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Abstract—We consider federated learning in a wireless edge
network, where multiple power-limited mobile devices collabo-
ratively train a global model, using their local data with the
assistance of an edge server. Exploiting over-the-air computation,
the edge server updates the global model via analog aggregation
of the local models over noisy wireless fading channels. Unlike
existing works that separately optimize computation and com-
munication at each step of the learning algorithm, in this work,
we jointly optimize the training of the global model and the
analog aggregation of the local models over time. Our objective
is to minimize the accumulated training loss at the edge server,
subject to individual long-term transmit power constraints at
the mobile devices. We propose an efficient algorithm, termed
Online Model Updating with Analog Aggregation (OMUAA),
to adaptively update the local and global models based on the
time-varying communication environment. The trained model of
OMUAA is channel- and power-aware, and it is in closed form
incurring low computational complexity. We study the mutual
impact between model training and analog aggregation over
time, to derive performance bounds on the computation and
communication performance metrics. Furthermore, we consider
a variant of OMUAA with double regularization on both the
local and global models, termed OMUAA-DR, and show that it
can significantly reduce the convergence time to reach long-term
transmit power constraints. In addition, we extend both OMUAA
and OMUAA-DR to enable analog gradient aggregation, while
preserving their performance bounds. Simulation results based
on real-world image classification datasets and typical wireless
network settings demonstrate substantial performance gain of
OMUAA and OMUAA-DR over the known best alternatives.

Index Terms—Federated learning, wireless edge network, over-
the-air computation, online optimization, long-term constraint

I. INTRODUCTION

In wireless edge networks, mobile devices collect an enor-
mous amount of data that can be used to train machine learning
models. This motivates new machine learning technologies at
the edge servers and devices, collectively call edge learning
[2]-[5]. However, the migration of learning from central cloud
servers to the edge can lead to an explosion of information ex-
change between edge servers and devices. Thus, the scarcity of
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communication resources can become a bottleneck for training
an accurate machine learning model at the edge. This calls for
communication-efficient distributed learning algorithms that
integrate techniques from two different areas, i.e., machine
learning and communications [6].

As a nascent distributed learning scheme, federated learning
(FL) allows multiple local devices to collaboratively learn a
global model without sending their local data to a central
server [7], [8]. In FL, a key operation is to aggregate the
local models sent from the local devices into a global model
at the server. Toward reducing the communication overhead,
the machine learning literature mainly focuses on quantiza-
tion [9]-[11], sparsification [12]-[14], and local updates [15]-
[17]. These approaches assume error-free transmission and
ignore the physical wired or wireless communication layer.
More recently, with the observation that the global model
at the server can be expressed as a weighted sum of the
local models, analog aggregation of the local models has
been proposed, allowing simultaneous wireless transmission
by the local devices over a multiple access channel [18]-[27].
Such over-the-air computation can be traced back at least to
analog network coding [28]-[31], which takes advantage of the
superposition property of wireless channels, reducing commu-
nication overhead and bandwidth requirement compared with
the conventional orthogonal multiple access.

All existing works on FL with analog aggregation separately
optimize model training and wireless transmission [18]-[27].
In contrast, a joint optimization approach would take into
fuller account the impact of wireless transmission in the model
training process, and vice versa. Furthermore, prior works
have focused on per-iteration optimization, by solving one-
shot optimization problems, which do not fully account for
the changes in the environment over time or any long-term
constraints. However, due to the dynamic fluctuation in the
wireless channels, both model training and analog aggregation
should be channel-aware and online, i.e., adaptive to the
unpredictable channel fluctuation over time.

In this work, we aim to develop an online algorithm that
jointly optimizes model training and analog aggregation for
FL over noisy wireless fading channels. To achieve this goal,
we must address several challenges on multiple fronts. First,
noisy wireless channels lead to errors in the analog aggregation
of the learning models, and these errors are accumulated
and amplified in the iterative steps of model training over
time. Second, since the effectiveness of analog communication
depends on the transmitted message, when designing the inter-
mediate output models of each iterative step in model training,
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we must consider both their improvement in learning and their
suitability for transmission. Third, the aforementioned tight
coupling between model training and analog aggregation must
be properly formulated and addressed in a dynamic online set-
ting, where the future wireless communication environment is
unpredictable. Finally, we must account for the heterogeneous
energy budgets for device communication over time, expressed
as individual long-term transmit power constraints.

Different from the standard per-iteration model training
for FL that does not consider the wireless communication
layer, our trained models are adaptive to the time-varying
channel states. Furthermore, we analyze the mutual impact
between computation and communication over time to derive
performance bounds for our proposed algorithms. Specifically,
the main contributions of this paper are as follows:

• We formulate the above system of FL with analog aggre-
gation over noisy wireless fading channels as an online
optimization problem. Our optimization objective is the
accumulated training loss at the edge server, subject to
individual long-term transmit power constraints at the
mobile devices. Thus, we consider both the computation
and communication metrics. To the best of our knowl-
edge, joint online optimization of model training and
analog aggregation has not been studied in the literature.

• We propose an efficient online algorithm, termed Online
Model Updating with Analog Aggregation (OMUAA),
which dynamically integrates FL, over-the-air computa-
tion, and transmit power allocation over time. The local
models yielded by OMUAA are adaptive to the dynamic
fluctuation of channel states while accounting for indi-
vidual transmit power budgets of the mobile devices.
Furthermore, they are in closed forms and thus have low
computational complexity. We analyze the mutual impact
between model training and analog aggregation, and their
effect on the performance of OMUAA over time. Our
analysis shows that OMUAA achieves O((1+ρ2+ΠT ρ)ε)
optimality gap with O( 1

ε2 ) convergence time for any ap-
proximation level ε, and O((1+ρ2)ε) long-term transmit
power constraint violation with O( 1

ε3 ) convergence time,
where ρ is a measure of channel noise and ΠT represents
the accumulated variation of the optimal global models
in T iterations over noiseless channels.

• We further consider a variant of OMUAA with double
regularization, termed OMUAA-DR, to update the current
local models based on both the previous local and global
models. It captures useful information from both the local
and global models to further minimize the accumulated
training loss and long-term transmit power constraint
violation. We analyze the impact of double regularization
in OMUAA-DR, and show that it achieves an improved
O( 1

ε ) convergence time in long-term transmit power
constraint violation, while maintaining the same O( 1

ε2 )
convergence time in training loss. Such improved perfor-
mance is achieved with an additional step-size parameter,
some extra memory to store the local model, and a Lip-
schitz continuity assumption on the constraint function.

• We extend both OMUAA and OMUAA-DR to enable

analog gradient aggregation, where the mobile devices
transmit the gradient or the model difference instead of
the model itself to the edge server. Our analysis shows
that when the step size is small or when the gradient itself
is small, analog gradient aggregation can yield better
learning performance than analog model aggregation.
Furthermore, our derived performance bounds still hold
for analog gradient aggregation.

• We study the impact of system parameters on the perfor-
mance of our proposed algorithms, by experimenting with
real-world image classification datasets, under typical
wireless network settings. We demonstrate substantial
performance advantage of OMUAA and OMUAA-DR
over the known best alternatives for both convex logistic
regression and non-convex neural network training.

The rest of this paper is organized as follows. In Section II,
we present the related work. Section III describes the system
model and problem formulation. In Section IV, we present
OMUAA and its performance bounds. Then, we discuss the
OMUAA-DR variant and study its performance in Section V.
In Section VI, we extend both OMUAA-DR and OMUAA
to enable analog gradient aggregation. Simulation results are
presented in Section VII, followed by concluding remarks in
Section VIII.

II. RELATED WORK

In this section, we survey existing works on FL in wireless
edge networks.

A. FL with Error-Free Wireless Communication

Early works on FL at the edge assume error-free com-
munication, i.e., digital error-control coded transmission (see
[32] and references therein). For example, [33] proposed
adaptive global model aggregation under resource constraints
for FL. The performance trade-offs between computation and
communication were investigated in [34] and [35], using
conventional orthogonal multiple access. Differential privacy
in federated learning was considered in [36]. FL with source
coding for quantized transmission was investigated in [37],
[38]. None of these solutions are applicable to FL with analog
aggregation. The above works all adopt the orthogonal digital
transmission approach to communicate the local models to the
edge server. The model parameters are transmitted separately
from each mobile device through subchannels (e.g., time, in
frequency, or code) to the edge server, which can lead to high
communication overhead. Furthermore, digital communication
requires source coding to convert the model parameters into
bits and channel coding to losslessly convey these bits over
the noisy channel.

B. FL with Analog Aggregation

To further reduce the communication overhead, [18]-[20]
exploited the superposition property of a multiple access
channel to allow simultaneous model transmissions from the
mobile devices, without any source coding or channel coding.
It has been shown that such analog aggregation approach
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can lead to superior performance in FL [18], [21], [22]. In
[18], truncated local model parameters were scheduled for
aggregation based on the channel condition. Receiver beam-
forming design was studied in [19] to maximize the number of
mobile devices for model aggregation at each iteration. In [20],
the convergence of an analog model aggregation algorithm
was studied for strongly convex loss functions. Other recent
works focused on analog gradient aggregation in FL [21]-[27].
Gradient quantization and sparsification were exploited for
compressed analog aggregation in [21] and [22] over static and
fading multiple access channels, respectively. The convergence
of iterative analog gradient aggregation was studied in [23] and
[24] with sparsified and full gradients, respectively. Power al-
location was investigated in [25] to achieve differential privacy.
Gradient statistics aware power control was proposed in [26]
for aggregation error minimization. In [27], the aggregation
error caused by noisy channel and gradient compression was
minimized through power allocation at each iteration.

The above works all separately optimize model training and
analog aggregation at each iteration. In contrast, in this work
we propose OMUAA and OMUAA-DR to jointly optimize
model training and analog aggregation. Furthermore, we con-
sider an online optimization framework that is adaptive to the
unpredictable channel fluctuation over time.

C. Online Convex Optimization and Lyapunov Optimization

Because of the dynamic nature of iterative model training
and analog aggregation over time-varying channels, a part
of our solution resembles existing concepts of online convex
optimization (OCO) [39], especially OCO with long-term con-
straints [40]-[47]. In [40], a saddle-point-typed OCO algorithm
was proposed, which achieves a time averaged objective value
that is O(ε) worse than the best fixed offline decision when
the time horizon T ≥ 1

ε2 , and a time averaged violation on
the long-term time-invariant constraints that is O(ε) when
T ≥ 1

ε4 . A follow-up work [41] provided trade-off between
the static regret and constraint violation. A virtual-queue based
algorithm in [42] reduced the convergence time of the long-
term time-invariant constraints to O( 1

ε ). Virtual-queue based
algorithms were also proposed for OCO with independent
and identically distributed (i.i.d.) long-term constraints in [43]
and [44], based on the standard gradient descent approach
and general mirror descent approach, respectively. The saddle-
point-typed and virtual-queue-typed algorithms were modified
in [45] and [46], to provide performance bounds with respect
to (w.r.t.) a dynamic online decision sequence while dealing
with long-term time-varying constraints. Distributed saddle-
point-typed OCO with long-term constraints was considered in
[47] for error-free communication and in [48] for noisy analog
aggregation. However, the long-term constraint function is
assumed to be fixed over time in [47], [48], which does not
apply to our joint online optimization problem with long-
term time-varying power constraint functions. Furthermore,
the performance analysis in [47], [48] focuses on the static
regret by comparing with the best fixed benchmark, while ours
is on the more attractive dynamic regret by comparing with
the per-slot optimal benchmark.

