
1

Fair Multi-resource Allocation in Heterogeneous
Servers with an External Resource Type

Erfan Meskar, Student Member, IEEE, and Ben Liang, Fellow, IEEE

Abstract—This paper considers the problem of fair allocation of multiple types of resources in heterogeneous servers, along with a
resource type external to those servers. Our work is motivated by the need for fair multi-resource allocation in mobile edge computing
(MEC), where the users must upload their tasks over a single dedicated wireless communication link that exists outside the computing
servers. We propose a fair multi-resource allocation mechanism for this environment, termed Task Share Fairness with External
Resource (TSF-ER), which finds the Kalai-Smorodinsky bargaining solution satisfying important fairness properties. We show that
TSF-ER is envy-free, Pareto optimal, and strategy-proof, and it satisfies the property of sharing incentive. Large-scale simulation driven
by Google and Alibaba cluster trace further shows that TSF-ER significantly outperforms the existing utilitarian, Nash social welfare
maximizer, and egalitarian solutions, leading to fairer resource allocation while maintaining a high level of resource utilization.

Index Terms—Fair resource allocation, multiple resource types, external resource, heterogeneous computing servers.

F

1 INTRODUCTION

I N the long history of mathematically rigorous fair division,
there have been many works focusing on the division of a set of

items among a set of agents. The goal is to find a division of the
items that is fair to all agents. This problem has been considered
from different perspectives in economics and computer science,
and arises in various real-world settings: auctions, airport traffic
management [1], and computing resource allocation in cloud
servers and routers [2], [3], [4]. Developing a fair division mecha-
nism is of immense significance to guarantee quality of experience
for different agents. Under-allocation degrades an agent’s quality
of experience, and over-allocation would adversely impact other
agents.

In systems with a single resource, one of the most popular
allocation policy is max-min fairness. Max-min fairness is an
egalitarian approach by which the resource allocated to an agent
can be increased only if it will not decrease the allocation of
an agent with already smaller allocation. However, egalitarianism
may conflict with the fairness and efficiency properties in systems
with multiple resources.

To evaluate an allocation policy in a multi-resource environ-
ment, we observe whether it satisfies several core properties of a
fair and efficient resource allocation policy [2], [3], [4], [5], [6]:

• Envy-Freeness (EF): No agent prefers the allocation of
another agent.

• Pareto Optimality (PO): It should be impossible to increase
the resource amount of an agent without decreasing the
allocation of another agent.

• Strategy-Proofness (SP): An agent cannot improve its al-
location by lying, which provides incentive compatibility.

• Sharing Incentive (SI): No agent prefers to split the total
resources equally.

• Erfan Meskar and Ben Liang are with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, Canada.
E-mail: {emeskar, liang}@ece.utoronto.ca

This work was supported in part by a grant from the Natural Sciences and
Engineering Research Council (NSERC) of Canada.

EF and PO as fairness and efficiency concepts were introduced
by Foley [7] and Varian [8] and have been studied extensively
since then [9], [10]. Unlike egalitarian social welfare, EF does
not require interpersonal comparability of individual preferences.
With SP, we ensure the agents’ truthfulness. Truthfulness is a
requirement especially in environments without monetary trans-
fers [11]. SI, also known as proportionality, which motivates
agents’ participation, requires that the agents prefer their allo-
cation to their proportional share of the resources. If SI is not
satisfied by an allocation rule, the agents have no incentive to
cooperate and prefer to split the resources equally to receive
their guaranteed shares. SI dates back to at least the work of
Steinhaus [12] in the context of cake-cutting, and together with
maximin share guarantee, which is the natural relaxation of SI
in indivisible items environments, have been studied extensively
since then [13] - [21].

It may be impossible to satisfy all properties in some cases.
For instance, in the 2-agent case with continuous, increasing, and
strictly quasi-concave utilities, any Pareto optimal and strategy-
proof allocation policy violates EF and SI [22]. An interesting
question is whether it is possible to satisfy all properties for more
restricted types of utility functions. Cobb-Douglas utilities and
Leontief utilities are among the appealing restricted domains in
economics and computer science [2], [6], [23], [24].

With Cobb-Douglas utilities, Hashimoto proved that even in
the 2-agent case, any Pareto optimal and strategy-proof allocation
policy violates EF and SI [25]. Zahedi et al. relaxed the notion
of SP and proved that, for Cobb-Douglas utilities, the Nash
bargaining solution (i.e., maximizing the product of utilities [26],
[27]) satisfies PO, EF, and SI, and the agents have no incentive to
lie about their utility function when there are many agents in the
system [23], [28]. Nicoló, on the other hand, presented resource
conservative mechanisms (i.e., mechanisms that allocate resources
entirely) in 2-agent, 2-resource systems with Leontief utilities
that can satisfy the four properties altogether [29]. Furthermore,
stronger results are obtainable when only non-wasteful allocation
policies are considered [30].

