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Abstract—We consider online distributed optimization in a
networked system, where multiple devices assisted by a server
collaboratively minimize the accumulation of a sequence of global
loss functions that can vary over time. To reduce the amount
of communication, the devices send quantized and compressed
local decisions to the server, resulting in noisy global decisions.
Therefore, there exists a tradeoff between the optimization
performance and the communication overhead. Existing works
separately optimize computation and communication. In contrast,
we jointly consider computation and communication over time,
by proactively encouraging temporal similarity in the decision
sequence to control the communication overhead. We propose an
efficient algorithm, termed Online Distributed Optimization with
Temporal Similarity (ODOTS), where the local decisions are both
computation- and communication-aware. Furthermore, ODOTS
uses a novel tunable virtual queue, which removes the commonly
assumed Slater’s condition through a modified Lyapunov drift
analysis. ODOTS delivers provable performance bounds on both
the optimization objective and constraint violation. Furthermore,
we consider a variant of ODOTS with multi-step local gradient
descent updates, termed ODOTS-MLU, and show that it provides
improved performance bounds. As an example application, we
apply both ODOTS and ODOTS-MLU to enable communication-
efficient federated learning. Our experimental results based on
canonical image classification demonstrate that ODOTS and
ODOTS-MLU obtain higher classification accuracy and lower
communication overhead compared with the current best alter-
natives for both convex and non-convex loss functions.

Index Terms—Online optimization, federated learning, tempo-
ral similarity, long-term constraint, multi-step gradient.

I. INTRODUCTION

Distributed optimization has become an essential tool for
modern machine learning applications, which require ample
storage, computation, and data. It avoids overburdening any
single server and is robust to failures by coordinating multiple
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local devices to process the machine learning tasks. It can also
alleviate privacy concerns by keeping the data local. However,
the migration of optimization from the central server to local
devices can incur a surge of communication overhead between
them [2], [3]. The scarcity of communication resources can
thus become a bottleneck for distributed machine learning
applications. This calls for communication-efficient distributed
optimization that integrate techniques from both machine
learning and communications [4].

Most existing works on communication-efficient distributed
learning consider computation and communication separately
[5]-[20], i.e., communication designs such as quantization and
compression come after the machine-learning model parame-
ters are already determined, for example, by standard gradient
descent. However, since communication efficiency is strongly
dependent on the information being transmitted [21], one
can further improve the learning performance by proactively
designing the model parameters for both learning accuracy and
communication efficiency. In other words, joint consideration
of computation and communication would take into fuller
account the mutual impact between them.

Furthermore, most existing works focus on offline opti-
mization, which does not allow time-varying loss functions
or account for any long-term constraints. However, in many
practical machine learning applications, e.g., network traffic
classification [22], dynamic user profiling [23], and real-time
video analysis [24], random data samples arrive in a streaming
fashion, and consequently the loss functions vary over time.
These applications require online optimization, where we
compute a sequence of optimization decisions that are adaptive
to the unpredictable system dynamics over time [25], [26].

In this work, we aim to develop online distributed op-
timization solutions that jointly consider computation and
communication over time. In particular, we are interested in
a design that takes into account the interdependence of the
optimization decisions over time to reduce the communication
overhead, while providing performance guarantees on both
the optimization and communication performance metrics. To
achieve this goal, we must address several challenges: 1) Since
the communication overhead depends on the local decisions
transmitted from the devices to the server, when updating
the local decisions, we must consider both their optimization
performance and communication cost. 2) Lossy quantization
substantially reduces the communication overhead but at the
same time generates errors in the optimization decisions, and
these errors propagate in the iterative computation process over
time. 3) Due to the tight coupling between computation and
communication, we must properly balance their joint impact



2

on both the optimization performance and the convergence
speed. 4) Both computation and communication needs to be
properly formulated and designed to account for the unpre-
dictable fluctuations in the environment over time.

Different from standard online distributed optimization that
does not consider the communication efficiency, our decision
update automatically balances the improvement in optimiza-
tion and the cost in communication over time. Furthermore,
we analyze the mutual impact between computation and com-
munication over time, to provide performance bounds on both
the computation and communication metrics for our proposed
algorithms. Specifically, the main contributions of this paper
are as follows:

• We formulate an online distributed optimization problem
where the server computes a sequence of global opti-
mization decisions to minimize the accumulated global
loss, by aggregating the quantized and compressed local
decisions communicated from the devices. To reduce
the communication overhead, we encourage temporal
similarity in the computed sequence of local decisions
at the devices by enforcing an average long-term deci-
sion dis-similarity constraint. Thus, we consider both the
optimization and communication performance metrics. To
the best of our knowledge, this form of online distributed
optimization with joint computation and communication
consideration has not been studied in the literature.

• We propose an efficient algorithm to solve this problem,
termed Online Distributed Optimization with Temporal
Similarity (ODOTS). The local decisions yielded by
ODOTS are adaptive to the unpredictable fluctuations of
the loss functions while accounting for the decision dis-
similarity constraint violation to limit the communication
overhead. ODOTS achieves this via a novel tunable
virtual queue that requires a modified Lyapunov drift
analysis technique. Notably, this eliminates the require-
ment for Slater’s condition, which is commonly assumed
in existing virtual-queue-based online optimization algo-
rithms.

• We analyze the tight coupling between computation and
communication, and their joint impact on the optimiza-
tion performance and convergence speed of ODOTS. Our
analysis shows that with general local loss functions, for
all sequences of time-varying weights on the devices,
ODOTS achieves O(max{T

1+µ
2 , T

3+ν
4 }) performance

gap to the centralized per-slot optimal decision sequence
and O(max{T

3+µ
4 , T

7+ν
8 }) violation of the long-term

decision dis-similarity constraint over T time slots, where
µ represents the growth rate of the centralized per-slot
optimizer and the quantization error, and ν measures the
accumulated variation of the time-varying weights.

• We further consider a variant of ODOTS with multi-step
local updates, termed ODOTS-MLU, to enable multiple
steps of local gradient descent at the local devices before
performing global decision aggregation at the central
server. We analyze the impact of multi-step local gradient
descent in ODOTS-MLU, and show that with strongly
convex local loss functions, it improves the performance

gap and constraint violation to O(max{Tµ, T
1+2µ+ν

4 })
and O(max{T

5+2µ+ν
8 , T

3+ν
4 }), respectively.

• As an example application, we apply both ODOTS and
ODOTS-MLU to enable communication-efficient feder-
ated learning. We study the impact of system parame-
ters on the performance of ODOTS and ODOTS-MLU,
by experimenting with canonical image classification
datasets. Our experimental results demonstrate that for
both convex and non-convex loss functions, ODOTS
obtains higher test accuracy with lower communication
overhead, compared with the current best alternatives
under different scenarios. Performing multi-step local
updates in ODOTS-MLU can yield better learning per-
formance while incurring less communication overhead
than ODOTS.

The rest of this paper is organized as follows. In Section II,
we present the related work. Section III describes the system
model and problem formulation. In Section IV, we present
ODOTS and its decision updates. Performance bounds of
ODOTS are provided in Section V. Then, we discuss the
ODOTS-MLU variation with multi-step local gradient descent
updates and study its performance in Section VI. The appli-
cation of ODOTS and ODOTS-MLU to federated learning is
presented in Section VII, followed by concluding remarks in
Section VIII.

II. RELATED WORK

A. Error-Free Distributed Optimization

Distributed optimization has been widely studied (see [27]
and references therein). For example, offline distributed dual
averaging and mirror descent algorithms were proposed in [28]
and [29]. These two algorithms were respectively extended in
[30] and [31] to the online setting. However, these works do
not explicitly consider the communication efficiency.

Distributed approximate Newton-typed algorithm and alter-
nating direction method of multipliers algorithm were pro-
posed in [32] and [33] to reduce the number of iterations
for efficient communication. Distributed gradient descent with
event-triggered communication was considered in [34]. A
general communication-efficient distributed dual coordinate
ascent framework was proposed in [35], which used local
computation in a primal-dual setting for reduced commu-
nication. However, the above works all assume error-free
communication, and they ignore the opportunity to reduce the
communication overhead via information similarity.

B. Communication-Efficient Distributed Learning

The original federated averaging algorithm increases the
number of local updates to reduce the communication over-
head [5]. An adaptive model aggregation approach was pro-
posed in [6] under communication resource constraints. Quan-
tization schemes have been adopted in distributed learning to
reduce the number of transmitted bits by mapping the model
parameters to a small set of discrete values. For example, 1-
bit and multi-bit quantization methods were developed in [7]
and [8]. Some other variations include error compensation [9],
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variance reduction [10], and ternary quantization [11]. Spar-
sification schemes select a portion of the model parameters
for communication. For example, threshold-based and top-
k selection schemes were proposed in [12] and [13], with
improvements in more recent studies such as [14]. Quantiza-
tion and sparsification have also been applied simultaneously
in [15]. However, the above works do not utilize the model
similarity for more efficient communication.

Model similarity was utilized in [16] to further reduce
the number of transmitted bits via conditional entropy cod-
ing. Event-triggered communication after quantization and
sparsification was considered in [17], which transmits the
decision parameters only if the amount of decision changes
surpasses a predefined short-term limit. By using the autoen-
coder technique originally proposed for image compression,
model compression was trained in [18]. Scalable sparsified
model compression in combination with error-correction tech-
niques was proposed in [19]. An innovation-based quantization
scheme was proposed in [20]. However, the above works
have the following fundamental limitations: 1) Their separate
consideration of model training and compression overlooks
the opportunity to select model parameters that can improve
the communication efficiency; 2) Their offline optimization
does not fully account for the unpredictable system variations
during the learning process.

There is a recent branch of federated learning that uti-
lizes analog communication, where model aggregation can be
conducted over the air to reduce latency and communication
overhead. For example, the aggregation error caused by noisy
channel and model quantization was minimized through power
allocation at each iteration in [36]. Online model updating
under long-term power constraints was considered in [37],
[38]. However, over-the-air model aggregation requires strict
symbol-level synchronization among the devices and a large
number of subchannels to separately communicate each of the
model parameters. It is outside the scope of this work, which
is designed for the common digital communication system.

C. Online Convex Optimization and Lyapunov Optimization

Due to the dynamic nature of the iterative computation
and communication over time, a part of our solution resem-
bles online convex optimization (OCO) [26], especially dis-
tributed constrained OCO with consensus [39]-[44]. However,
the OCO framework mainly concerns delayed information
feedback with error-free communication, which is inherently
different from the joint online computation and communication
framework in this work.

Since our work considers online optimization with a long-
term constraint, it is also related to Lyapunov optimization
[45], which minimizes a weighted sum of the loss and con-
straint functions at each time. However, directly minimizing
the loss function can be difficult; e.g., in distributed learning, it
means directly solving for the optimal global model. Further-
more, ODOTS is a gradient-descent-typed algorithm, which
substantially differs from Lyapunov optimization.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Online Distributed Optimization Objective

Consider a networked system consists of N local devices
and a server. The system operates in a time-slotted fashion
with time indexed by t. Let fnt (x) : Rd → R be the local
loss function of device n at time t, which may change over
time. We are interested in an online distributed optimization
problem with a global loss function ft(x) : Rd → R at each
time t. It is defined as the weighted average of the local loss
functions {fnt (x)}, given by

ft(x) ,
N∑
n=1

wnt f
n
t (x) (1)

where wnt ≥ 0 is the weight of device n, and satisfies∑N
n=1 w

n
t = 1. Note that we also allow wnt to vary over time.