Fig. 1. An illustration of federated learning at wireless edge.

The above works [40]-[47] on OCO with long-term con-
straints mainly concern delayed information feedback, which
is inherently different from the joint online optimization
framework of this work for FL with analog aggregation. In par-
ticular, [49] proved that no OCO algorithm can simultaneously
provide O(ε) optimality gap and O(ε) long-term time-varying
constraint violation due to feedback delay, which OMUAA
and OMUAA-DR can achieve (see Sections IV-B and V-B).

A part of our solution also resembles Lyapunov optimization
[50], which uses the system state and queueing information to
implicitly learn the system variations and update the online
decisions accordingly without needing to know the system
statistics. However, under the standard iterative Lyapunov
optimization framework, an upper bound of the weighted sum
of loss and constraint functions is minimized at each iteration.
However, for machine learning tasks, this often means finding
the optimal model, which is difficult in general. Furthermore,
the standard Lyapunov optimization requires centralized im-
plementation, which does not apply to FL based on local data.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Learning Objective

We consider a wireless edge network where N mobile
devices are connected to the same edge server as shown in
Fig. 1. Each mobile device n collects its local training dataset
denoted by Dn. The i-th data sample in Dn is represented
by (un,i, vn,i), where un,i is a data feature vector and vn,i is
the true label for this data sample. Based on the local training
datasets {Dn}, the objective of learning is to train a global
model x ∈ Rd, which predicts the true labels of data feature
vectors.

We define a sample-wise convex and differentiable training
loss function l(x;un,i, vn,i) : Rd → R associated with every
data sample. The training loss function is generally defined
to represent the training error. For example, it can be defined
as the cross-entropy for logistic regression, to measure the
prediction accuracy on data feature vector un,i w.r.t. its true
label vn,i (see Section VII-B).

In general, the learning objective is to find a global model
x? that minimizes the following global training loss function

f(x) =
1
|D|

N∑

n=1

|Dn|∑

i=1

l(x;un,i, vn,i) (1)
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where D =
⋃N

n=1{D
n} is the global dataset and |D| is the

cardinality of D. This is equivalent to the averaged training
loss incurred by the global dataset D. In traditional centralized
machine learning, the edge server would compute x? after
collecting all the local training datasets {Dn}. However, such a
centralized approach is undesirable, as it incurs a large amount
of communication overhead, and it can cause privacy issues.
In FL, with the assistant of the edge server, N mobile devices
cooperate to minimize (1) based on local datasets.

In practical systems, the local training datasets {Dn} can
be very large in size while mobile devices often have limited
computation capacities. To address this issue, each mobile
device n can sample a batch dataset Bn

t ⊆ Dn for model
training at each iteration t [9]-[17]. The local training loss
function fn

t (x) at iteration t incurred by the batch dataset Bn
t

is given by

fn
t (x) =

1
|Bn

t |

|Bn
t |∑

i=1

l(x;un,i
t , vn,i

t ) (2)

where |Bn
t | is the cardinality of Bn

t . We assume the batch
size |Bn

t | is fixed over time for each mobile device n. Let
Bt =

⋃N
n=1{B

n
t } denote the sampled global dataset at iteration

t. Our global training loss function ft(x) at iteration t incurred
by Bt is defined as

ft(x) =
N∑

n=1

wnfn
t (x) (3)

where wn = |Bn
t |

|Bt|
is the weight on mobile device n, and we

have
∑N

n=1 wn = 1.1

B. Federated Learning with Over-the-Air Analog Aggregation

The standard FL scheme can be seen as an iterative dis-
tributed learning process with an aim to approach x? [7], [8].
It alternates between local and global model updates. At
the t-th iteration, each mobile device n updates its local
model, denoted by xn

t ∈ Rd. The edge server computes
the weighted sum of the local models to update its global
model. The original FL does not consider the physical wired
or wireless communication layer. Thus, under the idealized
noiseless scenario, the global model would be computed at
the edge server as

xt =
N∑

n=1

wnxn
t . (4)

In the wireless environment, (4) may be efficiently com-
puted over the air, i.e., through analog aggregation over a
multiple access channel [28]-[31]. Such analog aggregation
scheme exploits the superposition property of a multiple access
channel to compute the target function over the air through
concurrent transmission of distributed data. It was originally
proposed for analog network coding [28] and was recently

1Most prior works on FL with analog aggregation [18]-[26], as well as the
preliminary version of our work in [1], consider only the simplified scenario
where each mobile device n use the entire local dataset Dn at each iteration t.
In that case, the global training loss function is fixed over time as in (1).

extended to FL [18]-[27] assuming perfect synchronization.
We make the same assumption in this work. Further studies
on relaxing the synchronization requirement in analog aggre-
gation can be found in [30] and [31], which are outside the
scope of this work.

Note that the local model xn
t cannot be directly transmitted

to the edge server, since its values can be too large or too
small, resulting in very high transmit power or severe noise
pollution. Furthermore, due to the noisy and fading nature of
wireless channels, the local models {xn

t } need to be carefully
pre-processed at the mobile devices in order to recover the
desired global model xt in (4) at the edge server. Let sn

t ∈ Cd

be the transmitted signal vector generated by mobile device n
at the t-th iteration, which carries the information of xn

t . Each
entry of sn

t is sent using one orthogonal channel that is created
through division by frequency or time.2

We model the channel between the N mobile devices and
the edge server as a noisy wireless fading multiple access
channel. Let hn

t = [hn,1
t , . . . , hn,d

t ]T ∈ Cd be the channel
state vector between mobile device n and the edge server at
the t-th iteration. Mobile devices that are far away from the
edge server generally have weak channel states over time. We
assume the local channel state information (CSI) is available
at each mobile device [18]-[27]. We note that this channel
model is suitable for either single-antenna or multi-antenna
communication.

The transmitted signals from the mobile devices carried by
the noisy wireless fading multiple access channel are summed
over the air due to the superposition property of wireless
channels. The received signal vector yt ∈ Cd at the edge
server is given by

yt =
N∑

n=1

hn
t ◦ sn

t + zt =
1
λt

N∑

n=1

wnxn
t + zt. (5)

where a◦b represents entry-wise product, zt ∈ Cd is the noise
vector, and

sn
t =

1
λt

wnbn
t ◦ xn

t (6)

is the transmitted signal vector with λt being a power-scaling

factor and bn
t = [ hn,1

t

|hn,1
t |2

, . . . ,
hn,d

t

|hn,d
t |2

]T ∈ Cd being the entry-

wise channel inversion vector w.r.t. hn
t .3 The design of a

common λt among the N mobile devices at each iteration t
was studied in [18], [19], [21], [22], [24]-[27], and is outside
the scope of this paper. An important special case is when λt

is fixed over all iterations t. This can save a large amount of
communication overhead, between the mobile devices and the
edge server, that is required to agree on a common λt at each
iteration t before the signal transmission.

2The proposed method and analysis in this work can be easily extended to
any form of orthogonal channels. Later in Section VII, we divide the system
bandwidth over both frequency and time under typical wireless network
settings.

3When the channel power is small, we can add some constant at the
denominator of the channel inversion vector to avoid using too much transmit
power or causing numerical problems. Using this regularized channel inversion
method will incur some additional noise to the global model x̂t in (7).
However, such noise can be treated as one part of the receiver noise nt

and does not impact our performance analysis later.
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The edge server scales yt and recovers a noisy version of
the global model xt in (4), given by

x̂t = <{λtyt} = xt + λtnt (7)

where <{a} denotes the real part of complex vector a and
nt , <{zt}.4 The edge server then broadcasts x̂t to all the
N mobile devices. As in [18]-[27], we assume that the edge
server uses coded digital communication in a separate down-
link channel, such that x̂t can be received by all the mobile
devices in an error-free fashion, before the next iteration.

To summarize, over-the-air model aggregation has the fol-
lowing two major steps:

• At each iteration t, after obtaining the local models {xn
t },

the N mobile devices generate the transmitted signal vectors
{sn

t } in (6) that carry the information of {xn
t }, and then

transmit {sn
t } simultaneously over a noisy multiple access

channel to the edge server.
• At each iteration t, after receiving the signal vector yt in

(5), the edge server performs scaling to recover a noisy global
model x̂t in (7).

In error-free FL, the local model xn
t is updated via local

batch gradient descent, given by

xn
t = xt−1 − α∇fn

t (xt−1) (8)

where α > 0 is a step-size parameter. This is equivalent to
solving the following optimization problem:

min
x

〈∇fn
t (xt−1),x − xt−1〉 +

1
2α

‖x − xt−1‖
2 (9)

where 〈a,b〉 represents the inner product of vectors a and
b, and ‖ ∙ ‖ denotes Euclidean norm. All existing works on
FL with analog aggregation [18]-[27] adopt the above local
model updating scheme by simply replacing xt−1 with the
received noisy version x̂t−1, and then they separately optimize
the analog aggregation at each iteration t. In this work, we
consider a joint online optimization approach to account for
the impacts of analog aggregation, including communication
error, channel fading, and power allocation, on model training
over time.

C. Problem Formulation

We aim to jointly optimize model training and analog
aggregation over time. Due to the time-varying channel states
and batch datasets, our objective is to minimize the time-
averaged global loss, i.e.,

lim
T→∞

1
T

T∑

t=1

E{ft(x̂t)} (10)

where T is the total number of iterations and the expectation
is taken over the randomness of the channel states and batch
datasets. We note that, as the training process goes on until
reaching the steady state, i.e., as T → ∞, the accumulated

4We use the real part of the channels to transmit the real vector xt. The
derivation can be easily extended to utilize both the real and imaginary parts
of the channels by separating xt into half as in [22], without major technical
alternation.

training loss 1
T

∑T
t=1 E{ft(x̂t)} over T iterations approaches

the final training loss E{f(x̂T )} at the T -th iteration.
We assume the following long-term transmit power con-

straint at each mobile device n:

lim
T→∞

1
T

T∑

t=1

E
{
‖sn

t ‖
2
}
≤ P̄n, ∀n (11)

where P̄n is the average transmit power limit. We also
consider possible short-term constraints on the local models,
given by X = {x : −xmax � x � xmax} ⊆ Rd, where �
represents entry-wise inequality and xmax = xmax1 with xmax

being the maximum model value and 1 being a vector of all
1’s.