Ghodsi et al. studied the problem of fair multi-resource al-

2

location in a cloud computing server with l resources and n
agents with Leontief utilities. They proposed Dominant Resource
Fairness (DRF), a non-wasteful resource allocation policy, which
can satisfy the four properties altogether [2]. DRF computes the
share of demanded resources for each agent and finds each agent’s
dominant share and the resource corresponding to the dominant
share. It then applies max-min fairness across agents’ dominant
shares. DRF can be interpreted as a Kalai-Smorodinsky (KS)
bargaining solution [31], [32]. It finds the lexicographic maxmin
solution after a certain normalization of utilities [6]. Hence,
Ghodsi et al. [2] showed that the KS solution satisfies EF, PO,
SP, and SI when the agents have Leontief utilities. Note that the
analysis in [2] assumes that the agents have non-zero demands for
all the resources. Parkes et al. [5] generalized the results in [2]
to the case of agents with Leontief utilities and possibly zero
demands for some resources by proposing a multi-round DRF
allocation.

Wang et al. attempted to satisfy the four properties in cloud
computing systems with heterogeneous servers [3], [33]. Wang et
al. proposed DRFH in [3] and defined the dominant resource of an
agent based on the aggregate of all the resources. DRFH computes
the max-min optimal allocation regarding the dominant global
shares, which is the allocation share of the dominant resource.
They showed that DRFH satisfies EF, PO, and SP, but fails to
satisfy SI. They further proposed Task Sharing Fairness (TSF)
in [33], which extends the KS solution to cloud computing systems
with heterogeneous servers, with additional accommodations for
task placement constraints. They proved that TSF satisfies all four
properties.

In this paper, we study the problem of fair resource allo-
cation in systems with heterogeneous servers and an external
resources to access the servers. A motivating example is Mobile
Edge Computing (MEC) systems with heterogeneous servers. The
computing tasks in MEC require multiple types of resources in
the computing servers (e.g., memory and CPU cores) [34]. A
MEC system is possibly constructed from a variety of server
classes. These servers may have different processing capabilities,
memory sizes, and storage spaces. Moreover, hardware upgrades,
i.e., adding new servers and phasing out existing ones, increase
the server heterogeneity. In addition to these computing resources,
the task input data and execution results are sent through a shared
wireless communication link to and from the MEC servers. The
wireless communication link is a dedicated resource that exists
outside of the computing servers and shared by all agents to access
the servers (i.e., external resource).

Developing a fair resource allocation mechanism is of im-
mense significance in complex multi-resource computing systems
such as MEC. Different computing tasks can consume vastly
various amounts of different resources. For instance, video analy-
sis, language translation, face recognition, and augmented reality
applications typically have CPU-intensive tasks, graph analytics
and data indexing may have memory-bound tasks, and vehicle-to-
infrastructure communication services can bottleneck on wireless
communication link bandwidth [35], [36]. Server heterogeneity
and diversity across the resource demands present challenges
to developing a fair resource allocation mechanism. Although
DRFH and TSF consider resource allocation across heterogeneous
servers, they cannot be directly applied here. These mechanisms
require a server where every type of resource is contained. How-
ever, in our new environment, there is a single dedicated external
resource (e.g., wireless communication link) that exists outside of

the computing servers.
The main contribution of this paper are as follows:

• We show that, in the aforementioned computing environ-
ment with an external resource, no existing multi-resource
allocation rules can simultaneously satisfy the fairness and
efficiency properties of EF, PO, SP, and SI. In particular,
there is no direct extension to DRFH or TSF to satisfy PO
or SI, no matter how the external resource is split among
the servers.

• We propose Task Share Fairness with External Resource
(TSF-ER) which applies max-min fairness across users’
normalized number of allocated tasks, without explicitly
splitting the external resource among the servers. we show
that it satisfies all of EF, PO, SP, and SI.

• We further consider practical online implementation of
TSF-ER with invisible tasks and test its performance
and efficiency via trace-driven simulation. The simulation
results show that TSF-ER attains more important fairness
properties than all existing solutions, without degrading
resource utilization.

The organization of this paper is as follows. In Sec. 2 we
describe the system model and allocation properties. In Sec. 3, we
analyze naive extension of the existing allocation rules, DRFH,
TSF, and DRF-ER [37]. We show that none of these solutions
can achieve all of EF, PO, SP, and SI. In Sec. 4, we present
the proposed TSF-ER fair allocation policy. We prove that TSF-
ER satisfies all of the desirable properties. We evaluate the
performance of TSF-ER via trace-driven simulations in Sec. 6. In
Sec. 7, we summarize the existing multi-resource fair allocation
solutions followed by conclusion in Sec. 8.

2 SYSTEM MODEL AND ALLOCATION PROPER-
TIES

We consider a set of heterogeneous computing servers that are
accessible over a shared external resource (e.g., communication
channel). We denote the set of computing servers by S and the
set of resources in the servers (e.g., CPU and memory) by R.
The capacity of server s for resource r is denoted by cs,r , and its
capacity profile is cs = (cs,r)r∈R. We denote the computational
capacity profile of this environment by c = (cs)s∈S .

We assume that all users share an additional external resource,
usually a communication link, to access the servers. Hence, the
external resource is a single dedicated resource that exists outside
of the computing servers. In the example of MEC, illustrated in
Figure 2, the wireless communication link is a single resource
that all users share when they upload their tasks to the servers.
We denote the system capacity for this external resource, e.g., the
total link bandwidth in MEC, by cer. Let R̂ be the augmented set
of resources, which is constructed by adding the external resource
to the set of computational resources R.

