ft(x)
is bounded as in (9).

From the proof of Theorem 1, we can bound the last two
terms at the RHS of (66) by (30) and (27), respectively.
Substituting (27), (30), (67), (68) into (66), we have

α‖xt − x?
t−τ‖

2

(a)

≤ 4αρM‖xt−τ − x?
t−τ‖

2 + α(4ρM + 3)‖xst
t−τ − x?

t−τ‖
2

− η‖x?
t−τ+1−x?

t−τ‖
2+

D2

4α
− Δt−1 +

γ2

2
ϕt−τ + γ2$t−τ

+ η(Ψt−τ + 2Rψt−τ ) (69)

where (a) follows from η ≥ B2γ2, which leads to (γ2B2 −
η)‖xt − xt−1‖2 ≤ 0. Dividing both sides of (69) by α and
summing them over t ∈ {τ + 1, . . . , T }, we have

T∑

t=τ+1

‖xt − x?
t−τ‖

2

(a)

≤ 4ρM
T∑

t=1

‖xt − x?
t ‖

2 + (4ρM + 3)
T∑

t=1

‖xst
t − x?

t ‖
2

−
η

α

T−τ+1∑

t=2

‖x?
t − x?

t−1‖
2 +

D2

4α2
T +

γ2

2α
G2 +

γ2

α
Δ2,g

+
η

α
(R2 + 2RΔx?) (70)

where (a) follows from the fact that the sums of Δt−1, ϕt−τ ,
$t−τ , Ψt−τ and ψt−τ over t ∈ {τ + 1, . . . , T } are upper
bounded by 0, G2, Δ2,g, R2, and Δx? , respectively, similar
to (33).

Substituting (70) into (61) and rearranging terms, we have

(1 − 8ρM )
T∑

t=1

‖xt − x?
t ‖

2

(a)

≤ 2(4ρM + 3)
T∑

t=1

‖xst
t − x?

t ‖
2 +

D2

2α2
T +

γ2

α
G2 +

2γ2

α
Δ2,g

+

(
2η

α
+ 1

)

τR2 +
2η

α
(R2 + 2RΔx?) (71)



13

TABLE III
IMPROVED DYNAMIC REGRET AND CONSTRAINT VIOLATION OF

DTC-OCO WITH MULTI-STEP GRADIENT DESCENT

Constraint Know δ? REd(T ) VOc(T )

Varying Yes/No O(max{τ2T δ , T ν}) O (τT κ)

Invariant Yes/No O(τ2T δ) O(τ)

where (a) follows from η ≥ ατ2, which leads to
τ2
∑T

t=1 ‖x
?
t − x?

t−1‖
2 − η

α

∑T−τ+1
t=2 ‖x?

t − x?
t−1‖

2 ≤ η
ατR2.

Note that since M > logρ(
1
8 ), we have 8ρM < 1. Dividing

both sides of (71) by 1 − 8ρM , and applying the resulting
inequality to the second term in (60), we have (59).

Note that the dynamic regret bound in (59) of Theorem 4
reduces as the number of gradient descent steps M increases.
However, even if M → ∞, the dynamic regret bound is
still fundamentally limited by the system dynamics. Later in
Section VI-B, we show that although the accumulated loss by
DTC-OCO decreases as M increases, the decreasing amount
becomes negligible as M becomes large enough. In practice,
the choice of M may depend on the trade off between the
computational capacity of the decision maker and the actual
performance gain provided by multi-step gradient descent.

Regarding the performance on constraint violation, the
following theorem shows that the constraint violation bound
(37) in Theorem 3 also holds for DTC-OCO with multi-step
gradient descent. The theorem can be straightforwardly proven
by replacing xt−τ with x̂M

t−τ in the proof of Theorem 3. Thus,
we omit the proof for brevity.

Theorem 5. Under Assumptions 1-4, the constraint violation
bound in (37) holds for DTC-OCO with multi-step gradient
descent.