The goal of online distributed optimization is to compute at
the server a sequence of global decisions {xt} that minimizes
the accumulated global loss over a finite time horizon T , i.e.,

min
{xt}

T∑
t=1

ft(xt). (2)

As an example, in distributed learning, random training data
may arrive at the devices over time as a continuous stream. At
each time t, each device n collects its local dataset denoted by
Dnt . The i-th data sample in Dnt is represented by (un,it , vn,it ),
where un,it is a data feature vector and vn,it is its true label.
Let l(x;un,it , vn,it ) : Rd → R be a training loss function to
indicate how the learning model x ∈ Rd performs on each
data sample (un,it , vn,it ), e.g., it can be defined as the cross-
entropy loss for logistic regression (see Section VII-B). In this
case, the local loss function fnt (x) is the averaged losses of
the data samples in Dnt , given by

fnt (x) =
1

|Dnt |

|Dnt |∑
i=1

l(x;un,it , vn,it ) (3)

where |Dnt | is the cardinality of Dnt . When we set the local
weight as wnt =

|Dnt |∑N
m=1 |Dmt |

for each device n, the global loss
ft(x) in (1) is equivalent to the averaged losses incurred by the
global dataset

⋃N
n=1{Dnt }. Note that due to the fluctuations

of the available computation resources, each device n may
process different amounts of data samples over time, leading
to a sequence of time-varying weights {wnt }.

B. Local Decision Quantization and Compression

For distributed minimization of the accumulated global loss,
each device n generates a sequence of its local decisions {xnt }.
The server aggregates the local decisions into a sequence of
global decisions. Transmitting the local decisions {xnt } from
the N devices to the server can cause a large amount of
communication overhead. This can be challenging and time-
consuming, e.g., for neural network training in the wireless
environment, which can include millions of model parameters
in each xnt . In practical systems, communicating the local
decisions from the devices to the server has been observed
to be a significant performance bottleneck [2]-[4].
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For efficient communication, the local decisions are usually
quantized before transmission to the server. At each time t,
after obtaining the local decision xnt , each device n generates
a quantized local decision x̂nt , by projecting each element of
xnt to its closest point in a uniformly distributed grid with
s = 2b quantization levels, where b is the quantization bit
length.1 In particular, the i-th element xn,it of xnt is quantized
as x̂n,it , given by

x̂n,it = xmaxsign(xn,it )

⌊
|xn,it |
xmax

(s− 1) +
1

2

⌋
(4)

where xmax is the maximum decision value, sign(x) ∈ {−1, 1}
returns the sign of x with sign(0) = 1, and bac is the floor
function. Note that xmax can be easily enforced to the decision
parameters by setting a set of short-term constraints on xnt ,
given by

X , {x : −xmax1 � x � xmax1} (5)

with 1 being a vector of all 1’s.
Communicating the quantized local decisions requires ef-

ficient encoding to convert x̂nt into bit streams. There are
two common encoding approaches to compress x̂nt : 1) simple
encoding that does not utilize any correlation in the sequence
of decisions, such as Elias coding [46] and entropy coding
[47]; and 2) more complicated encoding approach that utilizes
the decision similarity, such as Wyner-Ziv coding [48] and
conditional entropy coding [49], [50]. For example, consider
the ideal conditional entropy coding. Let H(x̂nt ) be the
marginal entropy of x̂nt . It measures the number of bits to
communicate x̂nt using entropy coding. Let H(x̂nt |x̂nt−1) be
the conditional entropy of x̂nt given x̂nt−1, which represents the
number of bits to communicate x̂nt using conditional entropy
coding, when x̂nt−1 is known at the destination. Due to the
correlation between x̂nt−1 and x̂nt , their mutual information
H(x̂nt )−H(x̂nt |x̂nt−1) can be high. Therefore, conditional en-
tropy coding can substantially reduce the communication over-
head compared with independent entropy coding [49], [50].

Ideally, the quantized and compressed local decisions are
losslessly conveyed to the server through standard channel
coding techniques [51], [52]. However, due to lossy quanti-
zation, the server can only compute a noisy global decision
x̂t+1, given by

x̂t+1 =

N∑
n=1

wnt x̂
n
t = xt+1 + nt+1 (6)

where xt+1 =
∑N
n=1 w

n
t x

n
t is the noiseless global decision

and nt+1 = x̂t+1 − xt+1 is the global quantization error. The
server then broadcasts x̂t+1 to all N devices, and each device
uses x̂t+1 and its local loss function at time t+ 1 to compute
the next local decision xnt+1.

For ease of exposition, we assume the server uses standard
channel coding techniques, such that x̂t+1 can be received

1Other techniques may be combined to further reduce the communication
overhead. For example, each device n can first perform sparsification and
then quantization to generate x̂n

t . It will cause additional errors to the global
decision x̂t+1 (6). However, these errors can be included in nt+1 and do not
impact our performance analysis later.

by all devices in an error-free fashion. However, lossy trans-
mission of x̂nt+1 can be easily combined with our proposed
algorithm and its performance analysis.

C. ODOTS Problem Formulation

Our goal is to jointly consider the global loss minimization
and the local decision communication overhead over time.
However, it is challenging to directly model a temporal-
similarity encoding scheme during decision updating, since it
depends on the joint probability density of x̂nt and x̂nt−1. We
observe that for different encoding schemes, an importance
measure of the coding length is the difference between the
information sources, e.g., x̂nt − x̂nt−1, as it approximates the
amount of new information to be encoded. Further note that the
quantized local decision x̂nt is generated only after computing
the local decision xnt . That is to say we can only optimize xnt
instead of x̂nt during the decision updating process. Therefore,
we resort to limiting the amount of decision dis-similarity
‖xnt − x̂nt−1‖2 to control the communication overhead, where
‖ · ‖ represents the Euclidean norm.

We aim at computing a sequence of local decisions {xnt ∈
X} to minimize the accumulated loss yielded by the noisy
global decision sequence {x̂t}, while ensuring that the average
long-term decision dis-similarity constraint is satisfied. This
leads to the following online distributed optimization problem:

P1 : min
{xnt ∈X}

T∑
t=1

ft(x̂t)

s.t.
1

N

T∑
t=1

N∑
n=1

gnt (xnt ) ≤ 0 (7)

where x̂t is the noisy global decision in (6) and gnt (x) is the
constraint function defined as

gnt (x) , ‖x− x̂nt−1‖2 − ε (8)

with ε being the allowed average decision dis-similarity. The
long-term decision dis-similarity constraint (7) controls the
total communication cost incurred during the entire optimiza-
tion process, while allowing the communication cost to be
distributed over time and devices. Compared with a strict
short-term constraint on the decision dis-similarity at each time
or device, the long-term constraint provides more flexibility
in decision optimization, which can further reduce the total
communication cost.

Note that P1 is an online optimization problem due to
the time-varying loss and constraint functions. In P1, the
global loss ft(x̂t) is determined by the quantized local de-
cisions {x̂nt }. The decision dis-similarity constraint gnt (xnt )
also depends on the quantized local decision x̂nt−1. Solving
P1 requires simultaneous consideration of computation and
communication over time.

Furthermore, compared with the standard error-free opti-
mization problem (2), the additional long-term constraint in
(7) of P1 requires a more complicated constrained online
distributed optimization algorithm, especially since the local
loss functions {fnt (x)}, weights {wnt }, and quantized deci-
sions {x̂nt } all can vary over time. It is therefore difficult



5

to obtain the globally optimal solution to P1, which would
require centralized computation with a priori information of
{fnt (x)}, {wnt }, and {x̂nt } over T time slots.

A commonly used centralized per-slot optimal solution
benchmark {xctr

t } for P1 is given by [43], [53]-[56]2

xctr
t ∈ arg min

x∈X
{ft(x)|gnt (x) ≤ 0,∀n}. (9)

Note that xctr
t is computed without considering any errors, and

it requires global information. Furthermore, as explained in
Section II-C, directly minimizing ft(x) as in (9) can be dif-
ficult, especially for machine learning tasks. In this work, we
aim to develop a constrained online distributed optimization
algorithm to compute an online distributed solution sequence
{xnt } to P1 with sublinear performance gap to {xctr

t }, i.e.,∑T
t=1(ft(x̂t) − ft(x

ctr
t )) = o(T ) and sublinear constraint

violation, i.e., 1
N

∑T
t=1

∑N
n=1 g

n
t (xnt ) = o(T ). Sublinearity

in performance gap and constraint violation is important; it
implies that the online distributed solution approaches to {xctr

t }
in terms of its time-averaged performance and the long-term
constraint is asymptotically satisfied.

IV. ONLINE DISTRIBUTED OPTIMIZATION
WITH TEMPORAL SIMILARITY

In this section, we present details of the ODOTS algorithm
at the devices and the server. The local decisions yielded by
ODOTS are both computation- and communication-aware, and
are in closed forms that can be computed efficiently.

A. Tunable Virtual Queue

We first introduce a novel tunable virtual queue Qnt at each
device n to account for the long-term constraint (7) in P1,
with the following updating rule:

Qnt+1 =
[
(1− γ2)Qnt + γηgnt (xnt )

]
+

(10)

where γ ∈ (0, 1) is a tuning factor on the virtual queue,
η > 0 is a weighting factor on the constraint function,
and [a]+ = max{a, 0} is a projection operator.3 The role
of Qnt is similar to a Lagrangian multiplier for P1 or a
backlog queue for the constraint violation. It measures the
amount of constraint violation and automatically balances the
loss minimization and constraint satisfaction over time. The
concept of virtual queue was also used in [45] and [53]-[58]
for Lyapunov optimization and centralized constrained OCO.
However, unique to our virtual queue updating rule (10), there
is an additional −γ2Qnt term to prevent Qnt+1 from becoming

2The solution benchmark used in [39]-[42] is fixed over time.
3As will be shown later in Section V-E, η as a constant does not change the

growth rate of the performance gap or the constraint violation. However, η
can be useful in some numerical experiments as a hyper parameter, especially
when the values of the loss and constraint functions differ too much.

too large, and the constraint violation gnt (xnt ) is scaled by γη
to control how fast the virtual queue varies over time.4

This new tunable virtual queue updating rule (10) will
be shown later in Section V-B to provide a simple upper
bound on Qnt , which does not require the Slater’s condition
that is commonly assumed for the virtual-queue-based online
optimization algorithms [45], [53]-[58].5 However, without
the Slater’s condition, we can no longer directly transfer
the virtual queue upper bound to the constraint violation
bound. To overcome this technical difficulty, as shown later
in Section V-B, we will bound the constraint violation using
a new modified Lyapunov drift analysis technique.