Let J denote the set of users in the system. They submit
their tasks upon arrival in the system, and the number of tasks
submitted by user j is denoted by nj . For any resource r ∈ R̂,
user j requires dj,r units of the resource r per task. For instance,
consider user j that requires 2 CPU cores, 1 GB of memory,
and 150 MHz of bandwidth per task. With an allocation of 6
CPU cores and 4 GB of memory on a server and 300 MHz of
bandwidth, it can execute min {6/2, 4/1, 300/150} = 2 tasks.
Without loss of generality, assume that the aggregate capacity

3

User 1

User 2

User 3

User 4

User 5

BW

2
GHz

external
resource

CPU

96
cores

MEM

384
GB

server 1

CPU

64
cores

MEM

512
GB

server 2

Fig. 1. Illustration of system model with MEC as example.

of any computational resource r ∈ R is normalized to one
(i.e.,

∑
s∈S cs,r = 1), so is the capacity of the external resource

(i.e., cer = 1).1 Hence, dj,r can be interpreted as the share of the
aggregate capacity of resource r that user j requires per task.2 Let
dj = (dj,r)r∈R̂ denote the demand profile of user j.

We denote the share of external resource that is allocated to
user j by Aer

j , and the share of computational resource r that is
allocated to user j in server s by Aj,s,r . If we were not concerned
about the external resource (e.g., consider a parallel computing
environment in which there exists no external resource), the
number of tasks that user j could execute on server s would have
been min

r∈R

{
Aj,s,r
dj,r

}
and its total number of executable task would

have been
∑
s∈S min

r∈R

{
Aj,s,r
dj,r

}
. However, user j’s demand on

the external resource bounds the total number of executable tasks
by

Aer
j

dj,er
. Moreover, the number of tasks that a user can execute

should not exceed the number of submitted tasks by that user.
Thus, given the allocated share of the computational resources and
the external resource, the number of tasks that user j can execute

is min
{
Aer
j

dj,er
,
∑
s∈S

min
r∈R

{
Aj,s,r
dj,r

}
, nj

}
.

We denote the utility function of user j by uj , which is a
strictly increasing function of the number of tasks that user j can
execute. Hence,

uj (AAAj) = Uj

(
min

{
Aer
j

dj,er
,
∑
s∈S

min
r∈R

{
Aj,s,r
dj,r

}
, nj

})
,

where Uj(.) is a univariate strictly increasing function and
AAAj =

((
(Aj,s,r)r∈R

)
s∈S , A

er
j

)
. This form of the utility function

suggests that user j prefers allocation AAAj to AAA′j if and only if it
can execute more tasks withAAAj . Since all of the properties in this
paper are merely based on ordinal preferences of the users over
their allocations, without loss of generality, we can equivalently
redefine the utility function as the number of tasks a user can
execute, i.e.,

uj (AAAj) = min

{
Aer
j

dj,er
,
∑
s∈S

min
r∈R

{
Aj,s,r
dj,r

}
, nj

}
. (1)

1. We can achieve this by scaling the resource capacity and users demand.
2. The share of the aggregate capacity of resource r is dj,r∑

s∈S
cs,r

, which is

equal to dj,r when the aggregate capacity of computational resource r ∈ R is
set to one. The same argument applies to the external resource demand.

Let u = (uj)j∈J be the utility profile. An environment E is
defined as follows.

Definition 1 (Environment). An environment E is a tuple(
J ,S, R̂,u, c, cer

)
. Although cer is set to 1, we specify it in

the definition of the environment to emphasize that there exists an
external resource.

An allocation rule is a mechanism that assigns resource to the
users for each environment E. Note that the resource allocation
must not exceed the system capacity. Let xj,s denote the number
of tasks allocated to user j on server s and x ∈ R|J |×|S|+

denote the task allocation matrix. Note that the users may receive
tasks from more than one server. The allocation (AAAj)j∈J is non-
wasteful if there exists no unused resource, i.e., Aj,s,r = xj,s dj,r
for any s ∈ S and r ∈ R and Aer

j =
∑
s∈S

xj,s dj,er. We restrict

ourselves to non-wasteful allocations. Thus, allocating resource
and task are equivalent in our model. Given E, the set of feasible
task allocations for this environment is defined as

χ(E) =

{
x ∈ R|J |×|S|+ |

∑
u∈J

∑
s∈S

xu,s du,er ≤ 1,∑
u∈J

xu,s du,r ≤ cs,r,∀r ∈ R, s ∈ S,

∑
s∈S

xj,s ≤ nj ,∀j ∈ J
}
. (2)

Definition 2 (Non-wasteful Allocation Rule). A non-wasteful
allocation rule λ assigns to each environment E a non-wasteful
feasible allocation. We denote the number of tasks allocated to
user j in server s by λj,s(E). We denote the share of compu-
tational resource r that is allocated to user j in server s by
Λj,s,r(E), and the share of external resource that is allocated
to user j by Λer

j (E). Since λ is a non-wasteful allocation, we
have

Λj,s,r(E) = λj,s(E) dj,r, (3)

Λer
j (E) =

∑
s∈S

λj,s(E) dj,er, (4)∑
s∈S

λj,s(E) ≤ nj . (5)

The resource allocation profile of user j derived by rule λ is

denoted by ΛΛΛj (E) =

((
(Λj,s,r(E))r∈R

)
s∈S

,Λer
j (E)

)
.

Following the terminology of DRF [2], we define the follow-
ing essential fairness-related properties: envy-freeness, strategy
proofness, and sharing incentive. At the same time, the proposed
scheme should satisfy Pareto optimality to ensure efficient re-
source utilization.