We aim at selecting a sequence of local models {xn
t } from

X to minimize the accumulated training loss yielded by the
noisy global model {x̂t} after analog aggregation at the edge
server, while ensuring that the individual long-term transmit
power constraints at the mobile devices are satisfied. This leads
to the following stochastic optimization problem:

P1 : min
{xn

t ∈X}
lim

T→∞

1
T

T∑

t=1

E{ft(x̂t)}

s.t. lim
T→∞

1
T

T∑

t=1

E{gn
t (xn

t )} ≤ 0, ∀n (12)

where

gn
t (x) =

(wn)2

λ2
t

‖bn
t ◦ x‖2 − P̄n, (13)

the expectation is taken over the randomness of the channel
states and batch datasets. From (6) and (13), it is easy to see
that (12) is equivalent to (11).

Note that P1 is a stochastic optimization problem due to the
random channel states and batch datasets. In P1, the training
loss ft(x̂t) over batch dataset Bt is determined by the noisy
global model x̂t aggregated over the air from the local models
{xn

t }. The long-term transmit power violation gn
t (xn

t ) depends
on both the local channel state hn

t and the local model xn
t .

Because of the need for signal amplification at the receiver,
as shown in (7), a small transmit power amplifies the channel
noise in analog aggregation, which in turn deteriorates the
model training. Due to such coupling of model training and
analog aggregation caused by wireless fading channels, solv-
ing P1 requires simultaneous consideration for computation
and communication. Furthermore, compared with the one-shot
optimization problem that minimizes (1) with full dataset D,
the additional long-term transmit power constraints in (12) of
P1 require a more complicated online algorithm, especially
since the channel state and batch dataset varies over time.
In this work, without needing to know the channel or batch
dataset distribution, we aim to develop an online algorithm
based on the local channel state hn

t and batch dataset Bn
t at

each mobile device n, to compute a solution {xn
t } to P1.

IV. ONLINE MODEL UPDATING WITH

ANALOG AGGREGATION (OMUAA)

In this section, we present the design details of OMUAA.
Existing algorithms for FL in wireless networks alternatingly
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optimize model training and wireless transmission at each
iteration. In contrast, OMUAA jointly optimize model train-
ing and analog aggregation, while considering the mutual
impact between them over time. The local models yielded
by OMUAA are adaptive to the time-varying channel states.
Furthermore, the local models can be obtained in closed-
forms with low computational complexity. In the following,
we present OMUAA algorithms at the mobile devices and the
edge server.

A. OMUAA Algorithm

We first introduce a virtual queue Qn
t at each mobile

device n to account for the long-term transmit power constraint
(12) in P1. It has the following updating rule:

Qn
t = max{Qn

t−1 + gn
t (xn

t ), 0}, ∀n, ∀t. (14)

The role of Qn
t is similar to a Lagrangian multiplier for P1 or a

backlog queue for the long-term constraint violation, which is
a technique used in Lyapunov optimization [50]. However, we
note that, although a part of our performance bound analysis
for OMUAA borrows techniques from Lyapunov drift analysis,
OMUAA is structurally different from Lyapunov optimization
as explained in Section II.

Using the virtual queue in (14), we convert P1 into solving
a per-iteration optimization problem at each mobile device n,
given by

P2n : min
x∈X

〈∇fn
t (x̂t−1),x − x̂t−1〉 +

1
2α

‖x − x̂t−1‖
2

+ γQn
t−1g

n
t (x)

where α, γ > 0 are step-size parameters. Note that P2n

is a per-device per-iteration optimization problem using the
current local CSI hn

t , batch dataset Bn
t , and the virtual queue

length Qn
t−1, and is subject to the short-term constraints only.

Compared with the original P1, the long-term transmit power
constraint is converted to the third term of the objective
function in P2n, which is a penalization term on gn

t (x). Note
that different from problem (9), which does not consider the
communication noise, the local gradient ∇fn

t (x̂t−1) in P2n is
evaluated using the noisy global model x̂t−1. Note that one of
the main novelties of this work is to design the local model
xn

t as a part of the analog aggregation. When we update xn
t ,

we jointly optimize the training loss and transmit power over
time. In this sense, our method is a joint online optimization
of model training and analog aggregation.

In OMUAA, we perform local model updates on {xn
t } by

solving P2n. Note that the long-term transmit power constraint
function gn

t (x) is convex and the feasible set X is affine.
Furthermore, due to the regularization term 1

2α‖x − x̂t−1‖2,
P2n is a strongly convex optimization problem and therefore
can be solved efficiently using standard optimization tools. In
the following, we present a closed-form solution to P2n.

We observe that the gradient of the objective function of
P2n w.r.t. x is

∇fn
t (x̂t−1) +

1
α

(x − x̂t−1) + θn
t ◦ x (15)

Algorithm 1 OMUAA: Mobile device n’s algorithm
1: Initialize xn

1 = x̂1 = 0 and the virtual queue Qn
1 = 0.

For each t, do the following:
2: Update local model xn

t by solving P2n via (17).
3: Update local virtual queue Qn

t via (14).
4: Transmit signals sn

t in (6) to the edge server.

where θn
t ∈ Rd with the i-th entry given by

θn,i
t =

2γQn
t−1(w

n)2

λ2
t |h

n,i
t |2

. (16)

The optimal solution to P2n can be obtained by setting the
gradient in (15) to zero to solve for x and then projecting it
onto the affine set X . Thus, the local model update xn

t can be
computed in a closed form, given by

xn
t =

[
(1 + αθn

t )−1 ◦ (x̂t−1 − α∇fn
t (x̂t−1))

]xmax

−xmax
(17)

where a−1 is the entry-wise inverse operator and [x]ba =
min{b, max{x, a}} is the entry-wise projection operator.
Note that the minimization in P2n is entry-wise in xn

t and
therefore xn

t can be computed in parallel.
Compared with the standard local gradient descent update

for error-free FL in (8), the local model update in (17) is
scaled entry-wise by a factor 1

1+αθn,i
t

that depends on the ratio
of the long-term transmit power constraint violation measured
by Qn

t−1 and the individual channel power |hn,i
t |2. The local

model xn
t is updated roughly the same as the error-free case

(i.e., model update is scaled close to 1) when the channels are
strong, but its values decrease when the queue length Qn

t−1 is
relatively large compared with the channel gain. Therefore,
the local model update by OMUAA is both channel- and
power-aware. In Section IV-B, we will show that the update
sequence {xn

t } further satisfies individual long-term transmit
power constraints.

To summarize, OMUAA has the following two components:
• Each mobile device n first initializes the local models

xn
1 = x̂1 = 0 and the local virtual queue Qn

1 = 0. At each
iteration t, after obtaining its own local CSI hn

t and batch
dataset Bn

t , each mobile device n updates xn
t by solving P2n

via (17) and then updates Qn
t via (14). The mobile device then

transmits signals sn
t in (6) to the edge server. We summarize

the mobile device n’s algorithm in Algorithm 1.
• At each iteration t, the edge server receives signals yt in

(5) through analog aggregation of the signals {sn
t } transmitted

by the N mobile devices. The edge server recovers a noisy
global model x̂t in (7), which is then broadcasted to all
mobile devices. We summarize the edge server’s algorithm
in Algorithm 2.

The choice of step-size parameters α and γ will be discussed
in Section IV-B, after we derive the performance bounds for
OMUAA.

Remark 1. The computational complexity of calculating
the local batch gradient ∇fn

t (x̂t−1) in (17) depends on the
machine learning task. Compared with the local model update
for FL in (8), the additional computational complexity in (17)
is in computing the virtual queue Qn

t−1 and the factor θn
t , both
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Algorithm 2 OMUAA: Edge server’s algorithm
1: Initialize and broadcast step-size parameters α, γ > 0.

For each t, do the following:
2: Receive signals yt in (5) over the air.
3: Update noisy global model x̂t in (7)
4: Broadcast x̂t to all mobile devices.

are in the order of O(d). Therefore, the local model update in
(17) has low computational complexity.

B. Performance Bounds of OMUAA

In this section, we derive the performance bounds of
OMUAA. We develop new techniques, particularly to account
for the mutual impact of model training and analog aggrega-
tion over time. We first state the following assumptions, which
are required for our mathematical analysis. Specifically, we
require the gradient of the loss function, the output of the
constraint function, and the communication noise to be upper
bounded by some constants. These are mild assumptions that
are easily satisfied in practical systems.

Assumption 1. The loss function fn
t (x) has bounded gradient

∇fn
t (x): ∃ D > 0 s.t.,

‖∇fn
t (x)‖ ≤ D, ∀x ∈ Rd, ∀n, ∀t. (18)

Assumption 2. The constraint function gn
t (x) is bounded:

∃ G > 0, s.t.,

|gn
t (x)| ≤ G, ∀x ∈ X , ∀n, ∀t. (19)

Assumption 3. The communication noise nt is bounded:
∃ ρ > 0, s.t.,

‖nt‖ ≤ ρ, ∀t. (20)

1) Bound for the Accumulated Training Loss: Define Ln
t ,

1
2 (Qn

t )2 as a quadratic Lyapunov function and Δn
t , Ln

t −
Ln

t−1 as the corresponding Lyapunov drift for each mobile
device n. We first provide an upper bound on Δn

t in the
following lemma.

Lemma 1. The Lyapunov drift is upper bounded as follows:

Δn
t ≤

1
2
G2 + Qn

t−1g
n
t (xn

t ), ∀n, ∀t. (21)

Proof: From the virtual queue updating rule in (14), we have

Δn
t =

1
2

[
(max{Qn

t−1 + gn
t (xn

t ), 0})2 − (Qn
t−1)

2
]

≤
1
2

[
(Qn

t−1 + gn
t (xn

t ))2 − (Qn
t−1)

2
]

=
1
2
[gn

t (xn
t )]2 + Qn

t−1g
n
t (xn

t )
(a)

≤
1
2
G2 + Qn

t−1g
n
t (xn

t )

where (a) follows from gn
t (x) being bounded in (19).

We also require the following lemma from [39, Lemma 2.8].

Lemma 2. [39, Lemma 2.8] Let X ∈ Rd be a nonempty con-
vex set. Let f(x) : Rd → R be a 1

α -strongly convex function
over X w.r.t. a norm ‖ ∙ ‖. Let z = arg minx∈X {f(x)}. Then,
for any y ∈ X , we have f(z) ≤ f(y) − 1

2α‖y − z‖2.

We consider a block fading channel model, where ht

over iteration t are i.i.d. [18], [21]-[23], [26]. The sampled
batch datasets Bt are assumed to be i.i.d. over iteration t
as in the standard stochastic gradient descent approach. The
distributions of hn

t and Bn
t are unknown and can be arbi-

trary. We assume the power-scaling factor λt depends on
the underlying system states. For i.i.d. channel state ht and
batch dataset Bt, there exists a stationary randomized optimal
global solution x?

t to P1 over noiseless channels, which
depends only on the (unknown) distributions of ht and Bt,
and achieves the minimum objective value (i.e., the minimum
accumulated training loss) of P1, denoted by f? [50]. Using
Lemmas 1 and 2, the following theorem provides an upper
bound on the accumulated training loss by OMUAA.