B. Decomposition of P1

We convert P1 into a set of per-device per-slot optimization
problems, one for each device n at each time t, given by

P2n : min
x∈X

〈∇fnt (x̂t),x− x̂t〉+ α‖x− x̂t‖2 + ηQnt g
n
t (x)

where α > 0 is a step-size parameter that controls the gradient
descent step and 〈a,b〉 represents the inner product of vectors
a and b. We will explain in Section V that P2n is equivalent
to minimizing an upper bound on a modified drift plus penalty
plus violation term (see (29)) to trade off loss minimization
and constraint violation over time. We will further bound the
performance of the solutions to P2n to that of P1, in terms of
the accumulated loss and constraint violation.

Note that P2n is a local optimization problem using the
current local loss function fnt (x), tunable virtual queue length
Qnt , and the previous quantized local decision x̂nt−1. It is under
short-term constraints only. Furthermore, the local gradient
∇fnt (x̂t) is evaluated using the noisy global decision x̂t and
the regularization ‖x − x̂t‖2 is also on x̂t to enable local
gradient descent based on x̂t. Compared with the original
P1, the long-term decision dis-similarity constraint has been
converted into controlling gnt (xnt ) to maintain the queue sta-
bility as shown in the third term of the objective in P2n. The
constraint function gnt (x) is convex and the feasible set X
is affine with respect to (w.r.t.) x. Furthermore, the first two
terms in the objective of P2n are affine and convex w.r.t. x,
respectively. Therefore, P2n is a convex optimization problem
and therefore can be solved efficiently.

4The tuning factor γ can be seen as a virtual Slater constant, which
appears later in the denominator of the virtual queue upper bound (22) in
Lemma 2. Note that we require −γ2Qn

t instead of −γQn
t to maintain a

proper bound on Qn
t+1 (see the proof of Lemma 2). Furthermore, we remark

that this term and the quadratic penalty on the Lagrange multiplier in [59]
are two different optimization approaches to accomplish a similar purpose of
preventing the virtual queue or the Lagrange multiplier from being too large.
The approach in [59] is designed for error-free centralized OCO with fixed
long-term constraints, while our approach deals with the online distributed
optimization with time-varying constraints. As such, our performance analyses
are substantially different from those in [59].

5The Slater’s condition precludes dealing with equality constraints and can
be restrictive to many practical applications. For example, it does not hold if
we set ε = 0 in the constraint function (8). The virtual-queue-based online
optimization algorithm in [54] achieved sublinear performance bounds for
centralized OCO without the Slater’s condition, but it relies on two additional
assumptions requiring sublinear variation of the loss functions and of the
optimal dual points.
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Algorithm 1 ODOTS: Device n’s algorithm

1: Initialize x̂1 = 0 and Qn1 = 0.
2: For each t, do:
3: Update local decision xnt by solving P2n via (11).
4: Update local virtual queue Qnt+1 via (10).
5: Update quantized local decision x̂nt via (4).
6: Transmit x̂nt via conditional entropy coding.

C. ODOTS Algorithm

In the following, we provide a closed-form solution to P2n.
It is easy to see that the gradient of the objective function of
P2n is

∇fnt (x̂t) + 2α(x− x̂t) + 2ηQnt (x− x̂nt−1).

Then, the optimal solution to P2n can be obtained by setting
this gradient to zero and then projecting it onto X . The
resulting local decision update is in closed form, given by

xnt =
[ α

α+ ηQnt

(
x̂t +

ηQnt
α

x̂nt−1 −
1

2α
∇fnt (x̂t)

)]xmax1

−xmax1
(11)

where [a]cb = min{c,max{a,b}} is an entry-wise projection
operator.

Note that the local decision update (11) is scaled by a factor
α

α+ηQnt
that depends on the ratio of the tunable virtual queue

length Qnt and the gradient descent step size α. The values
of Qnt and α tune the relative weights on the global decision
x̂t and the previous quantized local decision x̂nt−1 on the new
local decision update. When Qnt is small, i.e., the scale on the
decision update α

α+ηQnt
is close to 1 and the weight ηQnt

α on
x̂t−1 is close to 0, (11) becomes the standard projected local
gradient descent based on the noisy global decision

xnt =
[
x̂t −

1

2α
∇fnt (x̂t)

]xmax1

−xmax1
(12)

to minimize the loss. Otherwise, when Qnt is relatively large
compared with α, i.e., α

α+ηQnt
is small and ηQnt

α is large,
the gradient descent is slowed down and (11) is close to
x̂nt−1, which reduces the communication overhead due to
the resulting high interdependence between x̂nt and x̂nt−1.
The virtual queue Qnt gradually adjusts the actual gradient
descent step size 1

2(α+ηQnt )
based on the decision dis-similarity

constraint violation to minimize the loss.6 Therefore, the local
decision update by ODOTS is both computation- and commu-
nication aware, i.e., automatically balancing the improvement
in optimization and the cost in communication over time.

We summarize the devices’ algorithm and the server’s
algorithm in Algorithms 1 and 2. The choices of algorithm
parameters α, γ, and η will be discussed in Section V-E, after
we derive the bounds on the performance gap and constraint
violation for ODOTS.

Remark 1. The computational complexity of the ODOTS
algorithm is mainly determined by the solution to P2n in (11).
We note that (11) is in closed form, and it contains only a

6When the virtual queue becomes large, it means the decision dis-similarity
constraint becomes tight. The gradient descent step has to be small to reduce
the decision dis-similarity, and this causes the gradient descent update to slow
down, but not necessarily stop.

Algorithm 2 ODOTS: Server’s algorithm

1: Initialize and broadcast α, γ, and η.
2: For each t, do:
3: Receive quantized local decisions {x̂nt }.
4: Update noisy global decision x̂t+1 via (6).
5: Broadcast x̂t+1 to all devices.

single evaluation of the gradient of fnt (x). Therefore, ODOTS
is highly efficient, having computational complexity similar to
the standard gradient descent algorithm.

V. PERFORMANCE BOUNDS OF ODOTS

In this section, we further show that ODOTS provides strong
performance guarantees in both the optimization objective and
the temporal decision dis-similarity constraint. In particular,
the unique design of ODOTS requires new analysis techniques
to account for the impact of the noisy decision update and the
tunable virtual queue.

A. Preliminaries

We make the following standard assumptions in the perfor-
mance analysis of ODOTS.

Assumption 1. The local loss function fnt (x) is convex, i.e.,

fnt (y) ≥ fnt (x) + 〈∇fnt (x),y − x〉, ∀x,y ∈ X ,∀n, ∀t. (13)

Assumption 2. The local loss function fnt (x) has bounded
gradient ∇fnt (x): ∃D > 0, s.t.,

‖∇fnt (x)‖ ≤ D, ∀x ∈ X ,∀n, ∀t. (14)

Assumptions 1 and 2 are common in existing studies on online
distributed optimization. Nevertheless, later in Section VII-C,
we empirically show that ODOTS also works well for general
non-convex loss functions.

The following lemma shows that P1 satisfies the following
properties: 1) The feasible set X is bounded; 2) The quanti-
zation error nt is bounded; 3) The constraint function gnt (x)
is bounded.

Lemma 1. Our formulated P1 satisfies the following:

‖x− y‖ ≤ R, ∀x,y ∈ X , (15)
‖nt‖ ≤ δ, ∀t, (16)

|gnt (x)| ≤ G, ∀x ∈ X ,∀n, ∀t. (17)

where R=2
√
dxmax, δ= R

4(s−1) , and G=max{ε, (R+δ)2−ε}.

Proof: We first prove (15). For any x,y ∈ X , we have

‖x− y‖
(a)

≤ ‖x‖+ ‖y‖
(b)

≤ 2
√
dxmax (18)

where (a) is because of the triangle inequality; and (b) follows
from the definition of the set of short-term constraints X in (5)
and that x is of d dimensions, such that ‖x‖2 ≤ dx2max,∀x∈X .

We now prove (16). From the definition of the quantization
error nt in (6), we have

‖nt‖ = ‖x̂t − xt‖ =
∥∥∥ N∑
n=1

wnt−1(x̂nt−1 − xnt−1)
∥∥∥
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(a)

≤
N∑
n=1

wnt−1‖x̂nt−1 − xnt−1‖
(b)

≤
N∑
n=1

wnt−1

(√
d

xmax

2(s− 1)

)
(c)

≤
√
d

xmax

2(s− 1)

(d)
=

R

4(s− 1)
(19)

where (a) follows from the triangle inequality and ‖ab‖ ≤
‖a‖‖b‖; (b) is because xnt−1 is element-wise quantized as
x̂nt−1 via (6), and each quantized element x̂n,it−1 of x̂nt−1 in
(4) has a maximum quantization error xmax

2(s−1) , with s being
the number of quantization levels; (c) is because

∑N
n=1 w

n
t =

1,∀t; and (d) follows from the definition of R.
Finally, we prove (17). For any x ∈ X , we have

‖x− x̂nt−1‖2 = ‖x− xnt−1 + xnt−1 − x̂nt−1‖2
(a)

≤
(
‖x− xnt−1‖+ ‖xnt−1 − x̂nt−1‖

)2 (b)

≤ (R+ δ)2 (20)

where (a) is because of the triangle inequality, and (b) follows
from (15) and (16). Further note that

|gnt (x)| =
∣∣‖x− x̂nt−1‖2 − ε

∣∣
≤ max

{
ε,max{‖x− x̂nt−1‖2} − ε

}
, (21)

we have (17).

B. Bounds on the Tunable Virtual Queue and Modified Lya-
punov Drift

We first provide an upper bound on the tunable virtual queue.

Lemma 2. The tunable virtual queue is upper bounded for
any xnt ∈ X , n, and t by

Qnt ≤
ηG

γ
. (22)

Proof: We prove by induction. We have Qn1 = 0 ≤ ηG
γ by

initialization. Suppose Qnτ ≤
ηG
γ for some τ ≥ 1. We have

Qnτ+1

(a)

≤ |(1− γ2)Qnτ + γηgnτ (xnτ )|
(b)

≤ (1− γ2)Qnτ + γη|gnτ (xnτ )|
(c)

≤ (1− γ2)
ηG

γ
+ γηG =

ηG

γ

where (a) follows directly from the tunable virtual queue
updating rule (10); (b) is because of Qnt ≥ 0,∀t, γ ∈ (0, 1),
and the triangle inequality; and (c) follows from induction and
the bound on gnt (x) in (17).

Although our tunable virtual queue updating rule (10) yields
a simple upper bound on Qnt in (22), unfortunately it also
breaks the key connection between the virtual queue bound
and the constraint violation bound used by [45], [53]-[57] in
their performance analysis. To proceed with our analysis, we
define a modified Lyapunov drift for each device n as

Θn
t =

1

2γ
(Qnt+1 − U)2 − 1

2γ
(Qnt − U)2. (23)

where U ≥ 0 is a virtual regularization factor on the quadratic
Lyapunov function. Note that U is introduced only to enable
our performance bound analysis, and ODOTS does not require

the value of U to run. Using the result in Lemma 2, we provide
an upper bound on Θn

t , which regains the connection between
the tunable virtual queue and the constraint violation.