Definition 3 (Envy-Freeness (EF)). An allocation rule λ satisfies
EF when no user prefers the allocation of another user, i.e.,

uj (ΛΛΛk (E)) ≤ uj (ΛΛΛj (E)) ,

for any environment E =
(
J ,S, R̂,u, c, cer

)
and j, k ∈ J .

Definition 4 (Pareto Optimality (PO)). Non-wasteful allocation
rule λ is Pareto optimal, if for any environment E, there exists no
feasible task allocation y ∈ χ(E) such that

∑
s∈S yi,s ≥ ui (ΛΛΛi)

for all i ∈ J , and
∑
s∈S yj,s > uj (ΛΛΛj) for some j ∈ J .

4

Definition 5 (Strategy-Proofness (SP)). Non-wasteful allocation
rule λ satisfies SP if no user benefits from reporting fake demand.
Let E =

(
J ,S, R̂,u, c, cer

)
be an arbitrary environment in

which user j reports its true demand, i.e., dj,r , for all resources in
R̂. Moreover, let E′ =

(
J ,S, R̂,u′, c, cer

)
be the environment

in which user j reports a fake demand, i.e., d′j,r , where d′j,r 6= dj,r
for some resource in R̂. Non-wasteful allocation rule λ satisfies
SP if

uj (ΛΛΛj (E)) ≥ uj (ΛΛΛj (E′)) ,

for any user and any environment E and E′ as described above.

In a single server environment, a non-wasteful allocation rule
satisfies sharing incentive if each user receives at least as many
tasks as when resources are equally shared among users [2]. Anal-
ogously, we define sharing incentive in multi-server environments
by allocating each resource on each server equally among the
users.

Definition 6 (Sharing Incentive (SI)). Non-wasteful allocation
rule λ satisfies SI, if for any environment E, the total number of
task each user receives by λ is at least as much as the total number
of task each user receives in the equal share, i.e.,

uj (ΛΛΛj (E)) ≥ min

{
1/|J |
dj,er

,
∑
s∈S

min
r∈R

{
cs,r/|J |
dj,r

}
, nj

}
.

We note that EF defines inter-user fairness, PO measures
resource utilization, SP ensures user truthfulness, and SI motivates
user participation. Our objective is to develop a multi-resource fair
allocation scheme that retains all four aforementioned properties.
Table 1 summarizes important notations used in the paper.

3 EXISTING ALLOCATION RULES

In this section, we study the three well-known resource allocation
rules, i.e., utilitarian, Nash social welfare maximizer, and egal-
itarian, and their extensions to our environment. We will show
that none of them simultaneously satisfies the EF, PO, SP, and SI
properties.

3.1 Utilitarian Approach
For any environment E, the utilitarian approach finds the alloca-
tion that maximizes the sum of utilities, i.e.,

arg max

∑
j∈J

∑
s∈S

xj,s | x ∈ χ(E)

 .

While utilitarianism has several philosophically appealing ax-
iomatic characterizations, it implicitly assumes that the utility
functions are interpersonally comparable. Hence, the users can
easily manipulate the utilitarian allocation rule by applying affine
transformations to their utility functions. One way to circumvent
this issue is by normalizing the utility functions to range from
zero to one, then applying the utilitarian allocation rule to the
normalized utility functions. This yields relative utilitarianism [38]
- [43].

Formally, let ηj be the maximum number of tasks that user j
can execute by monopolizing the resources, i.e.,

ηj = min

{∑
s∈S

min
r∈R

{
cs,r
dj,r

}
,

1

dj,er

}
. (6)

TABLE 1
Table of notations.

Symbol Explanation

S set of computing server

R set of computing resources of each server

R̂ augmented set of resources, i.e., R∪ {er}
J set of users

cs,r
capacity of server s for computational re-
source r ∈ R

cs capacity profile of server s, i.e., (cs,r)r∈R

c
computational capacity profile, i.e.,
(cs)s∈S

cer capacity of the external resource

nj number of tasks submitted by user j

dj,r
share of resource r ∈ R̂ required by user j
per task execution

dj demand profile of user j, i.e., (dj,r)r∈R̂

uj(.) utility function of user j

u utility profile of the users, i.e., (uj)j∈J

E =
(
J ,S, R̂,u, c, cer

) environment E with J ,S, R̂,u, c, and cer

as its set of users, set of computing server,
augmented set of resources, utility profile
of the users, computational capacity pro-
file, and capacity of the external resource,
respectively

χ(E)
set of feasible task allocations for environ-
ment E

λj,s(E)
number of tasks allocated to user j in server
s by applying the non-wasteful allocation
rule λ to environment E

Λj,s,r(E)

share of computational resource r ∈ R
that is allocated to user j in server s by
applying the non-wasteful allocation rule λ
to environment E

Λer
j (E)

share of external resource that is allocated
to user j by applying the non-wasteful allo-
cation rule λ to environment E

ΛΛΛj(E)

resource allocation profile of user j de-
rived by rule λ for environment E,

i.e.,
((

(Λj,s,r(E))r∈R

)
s∈S

,Λer
j (E)

)

ηj

maximum number of tasks that user j can
execute by monopolizing the resources if it
had submitted unlimited number of tasks,

i.e., min

{∑
s∈S

min
r∈R

{
cs,r
dj,r

}
, 1
dj,er

}

Note that ηj is not bounded by nj . For any environment E, the
relative utilitarian allocation rule finds the feasible allocation that
maximizes the sum of normalized utilities, i.e.,

arg max

∑
j∈J

∑
s∈S xj,s
ηj

| x ∈ χ(E)

 .