C. Improved Dynamic Regret and Constraint Violation Bounds

We now discuss the sufficient conditions for DTC-OCO
with multi-step gradient descent to yield sublinear dynamic
regret and constraint violation, and highlight its performance
advantage. For clarity, we summarize the performance bounds
in terms of the growth rate over T for strongly convex loss
functions in Table III.

From Theorems 4 and 5, we have the following corollaries
regarding the dynamic regret and constraint violation bounds
for DTC-OCO with multi-step gradient descent. Corollaries 4
and 5 provide two sets of performance bounds depending on
whether the long-term constraint functions are time-varying or
not. The proofs of these two corollaries can be obtained by
substituting the expression of the algorithm parameters α, η,
γ, and M , specified in each corollary, into the bounds in (59)
and (37). Thus, they are omitted for brevity.

Corollary 4. Suppose Π∇ = O(T δ) and Πx = O(T δ).8

Assume the constraint functions are time-varying. Let α =

8The accumulated squared gradients Π∇ can be very small [11]. Particu-
larly, if x?

t is an interior point of the convex set X0 or there is no short-term
constraint, we have ∇ft(x?

t ) = 0, ∀t and thus Π∇ = 0. The accumulated
squared difference between {xst

t } and {x?
t } can also be small. In particular,

if ‖xst
t − x?

t ‖ ∝ T
1−δ
2 , ∀t, we have Πx = O(T δ).

T
1
2 +L, η = max{ατ2, B2γ2}, and γ2 = τT

1
2 in DTC-OCO

with multi-step gradient descent. Then, for any M > logρ(
1
8 ),

REd(T ) = O
(
max

{
τ2T δ, T ν

})
, (72)

VOc(T ) = O (τT κ) . (73)

Corollary 5. Suppose Π∇ = O(T δ) and Πx = O(T δ).
Assume the constraint functions are time-invariant. Let α =
T

1
2 +L, η = max{ατ2, B2γ2}, and γ2 = τT

1
2 in DTC-OCO

with multi-step gradient descent. Then, for any M > logρ(
1
8 ),

REd(T ) = O
(
τ2T δ

)
, (74)

VOc(T ) = O (τ) . (75)

With time-varying constraint functions, recall from Corol-
lary 1 that for DTC-OCO with a single-step gradient descent,
the dynamic regret is O(max{τ

1
2 T

1+δ
2 , T ν}) and the con-

straint violation is O(max{T
1−δ
2 , τT κ}). Corollary 4 indicates

that by increasing the number of gradient descent steps M ,
the dynamic regret is improved to O(max{τ2T δ, T ν}) and
the constraint violation is improved to O (τT κ).

When the constraint functions are time-invariant, we have
shown in Corollary 3 that DTC-OCO with a single-step gradi-
ent descent achieves O(τ

1
2 T

1+δ
2 ) dynamic regret and O(τ)

constraint violation. Corollary 5 indicates that performing
multi-step gradient descent can improve the dynamic regret to
O(τ2T δ) while maintaining O(τ) constraint violation. Note
that different scales of τ in the dynamic regrets are the results
of different proof techniques to show the desired dynamic
regret growth rates. As a constant, τ does not impact the
growth rates of the dynamic regret or constraint violation.

In summary, our results above show that for a strongly
convex loss function, the multi-step gradient descent with
double regularization together improves the dynamic regret
bound and the constraint violation bound of constrained OCO,
even in the presence of multi-slot delay. To the best of our
knowledge, no existing literature has considered performing
multi-step gradient descent to improve the performance bounds
for OCO with long-term constraints, even with one-slot delay.

Finally, we also point out that in the case of a strongly
convex loss function, with multi-step gradient descent, Corol-
laries 4 and 5 show that the optimal algorithm parameters
α, η, γ, and M do not depend on the accumulated variation
measure δ on the dynamic benchmark {x?

t }. This is in contrast
to Corollaries 1 and 3 for the basic form of DTC-OCO, where
the optimal α, η, γ may depend on δ.