Lemma 3. The modified Lyapunov drift is upper bounded for
any xnt ∈ X , n, and t by

Θn
t ≤ ηQnt gnt (xnt )− Uηgnt (xnt ) + 2γη2G2 +

γ

2
U2. (24)

Proof: From the tunable virtual queue updating rule in (10),
and the fact that |[a]+ − [b]+| ≤ |a− b|, we have

(Qnt+1 − U)2 ≤
(
(1− γ2)Qnt + γηgnt (xnt )− U

)2
=
(
(Qnt − U) + γ(ηgnt (xnt )− γQnt )

)2
= (Qnt − U)2 + γ2

(
ηgnt (xnt )− γQnt

)2
+ 2γηQnt g

n
t (xnt )

− 2γηUgnt (xnt )− 2γ2(Qnt − U)Q
n
t . (25)

We now bound the terms on the right-hand side (RHS) of
(25). From the triangle inequality, the bound on gnt (x) in (17),
and the bound on Qnt in (22), we have

|ηgnt (xnt )− γQnt | ≤ η|gnt (xnt )|+ γQnt

≤ ηG+ γ
ηG

γ
= 2ηG. (26)

For the last term on the RHS of (25), we have

−2(Qnt − U)Q
n
t = U2 − (Qnt )2 − (Qnt − U)2 ≤ U2. (27)

Substituting (26) and (27) into (25), and rearranging terms,
we have

(Qnt+1 − U)2 − (Qnt − U)2

≤ 2γηQnt g
n
t (xnt )− 2γηUgnt (xnt ) + γ2(2ηG)2 + γ2U2. (28)

Dividing both sides of (27) by 2γ, and from the definition of
the modified Lyapunov drift Θn

t in (23), we prove (24).
From the upper bound on Θn

t in (24) and noting that
2γη2G2 + γ

2U
2 in (24) is a constant, we can see that solving

P2n for each device n is equivalent to minimizing an upper
bound on the following modified drift plus penalty plus
violation term at each time t:

Θn
t︸︷︷︸

drift

+ 〈∇fnt (x̂t),x
n
t −x̂t〉+ α‖xnt −x̂t‖2︸ ︷︷ ︸

penalty

+Uηgnt (xnt )︸ ︷︷ ︸
violation

. (29)

This is similar to the Lyapunov optimization approach [45] that
minimizes a drift plus penalty term at each time. However,
the penalty term in standard Lyapunov optimization is the
loss function itself. As explained in Section II-C, for machine
learning tasks in distributed learning, this means finding the
optimal model within a single time slot and is impossible in
general. Instead, we use the penalty term 〈∇fnt (x̂t),x

n
t −x̂t〉+

α‖xnt − x̂t‖2 to enable local gradient descent for the global
loss minimization. Note that when the virtual penalty factor
U on the quadratic Lyapunov function is nonzero, (29) also
includes a violation term Uηgnt (xnt ). This is introduced to help
bound the constraint violation, since the upper bound (22) on
our tunable virtual queue is not directly transferable to the
constraint violation bound anymore.
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C. Bound on the Performance Gap

Using the results in Lemmas 1-3, the following lemma pro-
vides an upper bound on the weighted sum of the per-slot local
loss and constraint violation fnt (x̂t) +Uηgnt (xnt ) by ODOTS.

Lemma 4. The weighted sum of the per-slot local loss and
constraint violation yielded by ODOTS is upper bounded by

fnt (x̂t) + Uηgnt (xnt )

≤ fnt (xctr
t ) +

D2

4α
+ 2γη2G

2
+
γ

2
U2 −Θn

t

+ α
(
φt + ψnt + ‖nt‖2 + 2R(‖nt‖+ πt)

)
, ∀n, ∀t (30)

where φt , ‖xctr
t − xt‖2 − ‖xctr

t+1 − xt+1‖2, ψnt , ‖xctr
t −

xt+1‖2 − ‖xctr
t − xnt ‖2, and πt , ‖xctr

t − xctr
t+1‖.

Proof: We require the following lemma, which is copied
from Lemma 2.8 in [26].

Lemma 5. ([26, Lemma 2.8]) Let Z ∈ Rz be a nonempty
convex set. Let h(z) : Rz → R be a 2%-strongly convex func-
tion over Z w.r.t. any norm ‖ · ‖′. Let w = arg minz∈Z h(z).
Then, for any u ∈ Z , we have h(w) ≤ h(u)− %‖u−w‖′2.

The objective function of P2n is 2α-strongly convex over
X w.r.t. ‖ · ‖ due to the regularization term α‖x− x̂t‖2. Since
xnt is the optimal solution to P2n, from Lemma 5, we have

〈∇fnt (x̂t),x
n
t − x̂t〉+ α‖xnt − x̂t‖2 + ηQnt g

n
t (xnt )

≤ 〈∇fnt (x̂t),x
ctr
t − x̂t〉+ ηQnt g

n
t (xctr

t )

+ α(‖xctr
t − x̂t‖2 − ‖xctr

t − xnt ‖2). (31)

We now bound the last term on the RHS of (31). We have

‖xctr
t − x̂t‖2 − ‖xctr

t − xnt ‖2

= ‖xctr
t − x̂t‖2 − ‖xctr

t − xt+1‖2

+ ‖xctr
t − xt+1‖2 − ‖xctr

t − xnt ‖2

= ‖xctr
t − xt + xt − x̂t‖2 − ‖xctr

t − xctr
t+1 + xctr

t+1 − xt+1‖2

+ (‖xctr
t − xt+1‖2 − ‖xctr

t − xnt ‖2)

(a)

≤ ‖xctr
t − xt‖2 + ‖xt − x̂t‖2 + 2‖xctr

t − xt‖‖xt − x̂t‖
− ‖xctr

t − xctr
t+1‖2 − ‖xctr

t+1 − xt+1‖2

+ 2‖xctr
t+1 − xt+1‖‖xctr

t − xctr
t+1‖+ ψnt

(b)

≤ (‖xctr
t − xt‖2 − ‖xctr

t+1 − xt+1‖2) + ‖nt‖2

+ 2‖xctr
t − xt‖‖nt‖+ 2‖xctr

t+1 − xt+1‖πt + ψnt
(c)

≤ φt + ‖nt‖2 + 2R‖nt‖+ 2Rπt + ψnt . (32)

where (a) follows from ‖a+b‖2 ≤ ‖a‖2 + ‖b‖2 + 2‖a‖‖b‖,
−‖a + b‖2 ≤ −‖a‖2 − ‖b‖2 + 2‖a‖‖b‖, and the definition
of ψnt ; (b) is because of the definitions of nt and πt; and (c)
follows from the bound of X in (15) and the definition of φt.

Substituting (32) into (31) and rearranging terms, we have

− 〈∇fnt (x̂t),x
ctr
t − x̂t〉+ ηQnt g

n
t (xnt )

≤ −〈∇fnt (x̂t),x
n
t − x̂t〉 − α‖xnt − x̂t‖2 + ηQnt g

n
t (xctr

t )

+ α
(
φt+ψ

n
t +‖nt‖2+2R(‖nt‖+πt)

)
. (33)

From the convexity of fnt (x), we have

fnt (x̂t)− fnt (xctr
t ) ≤ −〈∇fnt (x̂t),x

ctr
t − x̂t〉. (34)

Completing the square and noting that ∇fnt (x) is bounded in
(14), we have

− 〈∇fnt (x̂t),x
n
t − x̂t〉 − α‖xnt − x̂t‖2

= −
∥∥∥∇fnt (x̂t)

2
√
α

+
√
α(xnt − x̂t)

∥∥∥2 +
1

4α
‖∇fnt (x̂t)‖2

≤ 1

4α
‖∇fnt (x̂t)‖2 ≤

D2

4α
. (35)

Substituting (34) and the bound on ηQnt g
n
t (xnt ) in (24) of

Lemma 3 into the left-hand side (LHS) of (33), and (35) into
the RHS of (33), we have

fnt (x̂t)− fnt (xctr
t ) + Uηgnt (xnt )

≤ −Θn
t + 2γη2G2 +

γ

2
U2 +

D2

4α
+ ηQnt g

n
t (xctr

t )

+ α
(
φt + ψnt + ‖nt‖2 + 2R(‖nt‖+ πt)

)
.

Rearranging terms of the above inequality and noting that
ηQnt g

n
t (xctr

t ) ≤ 0, which is because Qnt ≥ 0 and gnt (xctr
t ) ≤ 0

from the definition of xctr
t in (9), we have (30).

Based on the result in Lemma 4, we provide an upper bound
on the performance gap to the centralized per-slot optimal
solution sequence {xctr

t } for ODOTS in the following theorem.

Theorem 1. Under Assumptions 1 and 2, the performance
gap to {xctr

t } by ODOTS is upper bounded by
T∑
t=1

(
ft(x̂t)− ft(xctr

t )
)
≤ D2T

4α
+ 2γη2G2T +

η2G2ΩT
2γ3

+ α
(
R2 + Λ2,T + 2R(ΛT + ΠT )

)
(36)

where ΠT ,
∑T
t=1 πt, ΩT ,

∑T
t=1

∑N
n=1(wnt+1−wnt ), ΛT ,∑T

t=1 ‖nt‖, and Λ2,T ,
∑T
t=1 ‖nt‖2.

Proof: Multiplying both sides of (30) by wnt , setting U = 0,
and summing the resulting inequality over n and t, we have
T∑
t=1

(
ft(x̂t)−ft(xctr

t )
) (a)
≤ D2T

4α
+ 2γη2G2T −

T∑
t=1

N∑
n=1

wnt Θn
t

+ α

T∑
t=1

(
φt+

N∑
n=1

wnt ψ
n
t

)
+α
(
Λ2,T +2R(ΛT +ΠT )

)
(37)

where (a) follows from the definitions of Λ2,T , ΛT , and ΠT .
We now bound the terms on the RHS of (37). From the

definition of the modified Lyapunov drift Θn
t in (24), we have

−
T∑
t=1

N∑
n=1

wnt Θn
t =

1

2γ

T∑
t=1

N∑
n=1

wnt
(
(Qnt )2 − (Qnt+1)2

)
=

1

2γ

T∑
t=1

N∑
n=1

(
wnt (Qnt )2 − wnt+1(Qnt+1)2

)
+

1

2γ

T∑
t=1

N∑
n=1

(wnt+1 − wnt )(Qnt+1)2

(a)

≤ 1

2γ

N∑
n=1

(
wn1 (Qn1 )2 − wnT+1(QnT+1)2

)
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+
1

2γ

T∑
t=1

N∑
n=1

(wnt+1 − wnt )
(ηG
γ

)2 (b)

≤ η2G2ΩT
2γ3

(38)

where (a) follows from the bound on Qnt in (22); and (b)
follows from Qn1 = 0, Qnt ≥ 0,∀t, and the definition of ΩT .

From the definition of ψnt , we have
N∑
n=1

wnt ψ
n
t =

N∑
n=1

wnt
(
‖xctr

t − xt+1‖2 − ‖xctr
t − xnt ‖2

)
(a)
=

N∑
n=1

wnt

(∥∥∥ N∑
m=1

wmt (xctr
t − xmt )

∥∥∥2 − ‖xctr
t − xnt ‖2

)
(b)

≤
N∑
n=1

wnt

( N∑
m=1

(
wmt ‖xctr

t −xmt ‖2
)
− ‖xctr

t − xnt ‖2
)

(c)
=

N∑
m=1

(
wmt ‖xctr

t − xmt ‖2
)
−

N∑
n=1

(
wnt ‖xctr

t − xnt ‖2
)

= 0. (39)

where (a) follows from the definition of the global decision
xt+1 in (6), (b) is because of the the separate convexity of the
Euclidean norm, and (c) follows from

∑N
n=1 w

n
t = 1,∀t.