Consequently, the relative utilitarian solution is scale-invariant
to any affine transformation of the utility function. Moreover,
it always remains on the Pareto frontier of the feasibility set.
Hence it satisfies PO. However, the relative utilitarian solution
violates EF and SI. We consider the Cautious Relative Utilitarian
allocation rule (CRU), which maximizes the sum of normalized

5

utilities while maintaining envy-freeness and sharing incentive,

i.e., arg max

{ ∑
j∈J

∑
s∈S xj,s
ηj

| x ∈ χ(E) ∩ χEF(E) ∩ χSI(E)

}
,

where χEF(E) and χSI(E) denote the sets of task allocations
that satisfy EF and SI for the environment E, respectively.
When the number of tasks submitted by the users are unbounded
(i.e., nj = ∞ for any user j), χ(E) ∩ χEF(E) ∩ χSI(E) can be
represented by |J |2 + |S||R| + 1 linear inequalities. Therefore,
the CRU solution can be derived efficiently by solving a convex
linear programming problem with |J ||S| decision variables and
|J |2 + |S||R| + 1 constraints. Consider the example in Fig. 2.
The allocation derived by CRU is illustrated in Fig. 2(a), in
which server 1 and server 2 are allocated to user 2 and user 1,
respectively.

The CRU allocation always exists (since equal division of
resources of each server and the external resource is always a
feasible allocation that satisfies EF and SI), and it trivially satisfies
EF and SI. Note that the CRU allocation always lies on the Pareto
frontier of the set χ(E) ∩ χEF(E) ∩ χSI(E), but that does not
directly imply that it lies on the Pareto frontier of the set χ(E),
which is necessary for satisfying PO. The following theorem states
that CRU satisfies PO and fails to satisfy SP. The proof is included
in Appendix 9.1.

Theorem 1. When users submit an unlimited number of tasks (i.e.,
nj = ∞, ∀j ∈ J), CRU satisfies EF, PO, and SI, but it fails to
satisfy SP.

3.2 Maximizing Nash Social Welfare
The Nash welfare is the geometric mean of the agents’ utilities.
Maximizing Nash Welfare (MNW) has been independently dis-
covered in different communities, e.g., Proportional Fairness (PF)
in the TCP congestion control literature [44], Nash bargaining
solution [26], [27], and Competitive Equilibrium from Equal
Incomes (CEEI) in the economic literature [8], [45]. An allocation
is proportionally fair if compared to any other feasible allocation
of utilities, the aggregate proportional change is less than or equal
to 0. The PF allocation can be obtained as the solution to the
Nash welfare maximization problem if the feasible utility set is
convex [46]. The CEEI would be the competitive equilibrium if all
agents were allocated the same budget of some artificial currency.
Competitive equilibrium is an allocation vector of resources and
a vector of prices, such that i) every agent spends its budget
buying an optimal bundle of resources; ii) supply equals demand.
Competitive equilibrium is known to guarantee EF and PO [8].
When the resource set is convex and all agents have homogeneous
utility functions, i.e., uj(αzj) = αuj(zj), the CEEI allocation is
precisely the same allocation as MNW [47].

In our system model, when the number of tasks submitted
by the users is unbounded, the users would have homogeneous
utility functions. Thus, the MNW allocation satisfies EF and PO.
Moreover, it is easy to show that MNW is scale-invariant to
any affine transformation of the utility function. For the example
in Fig. 2, MNW gives the same allocation as CRU, which is
illustrated in Fig. 2(a). In the following theorem, we observe that
MNW satisfies SI and fails to satisfy SP. The proof is included in
Appendix 9.2.

Theorem 2. When users submit an unlimited number of tasks (i.e.,
nj = ∞, ∀j ∈ J), MNW satisfies EF, PO, and SI, but it fails to
satisfy SP.

3.3 Egalitarian Approach
Egalitarianism (also known as max-min fairness or Rawlsian
rule) maximizes the smallest utility among the agents; subject
to that it maximizes the next smallest utility, and so on. Similar
to utilitarianism, egalitarianism can be manipulated by applying
affine transformations to users’ utility functions. The KS allocation
rule circumvents this issue by normalizing the utility functions to
range from zero to one, then applying the egalitarian allocation
rule to the normalized utility functions. While KS trivially satisfies
PO and SI for convex feasible utility sets, EF and SP need to be
studied carefully for each problem. For instance, while KS satisfies
EF and SP for single server cloud computing environments [2], it
fails to satisfy them in an MEC environment with multiple access
points [48].

Many variants of the egalitarian mechanism for fair resource
allocation in a parallel computing environment have been pro-
posed. Contrary to our model, the existing fair allocation mecha-
nisms do not include an external resource in their model. To apply
these mechanisms directly, we need to consider the computing
servers as meta servers with zero capacity for the external resource
and treat the external resource (e.g., the wireless communication
link in the MEC example) as a meta server with zero capacity
for computing resources. However, existing mechanisms cannot
support any task on these servers since the users require both
computing resources and link bandwidth, and no meta server con-
tains these resources altogether. Hence, the existing mechanisms
are not directly applicable to our problem. Here we study several
naive approaches to extend the existing egalitarian mechanisms
to our environment, namely dominant resource fairness and task
share fairness.