Theorem 1. For any α, γ > 0, regardless of the channel
and batch dataset distributions, the accumulated training loss
yielded by OMUAA is upper bounded by

1
T

T∑

t=1

E{ft(x̂t)}≤f?+
D2α

2
+

G2γ

2
+

R2+ρ2Λ2,T +4RρΛT

2αT

+
(2R+λmaxρ)ΠT

αT
+

fT (x̂T )−f1(x?
1)

T
(22)

where R =
√

dxmax, λmax = max{λt, ∀t}, ΛT =
∑T

t=1 E{λt},
Λ2,T =

∑T
t=1 E{λ

2
t}, and ΠT =

∑T
t=1 E{‖x

?
t − x?

t+1‖} is
the accumulated variation of the optimal global model over
noiseless channels.

Proof: The objective function in P2n is 1
α -strongly convex

over X w.r.t. Euclidean norm ‖ ∙ ‖ due to the regularization
term 1

2α‖x−x̂t−1‖2. Since xn
t minimizes the objective of P2n

over X , from Lemma 2, we have

〈∇fn
t (x̂t−1),x

n
t − x̂t−1〉+

1
2α

‖xn
t − x̂t−1‖

2+ γQn
t−1g

n
t (xn

t )

≤ 〈∇fn
t (x̂t−1),x

?
t − x̂t−1〉 + γQn

t−1g
n
t (x?

t )

+
1
2α

(
‖x?

t − x̂t−1‖
2 − ‖x?

t − xn
t ‖

2
)
. (23)

Now, we bound the third term on the right-hand side (RHS)
of (23). We have

‖x?
t − x̂t−1‖

2 − ‖x?
t − xn

t ‖
2

(a)

≤ ‖x?
t − x̂t−1‖

2 − ‖x?
t+1 − x̂t‖

2 − ‖x?
t − x?

t+1‖
2

+ 2‖x?
t+1 − x̂t‖‖x

?
t − x?

t+1‖ + ‖x?
t − x̂t‖

2 − ‖x?
t − xn

t ‖
2

(b)

≤ ψt + 2‖x?
t+1 − x̂t‖πt + φn

t (24)

where (a) is because ‖a+b‖2 ≥ ‖a‖2+‖b‖2−2‖a‖‖b‖; and
(b) follows from defining ψt , ‖x?

t − x̂t−1‖2−‖x?
t+1− x̂t‖2,

πt , ‖x?
t − x?

t+1‖, and φn
t , ‖x?

t − x̂t‖2 − ‖x?
t − xn

t ‖
2.

Substituting (24) into (23), adding fn
t (x̂t−1) on both sides,

applying the first order condition of convexity

fn
t (x̂t−1) + 〈∇fn

t (x̂t−1),x
?
t − x̂t−1〉 ≤ fn

t (x?
t ) (25)

to the first term on the RHS of (23), and rearranging the terms
on both sides, we have

fn
t (x̂t−1) − fn

t (x?
t )
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≤ −〈∇fn
t (x̂t−1),x

n
t − x̂t−1〉 −

1
2α

‖xn
t − x̂t−1‖

2

+ γQn
t−1g

n
t (x?

t ) − γQn
t−1g

n
t (xn

t )

+
1
2α

(ψt + 2‖x?
t+1 − x̂t‖πt + φn

t ). (26)

We now bound the RHS of (26). Completing the square and
noting that ∇f(x) is bounded in (18), we have

− 〈∇fn
t (x̂t−1),x

n
t − x̂t−1〉 −

1
2α

‖xn
t − x̂t−1‖

2

= −

∥
∥
∥
∥

√
α

2
∇fn

t (x̂t−1) +
xn

t − x̂t−1√
2α

∥
∥
∥
∥

2

+
α

2
‖∇fn

t (x̂t−1)‖
2

≤
α

2
‖∇fn

t (x̂t−1)‖
2 ≤

D2α

2
. (27)

From ‖a + b‖ ≤ ‖a‖ + ‖b‖, the definition of x̂t in (7), X
being bounded, i.e.,

‖x‖ ≤ R, ∀x ∈ X , (28)

where R =
√

dxmax, and nt being bounded in (20), we have

‖x?
t+1 − x̂t‖ ≤ ‖x?

t+1‖ + ‖xt‖ + ‖λtnt‖ ≤ 2R + λmaxρ. (29)

Substituting (21), (27), and (29) into the RHS of (26),
multiplying both sides by wn, summing over n = 1 to N ,
and taking expectation, we have

E{ft(x̂t−1)} − E{ft(x
?
t )}

≤
D2α

2
+γ

( N∑

n=1

wnE{Qn
t−1g

n
t (x?

t )}+
1
2
G2−

N∑

n=1

wnE{Δn
t }

)

+
1
2α

(

E{ψt}+2(2R+λmaxρ)E{πt}+
N∑

n=1

wnE{φn
t }

)

.(30)

From x?
t being independent of Qn

t−1 ≥ 0, and E{gn
t (x?

t )} ≤
0, we have E{Qn

t−1g
n
t (x?

t )|Q
n
t−1} = Qn

t−1E{g
n
t (x?

t )} ≤ 0.
It then follows from the iterated law of expectation that
E{Qn

t−1g
n
t (x?

t )} = E{E{Qn
t−1g

n
t (x?

t )|Q
n
t−1}} ≤ 0. Further

note that the batch datasets Bt are i.i.d. over iterations, we
have E{ft(x)} = E{ft−1(x)}, ∀x ∈ Rd, ∀t and therefore
E{ft(x̂t−1)} = E{ft−1(x̂t−1)}. Substituting them into the
RHS of (30) and summing it over t = 2 to T , we have
T−1∑

t=1

E{ft(x̂t)} −
T∑

t=2

E{ft(x
?
t )}

≤
D2α

2
T +

G2γ

2
T − γ

T∑

t=2

N∑

n=1

wnE{Δn
t } +

1
2α

T∑

t=2

E{ψt}

+
2R +λmaxρ

α

T∑

t=2

E{πt} +
1
2α

T∑

t=2

N∑

n=1

wnE{φn
t }. (31)

We now bound the RHS of (31). From the definition of Δt,
Qn

1 = 0, and Qn
t ≥ 0, ∀t, we have

−
T∑

t=2

E{Δn
t } =

1
2
E{(Qn

1 )2} −
1
2
E{(Qn

T )2} ≤ 0. (32)

Noting that ψt is a telescoping term, x̂1 = 0 by initialization,
and ‖x?

t ‖ ≤ R, ∀t, we have
T∑

t=2

E{ψt}=E{‖x?
2 − x̂1‖

2}−E‖x?
T+1 − x̂T ‖

2} ≤ R2. (33)

For the last term on the RHS of (31), we have

T∑

t=2

N∑

n=1

wnE{φn
t } =

T∑

t=2

N∑

n=1

wnE{‖x?
t −x̂t‖

2 − ‖x?
t −xn

t ‖
2}

(a)

≤
T∑

t=2

N∑

n=1

wn(E{‖x?
t − xt‖

2} − E{‖x?
t − xn

t ‖
2})

+
T∑

t=2

E{‖λtnt‖
2} + 2

T∑

t=2

E{‖x?
t − xt‖‖λtnt‖}

(b)

≤
T∑

t=2

E{‖λtnt‖
2} + 2

T∑

t=2

E{‖x?
t − xt‖‖λtnt‖}

(c)

≤ ρ2Λ2,T + 4RρΛT (34)

where (a) follows form ‖a+b‖2 ≤ ‖a‖2 + ‖b‖2 +2‖a‖‖b‖,
(b) is because of the separate convexity of Euclidean norm
and the definition of xt in (4) such that for any t

N∑

n=1

wn(E{‖x?
t − xt‖

2} − E{‖x?
t − xn

t ‖
2})

≤
N∑

n=1

wn

( N∑

j=1

(wjE{‖x?
t −xj

t‖
2})−E{‖x?

t −xn
t ‖

2

)

= 0,

and (c) follows from nt and X being bounded in (20) and
(28), respectively, and the definitions of Λ2,T and ΛT .

Substituting (32)-(34) into (31) and from the definition of
ΠT and f?, we have (22).

Theorem 1 provides a general bound for the accumulated
training loss by OMUAA, for any values of step-size param-
eters α and γ, and power-scaling factors {λt}. The following
corollary provides the accumulated training loss by OMUAA
when α, γ, and {λt} take specific values. It follows by
substituting the corresponding α, γ, and {λt} into the general
bound in (22).

Corollary 1. For any ε > 0, set α = γ = ε and λt = ε2, ∀t.
The accumulated training loss yielded by OMUAA is upper
bounded by

1
T

T∑

t=1

E{ft(x̂t)}≤f?+O((1+ρ2+ΠT ρ)ε), ∀T ≥
1
ε2

. (35)

Corollary 1 provides an upper bound on the objective value
of P1 in (35), i.e., the accumulated training loss yielded by
the noisy global model. It indicates that for all T ≥ 1

ε2 , the
accumulate training loss produced by OMUAA over noisy
channels is within O((1+ρ2+ΠT ρ)ε) to the optimum achieved
over noiseless channels. Note that ΠT can be small when the
channel state and batch dataset do not vary too drastically
over time. In particular, when the channel is static and the
batch dataset is fixed (e.g., full batch dataset D), we have
ΠT = 0. The impact of noise on the accumulated training loss
is quantified by its upper bound ρ in (20). As T approaches
infinity (i.e., ε becomes infinitely small), the accumulated
training loss yielded by OMUAA is guaranteed to converge.
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2) Bound for the Long-Term Transmit Power: We now
proceed to provide a performance bound on the individual
long-term transmit power constraint violation at each mobile
device by OMUAA.

Theorem 2. For any α, γ > 0, the violation of each individual
long-term transmit power constraint is upper bounded by

1
T

T∑

t=1

gn
t (xn

t )≤
G

T
+

αγG2+2αDR+(R+λmaxρ)2

2αγP̄nT
, ∀n. (36)

Proof: Since xn
t minimizes the objective of P2n over X ,

which contains 0, we have

〈∇fn
t (x̂t−1),x

n
t − x̂t−1〉 +

1
2α

‖xn
t − x̂t−1‖

2+ γQn
t−1g

n
t (xn

t )

(a)

≤ 〈∇fn
t (x̂t−1),−x̂t−1〉 +

1
2α

‖x̂t−1‖
2 − γQn

t−1P̄
n (37)

where (a) follows from gn
t (0) = −P̄n. Rearranging terms of

(37), we have

γQn
t−1g

n
t (xn

t )≤−γQn
t−1P̄

n−〈∇fn
t (x̂t−1),x

n
t 〉+

1
2α

‖x̂t−1‖
2

(a)

≤−γQn
t−1P̄

n + DR +
(R + λmaxρ)2

2α
(38)

where (a) follows from ∇ft(x), nt, and X being bounded in
(18), (20), and (28), respectively.