Substituting (38) and (39) into (37), and noting that
T∑
t=1

φt =

T∑
t=1

(
‖xctr

t − xt‖2 − ‖xctr
t+1 − xt+1‖2

)
= ‖xctr

1 − x1‖2 − ‖xctr
T+1 − xT+1‖2 ≤ R2 (40)

we have (36).

D. Bound on the Constraint Violation

We now proceed to provide an upper bound on the con-
straint violation for ODOTS. The virtual-queue-based online
optimization algorithms [45], [53]-[58] bound the constraint
violation via the virtual queue bound, which requires Slater’s
condition (or its relaxed version in [55]). Instead, we resort to
bound the constraint violation by properly setting the virtual
penalty factor U in the modified Lyapunov drift Θn

t (23).

Theorem 2. Under Assumptions 1 and 2, the constraint
violation yielded by ODOTS is upper bounded by

1

N

T∑
t=1

N∑
n=1

gnt (xnt )

≤
(2γ2T + 2

γη2

) 1
2
(D2T

4α
+ 2γη2G2T +D(R+ δ)T

+ α
(
R2(1 + ΞT ) + Λ2,T + 2R(ΛT + ΠT )

)) 1
2

(41)

where ΞT ,
∑T
t=1

∑N
n=1(wnt − 1

N ).

Proof: Summing (30) over n and t, and dividing both sides
of the resulting inequality by N , we have

Uη

N

T∑
t=1

N∑
n=1

gnt (xnt ) ≤ 1

N

T∑
t=1

N∑
n=1

(
fnt (xctr

t )− fnt (x̂t)
)

+
D2T

4α
+ 2γη2G2T +

γT

2
U2 − 1

N

T∑
t=1

N∑
n=1

Θn
t

+ α

T∑
t=1

(
φt +

N∑
n=1

ψnt
N

)
+ α

(
Λ2,T + 2R(ΛT + ΠT )

)
. (42)

We now bound the terms on the RHS of (42). We have

fnt (xctr
t )− fnt (x̂t)

(a)

≤ 〈∇fnt (xctr
t ),xctr

t − xt − nt〉
(b)

≤ ‖∇fnt (xctr
t )‖(‖xctr

t − xt‖+ ‖nt‖) ≤ D(R+ δ) (43)

where (a) follows from the convexity of fnt (x) in (13) and the
definition of the noisy global decision x̂t in (6), (b) is because
〈a,b〉 ≤ ‖a‖‖b‖ and ‖a + b‖ ≤ ‖a‖+ ‖b‖, and (c) follows
from the bounds on ∇fnt (x), X , ‖nt‖ in (14), (15), (16).

Similar to the proof of (39), we can show that
T∑
t=1

N∑
n=1

ψnt
N

≤
T∑
t=1

N∑
n=1

1

N

(∥∥∥ N∑
m=1

wmt (xctr
t − xmt )

∥∥∥2 − ‖xctr
t − xnt ‖2

)
≤

T∑
t=1

N∑
n=1

(
wnt −

1

N

)
‖xctr

t − xnt ‖2
(a)

≤ R2ΞT . (44)

where (a) follows from the bound on X in (15) and the
definition of ΞT .

Also, noting that Qn1 = 0 by initialization, we have

−
T∑
t=1

Θn
t =

1

2γ

T∑
t=1

(
(Qnt − U)2 − (Qnt+1 − U)2

)
=

1

2γ

(
(Qn1 − U)2 − (QnT+1 − U)2

)
≤ 1

2γ
(Qn1 − U)2 ≤ U2

2γ
. (45)

Substituting (40) and (43)-(45) into (42), and rearranging
terms, we have

Uη

N

T∑
t=1

N∑
n=1

gnt (xnt )− γT

2
U2 − 1

2γ
U2

≤ D2T

4α
+ 2γη2G

2
T +D(R+ δ)T

+ α
(
R2(1 + ΞT ) + Λ2,T + 2R(ΛT + ΠT )

)
. (46)

Consider the case 1
N

∑T
t=1

∑N
n=1 g

n
t (xnt ) ≥ 0. Set

U =
γη

γ2T + 1

[ 1

N

T∑
t=1

N∑
n=1

gnt (xnt )
]
+

(47)

and substitute it into the LHS of (46), we have

γη2

2γ2T + 2

[ 1

N

T∑
t=1

N∑
n=1

gnt (xnt )
]2
+

≤ D2T

4α
+ 2γη2G

2
T +D(R+ δ)T

+ α
(
R2(1 + ΞT ) + Λ2,T + 2R(ΛT + ΠT )

)
. (48)

Taking the square root on both side of the above in-
equality, we have (41). Further note that for the case
1
N

∑T
t=1

∑N
n=1 g

n
t (xnt ) < 0, (41) readily holds, we complete

the proof.
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E. Discussion on the Performance Bounds

We now discuss the sufficient conditions for ODOTS to
yield sublinear performance gap and constraint violation. We
define parameters µ ∈ [0, 1] and ν ∈ [0, 1] to represent
the time variability of the underlying system, such that
max{ΠT ,ΞT ,Λ2,T ,ΛT } = O(Tµ), and ΩT = O(T ν). Note
that ΞT and ΩT are the accumulated variation measures of
the time-varying weights {wnt } on the devices (see Theo-
rems 1 and 2 for definition). An important special case is
wnt = 1

N ,∀n, ∀t, i.e., the devices have time-invariant equal
weights. From Theorems 1 and 2, we can derive the follow-
ing corollary regarding the performance gap and constraint
violation bounds, depending on whether wnt is time-varying.

Corollary 1 (Convex Loss Functions with Single-Step Local
Update). Suppose Assumptions 1 and 2 hold.

Time-varying weight: Let α = T
1−µ
2 , γ = T

ν−1
4 , and η =

O(1) in ODOTS. We have
T∑
t=1

(
ft(x̂t)− ft(xctr

t )
)

= O
(

max
{
T

1+µ
2 , T

3+ν
4

})
, (49)

1

N

T∑
t=1

N∑
n=1

gnt (xnt ) = O
(
T

7+ν
8

)
. (50)

Time-invariant equal weight: Suppose wnt = 1
N ,∀n, ∀t such

that ΞT = 0 and ΩT = 0. Let α = T
1−µ
2 , γ = T−

1
2 , and

η = O(1) in ODOTS. We have
T∑
t=1

(
ft(x̂t)− ft(xctr

t )
)

= O
(
T

1+µ
2

)
, (51)

1

N

T∑
t=1

N∑
n=1

gnt (xnt ) = O
(
T

3
4

)
. (52)

Proof: See Appendix A in the supplementary materials.
In particular, if µ < 1 and ν < 1, i.e., the system variations

are sublinear in T , both the performance gap and constraint
violation are sublinear in T . Therefore, as T approaches
infinity, both the time-averaged performance gap and the
constraint violation are guaranteed to converge to zero. We
remark here that sublinear system variations is a standard
necessary condition (but generally insufficient) for sublinear
performance bounds in online optimization with unpredictable
dynamics [43], [53]-[57]. Corollary 1 suggests that ODOTS
can closely track the underlying system dynamics to return
superior performance regardless whether the system variations
are sublinear.

VI. EXTENSION TO MULTI-STEP LOCAL UPDATES

In Section IV, we have proposed ODOTS and derived its
performance bounds in Section V for general convex loss
functions. The basic version of ODOTS assumes each local
device performs only one-step local gradient descent to update
its local decision before the global decision aggregation at the
central server. In practical computation-communication sys-
tems, where the local devices often have high computational
capacities while the communication resources are limited, it
is beneficial for the local devices to perform multi-step local

gradient descent before communicating their local decisions
to the central server. In this section, we propose a variation
of ODOTS, termed Online Distributed Optimization with
Temporal Similarity and Multi-step Local Updates (ODOTS-
MLU), to enable multi-step local gradient descent at the local
devices for more efficient communication. We further show
that ODOTS-MLU provides improved performance bounds for
strongly convex loss functions.

A. ODOTS-MLU Algorithm

In the following, we configure ODOTS to enable M + 1
steps of gradient descent at the local devices. At each time t,
after receiving the noisy global decision x̂t from the central
server, each local device n initializes an auxiliary decision
x̃n,0t = x̂t. Then, each local device n first performs M -step
local gradient descent to generate x̃n,Mt .7 Specifically, each
local device n updates x̃n,mt ,∀m ∈ {1, . . . ,M} by solving the
following optimization problem:

P3n,m : min
x∈X

〈∇fnt (x̃n,m−1t ),x− x̃n,m−1t 〉

+ α‖x− x̃n,m−1t ‖2.

The optimal solution to P3n,m is to perform the standard
projected local gradient descent update, given by

x̃n,mt =
[
x̃n,m−1t − 1

2α
∇fnt (x̃n,m−1t )

]xmax1

−xmax1
(53)

where α > 0 is the step-size parameter.
The local decision x̃n,Mt obtained after performing M -step

local gradient descent in (53) may drift from the previous
quantized local decision x̂nt−1, since P3n,m is not subject to the
decision dis-similarity constraint (7). Similar to P2n, we use
the tunable virtual queue to control the constraint violation.
Specifically, after obtaining the intermediate local decision
x̃n,Mt , we solve the following optimization problem to update
the final local decision xnt for time t:

P4n : min
x∈X

〈∇fnt (x̃n,Mt ),x− x̃n,Mt 〉+ α‖x− x̃n,Mt ‖2

+ ηQnt g
n
t (x)

where η > 0 is another algorithm parameter and Qnt is the
tunable virtual queue (10) with tuning parameter γ ∈ (0, 1).
Compared with P2n in the basic form of ODOTS, we replace
the noisy global decision x̂t with the local decision x̃n,Mt after
performing the additional M -step local gradient descent to
fully utilize the computational capacity at the local devices.
Correspondingly, the optimal solution to P4n is also in closed
form, given by (11) with x̂t replaced by x̃n,Mt . We will show
analytically that multi-step local gradient descent will improve
the performance bounds by ODOTS for strongly convex loss
functions in Section VI-C.

We summarize the devices’ algorithm in Algorithm 3. The
server uses the same Algorithm 2 as the basic form of ODOTS.

7We can easily extend this to allow the local devices perform different
steps of local gradient descent. In this case, we define M as the minimum
number of gradient descent steps among the devices, and all of our subsequent
analysis results hold. Also note that a local device may choose M = 0, so
that x̃n,M

t = x̂t.
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Algorithm 3 ODOTS-MLU: Device n’s algorithm

1: Initialize x̂1 = 0 and Qn1 = 0. For each t, do:
2: Initialize auxiliary local decision x̃n,0t = x̂t.
3: for m = 1 to M
4: Update x̃n,mt by solving P3n,m via (53).
5: end for
6: Update local decision xnt by solving P4n.
7: Update local virtual queue Qnt+1 via (10).
8: Update quantized local decision x̂nt via (4).
9: Transmit x̂nt via conditional entropy coding.