Ghodsi et al. proposed DRF to fairly allocate the resources
in a cloud computing server [2]. Instead of finding the egalitarian
allocation of utilities, DRF applies egalitarianism across the users’
share of the dominant resource, which is the resource that the
user demands most, i.e., r∗j = arg max

r∈R̂
{dj,r}. For a single

server without external resource, DRF satisfies EF, PO, SP, and
SI [2]. DRFH generalizes the idea of DRF to environments where
resources are pooled by heterogeneous servers [3]. DRFH applies
egalitarian fairness across the share of users’ dominant resource.
It defines the dominant resource as the resource that the user
demands most in the artificial server constructed by combining
all the heterogeneous servers. Consequently, DRFH’s definition
of the dominant resource is the same as DRF’s. Hence, server
heterogeneity does not have any impact on the notion of dominant
resource, and this prevents DRFH from satisfying SI [3].

We may naively extend DRFH to our new environment with
the external resource by first splitting the external resource across
the computing servers and then applying DRFH on this new set
of augmented servers with the hope of retaining the properties
of DRFH. We denote this naive extension by DRF-αααer where the
design parameter αααer = (αer

s)s∈S specifies the external resource
reservation among the servers. Hence, for any environment E,
DRF-αααer restricts the feasible task allocation set to

χαααer (E) =

{
x ∈ R|J |×|S|+ |

∑
j∈J

xj,s dj,er ≤ αer
s ,∀s ∈ S,∑

j∈J
xj,s dj,r ≤ cs,r,∀r ∈ R, s ∈ S,

∑
s∈S

xj,s ≤ nj ,∀j ∈ J
}
,

6

and it adopts the same definition for the users’ dominant resource
as DRF and DRFH. For any environment E, when the users have
an unlimited number of submitted tasks (i.e., nj = ∞, ∀j ∈ J),
DRF-αααer maximizes the equalized dominant share, i.e.,

max
g,x

g

s.t. x ∈ χαααer (E),∑
s∈S

xj,sdj,r∗j = g,∀j ∈ J .

Although DRFH satisfies EF, PO, and SP in the multi-
server cloud computing environments, these properties may not
be inherited by DRF-αααer in our new environment, which is due
to the dissimilarity of the utility functions and the feasibility
sets between DRFH and our model. Fixing the external resource
reservation among the servers shrinks the task feasibility sets.
Consequently, the task allocation derived by DRF-αααer, which lies
on the Pareto frontier of the shrunken task feasibility set, may
not lie on the Pareto frontier of the original task feasibility set.
Furthermore, the task allocation that represents the equal division
of the resources in the original environment may not be even
feasible in the transformed environment.

Consider the example in Fig. 2. The allocation derived by
DRF-αααer with αααer = (1/|S|)s∈S (i.e., the external resource is
equally reserved among the servers) is illustrated in Fig. 2(b).
The allocation derived by CRU and MNW, illustrated in Fig. 2(a),
shows that both users can execute more tasks when we allocate
server 1 and server 2 to user 2 and user 1, respectively. Therefore,
PO is violated by this allocation rule. More generally, in the
following theorem, we observe that given any heterogeneous
server configuration, it is impossible to find an appropriate external
resource reservation profile (i.e., αααer) for DRF-αααer that guarantees
PO or SI. The proof Theorem 3 is included in Appendix 9.3.

Theorem 3. There exists no feasible external resource reservation
profile αααer, such that DRF-αααer satisfies PO or SI.

TSF was proposed by Wang et al. to fairly allocate resources
in a heterogeneous multi-resource environment to satisfy all of
EF, PO, SP, and SI [33]. TSF admits server heterogeneity and
normalizes the number of allocated tasks with respect to the
number of tasks that the user can execute when monopolizing
these heterogeneous servers. Hence, it does not treat the heteroge-
neous servers as one aggregate server. TSF then applies egalitarian
fairness across the normalized number of allocated tasks.

We may extend TSF in the same way that we extended DRFH.
First, we split the communication link across the computing
servers, and then we apply TSF on this new set of augmented
servers to retain the properties of TSF. We denote this naive
extension by TSF-αααer. When the users have an unlimited number
of submitted tasks, TSF-αααer maximizes the equalized task share,
i.e.,

max
g,x

g (7a)

s.t. x ∈ χαααer (E), (7b)∑
s∈S

xj,s

∑
s∈S

min
{

min
r∈R

{
cs,r
dj,r

}
,
αer
s

dj,er

} = g,∀j ∈ J . (7c)

TABLE 2
Properties of CRU, MNW, DRF-αααer, TSF-αααer, DRF-ER, and TSF-ER.

EF PO SP SI

CRU X X × X

MNW X X × X

DRF-αααer X × X ×
TSF-αααer X × X ×
DRF-ER X X X ×
TSF-ER X X X X

For the example in Fig. 2, the allocation derived by TSF-αααer

with αααer = (cs,CPU)s∈S (i.e., the external resource reservation
profile follows the same pattern as the servers CPU capacity) is
illustrated in Fig. 2(c). The following theorem observes that the
properties PO and SI of TSF are not inherited by TSF-αααer. For
instance, consider the example in Fig. 2. Both users execute a
fewer number of tasks with TSF-αααer compared to the allocation
they receive from TSF-ER. The proof of Theorem 4 is nearly
identical to the proof of Theorem 3 and is omitted.