VI. APPLICATION TO NETWORK RESOURCE ALLOCATION

DTC-OCO can be applied to many applications in the
areas of wireless communications, machine learning, mobile
computing, and smart grid, as mentioned in the introduction.
In this section, we apply DTC-OCO to a general problem of
resource allocation in a networked system [17], [18], [24],
[35], [36]. We present numerical results to demonstrate the
performance advantage of DTC-OCO over the current best
alternative given in [22].
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Fig. 3. An illustration of general online network resource allocation.

A. Online Network Resource Allocation

Fig. 3 shows a general network consisting of J scheduling
nodes and K processing nodes. For example, in a wired
or wireless network, the scheduling nodes may be relays,
and the processing nodes may be sink nodes. In machine
learning, the scheduling nodes may be mobile devices, and
the processing nodes may be parameter servers. In a cloud
computing network, the scheduling nodes may be mappers,
and the processing nodes may be computing servers.

At each time slot t, the amount of data arriving at schedul-
ing node j is denoted by dj

t , and we define an extended
data arrival vector denoted by dt = [d1

t , . . . , d
J
t ,01×K ]T .

A central controller decides the transmission rate yjk
t of

the link (j, k) connecting scheduling node j and processing
node k, as well as the processing rate zk

t at processing
node k. In a compact form, the decision vector at time t is
xt = [y11

t , . . . , yJK
t , z1

t , . . . , zK
t ]T . Denote the maximum data

transmission rate of link (j, k) by yjk
max, and the maximum data

processing rate of processing node k by zk
max. The data rate

limits are compactly expressed in the convex set as

X0 , {x|0 � x � xmax}

where xmax = [y11
max, . . . , y

JK
max , z1

max, . . . , z
K
max]

T is the maxi-
mum data rate vector. Each scheduling node j and processing
node k has a local data queue backlog at time t denoted by
qj
t and qJ+k

t , respectively. Denote the queue backlog vector
as qt = [q1

t , . . . qJ
t , qJ+1

t , . . . , qJ+K
t ]T . Then, we can express

the update of the queue backlog as qt+1 = [qt +Cxt +dt]+,
where C ∈ R(J+K)×(JK+K) represents the network topology
and is given by

C =

[
blkdiag{−11×K , . . . ,−11×K} 0J×K

IK×K , . . . , IK×K −IK×K

]

.

The goal for the central controller is to minimize the net-
work cost while controlling the long-term averaged outgoing
data rate to be no less than the incoming data rate to maintain
queue stability. Since the controller can only receive delayed
feedback of system parameters dt, qt, and ft(x) from the
scheduling nodes and processing nodes over time, it needs
to employ an online control solution based on the feedback.
This online network resource allocation problem is a special
case of the OCO problem P1, where the convex set X0 for the
decisions is defined above, the convex loss functions ft(x) are
the network cost functions, and the convex constraint functions
are given by

gt(x) , Cx + dt,

which represents the net change in the queue backlog due to
incoming and outgoing data. Due to possible communication

delay between the scheduling nodes and the central controller,
we consider that the feedback information of gt(x) is delayed
for τ time slots at the central controller. Note that in this net-
work resource allocation problem with data queues to achieve
sublinear constraint violation, i.e., limT→∞

1
T

∑T
t=1 gt(xt) →

0, is equivalent to maintaining queue stability.
A special case of the above problem where there is no

feedback delay has been considered using Lyapunov opti-
mization techniques [24], [35], [36]. Furthermore, solutions
for the standard OCO setting with one-slot feedback delay
have been proposed in [17] and [18]. However, in practical
systems, due to limited resources for feedback, the central
controller typically experiences multi-slot feedback delay of
the system parameters. The proposed DTC-OCO algorithm
provides a suitable online solution to this problem.