Next, we will derive the bounds on the optimality gap and
constraint violation for ODOTS-MLU, which will also give
guidelines on the choices of algorithm parameters α, η, and γ.

B. Performance Bounds of ODOTS-MLU

For the analysis of ODOTS-MLU, we require the following
assumptions of strong convexity and smoothness on the local
loss function.

Assumption 3. The local loss function fnt (x) satisfies the
following conditions:
3.1) fnt (x) is 2%-strongly convex over X : ∃% > 0, s.t., for

any x,y ∈ X , n, and t

fnt (y) ≥ fnt (x) + 〈∇fnt (x),y − x〉+ %‖y − x‖2. (54)

3.2) fnt (x) is 2L-smooth over X : ∃L > 0, s.t., for any x,y ∈
X , n, and t

fnt (y) ≤ fnt (x) + 〈∇fnt (x),y − x〉+ L‖y − x‖2. (55)

In many machine learning, system control, and signal pro-
cessing applications, e.g., support vector machine, softmax
classification, and subspace tracking, the loss functions are
strongly convex. Furthermore, for broad applications with
convex loss functions, adding a regularization term %‖x‖2
makes the objective function strongly convex without causing
much impact on the actual system performance [60].

Remark 2. For unbounded feasible set X , the strong-
convexity and bounded gradient assumptions are contradic-
tory [61]. However, we consider bounded feasible set X in
P1, i.e., ‖x − y‖ ≤ R,∀x,y ∈ X in (15), such that there
exists a constant gradient upper bound D ≥ 4%2R2 for the
two assumptions to hold.

1) Bound on the Performance Gap: Using properties of
strongly convex and smooth functions and the results in
Lemmas 1-3 and 5, the following lemma bounds the difference
between the local decision xnt by ODOTS-MLU and the
centralized per-slot optimal decision xctr

t .

Lemma 6. For any local gradient descent steps M > 0, if
α ≥ L, the difference between the local decision xnt yielded
by ODOTS-MLU and the centralized per-slot optimal decision
xctr
t is upper bounded by

‖xnt − xctr
t ‖2 ≤ ρM‖x̂t − xctr

t ‖2 +
D2

2α2
− Θn

t

α
+

2γη2G2

α
+ 3
(
Ψ2
t + (Φnt )2

)
+ (4R+ 2δ)

(
Ψt + Φnt

)
(56)

where ρ , α−%
α+% < 1, Ψt , ‖xctr

t −x?t ‖, and Φnt , ‖xn?t −x?t ‖,
with x?t ∈ arg minx∈X ft(x) and xn?t ∈ arg minx∈X f

n
t (x)

being an optimal global and local decisions under the short-
term constraints, respectively.

Proof: The objective function of P4n is 2α-strongly convex
over X w.r.t. ‖·‖ due to the regularization terms α‖x−x̃n,Mt ‖2.
Since xnt is the optimal solution to P4n, from the result in
Lemma 5, we have

〈∇fnt (x̃n,Mt ),xnt − x̃n,Mt 〉+ α‖xnt − x̃n,Mt ‖2 + ηQnt g
n
t (xnt )

≤ 〈∇fnt (x̃n,Mt ),xctr
t − x̃n,Mt 〉+ ηQnt g

n
t (xctr

t )

+ α
(
‖xctr

t − x̃n,Mt ‖2 − ‖xnt − xctr
t ‖2

)
. (57)

Since fnt (x) is 2L-smooth over X , from (55), we have

fnt (xnt )− fnt (x̃n,Mt )− L‖xnt − x̃n,Mt ‖2

≤ 〈∇fnt (x̃n,Mt ),xnt − x̃n,Mt 〉. (58)

Since fnt (x) is convex over X , from (13), we have

〈∇fnt (x̃n,Mt ),xctr
t − x̃n,Mt 〉 ≤ fnt (xctr

t )− fnt (x̃n,Mt ). (59)

Note that to use the strong-convexity of fnt (x) here would
introduce an additional −%‖x̃n,Mt − xctr

t ‖2 term on the RHS
of (59). However, it is the term ‖x̃n,Mt − xctr

t ‖2, instead
of the constant (α or α − %) in front of it, that limits the
performance bounds. Instead, strong-convexity is used later to
relate ‖x̃n,Mt −xctr

t ‖2 to ‖x̂t−xctr
t ‖2 in (65). Substituting (58)

and (59) into the LHS and RHS of (57), respectively, we have

fnt (xnt )− fnt (x̃n,Mt ) + (α− L)‖xnt − x̃n,Mt ‖2 + ηQnt g
n
t (xnt )

≤ fnt (xctr
t )− fnt (x̃n,Mt ) + ηQnt g

n
t (xctr

t )

+ α
(
‖xctr

t − x̃n,Mt ‖2 − ‖xnt − xctr
t ‖2

)
. (60)

Rearranging terms of (60) and noting that ηQnt g
n
t (xctr

t ) ≤ 0
and α ≥ L, we have

α‖xnt − xctr
t ‖2 ≤ fnt (xctr

t )− fnt (xnt )− ηQnt gnt (xnt )

+ α‖x̃n,Mt − xctr
t ‖2. (61)

We now bound the RHS of (61). We have

fnt (xctr
t )− fnt (xnt )

(a)

≤ fnt (xctr
t )− fnt (xn?t )

(b)

≤ 〈∇fnt (xctr
t ),xctr

t − xn?t 〉
(c)

≤ ‖∇f
n
t (xctr

t )‖2

2α
+
α

2
‖xctr

t − xn?t ‖2

(d)

≤ D2

2α
+
α

2
‖xctr

t − xn?t ‖2
(e)

≤ D2

2α
+ αΨ2

t + α(Φnt )2 (62)

where (a) follows from xn?t being an optimal local decision
for minimizing fnt (x) over X , (b) is because of the convexity
of fnt (x) in (13), (c) follows from 〈a,b〉 ≤ 1

2α‖a‖
2 +

α
2 ‖b‖

2,∀α > 0, (d) is because the gradient ∇fnt (x) being
bounded in (14), and (e) follows from ‖a + b‖2 ≤ 2‖a‖2 +
2‖b‖2 and the definitions of Ψt and Φnt .

To bound the last term on the RHS of (61), we require the
following property of a 2%-strongly convex and 2L-smooth
function, which is shown in Lemma 1 in [62].
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Lemma 7. ([62, Lemma 1]) Let Z ⊆ Rn be a nonempty
convex set. Let h(z) : Rn → R be a 2%-strongly-convex and
2L-smooth function over Z as defined in (54) and (55). Let
v = arg minz∈Z{〈∇h(u), z − u〉 + α‖z − u‖2} and w =
arg minz∈Z h(z). Then, for any α ≥ L and any u ∈ Z , we
have ‖w − v‖2 ≤ α−%

α+%‖w − u‖2.

Applying the result in Lemma 7 to the update of x̃n,mt in
(53), which is the optimal solution to P3n,m, for any m ∈
{1, . . . ,M} and any α ≥ L, we have

‖x̃n,mt − xn?t ‖2 ≤ ρ‖x̃
n,m−1
t − xn?t ‖2 (63)

where ρ , α−%
α+% < 1. Combining the above M inequalities

and noting that x̃n,0t = x̂t, we have

‖x̃n,Mt − xn?t ‖2 ≤ ρM‖x̂t − xn?t ‖2. (64)

Also, we have

‖x̃n,Mt − xctr
t ‖2

≤ ‖x̃n,Mt − x?t ‖2 + Ψ2
t + 2RΨt

≤ ‖x̃n,Mt − xn?t ‖2 + (Φnt )2 + Ψ2
t + 2R(Φnt + Ψt)

(a)

≤ ρM‖x̂t − xn?t ‖2 + (Φnt )2 + Ψ2
t + 2R(Φnt + Ψt)

(b)

≤ ρM
(
‖x̂t − x?t ‖2 + (Φnt )2 + 2‖x̂t − x?t ‖Φnt

)
+ (Φnt )2 + Ψ2

t + 2R(Φnt + Ψt)

(c)

≤ ρM‖x̂t − x?t ‖2 + 2(Φnt )2 + Ψ2
t

+ (4R+ 2δ)Φnt + 2RΨt

(d)

≤ ρM‖x̂t − xctr
t ‖2 + 2

(
(Φnt )2 + Ψ2

t

)
+ (4R+ 2δ)(Φnt + Ψt). (65)

where (a) follows from (64); (b) is due to ‖a+b‖2 ≤ ‖a‖2 +
‖b‖2 + 2‖a‖‖b‖ and the definition of Φnt ; (c) follows from
ρ < 1, and the bounds on X and nt in (15) and (16) such that
‖x̂t−x?t ‖ = ‖xt−x?t +nt‖ ≤ R+ δ; and (d) can be proven
similar to (b).

Substituting (62), the bound on the modified Lyapunov drift
in (24) with U = 0, and (65) into (61), we have

α‖xnt − xctr
t ‖2 ≤ αρM‖x̂t − xctr

t ‖2 +
D2

2α
−Θn

t + 2γη2G2

+ 3α
(
(Φnt )2 + Ψ2

t

)
+ α(4R+ 2δ)(Φnt + Ψt). (66)

Dividing both sizes of (66) by α, we obtain (56).
Based on the result in Lemma 6, we provide an upper bound

on the performance gap to the centralized per-slot optimal
solution sequence {xctr

t } for ODOTS-MLU in the following
theorem.

Theorem 3. Under Assumptions 2 and 3, if we choose α ≥ L,
then for any D ≥ 4%2R2, M > 0 and ξ > 0, the performance
gap to {xctr

t } by ODOTS-MLU is upper bounded by

T∑
t=1

(
ft(x̂t)− ft(xctr

t )
)
≤ Π∇

4ξ
+

L+ ξ

1− ρM
(D2T

2α2
+
η2G2ΩT

2αγ3

+
2γη2G2T

α
+ Λ2,T + 2RΛT + Π2,T + 2(R+ δ)ΠT

+ 3(∆2,x + Π2,x) + (4R+ 2δ)(∆x + Πx)
)

(67)

where Π∇ ,
∑T
t=1

∑N
n=1 w

n
t ‖∇fnt (xctr

t )‖2, Π2,T ,∑T
t=1 π

2
t , Π2,x ,

∑T
t=1 Ψ2

t , Πx ,
∑T
t=1 Ψt, ∆2,x ,∑T

t=1

∑N
n=1 w

n
t (Φnt )2, and ∆x ,

∑T
t=1

∑N
n=1 w

n
t Φnt .