Theorem 4. There exists no feasible external resource reservation
profile αααer, such that TSF-αααer satisfies PO or SI.

In [37], we proposed DRF-ER, which extends DRF to envi-
ronments with an external resource. Similar to DRF-αααer, it applies
egalitarian fairness across the dominant shares with a minor but
crucial change. Along with g and x, DRF-ER considers αααer

as a decision variable of this problem. Hence, DRF-ER can be
interpreted as dynamically selecting the best communication link
reservation profile that leads to the highest equalized share of
dominant resource for the users. In [37], we showed that DRF-ER
could satisfy EF, PO, and SP, but fails to satisfy SI. Unfortunately,
extending TSF in the same way to dynamically select the best
communication link reservation profile leads into a non-convex
optimization problem (i.e., problem (7) would be non-convex if we
consider αααer to be a decision variable along with g and x). Table 2
summarizes the properties of CRU, MNW, DRF-αααer, TSF-αααer, and
DRF-ER.

4 TASK SHARE FAIRNESS WITH EXTERNAL RE-
SOURCE

Theorems 3 and 4 indicate that static extension of DRF or TSF
does not preserve PO and SI. Furthermore, the dynamic extension
of TSF, problem (7), leads to a non-convex optimization problem.
In this section, we present TSF-ER, which accommodates an
external resource while preserving all of the EF, PO, SP, and SI
properties.

Given any environment E, the TSF-ER multi-resource alloca-
tion rule applies max-min fairness across the users’ normalized
number of allocated tasks, i.e., the users’ task share. For any user
j ∈ J , the number of allocated tasks is normalized with respect
to ηj , which is given in (6) and denotes the maximum number of
tasks that user j can execute by monopolizing the servers. Unlike
naive extensions of TSF, TSF-ER does not require to split the
external resource across the computing servers.

Algorithm 1 gives the pseudo-code of TSF-ER. In the TSF-
ER allocation, which is max-min fair across the users’ task share,
each user j ∈ J either belongs to, Jsat, the set of saturated

7

1/9

2/9

3/9

4/9

5/9

6/9

7/9

8/9

9/9

User 1 User 2

CPU MEM
server 1

CPU MEM
server 2

BW

(a) CRU and MNW

3/9

4.5/9

6/9

CPU MEM BW
augmented server 1

CPU MEM BW
augmented server 2

22.5%

45%

11.2%
7.4%

14.8%

3.7%

10.8%

5.4%

13.5%

37%

18.5%

46.3%

(b) DRF-αααer with αααer = (1/|S|)s∈S

3/9

6/9

CPU MEM BW
augmented server 1

CPU MEM BW
augmented server 2

30.4%

60.9%

15.2%

3.7%
7.4%

1.8%

2.8%

1.4%

3.5%

51.8%

25.9%

64.8%

(c) TSF-αααer with αααer = (cs,CPU)s∈S

Fig. 2. Illustrative example using MEC with bandwidth (BW) as the external resource. Server 1 contains 5 CPU cores and 10 GB of memory,
and server 2 contains 10 CPU cores and 5 GB of memory. To execute a task, user 1 requires 2 CPU cores, 1 GB of memory, and 2.5/15 link
bandwidth, and user 2 requires 1 CPU cores, 2 GB of memory, and 0.5/15 link bandwidth. Hence, the normalized server capacity profile is
s1 = (1/3, 2/3), s2 = (2/3, 1/3), and normalized users’ demand profiles are d1 = (2/15, 1/15, 2.5/15),d2 = (1/15, 2/15, 0.5/15). (a) Both CRU
and MNW allocate server 1 to user 2 and server 2 to user 1. Each user executes 5 tasks. (b) DRF-eq allocation in which BW is equally reserved for
the servers. (c) TSF-cpu in which BW reservation profile follows the same pattern as the servers’ CPU capacity.

users, or Jactive, the set of active users. User j is saturated if it
receives nj tasks. Otherwise, it is an active user and is capable of
receiving more tasks. Furthermore, all active users should receive
the same normalized number of allocated tasks in the max-min
fair allocation across the users’ task share.

Given the set of saturated and active users in TSF-ER, the
max-min fair allocation across the users’ task share can be derived
by finding the solution to problem (8). By constraints (8b)-(8d),
the users are allocated a non-negative number of tasks on each
server, and the resource capacity constraints are not violated.
Furthermore, by constraint (8e), the saturated users receive exactly
their number of submitted tasks. Finally, by maximizing g in (8a)
and constraint (8f), the equalized task share of the active users
is maximized. However, the sets of saturated and active users
in the TSF-ER allocation are unknown beforehand. Algorithm 1
finds Jsat and Jactive by updating them in each iteration of the
while loop. Initially, all users are considered to be active. In
each iteration, given the set of saturated and active users from
the previous iteration, Algorithm 1 finds x∗, the solution to
problem (8). Next, the for loop of the TSF-ER routine checks the
allocation to see if any active user has been allocated its number of
submitted tasks or more, i.e., the set Q derived by the for loop of
the TSF-ER routine. The users in Q may have received more than
what they can utilize, leading to the violation of Pareto optimality
and max-min fairness across the users’ task share by the allocation.
Thus, these users must be removed from the set of active users
and added to the set of saturated users, i.e., lines 12 and 11 of
the TSF-ER routine. The TSF-ER routine repeats this procedure

with the updated Jsat and Jactive until there is no new saturated
user. At this point, the TSF-ER routine has found the max-min
fair allocation across the users’ task shares and returns it.