Substituting (38) into the second term on the RHS of (21),
we have

Δn
t ≤ −Qn

t−1P̄
n +

G2

2
+

DR

γ
+

(R + λmaxρ)2

2αγ
.

Therefore, a sufficient condition for Δn
t < 0 is

Qn
t−1 >

αγG2 + 2αDR + (R + λmaxρ)2

2αγP̄n
. (39)

If (39) holds, we have Qn
t < Qn

t−1, i.e., the virtual queue
decreases; otherwise, the increment from Qn

t−1 to Qn
t is upper

bounded, since Qn
t − Qn

t−1 ≤ gn
t (xn

t ) ≤ G. It follows that,
the virtual queue is upper bounded for all t by

Qn
t ≤ G +

αγG2 + 2αDR + (R + λmaxρ)2

2αγP̄n
. (40)

From the virtual queue dynamics in (14), we have Qn
t ≥

Qn
t−1 + gn

t (xn
t ), ∀t. Summing it over t = 2 to T , we have

∑T
t=2 gn

t (xn
t ) =

∑T
t=2 Qn

t −Qn
t−1 = Qn

T −Qn
1 = Qn

T . Noting
that gn

1 (xn
1 ) = −P̄n < 0, we have 1

T

∑T
t=1 gn

t (xn
t ) ≤ Qn

T

T .
Substituting the virtual queue upper bound in (40) into this
inequality, we have (36).

From Theorem 2, which is for any step-size parameters α
and γ, and power-scaling factors {λt}, we have the following
corollary for some specific values of α, γ, and {λt}.

Corollary 2. For any ε > 0, set α = γ = ε and λt = ε2, ∀t.
The individual long-term transmit power constraint violations
yielded by OMUAA is upper bounded by

1
T

T∑

t=1

gn
t (xn

t ) ≤ O((1 + ρ2)ε), ∀n, ∀T ≥
1
ε3

. (41)

Corollary 2 implies that for each mobile device n, OMUAA
guarantees that the deviation from its average transmit power
limit P̄n is within O((1 + ρ2)ε) if T ≥ 1

ε3 . As T approaches
infinity, the long-term power constraint violation goes to zero.

Remark 2. The convergence analysis for FL in the ma-
chine learning literature, such as [9]-[17], mainly focuses on
bounding the training loss. Different from these convergence
analysis, we analyze the mutual impact between model training
and analog aggregation over time, to provide performance
bounds on both the accumulated training loss and the long-
term transmit power. In particular, when we bound the training
loss by OMUAA in Theorem 1, we need to consider the
additional impact of the long-term transmit power constraints
on the training loss, which is not considered in [9]-[17].
Furthermore, we need to provide a convergence analysis on
the long-term transmit power, which is given in Theorem 2.
Therefore, our performance analysis requires new techniques
to simultaneously bound the accumulated training loss and the
long-term transmit power.

V. ONLINE MODEL UPDATING WITH ANALOG

AGGREGATION AND DOUBLE REGULARIZATION

In this section, we propose a variant of the OMUAA
algorithm with double regularization on both the local and
global models, together with a new constraint penalty on
the transmit power violation. While OMUAA-DR requires an
additional step-size parameter and some extra space to store
the local model, it significantly reduces the convergence time
of long-term transmit power violation, from O( 1

ε3 ) yielded
by OMUAA to O( 1

ε ), while keeping the the same O( 1
ε2 )

convergence time of training loss.

A. OMUAA-DR Algorithm

We use double regularization on the previous local model
1
2β ‖x−xn

t−1‖
2 and global model 1

2α‖x−x̂t−1‖2 to update the
new local model xn

t at each mobile device n, where α, β > 0
are step-size parameters. The double regularization approach
prevents the xn

t from deviating too far away from either xn
t−1

or x̂t−1, since both of them help to minimize the training loss
and transmit power violation.

Furthermore, for the aforementioned double regularization
to be effective, we require a new virtual queue Q̃n

t at each
mobile device n for the individual long-term transmit power
constraints (12) in P1. Its updating rule is given by

Q̃n
t = max{−γgn

t (xn
t ), Q̃n

t−1 + γgn
t (xn

t )}, ∀n, ∀t (42)

where γ > 0 is a step-size parameter.5

In OMUAA-DR, we solve the following per-iteration op-
timization problem at each mobile device n, subject to the
short-term constraints only:

P3n : min
x∈X

〈∇fn
t (x̂t−1),x − x̂t−1〉 +

1
2α

‖x − x̂t−1‖
2

5Compared with the standard virtual queue updating rule (14) in OMUAA,
the maximum in (42) is taken over the negative constraint violation
−γgn

t (xn
t ) instead of zero. Such negative lower bound was first proposed in

[51] for centralized OCO with time-invariant long-term constraints. Here, we
apply it to distributed online learning with model averaging, and the long-term
constraints are time-varying, so our algorithm and analysis are substantially
different from those of [51].
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Algorithm 3 OMUAA-DR: Mobile device n’s algorithm

1: Initialize xn
1 = x̂1 = 0, gn

1 (∙) ≡ 0, and Q̃n
1 = 0.

For each t, do the following:
2: Update local model xn

t by solving P3n via (45).
3: Update local virtual queue Q̃n

t via (42).
4: Transmit signals sn

t in (6) to the edge server.

+ [Q̃n
t−1+γgn

t−1(x
n
t−1)]γgn

t (x)+
1
2β

‖x−xn
t−1‖

2.

Compared with the per-iteration optimization problem P2n

in OMUAA, we introduce a new constraint penalty Q̃n
t−1 +

γgn
t−1(x

n
t−1) and double regularization on the previous local

model and global models.
In the following, we show that P3n has a closed-form

solution. Taking the gradient of the objective function of P3n

w.r.t. x, we have

∇fn
t (x̂t−1) +

1
α

(x − x̂t−1) +
1
β

(x − xn
t−1) + θ̃

n

t ◦ x (43)

where the i-th entry of θ̃
n

t is given by

θ̃n,i
t =

2γ[Q̃n
t−1 + γgn

t−1(x
n
t−1)](w

n)2

λ2
t |h

n,i
t |2

. (44)

Setting the gradient in (43) to zero to solve for x and then
projecting it onto X , we have a closed-form local model
update for xn

t , given by

xn
t =

[(
α + β

β
1 + αθ̃

n

t

)−1

◦

(

x̂t−1 +
α

β
xn

t−1 − α∇fn
t (x̂t−1)

)]xmax

−xmax

. (45)

To summarize, in OMUAA-DR, each mobile device n first
initializes the models xn

1 = x̂1 = 0, the local constraint
function gn

1 (∙) ≡ 0, and the local virtual queue Q̃n
1 = 0. At the

t-th iteration, each mobile device n solves P3n for its local
model xn

t via (45) and then updates its local virtual queue
Q̃n

t via (42). Then, each mobile device n transmit signals sn
t

in (6) to the edge server. We summarize mobile device n’s
algorithm in Algorithm 3. The edge server’s algorithm is the
same as Algorithm 2. The choice of step-size parameters α,
β, and γ will be discussed in Section V-B, after we derive the
performance bounds for OMUAA-DR.

Remark 3. Compared with the local model update (17) in
OMUAA, (45) also depends on the previous local model
xn

t−1 due to the additional regularization 1
2β ‖x − xn

t−1‖
2.

Furthermore, the step-size parameters α and β tune the relative
weights of the previous local model xn

t−1 and global model
x̂t−1 on the new local model update. Therefore, OMUAA-
DR requires some additional memory to store the previous
local model xn

t−1 and transmit power violation gn
t−1(x

n
t−1),

as well as an additional step-size parameter β. However, the
computational complexity of OMUAA-DR is the same as
OMUAA.

B. Performance Bounds of OMUAA-DR

In this section, we derive the performance bounds of
OMUAA-DR, taking into account its new constraint penalty
with double regularization. Compared with OMUAA, the main
technical challenges in analyzing the new constraint penalty
with double regularization are to consider its impacts on
both the model training and analog aggregation over time, to
show an improved convergence time of the long-term transmit
power, while maintaining the same convergence time of the
accumulated training loss. Specifically, the new virtual queue
updating rule in (42) will be shown to provide new virtual
queue properties and a new Lyapunov drift upper bound.
The double regularization 1

2α‖x − x̂t−1‖2 + 1
2β ‖x−xn

t−1‖
2

in P3n will provide some additional freedom to construct
new telescoping sums. The new virtual queue together with
the double regularization help cancel undesired leftover terms
in the performance bounds of OMUAA-DR for an improved
convergence behavior.

We require the following additional assumption on the
Lipschitz continuity of the transmit power constraint function.
Note that the value of the Lipschitz continuity constant can
be large when the channel power is small. However, it is still
usually bounded in practice.

Assumption 4. The constraint function gn
t (x) is L-Lipschitz

continuous: ∃ L > 0, s.t.,

|gn
t (x) − gn

t (y)| ≤ L‖x − y‖, ∀x,y ∈ X , ∀n, ∀t. (46)

The following lemma provides bounds on the local virtual
queue Q̃n

t .

Lemma 3. The local virtual queue Q̃n
t generated by OMUAA-

DR is bounded by the following inequalities:

Q̃n
t ≥ 0, ∀n, ∀t, (47)

Q̃n
t + γgn

t (xn
t ) ≥ 0, ∀n, ∀t. (48)

Proof: We prove (47) by induction. The virtual queue is
initialized as Q̃n

1 = 0. Suppose Q̃n
t−1 ≥ 0 for any t > 1. From

the virtual queue dynamics in (42), if gn
t (xn

t ) < 0, we have
Q̃n

t ≥ −γgn
t (xn

t ) ≥ 0; otherwise, we have Q̃n
t ≥ Q̃n

t−1 +
γgn

t (xn
t ) ≥ 0. Combining the above two cases, we have (47).

We have Q̃n
t ≥ −γgn

t (xn
t ), ∀t > 1 from the virtual queue

dynamics in (42). Further note that gn
1 (∙) ≡ 0 and Q̃n

1 = 0 by
initialization, we have (48).

Define L̃n
t ,

1
2 (Q̃n

t )2 as a quadratic Lyapunov function and
Δ̃n

t , L̃n
t −L̃n

t−1 as the corresponding Lyapunov drift for each
mobile device n. In the following lemma, we provide an upper
bound on Δ̃n

t .