Proof: For any n and t, we have

fnt (x̂t)− fnt (xctr
t )

(a)

≤ 〈∇fnt (xctr
t ), x̂t − xctr

t 〉+ L‖x̂t − xctr
t ‖2

(b)

≤ 1

4ξ
‖∇fnt (xctr

t )‖2 + (L+ ξ)‖x̂t − xctr
t ‖2 (68)

where (a) follows from the property of smooth function fnt (x)
in (55), and (b) is because 〈a,b〉 ≤ 1

4ξ‖a‖
2 + ξ‖b‖2,∀ξ >

0. Multiplying both sides of (68) by wnt , and summing the
resulting inequality over n and t, we have

T∑
t=1

(
ft(x̂t)− ft(xctr

t )
)
≤ 1

4ξ

T∑
t=1

N∑
n=1

wnt ‖∇fnt (xctr
t )‖2

+ (L+ ξ)

T∑
t=1

‖x̂t − xctr
t ‖2. (69)

We now bound the last term on the RHS of (69). We have

‖x̂t+1 − xctr
t+1‖2 = ‖x̂t+1 − xctr

t + xctr
t − xctr

t+1‖2
(a)

≤ ‖x̂t+1 − xctr
t ‖2 + π2

t + 2(R+ δ)πt

≤ ‖xt+1 − xctr
t ‖2 + ‖nt+1‖2 + 2R‖nt+1‖

+ π2
t + 2(R+ δ)πt

=
∥∥∥ N∑
n=1

wnt x
n
t − xctr

t

∥∥∥2 + ‖nt+1‖2 + 2R‖nt+1‖

+ π2
t + 2(R+ δ)πt

(b)

≤
N∑
n=1

wnt ‖xnt − xctr
t ‖2 + ‖nt+1‖2 + 2R‖nt+1‖

+ π2
t + 2(R+ δ)πt (70)

where (a) follows from ‖a+b‖2 ≤ ‖a‖2 + ‖b‖2 + 2‖a‖‖b‖,
the bounds on X and nt in (15) and (16), and the definition
of πt; and (b) is because of the separate convexity of the
Euclidean norm.

Summing (70) over t = 1, . . . , T − 1, we have

T−1∑
t=1

‖x̂t+1 − xctr
t+1‖2

≤
T−1∑
t=1

N∑
n=1

wnt ‖xnt − xctr
t ‖2 +

T−1∑
t=1

‖nt+1‖2 + 2R

T−1∑
t=1

‖nt+1‖

+

T−1∑
t=1

π2
t + 2(R+ δ)

T−1∑
t=1

πt

≤
T∑
t=1

N∑
n=1

wnt ‖xnt − xctr
t ‖2 + Λ2,T + 2RΛT

+ Π2,T + 2(R+ δ)ΠT

(a)

≤ ρM
T∑
t=1

‖x̂t − xctr
t ‖2 +

D2T

2α2
− 1

α

T∑
t=1

N∑
n=1

wnt Θn
t
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+
2γη2G2T

α
+ 3(∆2,x + Π2,x) + (4R+ 2δ)(∆x + Πx)

+ Λ2,T + 2RΛT + Π2,T + 2(R+ δ)ΠT

(b)

≤ ρM
T∑
t=1

‖x̂t − xctr
t ‖2 +

D2T

2α2
+
η2G2ΩT

2αγ3
+

2γη2G2T

α

+ 3(∆2,x + Π2,x) + (4R+ 2δ)(∆x + Πx)

+ Λ2,T + 2RΛT + Π2,T + 2(R+ δ)ΠT (71)

where (a) follows from substituting the bound on ‖xnt −xctr
t ‖2

in (56) of Lemma 6, and (b) follows from the bound on
−
∑T
t=1

∑N
n=1 w

n
t Θt in (38).

Rearranging terms of (71), we have

(1− ρM )

T∑
t=1

‖x̂t − xctr
t ‖2

≤ −‖x̂1 − xctr
1 ‖2 +

D2T

2α2
+
η2G2ΩT

2αγ3
+

2γη2G2T

α

+ 3(∆2,x + Π2,x) + (4R+ 2δ)(∆x + Πx)

+ Λ2,T + 2RΛT + Π2,T + 2(R+ δ)ΠT . (72)

Note that 1− ρM > 0 since ρ < 1, divide both sides of (72)
by 1−ρM , and then apply it to the RHS of (69), we complete
the proof.

2) Bound on the Constraint Violation: We now provide an
upper bound on the constraint violation by ODOTS-MLU in
the following theorem.

Theorem 4. Under Assumptions 2 and 3, if we choose α ≥ L,
then for any D ≥ 4%2R2 and M > 0, the constraint violation
yielded by ODOTS-MLU is upper bounded by

1

N

T∑
t=1

N∑
n=1

gnt (xnt ) ≤
(2γ2T + 2

γη2

) 1
2
(D2T

2α
+ 2γη2G

2
T

+ α
(
ρMR2(1 + ΞT ) + ρMΛ2,T + 2ρMR(ΛT + ΠT )

+ 3(Π2,x + ∆′2,x) + (4R+ 2δ)(Πx + ∆′x)
)) 1

2

. (73)

where ∆′x , 1
N

∑T
t=1

∑N
n=1 Φnt and ∆′2,x ,

1
N

∑T
t=1

∑N
n=1(Φnt )2.

Proof: Substituting the bound on the modified Lyapunov
drift (24) and (62) into (61), and rearranging terms, we have

Uηgnt (xnt ) ≤ D2

2α
+ αΨ2

t + α(Φnt )2 −Θn
t + 2γη2G2 +

γ

2
U2

+ α
(
‖x̃n,Mt − xctr

t ‖2 − ‖xnt − xctr
t ‖2

)
. (74)

We now bound the last term on the RHS of (74). We have

‖x̃n,Mt − xctr
t ‖2 − ‖xnt − xctr

t ‖2
(a)

≤ ρM‖x̂t − xctr
t ‖2 − ‖xnt − xctr

t ‖2

+ 2
(
(Φnt )2 + Ψ2

t

)
+ (4R+ 2δ)(Φnt + Ψt)

(b)

≤ ρM
(
φt+ψ

n
t + ‖nt‖2 + 2R(‖nt‖+ πt)

)
+ 2
(
(Φnt )2 + Ψ2

t

)
+ (4R+ 2δ)(Φnt + Ψt) (75)

where (a) follows from (65), and (b) is from (32).

Substituting (75) into (74), summing the resulting inequality
over n and t and then dividing both sides by N , we have

Uη

N

T∑
t=1

N∑
n=1

gnt (xnt ) ≤ D2T

2α
+ 2γη2G2T +

γ

2
U2T

− 1

N

T∑
t=1

N∑
n=1

Θn
t + αρM

T∑
t=1

(
φt +

N∑
n=1

ψnt
N

)
+ αρM

(
Λ2,T +2R(ΛT +ΠT )

)
+3α

T∑
t=1

(
Ψ2
t +

N∑
n=1

(Φnt )2

N

)
+ α(4R+ 2δ)

T∑
t=1

(
Ψt +

N∑
n=1

Φnt
N

)
. (76)

Substituting (40), (44), and (45) into (76), and from the
definitions of Πx, Π2,x, ∆′x, ∆′2,x, we have

Uη

N

T∑
t=1

N∑
n=1

gnt (xnt )− γT

2
U2 − 1

2γ
U2 ≤ D2T

2α
+ 2γη2G

2
T

+ α
(
ρMR2(1 + ΞT ) + ρMΛ2,T + 2ρMR(ΛT + ΠT )

+ 3(Π2,x + ∆′2,x) + (4R+ 2δ)(Πx + ∆′x)
)
. (77)

Similar to the proof of (48) in Theorem 2, from (77), we
can show that (73) holds.

C. Improved Performance Bounds

We now discuss the sufficient conditions for ODOTS-
MLU to yield sublinear performance gap and constraint vi-
olation. We again use parameter µ ∈ [0, 1] to represent
the time variability of the underlying system, such that
max{Π∇,∆2,x,∆x,Π2,x,Πx,∆

′
2,x,∆

′
x} = O(Tµ) (see The-

orems 3 and 4 for definition). Note that the accumulated
squared gradients Π∇ can be very small [62]. The accumulated
difference between the centralized per-slot optimal solution
benchmark {xctr

t } and the optimal global solution benchmark
{x?t } under short-term constraints only can also be small. In
particular, if ‖xctr

t − x?t ‖ ∝ Tµ−1, we have Π2,x = O(Tµ)
and Πx = O(Tµ). Similarly, if the accumulated difference
between the optimal global and local solution benchmarks
satisfy ‖x?t − xn,?t ‖ ∝ Tµ−1, we have ∆2,x = O(Tµ) and
∆x = O(Tµ). Also note that for the important case of
time-invariant equal weights, i.e., wnt = 1

N ,∀n, ∀t, we have
∆′2,x = ∆2,x and ∆′x = ∆x.

From Theorems 3 and 4, we can derive the following
corollary regarding the performance gap and constraint viola-
tion bounds yielded by ODOTS-MLU, depending on whether
the local weight wnt is time-varying. It is obtained from
substituting the corresponding algorithm parameters α, η, and
γ into the bounds in (67) and (73).

Corollary 2 (Strongly-Convex Loss Functions with Multi-Step
Local Updates). Suppose Assumptions 2 and 3 hold.

Time-varying weight: Let α = T
1−µ
2 + L, γ = T

ν−1
4 , and

η = O(1) in ODOTS-MLU. Then, for any M > 0, we have

T∑
t=1

(
ft(x̂t)− ft(xctr

t )
)

= O
(

max{Tµ, T
1+2µ+ν

4 }
)
, (78)
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1

N

T∑
t=1

N∑
n=1

gnt (xnt ) = O
(

max{T
5+2µ+ν

8 , T
3+ν
4 }
)
. (79)

Time-invariant equal weight: Suppose wnt = 1
N ,∀n, ∀t such

that ΞT = 0, ΩT = 0, ∆x = ∆′x, and ∆2,x = ∆′2,x. Let
α = T

1−µ
2 + L, γ = T−

1
2 , and η = O(1) in ODOTS-MLU.

Then, for any M > 0, we have
T∑
t=1

(
ft(x̂t)− ft(xctr

t )
)

= O
(
Tµ
)
, (80)

1

N

T∑
t=1

N∑
n=1

gnt (xnt ) = O
(
T

2+µ
4

)
. (81)

Proof: See Appendix B in the supplementary materials.
In particular, if µ < 1 and ν < 1, i.e., the system variations

are sublinear in T , both the performance gap and the constraint
violation are sublinear in T . Furthermore, in this case it is
easy to see that (78), (79), (80), and (81) represent strict
improvements over (49), (50), (51), and (52) in Corollary 1.
Thus, under additional assumptions on the strong-convexity
and smoothness of the loss functions, ODOTS-MLU can
reduce both the performance gap and the constraint violation
over ODOTS with multiple steps of local update. To the
best of our knowledge, no existing literature has considered
performing multi-step local gradient descent to improve the
performance bounds for distributed online optimization with
long-term constraints.

Remark 3. Performing multiple local gradient descent updates
can degrade the performance of distributed optimization if the
local loss functions are poorly aligned. For example, this has
been observed in recent works on FL with heterogeneous data
(see [63] and [64]). The performance gap (67) and the con-
straint violation (73) yielded by ODOTS-MLU quantify this in
terms of the accumulated difference between the optimal local
decisions {xn?t } and the optimal global decisions {x?t }. The
aforementioned performance benefits of ODOTS-MLU over
ODOTS requires the condition µ < 1, i.e., the difference
between xn?t and x?t vanishes over time. In Section VII-D,
we will further show that the performance of ODOTS-MLU
in FL improves as the data heterogeneity is reduced.