B. Numerical Performance Evaluation

We apply DTC-OCO to the above online network resource
allocation problem. The analysis of sublinear regret bounds
derived in Section IV implies that the algorithm can produce
an efficient solution. Furthermore, the sublinear constraint vio-
lation bound guarantees queue stability. Now, we further study
the numerical performance of DTC-OCO in this practical
problem setting. We compare DTC-OCO with the online al-
gorithm proposed in [22], which is the only existing algorithm
to accommodate long-term constraints and multi-slot feedback
delay. To further verify the benefit of the proposed double
regularization in DTC-OCO, we also study two simplified
versions of DTC-OCO that apply a single regularization term
on either xt−τ or xt−1.

We consider a specific example of a mobile cloud computing
system consisting of J = 10 scheduling nodes, and K = 10
processing nodes. Following the typical long-term evolution
(LTE) specifications [37], we set the noise power spectral
density N0 = −174 dBm/Hz, noise figure NF = 10 dB,
and channel bandwidth BW = 10 MHz as default system
parameters. We set the time slot duration to be 1 ms and
assume data arrived at each time t is dt in kB. The maximum
data transmission and processing rates, in MBps, are set
randomly with uniform distribution as yjk

max ∼ U(10, 100)
and zk

max ∼ U(100, 250), respectively. Based on the channel
capacity, we can express the transmission power of each link

(j, k) in terms of its transmission rate yjk as σ2
n

Ljk
t

(2
yjk

BW − 1),

where σ2
n = N0BW + NF [dBm] is the noise power, and Ljk

t

captures the path-loss, instantaneous channel gain, and the gap
to capacity. Note that Ljk

t is time-varying due to the fluctuation
of wireless channels. We assume each processing node k
follows a quadratic power-frequency relationship, where the
power consumed for processing rate zk is given by θ(ξk

t zk)2,
where θ = 120 W/(GHz)2 [38], and ξk

t represents the
computational complexity of the computing tasks [39], [40].
Since the computing tasks change over time, ξk

t is time-
varying [41]. We consider both the data transmission power
and processing power for given decision x on transmission
rate and processing rate at time t by defining the following
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(b) Noisy periodic variation over time.

Fig. 4. f̄(T ) and ḡ(T ) vs. T under different feedback delay τ . The static
benchmark x? is not included as its performance is much worse than the one
by the dynamic benchmark {x?

t }.

network cost function:

ft(x) ,
∑

j∈J

∑

k∈K

σ2
n

Ljk
t

(2
yjk

BW − 1) +
∑

k∈K

θ(ξk
t zk)2.

Note that information on the channel gain and task complexity
at the central controller may be severely delayed due to limited
resources for feedback. Therefore, we consider the feedback
information of ft(x) is delayed for τ time slots. Furthermore,
our proposed online solution for network resource allocation
can be applied to other cost functions that are convex w.r.t. x.

We assume both τ and δ are unknown, and thus set
α = T

1
2 , η = ‖C‖2

2, and γ = 1 in DTC-OCO.9 Our per-
formance metrics are the time-averaged network cost f̄(T ) ,
1
T

∑T
t=1 ft(xt) and the time-averaged constraint violation

ḡ(T ) , 1
T

∑T
t=1 1T gt(xt). For fair comparison of f̄(T ), the

step-sizes for the algorithm in [22] are selected such that the
algorithm has a steady-state value of ḡ(T ) similar to that of
DTC-OCO. We consider two different models for the time-
varying system parameters {dj

t}, {Ljk
t }, {ξk

t }.
1) I.i.d. over time: All the system parameters are i.i.d. over

t with uniform distribution: dj
t ∼ U(10, 100), Ljk

t [dB] ∼
U(−126,−120), and ξk

t ∼ U(1, 3).
2) Noisy periodic variation over time: We assume the

variation of each system parameter over time is periodic

9We consider τ and δ are unknown, since they may be difficult to obtain in
practice. For our specific application to network resource allocation, following
Corollary 2 to set the algorithm parameters α, η, and γ already provides
DTC-OCO with relatively good performance. Therefore, we do not further
tune α, η, and γ to reach the best performance. In general, the best algorithm
parameters are problem dependent and may require fine tuning.
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Fig. 5. f̄(T ) and ḡ(T ) vs. T under different gradient descent steps M .