Lemma 4. The Lyapunov drift is upper bounded as follows:

Δ̃n
t ≤ γQ̃n

t−1g
n
t (xn

t ) + γ2[gn
t (xn

t )]2, ∀n, ∀t. (49)

Proof: It is easy to verify that (49) holds for either of the
two cases in the virtual queue updating rule (42): i) Q̃n

t =
−γgn

t (xn
t ) and ii) Q̃n

t = Q̃n
t−1 + γgn

t (xn
t ).
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1) Bounding the Accumulated Training Loss: Using Lem-
mas 2-4, we provide an upper bound on the accumulated
training loss by OMUAA-DR over noisy channels in the
following theorem.

Theorem 3. For any α, γ > 0 and β ≤ 1
2γ2L2 , regardless of

the channel and batch dataset distributions, the accumulated
training loss yielded by OMUAA-D is upper bounded by

1
T

T∑

t=1

E{ft(x̂t)}≤f?+
D2α

2
+

G2γ2

2T
+

R2+ρ2Λ2,T +4RρΛT

2αT

+
(2R + λmaxρ)ΠT

αT
+

2RΠT

βT
+

γ2ΘT

T

+
R2

2βT
+

fT (x̂T ) − f1(x?
1)

T
.

where ΘT ,
∑T

t=1 maxx∈X ,n E
{
[gn

t (x) − gn
t−1(x)]2

}
is the

accumulated variation of the transmit power constraint func-
tion over time.

Proof: The objective function in P3n is ( 1
α + 1

β )-strongly
convex over X w.r.t. Euclidean norm ‖ ∙ ‖ due to the double
regularization. Since xn

t minimizes the objective of P3n over
X , from Lemma 2, we have

〈∇fn
t (x̂t−1),x

n
t − x̂t−1〉 +

1
2α

‖xn
t − x̂t−1‖

2

+ [Q̃n
t−1 + γgn

t−1(x
n
t−1)]γgn

t (xn
t ) +

1
2β

‖xn
t − xn

t−1‖
2

≤ 〈∇fn
t (x̂t−1),x

?
t − x̂t−1〉 + [Q̃n

t−1+ γgn
t−1(x

n
t−1)]γgn

t (x?
t )

+
1
2α

(‖x?
t − x̂t−1‖

2 − ‖x?
t − xn

t ‖
2)

+
1
2β

(‖x?
t − xn

t−1‖
2 − ‖x?

t − xn
t ‖

2). (50)

To bound the last term on the RHS of (50), we have

‖x?
t − xn

t−1‖
2 − ‖x?

t − xn
t ‖

2

= ‖x?
t − xn

t−1‖
2 − ‖x?

t+1 − xn
t + x?

t − x?
t+1‖

2

(a)

≤ ‖x?
t − xn

t−1‖
2 − ‖x?

t+1 − xn
t ‖

2 − ‖x?
t − x?

t+1‖
2

+ 2‖x?
t+1 − xn

t ‖‖x
?
t − x?

t+1‖
(b)

≤ Ψn
t + 4Rπt. (51)

where (a) is because ‖a+b‖2 ≥ ‖a‖2+‖b‖2−2‖a‖‖b‖, and
(b) follows from defining Ψn

t , ‖x?
t −xn

t−1‖
2−‖x?

t+1−xn
t ‖

2.
Substituting (24), (25), (29), and (51) into (50), we have

fn
t (x̂t−1) − fn

t (x?
t )

≤ −〈∇fn
t (x̂t−1),x

n
t − x̂t−1〉 −

1
2α

‖xn
t − x̂t−1‖

2

+ [Q̃n
t−1 + γgn

t−1(x
n
t−1)][γgn

t (x?
t ) − γgn

t (xn
t )]

−
1
2β

‖xn
t −xn

t−1‖
2 +

1
2α

[ψt + 2(2R + λmaxρ)πt + φn
t ]

+
1
2β

(Ψn
t + 4Rπt). (52)

Note that

− [Q̃n
t−1 + γgn

t−1(x
n
t−1)]γgn

t (xn
t )

(a)

≤ −Δ̃n
t + γ2[gn

t (xn
t )]2 − γ2gn

t−1(x
n
t−1)g

n
t (xn

t )

(b)
= −Δ̃n

t +
γ2

2
[gn

t (xn
t )]2 −

γ2

2
[gn

t−1(x
n
t−1)]

2

+
γ2

2
[gn

t (xn
t ) − gn

t (xn
t−1) + gn

t (xn
t−1) − gn

t−1(x
n
t−1)]

2

(c)

≤ −Δ̃n
t + Φn

t + γ2L2‖xn
t − xn

t−1‖
2 + Ωn

t (53)

where Φn
t ,

γ2

2 [gn
t (xn

t )]2 − γ2

2 [gn
t−1(x

n
t−1)]

2 and Ωn
t ,

γ2[gn
t (xn

t−1) − gn
t−1(x

n
t−1)]

2. Here, (a) follows from (49) in
Lemma 4, (b) is because ab = 1

2 [a2 + b2 − (a− b)2], and (c)
follows from 1

2 (a+b)2 ≤ a2+b2 and gn
t (x) being L-Lipschitz

continuous in (46).
Substituting (27) and (53) into (52), multiplying both sides

by wn, summing over n = 1 to N , taking expectation, noting
that E{ft(x)} = E{ft−1(x)}, and then summing over t = 2
to T , on the condition that β ≤ 1

2γ2L2 , we have

T−1∑

t=1

E{ft(x̂t)} −
T∑

t=2

E{ft(x
?
t )}

≤
D2α

2
T +

T∑

t=2

N∑

n=1

wnE
{

[Q̃n
t−1 + γgn

t−1(x
n
t−1)]γgn

t (x?
t )
}

+
T∑

t=2

N∑

n=1

wnE

{

−Δ̃n
t + Φn

t + Ωn
t +

1
2α

φn
t +

1
2β

Ψn
t

}

+
1
2α

T∑

t=2

E{ψt} +

(
2R+λmaxρ

α
+

2R

β

) T∑

t=2

E{πt}. (54)

We now bound the RHS of (54). Note that Q̃n
t +γgn

t (xn
t ) ≥

0 for any t in (48). Then, from x?
t being independent of Q̃n

t−1

and gn
t−1(x

n
t−1), and the iterated law of expectation, we can

show that E{[Q̃n
t−1 + γgn

t−1(x
n
t−1)]γgn

t (x?
t )} ≤ 0 for any t >

1. Note that −E{Δ̃n
t }, E{Φn

t }, E{Ψn
t }, and E{ψt} are all

telescoping terms such that their sum over t = 2 to T are upper
bounded by 1

2E{(Q̃
n
1 )2} = 0, 1

2E{γ
2[gn

t (xn
T )]2} ≤ 1

2γ2G2,
E{‖x?

2−xn
1‖

2} ≤ R2, and E{‖x?
2−x̂1‖2} ≤ R2, respectively.

Then, from (34) and the definitions of ΠT and ΘT , we have

T−1∑

t=1

E{ft(x̂t)} −
T∑

t=2

E{ft(x
?
t )}

≤
D2α

2
T +

G2γ2

2
+

R2 + ρ2Λ2,T + 4RρΛT

2α

+

(
2R + λmaxρ

α
+

2R

β

)

ΠT + γ2ΘT +
R2

2β
.

Adding fT (x̂T )−f1(x?
1) on both sides of the above inequality,

we complete the proof.
Theorem 3 provides a general bound on the accumulated

training loss yielded by OMUAA-DR. The following corollary
provides the accumulated training loss of OMUAA-DR when
the step-size parameters α, β, and γ and the power-scaling
factors {λt} take specific values.

Corollary 3. For any ε > 0, set α = ε, γ2 = 1
ε , β = ε

2L2 ,
and λt = ε2, ∀t. The accumulated training loss yielded by
OMUAA-DR is upper bounded by

1
T

T∑

t=1

ft(x̂t)≤f?+O((1+ρ2+ΠT ρ+ΘT )ε), ∀T ≥
1
ε2

. (55)
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Corollary 3 states that for all T ≥ 1
ε2 , the accumulated train-

ing loss yielded by OMUAA-DR over noisy channels is within
O((1 + ρ2 + ΠT ρ + ΘT )ε) to the optimum achieved under
noiseless channels. Compared with the bound in Corollary 1
for OMUAA, (55) has an additional ΘT term, which measures
the accumulated variation of the transmit power constraint
functions. Note that ΘT can be small when the channels are
relatively stable over time. Particularly, we have ΘT = 0 for
static channels.

2) Bounding the Long-Term Transmit Power: We now
provide an upper bound on the individual long-term transmit
power constraint violations by OMUAA-DR in the following
theorem.

Theorem 4. For any α, β, γ > 0, the violation of each
individual long-term transmit power constraint yielded by
OMUAA-DR is upper bounded by

1
T

T∑

t=1

gn
t (xn

t ) ≤
2G

T
+

2γ2G2 + DR

γ2P̄nT
+

(R + λmaxρ)2

2αγ2P̄nT

+
R2

2βγ2P̄nT
. (56)

Proof: Since xn
t minimizes the objective of P3n over X ,

which contains 0, and gn
t (0) = −P̄n, ∀t > 1, we have

〈∇fn
t (x̂t−1),x

n
t − x̂t−1〉 +

1
2α

‖xn
t − x̂t−1‖

2

+ [Q̃n
t−1 + γgn

t−1(x
n
t−1)]γgn

t (xn
t ) +

1
2β

‖xn
t − xn

t−1‖
2

≤ 〈∇fn
t (x̂t−1),−x̂t−1〉 +

1
2α

‖x̂t−1‖
2

− γ[Q̃n
t−1 + γgn

t−1(x
n
t−1)]P̄

n +
1
2β

‖xn
t−1‖

2. (57)

Rearranging the terms of (57), we have

γQ̃n
t−1g

n
t (xn

t )
(a)

≤ −γQ̃n
t−1P̄

n + γ2|gn
t−1(x

n
t−1)|P̄

n − γ2gn
t−1(x

n
t−1)g

n
t (xn

t )

− 〈∇fn
t (x̂t−1),x

n
t 〉+

1
2α

‖x̂t−1‖
2 +

1
2β

‖xn
t−1‖

2

(b)

≤ −γQ̃n
t−1P̄

n + γ2GP̄n + γ2G2 + DR

+
(R + λmaxρ)2

2α
+

R2

2β
(58)

where (a) is because −gn
t−1(x

n
t−1)P̄

n ≤ |gn
t−1(x

n
t−1)|P̄

n, and
(b) follows from the bounds on ∇fn

t (x), gn
t (x), nt, and X in

(18), (19), (20), and (28) respectively.
Substituting (58) into (49) and noting that [gn

t (xn
t )]2 ≤ G2,

we have

Δ̃n
t ≤ −γQ̃n

t−1P̄
n + γ2GP̄n + 2γ2G2 + DR

+
(R + λmaxρ)2

2α
+

R2

2β
. (59)

Thus, a sufficient condition for Δ̃n
t < 0 is

Q̃n
t−1 > γG +

2γ2G2+DR

γP̄n
+

(R+λmaxρ)2

2αγP̄n
+

R2

2βγP̄n
. (60)

If (60) holds, we have Q̃n
t < Q̃n

t−1; otherwise, the maximum
increase from Q̃n

t−1 to Q̃n
t is γG since γgn

t (xn
t ) ≤ γG.