VII. APPLICATION TO FEDERATED LEARNING

As an example to study the performance of ODOTS and
ODOTS-MLU in practical systems, we apply them to feder-
ated learning (FL) [5], where multiple local devices cooperate
to train a machine-learning model with the assistance of a
server. We present numerical results to demonstrate the perfor-
mance advantage of ODOTS over state-of-the-art alternatives,
based on canonical image classification datasets for both
convex and non-convex loss functions. Furthermore, we show
that performing multi-step local updates in ODOTS-MLU can
lead to better learning performance and less communication
overhead than ODOTS.

A. Simulation Setup

We consider a FL system with N = 10 devices and a
server. We define each time slot t as one round of FL, which

consists of both the computation time and the communication
time. We evaluate our results on the popular MNIST dataset
[65]. Its training dataset D consists of 6 × 104 data samples
and its test dataset E has 1 × 104 data samples. Each data
sample (u, v) represents an image with 28 × 28 pixels and
V = 10 possible labels, i.e., u ∈ R784 and v ∈ {1, . . . , V }.
We study the scenario where each local dataset Dnt at device
n only contains data samples of label n, such that the data
is non-i.i.d. We assume device n randomly selects |Dnt | = 20
data samples at each time t, such that the devices share the
same weight wnt = 1

N . We have also conducted experiments
on time-varying weights and different datasets, which show a
similar trend as the simulation results in this paper. Due to
the page limit, we do not include them. This is to emulate the
online FL scenario where data samples arrive at the devices
over time.

We compare ODOTS with the following schemes.

• Error-free FL: We alternates local model update xnt =
xt − 1

2α∇f
n
t (xt) and global model update xt+1 =∑N

n=1 w
n
t x

n
t at each time t. It represents the idealized

standard FL algorithm where the communication is error
free [5].

• Primal-dual GD: The primal-dual gradient descent (GD)
algorithm in [43] is the current best solution for dis-
tributed constrained online convex optimization with
consensus. We implement it to solve P1, except using
the same current information on the loss and constraint
functions as ODOTS.

• QFL-CE: We adopt the quantized federated learning
(QFL) scheme in [8] by perform local model update (i.e.,
(11) with Qnt = 0) and quantization (i.e., (4)) at each
time t. We implement the same conditional entropy (CE)
coding as ODOTS for QFL.8 The server then updates
its noisy global model (i.e., (6)). This is a state-of-the-
art approach where model training and compression are
separately designed.

B. Convex Loss: Logistic Regression

We consider the cross-entropy loss for multinomial lo-
gistic regression, given by l(x;u, v) = −

∑V
j=1 1{v = j}

log exp(〈x[j],u〉)∑V
k=1 exp(〈x[k],u〉) , where x = [x[1]T , . . . ,x[V ]T ]T with

x[j] ∈ R784 being the model for label j. The entire model
x is thus of dimension d = 7840. Our computation perfor-
mance metrics are the time-averaged test accuracy Ā(T ) =
1
|E|T

∑T
t=1

∑|E|
i=1 1{arg maxj{ exp(〈x̂t[j],ui〉)∑V

k=1 exp(〈x̂t[k],ui〉)
} = vi}, and

the time-averaged training loss f̄(T ) = 1
T

∑T
t=1

∑N
n=1

wnt
|Dnt |

∑|Dnt |
i=1 l(x̂t;u

n,i
t , vn,it ). Our communication performance

metrics are the total number of transmitted bits using the
conditional entropy coding B(T ) =

∑T
t=1

∑N
n=1H(x̂nt |x̂nt−1)

and the time-averaged decision dis-similarity ḡ(T ) =
1
TN

∑T
t=1

∑N
n=1 ‖xnt − x̂nt−1‖2.9

8The Elias coding used in [8] does not use any model similarity, and thus
incurs more communication overhead compared with the CE coding.

9We use the histogram method to estimate the joint probability distribution
of x̂n

t and x̂n
t−1 and then compute the conditional entropy H(x̂n

t |x̂n
t−1).
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Fig. 1: Test accuracy Ā(T ), training loss f̄(T ), transmitted
bits B(T ), and decision dis-similarity ḡ(T ) vs. time T .

Fig. 1 shows Ā(T ), f̄(T ), B(T ), and ḡ(T ) versus T . We
set the decision dis-similarity limit ε = 1e−6. We set the
quantization bit length b = 5 for ODOTS and b = 4 for
Primal-dual GD and QFL-CE. We set the maximum decision
limit xmax = 1 × 10−3, step-size α = 1 × 105, tuning factor
γ = 0.5, and weighting factor η = 5×105 in ODOTS. We use
the same parameter values for the other schemes if any is used.
We note that despite the higher quantization bit length b in
ODOTS, due to its inherent communication efficiency, its total
number of transmitted bits remains lower than both Primal-
dual GD and QFL-CE. We observe that the test accuracy
yielded by ODOTS is over 25% higher than Primal-dual
GD. This is because Primal-dual GD performs dual gradient
descent to control the constraint violation, which can deterio-
rate its performance when the gradient directions of loss and
constraint functions deviate much from each other. Compared
with QFL-CE, ODOTS achieves higher test accuracy and
incurs abound 30% less communication overhead, thanks to
its joint consideration of computation and communication over
time. Also, we observe that ODOTS converges slightly slower
than QFL-CE at the early training stage, this is because the
value of the tunable virtual queue Qnt in (10) is relatively large
at the beginning to reduce the transmitted bits.

In Fig. 2, we compare the final test accuracy A(T ) between
ODOTS and QFL-CE under different total transmitted bits
B(T ). We vary the quantization bit length b in QFL-CE to
trade off its computation and communication performance. For
ODOTS, we also vary ε for any given b value. The final test
accuracies yielded by QFL-CE and ODOTS both decrease as
b decreases due to the increased quantization errors. However,
for any operating point on the QFL-CE curve, we can always
find a combination of b and ε for ODOTS that achieves higher
test accuracy while incurring less communication overhead.
Furthermore, their difference in test accuracy grows dramati-
cally as the number of transmitted bits decreases. This suggests
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Fig. 2: Final test accuracy A(T ) vs. transmitted bits B(T ) for
convex logistic regression.
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Fig. 3: Final test accuracy A(T ) vs. transmitted bits B(T ) for
non-convex convolutional neural network training.

that ODOTS is particularly advantageous in systems with a
tight communication budget.

C. Non-Convex Loss: Convolutional Neural Network Training

The performance analysis of ODOTS in Section V requires
convex loss functions. To further evaluate the performance of
ODOTS for non-convex loss functions, we consider training a
convolutional neural network for MNIST classification, with
784 pixels as input, a convolutional layer with 10 filters each
of size 9 × 9, a ReLU hidden layer with 100 neurons, and
a softmax output layer with 10 neurons. The total number
of model parameters is d = 101, 810. We set xmax = 1,
α = 2, γ = 0.5, and η = 0.01 in ODOTS. Similar to
Fig. 2, Fig. 3 compares the performance of ODOTS and QFL-
CE in this scenario. Note that the number of transmitted bits
is substantially higher due to the larger number of model
parameters, compared with the convex logistic regression
scenario. We again observe similar trends as in Fig. 2, with
ODOTS substantially outperforming QFL-CE especially when
the number of transmitted bits is moderate to low.

D. Impact of Multi-Step Local Updates

Fig. 4 shows Ā(T ) and B̄(T ) versus T on logistic regression
for different steps of local updates in ODOTS-MLU with
quantization bit length b = 4. For this scenario, we uniformly
distributed all training data labels among the devices. We set
ε = 1 × 10−6. We observe that with only one additional
step of local update, the time-averaged test accuracy increases
from 83.5% to 86% while the total transmitted bits decreases
from 0.8 Mb to 0.54 Mb, thanks to the faster convergence
performance of ODOTS-MLU as shown in Corollary 2. As the
number of local updates increases, the test accuracy slightly
increases at the expense of more transmitted bits. This is
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Fig. 4: Test accuracy Ā(T ) and transmitted bits B(T ) vs. time
T with different steps of local updates M .
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Fig. 5: The impact of heterogeneous data distributions, repre-
sented by the number of different data labels NV each device
observes at each time.

because the difference between the updated local decision xnt
and the previous quantized local decision x̂nt−1 increases as
the number of local updates M increases, requiring more bits
to communicate the quantized decision x̂nt using conditional
entropy coding.

In Fig. 5, we study the impact of non-i.i.d. data distribution
on multi-step local updates. We change the number of different
data labels, denoted by NV , that each device n observes
at each time t to represent the heterogeneity of the data
distributions among devices. We observe that as NV increases,
i.e., the data heterogeneity decreases, the learning performance
of both ODOTS and ODOTS-MLU improves. Furthermore,
the performance gain of ODOTS-MLU over ODOTS is most
substantial when NV = 10, i.e., the data distributions among
devices are i.i.d. Interestingly, when NV = 1, performing
multi-step local updates does not deteriorate the learning
performance. This is because the long-term constraint on
decision dissimilarity (7) in P1 prevents the local decision
from approaching the local optimal decision even when the
data is highly heterogeneous. This serves the same purpose as
controlling the client drift in [63], [64] for multi-step gradient
descent to be effective in FL with heterogeneous data.

VIII. CONCLUSIONS

We consider online distributed optimization in networked
systems, under a long-term decision dis-similarity constraint
to control the communication overhead. We propose efficient
ODOTS and ODOTS-MLU algorithms to balance the improve-
ment in optimization and the cost of communication over time
via a novel tunable virtual queue. Through a modified Lya-
punov drift analysis, we show that both ODOTS and ODOTS-
MLU can achieve sublinear performance gap from the cen-

tralized per-slot optimizer and sublinear constraint violation
simultaneously. With additional steps of local update, ODOTS-
MLU can improve over ODOTS in both the performance gap
bound and the long-term constraint violation bound. When
applying ODOTS and ODOTS-MLU to federated learning, our
experimental results demonstrate that ODOTS and ODOTS-
MLU can have substantial performance advantage over state-
of-the-art approaches, in terms of both improved test accuracy
and reduced communication overhead. ODOTS and ODOTS-
MLU are advantageous especially in systems with a tight
communication budget.
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SUPPLEMENTARY MATERIALS

APPENDIX A
PROOF OF COROLLARY 1

Proof: We first prove the case of time-varying weights.
Substituting the specified algorithm parameters α, γ, and η
into the bound on the performance gap (36) in Theorem 1 and
the bound on the constraint violation (41) in Theorem 2 , we
have

T∑
t=1

(
ft(x̂t)− ft(xctr

t )
)
≤ O(T 1− 1−µ

2 ) +O(T
ν−1
4 +1)

+O(T ν−
3(ν−1)

4 ) +O(T
1−µ
2 +µ)

= O(T
1+µ
2 ) +O(T

3+ν
4 ), (82)

and

1

N
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N∑
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2

= O(T
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8 ). (83)

For the case of time-invariant equal weights, we have
T∑
t=1

(
ft(x̂t)− ft(xctr
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APPENDIX B
PROOF OF COROLLARY 2

Proof: We first prove the case of time-varying weights.
Substituting the specified algorithm parameters α, γ, and η
into the bound on the performance gap (67) in Theorem 3 and
the bound on the constraint violation (73) in Theorem 4 , we
have
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For the case of time-invariant equal weights, we have
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