with some additive noise that is uniformly distributed: dj
t =

30 sin
(

πt
20

)
+ nj,d

t , Ljk
t [dB] = −120 − 3 sin

(
πt
20

)
− njk,L

t ,
and ξk

t = 0.5 sin(πt
20 ) + nk,ξ

t , where nj,d
t ∼ U(40, 70),

njk,L
t ∼ U(6, 9), and nk,ξ

t ∼ U(1, 3).
Fig. 4 shows time-averaged cost f̄(T ) and constraint viola-

tion ḡ(T ) over T at different values of feedback delay τ . for
the above two cases. Fig. 4a is under the i.i.d. modeling of
system parameters and Fig. 4b is for noisy periodic variation of
system parameters. We observe that the network cost by DTC-
OCO can approach that of the dynamic benchmark in (5),
indicating that sublinear dynamic regret is achieved. Compared
with [22], DTC-OCO achieves a much lower network cost
and is much more tolerant to the feedback delay τ . The
reason for this result are two fold: First, in DTC-OCO, the
constraint function gt−τ (x) is penalized directly instead of its
first-order approximation as in [22]. This improves the control
on the constraint violation; Second, the double regularization
approach in DTC-OCO prevents the online decision xt from
being far way from either xt−τ or xt−1. This results in an
improved algorithm performance, since both xt−τ and xt−1

provide useful information in minimizing the accumulated loss
and constraint violation. We also observe that the network cost
by DTC-OCO is much lower than those by the two simplified
versions of DTC-OCO using single regularization. This indi-
cates that the double regularization approach is essential in the
superior performance demonstrated by DTC-OCO. Our simu-
lation result shows that the time-averaged cost f̄(T ) by DTC-
OCO can be very close to that by the dynamic benchmark;
Furthermore, ḡ(T ) by DTC-OCO decreases over T . These
results validate our theoretical analysis that DTC-OCO can
achieve sublinear dynamic regret and constraint violation.
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We further evaluate the performance of DTC-OCO with
multi-step gradient descent for the two models of time-varying
system parameters. We set the feedback delay τ = 10. Fig. 5
shows f̄(T ) and ḡ(T ) over T under different numbers of gra-
dient descent steps M . The case of M = 0 represents the basic
form of the DTC-OCO algorithm. We use the same algorithm
parameters α, η, γ as in the previous experiments. We observe
that, as M increases, the steady-state value of f̄(T ) decreases
for both models of time-varying system parameters. At the
same time, the fluctuations of the network cost also reduces
with M . The reason is that, as shown in Theorem 4, perform-
ing multi-step gradient descent improves the dynamic regret
bound, which in turn improves the convergence behavior. We
also observe that the impact of different values of M on the
time-averaged constraint violation is small. This confirms the
results in Theorem 5. These simulation results validate that
enabling multi-step gradient descent in DTC-OCO can further
improve system performance.

VII. CONCLUSIONS

This paper considers OCO with short-term and long-term
constraints under multi-slot feedback delay. We have pro-
posed an efficient algorithm, DTC-OCO, where we use a
novel constraint penalty with double regularization to handle
the asynchrony between information feedback and decision
updates. Our analysis on the regret bound and the constraint
violation bound takes into account the impact of multi-slot
feedback delay and the double regularization structure on the
performance of DTC-OCO, and we have derived conditions
under which the algorithm achieves both sublinear dynamic
and static regrets and sublinear constraint violation. We have
further extended the DTC-OCO algorithm to enable multi-step
gradient descent in each update, which is shown to improve
both the dynamic regret bound and the constraint violation
bound for strongly convex loss functions. We apply DTC-
OCO to online network resource allocation in a mobile cloud
computing system as an numerical example. Simulation results
demonstrate that DTC-OCO provides substantial performance
advantage over the stat-of-art alternative, yielding a much
lower cost and superior capability to tolerate feedback delay.
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