Therefore the virtual queue is bounded for any t > 1 by

Q̃n
t ≤ 2γG +

2γ2G2+DR

γP̄n
+

(R+λmaxρ)2

2αγP̄n
+

R2

2βγP̄n
. (61)

From the virtual queue dynamics in (42), we have Q̃n
t ≥

Q̃n
t−1 + γgn

t (xn
t ), ∀t > 1. Summing it over t = 2 to T and

rearranging the terms, we have γ
∑T

t=2 gn
t (xn

t ) ≤
∑T

t=2(Q̃
n
t −

Q̃n
t−1) = Q̃n

T − Q̃n
1 = Q̃n

T . Further noting that gn
1 (∙) ≡ 0 by

initialization, we have 1
T

∑T
t=1 gn

t (xn
t ) ≤ Q̃n

T

γT . Substituting the
virtual queue upper bound (61) into the above inequality, we
have (56).

Following Theorem 4, for specific values of the step-size
parameters α, β, and γ and the power-scaling factors {λt},
we have the following corollary.

Corollary 4. For any ε > 0, set α = ε, γ2 = 1
ε , β = ε

2L2 ,
and λt = ε2, ∀t. The individual long-term transmit power con-
straint violations yielded by OMUAA-DR is upper bounded
by

1
T

T∑

t=1

gn
t (xn

t ) ≤ O((1 + ρ2)ε), ∀n, ∀T ≥
1
ε
. (62)

Compared with the transmit power constraint violation
bound of OMUAA in Corollary 2, we observe that OMUAA-
DR reduces the O( 1

ε3 ) convergence time of OMUAA to O( 1
ε ).

Remark 4. Compared with OMUAA, OMUAA-DR requires
an additional algorithm parameter β due to its double reg-
ularization, and it also requires an additional Assumption 4
on the Lipschitz continuity of the constraint function for
its performance analysis. Furthermore, the upper bound on
the accumulated training loss yielded by OMUAA-DR in
Corollary 3 has an additional ΘT term that measures the ac-
cumulated variation of the transmit power constraint function,
compared with the one provided by OMUAA in Corollary 1.
However, OMUAA-DR substantially reduces the convergence
time of the long-term transmit power constraint violations in
Corollary 4. Later in Section VII, we will further show that
OMUAA-DR provides better learning performance and faster
convergence on the long-term transmit power than OMUAA.

VI. EXTENSION TO ANALOG GRADIENT AGGREGATION

In the previous sections, we have considered OMUAA and
OMUAA-DR with analog model aggregation, where the edge
server receives the aggregated global model from the mobile
devices. We now extend both OMUAA and OMUAA-DR to
the case of analog gradient aggregation, where the edge server
receives the aggregated gradient from the mobile devices to
reconstruct the aggregated global model.

A. Over-the-Air Analog Gradient Aggregation

In the presence of channel noise in over-the-air FL, the
standard local gradient descent model update in (8) for error-
free FL becomes xn

t = x̂t−1 − α∇fn
t (x̂t−1), where x̂t−1 is
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the noisy global model. For analog gradient aggregation, each
mobile device n generates its transmitted signals

s̃n
t =

1

λ̃ t
wnbn

t ◦
(
− α∇fn

t (x̂t−1)
)

(63)

by replacing the local model xn
t in sn

t (6) with the local gra-
dient (or the model difference) −α∇fn

t (x̂t−1) = xn
t − x̂t−1.

The received signals at the edge server is given by

ỹt =
N∑

n=1

hn
t ◦ s̃n

t + zt = −
α

λ̃t

N∑

n=1

wn∇fn
t (x̂t−1) + zt. (64)

Different from analog model aggregation, the edge server
needs to keep the previous global model x̂t−1 in order to
recover the aggregated global model, given by

x̂t = x̂t−1+ <{λ̃tỹt} = x̂t−1 − α

N∑

n=1

wn∇fn
t (x̂t−1) + λ̃tnt

= x̂t−1 +
N∑

n=1

wn(xn
t − x̂t−1) + λ̃tnt = xt + λ̃tnt. (65)

From (65), we can see that gradient aggregation by trans-
mitting −α∇fn

t (x̂t−1) is equivalent to model difference ag-
gregation by transmitting xn

t − x̂t−1 in s̃t. Furthermore,
comparing (65) with the recovered noisy global model via
model aggregation in (7), we can see that their only difference
at the edge server side is the power scaling factor λ̃t.

For analog gradient aggregation to have better learning
performance than analog model aggregation, the power scaling
factor λ̃t in (65) should to be smaller than λt in (7) so that the
recovered global model x̂t is less impacted by the noise nt.
Under the same transmit power, i.e., ‖sn

t ‖
2 = ‖s̃n

t ‖
2, for λ̃t to

be smaller than λt, we need α‖bn
t ◦∇fn

t (x̂t−1)‖ < ‖bn
t ◦x

n
t ‖.

This implies that when the step size α is small or the gradient
parameters ∇fn

t (x̂t−1) are smaller than the model parameters
xn

t , analog gradient aggregation can lead to smaller error in
the recovered global model, which in turn can improve the
learning performance.

Remark 5. In practical systems, both gradient aggregation
and model aggregation can be useful in different applications.
Gradient aggregation can be prone to gradient leakage attack
[52], [53], where the attackers utilize the gradient to recover
the private local data. Model aggregation makes it difficult for
the attackers to reconstruct the gradient, as it requires prior
knowledge of the learning rate, previous model, and some
other possible advanced mechanisms such as momentum,
multi-step gradient descent, and rate decaying, which may not
be available to the attackers in practical FL systems [54].

B. Enabling Analog Gradient Aggregation in OMUAA

We now show how to extend both OMUAA and OMUAA-
DR to enable analog gradient aggregation.

1) OMUAA (Gradient Aggregation): Since the transmit
power at each mobile device n changes from ‖sn

t ‖
2 for model

aggregation to ‖s̃n
t ‖

2, we redefine the long-term transmit
power constraint function in P1 as

g̃n
t (x) =

(wn)2

λ̃2
t

‖bn
t ◦ (x − x̂t−1)‖

2 − P̄n (66)

which is still a convex function of the model x. The virtual
queue updating rule for gradient aggregation is the same as
the one for model aggregation in (14), except for using the
above constraint function g̃n

t (x) in stead of gn
t (x) in (13).

Replacing gn
t (x) in P2n with g̃n

t (x) and then taking the
gradient of the objective function, we have

∇fn
t (x̂t−1) +

1
α

(x − x̂t−1) + θn
t ◦ (x − x̂t−1) (67)

where θn
t ∈ Rd is redefined with the i-th entry θn,i

t =
2γQn

t−1(w
n)2

λ̃2
t |h

n,i
t |2

. Setting the gradient in (67) to zero to solve for x
and then projecting it onto the affine set x, we have a closed-
form model update xn

t , given by

xn
t =

[
x̂t−1 −

α

1 + αθn
t

◦ ∇fn
t (x̂t−1)

]xmax

−xmax

. (68)

The local model update in (68) can be seen as local gradient
descent with entry-wise step size α

1+θn,i
t

that depends on the
ratio of the virtual queue and and the individual channel power.

2) OMUAA-DR (Gradient Aggregation): Replacing the
constraint function gn

t (x) in the virtual queue updating rule
(42) and in P3n with the new constraint function g̃n

t (x) in
(66), we can derive a closed-form local model update for xn

t ,
given by

xn
t =

[(
α + β

β
1 + αθ̃

n

t

)−1

◦
(
(1 + αθ̃

n

t ) ◦ x̂t−1

+
α

β
xn

t−1 − α∇fn
t (x̂t−1)

)]xmax

−xmax

(69)

where the i-th entry of θ̃
n

t is redefined as θ̃n,i
t =

2γ[Q̃n
t−1+γg̃n

t−1(x
n
t−1)](w

n)2

λ̃2
t |h

n,i
t |2

.
Compared with the local model update (45) in the original

OMUAA-DR, there is an additional weight αθ̃
n

t on the previ-
ous local model x̂t−1 caused by the new constraint function
g̃n

t (x), which can be viewed as an additional regularization
term on x̂t−1 in P3n.

Remark 6. The only difference between analog gradient
aggregation and analog model aggregation in OMUAA and
OMUAA-DR is the definition of the long-term constraint
function. Note that our performance analysis in Theorems 1-4
relies on general assumptions on the output of the constraint
function in Assumption 2 and the Lipschitz continuity of
the constraint function in Assumption 4. Therefore, both
OMUAA (gradient aggregation) and OMUAA-DR (gradient
aggregation) yields the same performance bounds as their
original versions in Theorem 1-4.

VII. NUMERICAL PERFORMANCE EVALUATION

To complement the theoretical performance guarantees
of OMUAA and OMUAA-DR provided in Sections IV-B
and V-B, we evaluate the performance of OMUAA and
OMUAA-DR in edge learning based on real-world image
classification datasets for both convex logistic regression and
non-convex neural network training, under common wireless
network settings.
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A. Simulation Setup

We consider a wireless edge network with one edge server
and N = 10 mobile devices. We assume an orthogonal
frequency-division multiplexing system with S = 500 sub-
carriers, each with bandwidth BW = 15 kHz. Following
typical wireless specifications [55], we set noise power spectral
density N0 = −174 dBm/Hz and noise figure NF = 10 dB.
The fading channel from mobile device n to the edge server
at the t-th iteration is modeled as hn

t ∼ N (0, ξnI), with ξn

representing the large-scale fading variation consisting of path-
loss and shadowing. We set ξn[dB] = −31.54−33 log10(r)−
ϕn [55], where r is the distance to the edge server, and
ϕn ∼ N (0, σ2

φ) is the shadowing term with σ2
φ = 8 dB. We

set r = 100 m by default. We assume each channel is i.i.d.
over iteration t. We use a fixed power-scaling factor λt = λ
in all simulations.

We use the MNIST dataset [56] for model training and
testing. The training dataset D consists of |D| = 6× 104 data
samples and the test dataset E has |E| = 1×104 data samples.
Each data sample (u, v) represents a labeled image of size
28 × 28 pixels, i.e., u ∈ R784, with J = 10 different labels,
i.e., v ∈ {1, . . . , J}. We consider non-i.i.d. data distribution,
where the local dataset Dn at each mobile device n only
contains data samples of label n. Therefore, the mobile devices
do not share data samples of the same labels. We assume each
mobile device n samples a batch dataset Bn

t ⊂ Dn consisting
of |Bn

t | = 20 data samples at each iteration t. Therefore, the
weight of each mobile device n is wn = 1

N .
We compare OMUAA and OMUAA-DR with the following

schemes.6

• Error-free FL: We run the FL scheme that alternates local
model update in (8) and global model aggregation in (4)
over noiseless channels with batch datasets. This scheme
provides a performance upper bound for OMUAA and
OMUAA-DR.

• OTA FL: We adopt the transmit power control scheme
in [21], [22], which are the best existing alternatives that
consider over-the-air (OTA) FL with long-term transmit
power constraints. In [21] and [22], a time-varying power-
scaling factor λt is used in (6) to set the transmit power at
each mobile device n around a predefined transmit power
limit Pt at each iteration t. Since different strategies to
set Pt achieve nearly the same performance as shown in
[21], we set Pt equal to the average transmit power limit
at each iteration t as in [22].

• R-OTA FL: Based on OTA FL, we add a regularization
term κ‖x‖2 to l(x;u, v), where κ is a tunable parameter.
This regularization scheme was adopted in [23]-[25]. We
have optimized κ in the presented results.

• OTA FL (GA): Instead of using model aggregation, we
adopt the gradient (or model difference) aggregation
approach in [20].

B. Convex Loss: Logistic Regression

We consider the cross-entropy loss for multinomial lo-
gistic regression, given by l(x;u, v) = −

∑J
j=1 1{v = j}

6Our codes are available at https://github.com/juncheng-wang/OMUAA.
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Fig. 2. Test accuracy Ā(T ), training loss f̄(T ), and transmit power P̄ (T )
vs. iterations T .

log exp(〈x[j],u〉)∑J
k=1 exp(〈x[k],u〉)

, where x = [x[1]T , . . . ,x[J ]T ]T with

x[j] ∈ R784 being the model for label j. The entire model
x is thus of dimension d = 7840 and is transmitted over
M = d d

S e = 16 transmission frames over time at each
iteration t. We assume the same average transmit power limit
at the mobile devices, i.e., P̄n = MP̄, ∀n. Our performance
metrics are the time-averaged test accuracy over E given by
Ā(T ) = 1

T |E|

∑T
t=1

∑|E|
i=1 1{arg maxj{

exp(〈x̂t[j],u
i〉)∑J

k=1 exp(〈x̂t[k],ui〉)
} =

vi}, the time-averaged training loss over {Bn
t } given

by f̄(T ) = 1
T

∑T
t=1

∑N
n=1

1
|Bn

t |

∑|Bn
t |

i=1 wnl(x̂t;u
n,i
t , vn,i

t ),
and the time-averaged transmit power given by P̄ (T ) =

1
TN

∑T
t=1

∑N
n=1 ‖s

n
t ‖

2.
For step-size parameter tuning, we first try several values

of the gradient descent step-size parameter for error-free FL.
We find that the step-size of value 1 × 10−5 provides error-
free FL with the best performance among various trial values.
Therefore, for the purpose of comparison among different
schemes, we also set α = 1 × 10−5 in OMUAA and use
the same step-size in OTA FL, R-OTA FL and OTA FL (GA).
For OMUAA-DR, we have studied several combinations of
step-size parameters α and β, and present here the case
α = β = 2 × 10−5. Similarly, we set the step-size parameter
γ = 0.02 and the power-scaling factor λ = 5× 10−4 for both
OMUAA and OMUAA-DR after numerical tuning. In practice,
α, β, γ, λ may depend on both the learning problem and the
communication system. They can be problem-dependent and
may be treated as hyper parameters that require tuning.

Fig. 2 shows Ā(T ), f̄(T ), and P̄ (T ) versus T with
P̄ = 16 dBm. Despite the presence of communication noise,
OMUAA and OMUAA-DR converge quickly and achieve
better classification performance compared with OTA FL and
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Fig. 3. The impact of average transmit power limit P̄ . The f̄ plot for OTA
FL is not included as its value of f̄ is much larger than those of OMUAA
and R-OTA FL.

R-OTA FL. We observe that the performance of OTA FL
deteriorates as T increases. This is because OTA FL relies
on the power-scaling factor λt for transmit power control,
instead of optimizing the local model xn

t as how OMUAA
and OMUAA-DR do to reduce the transmit power. In the
low power region, λt yielded by OTA FL becomes large and
magnifies the communication error λtnt in the global model
x̂t in (7). Since x̂t is further used in the training process at
the next iteration, there will be severe communication error
propagation in the learning process. Adding a regularization
term as in R-OTA FL helps minimize ‖xt‖2 and thus prevents
λt from being too large. We observe that, with properly
tuned κ, R-OTA FL substantially outperforms OTA FL. In
comparison, the virtual queues in OMUAA and OMUAA-
DR serve as automatically-tuned regularization on minimizing
‖xt‖2 in the model training process over time. This leads to
better performance than OTA FL and R-OTA FL.

Furthermore, Fig. 2 shows that, unlike the case of OMUAA,
P̄ (T ) yielded by OMUAA-DR does not overshoot the long-
term transmit power limit P̄ . It also converges faster due to the
new constraint penalty with double regularization in OMUAA-
DR. This confirms the results in Corollary 4.

In Fig 3, we compare the steady-state test accuracy Ā and
training loss f̄ among OMUAA, OMUAA-DR, OTA FL, and
R-OTA FL with different values of the average transmit power
limit P̄ . The test accuracy Ā yielded by OTA FL and R-
OTA FL decreases drastically as P̄ decreases. This is because
when P̄ is small, the scaled channel noise λtnt becomes
large in the noisy global model x̂t (7), which in turn causes
error propagation in the training process that deteriorates the
learning performance. The training loss f̄ for OTA FL is not
plotted in Fig. 3, as it is much larger than those plotted. Over
a wide range of P̄ , OMUAA and OMUAA-DR significantly
outperforms the other two schemes. Furthermore, OMUAA-
DR achieves higher Ā than OMUAA, especially in the low
power regime.

The sparsification and quantization techniques considered
in [21] and [22] are orthogonal to the OMUAA design. How-
ever, these techniques can be easily combined with OMUAA
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Fig. 4. The impact of sparsification percentage Sp.
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Fig. 5. The impact of average transmit power limit P̄ on gradient aggregation.

and OMUAA-DR to further reduce the amount of required
communication resources. Here, we use sparsification as an
illustration. Let Sp be the sparsification level in percentage.
Specifically, after obtaining the local model xn

t via OMUAA
or OMUAA-DR, each mobile device n finds the Sp percent
of model parameters with the smallest values and sets them to
zeros. Fig. 4 shows the impact of the sparsification percentage
Sp on Ā and f̄ yielded by OMUAA, OMUAA-DR, and R-
OTA FL. The average transmit power limit is set to P̄ = 16
dBm. We observe that OMUAA and OMUAA-DR substan-
tially outperform R-OTA FL for a wide range of Sp values.
Furthermore, OMUAA-DR yields better learning performance
than OMUAA.

We study the impact of average transmit power limit P̄ on
the performance of OMUAA-DR (GA), OMUAA (GA), and
OTA FL (GA). We can see from Fig. 5 that OMUAA-DR
(GA) and OMUAA (GA) substantially outperforms OTA FL
(GA), showing the benefit of joint optimization of computation
and communication over the separate optimization approach.
Compared with the model aggregation performance in Fig. 3,
we can see that using gradient aggregation significantly im-
proves the learning performance in the low power region. As
explained in Section VI-A, when the step size is small as in our
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simulation, gradient aggregation yields a smaller power scaling
factor than model aggregation, leading to more accurate global
models at the edge server and thus better learning performance.

C. Non-Convex Loss: Neural Network Training

The performance bounds derived in Sections IV-B and
V-B requires convexity in the loss functions. However, both
OMUAA and OMUAA-DR can be directly applied to wireless
federated learning with non-convex loss functions. To evaluate
their performance in this more general scenario, here we
consider a fully connected two-layer neural network with 784
pixel as input, 10 neurons in the hidden layer, and 10 neurons
in the output layer, such that the number of parameters 7, 940
is similar to that of logistic regression in Section VII-B.
We use the sigmoid activation function in the hidden layer
and the softmax activation function in the output layer. In
addition to the standard forward and backward propagation
for gradient computation in neural network update, OMUAA
and OMUAA-DR only require additional computation of the
virtual queues (Qn

t and Q̃n
t ) and transmit power scaling factors

(θn
t and θ̃

n

t ). Both of them only has O(d) computational
complexity. Therefore, both OMUAA and OMUAA-DR can
be easily merged into the standard neural network update
and is computationally efficient for practical neural network
training.

To set the step-size parameters, similar to Section VII-B, we
find 0.8 gradient descent step-size provides error-free FL with
the best performance among various trial values. Therefore,
we also set α = 0.8 in OMUAA and use the same step-size
in OTA FL and R-OTA FL for gradient descent. We set γ = 2
and λ = 1× 10−6 in OMUAA, and α = β = 0.8, γ = 1, and
λ = 1 × 10−6 in OMUAA-DR.

Fig. 6 shows the time-averaged test accuracy Ā(T ), time-
averaged cross-entropy loss in the output layer f̄(T ), and time-
averaged transmit power P̄ (T ) versus T with P̄ = 8 dBm. We
again observe that both OMUAA and OMUAA-DR converge
quickly and substantially outperform OTA-FL and R-OTA
FL in neural network training. Compared with OMUAA,
the transmit power P̄ (T ) yielded by OMUAA-DR converges
much faster. For neural network training with non-convex loss
functions, gradient descent based algorithms such as OMUAA
and OMUAA-DR generally converge to some local minima.
In our simulation results, we observe that these local minima
provide acceptable learning performance. Note that our per-
formance analysis is for general machine learning problems
and analog communication systems, and therefore it is based
on some upper-bound constants that reflect the properties of
the underlying computation and communication systems. The
actual system performance yielded by OMUAA and OMUAA-
DR is problem dependent and may not necessarily be close to
their general theoretical bounds.

VIII. CONCLUSIONS

We consider FL in wireless edge networks with analog
aggregation over noisy wireless fading multiple access chan-
nels. We propose OMUAA and OMUAA-DR algorithms to
minimize the accumulated training loss over time at the
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Fig. 6. Test accuracy Ā(T ), training loss f̄(T ), and transmit power P̄ vs.
iterations T .

edge server, subject to individual long-term transmit power
constraints at the mobile devices. Both algorithms depend
only on the current local CSI, without needing to know the
channel distribution. The local models yielded by OMUAA
and OMUAA-DR are channel- and power-aware, and are in
closed forms with low computational complexity. Our analysis
considers the mutual impact between model training and ana-
log aggregation over time to provide performance guarantees
on both the computation and communication performance
metrics. OMUAA-DR requires an additional step-size param-
eter and slightly more storage space than OMUAA, but it
can substantially reduce the convergence time to reach the
long-term transmit power constraint. Simulation results based
on realistic wireless network settings and real-word image
classification datasets show substantial performance advantage
of OMUAA and OMUAA-DR over the known best alternatives
for both convex logistic regression and non-convex neural
network training under different scenarios.
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