The most computationally intensive step of each iteration of
the while loop of Algorithm 1 is finding the solution of the
linear program in the LP-TaskShare procedure, which can be done
efficiently with the interior point method. We assume that resource
capacity and users’ demands are rational numbers. Hence, we can
represent the constraints of the linear programming problem (8)
by the inequality Gx̃ ≤ q, where x̃ is the augmented decision
vector with |J ||S| + 1 elements, G ∈ Zm×(|J ||S|+1) is an
integer-valued matrix where m = 2|J | + |J ||S| + |R||S| + 1,
and q is an integer-valued vector with m elements. Let U
denote the maximum absolute value of the elements in G and
q. Under the realistic assumption that the number of users is
greater than the number of computing servers and the number
of computing resources (i.e., |S| < |J | and |R| < |J |),
the computational complexity of the primal-dual path-following
interior point method with proper initialization to find an ε-optimal
solution is O(|J |7 log |J |Uε) [49]. In each iteration of the while
loop, either the procedure terminates at line 10 or at least one
new user will be removed from the set of unsaturated users and
added to the set of saturated users, i.e., line 11-12. Thus, after at
most |J | iterations, Jactive is empty and the TSF-ER procedure
terminates at line 10. Hence, the computational complexity of the
TSF-ER procedure is O(|J |8 log |J |Uε), i.e., polynomial in |J |,
logU , and log 1

ε .
In the following, we study the properties of TSF-ER. We prove

8

Algorithm 1: Computing TSF-ER.

Input: E =
(
J ,S, R̂,u, c, cer

)
: The input environment.

Output: x∗: A feasible task allocation for E.
Procedure TSF-ER(E)

1 Jsat ← ∅ .The set of saturated users
2 Jactive ← J .The set of active users
3 while True do
4 Q← ∅
5 x∗ ← LP-TaskShare(E,Jactive, Jsat)
6 for j ∈ Jactive do
7 if

∑
s∈S

x∗j,s ≥ nj then

8 Q← Q ∪ {j} .j is saturated
9 if Q = ∅ then

10 return x∗

else
11 Jactive ← Jactive/Q
12 Jsat ← Jsat ∪Q

Procedure LP-TaskShare(E,Jactive, Jsat)
1 Solve

max
g,x

g (8a)

s.t.
∑
j∈J

∑
s∈S

xj,s dj,er ≤ 1, (8b)∑
j∈J

xj,s dj,r ≤ cs,r,∀s ∈ S, r ∈ R, (8c)

x ≥ 0, (8d)∑
s∈S

xj,s = nj ,∀j ∈ Jsat, (8e)∑
s∈S

xj,s

ηj
= g,∀j ∈ Jactive. (8f)

2 return x

that it satisfies EF, PO, SP, and SI. We first propose the following
lemma, which will be used to prove Theorems 5 and 6. This lemma
indicates that the users that are not saturated by TSF-ER have the
maximum normalized number of allocated tasks among all users.
We use Jactive (E;λ) to denote the set of users who do not meet
their task limit when allocation rule λ is applied. The proof of this
lemma is included in Appendix 9.4.

Lemma 1. Let E =
(
J ,S, R̂,u, c, cer

)
be an arbitrary envi-

ronment and λ denote the TSF-ER rule. The users that remain
active by the end of Algorithm 1 must have the largest task share,
i.e., for any j ∈ Jactive (E;λ) and i ∈ J ,∑

s∈S
λj,s (E)

ηj
≥

∑
s∈S

λi,s (E)

ηi
.

Theorem 5. The TSF-ER rule is max-min fair across the users’
task shares.

Proof. Let λ be the TSF-ER resource allocation rule. Suppose
user j /∈ Jactive (E;λ). The dominant share of this user cannot
be increased since it is saturated. Thus, it is only possible to
increase the dominant share of the users that are in Jactive (E;λ).
By Lemma 1, the users in Jactive (E;λ) have the largest dominant

share. Moreover, the task shares of members of Jactive (E;λ) are
maximized while being equalized by procedure LP-TaskShare.
Hence, it is impossible to increase the dominant share of a user
j ∈ Jactive (E;λ) without decreasing the dominant share of other
users. Consequently, the TSF-ER allocation rule is max-min fair
across the users’ task shares.

Next, we present the following lemma, which finds the number
of tasks that user j of environment E can execute if it gets the
allocation of user k from environment E′. We use this lemma to
prove the envy-freeness of TSF-ER.

Lemma 2. Let λ be an arbitrary non-wasteful allocation rule
and E and E′ be two arbitrary environments with the same set of
augmented resource R̂, i.e., E =

(
J ,S, R̂,u, c, cer

)
and E′ =(

J ′,S ′, R̂,u′, c′, c′er

)
. The number of tasks that user j ∈ J in

environment E can execute if it gets the allocation of user k ∈ J ′
in environment E′ is

uj (ΛΛΛk (E′)) = min

{∑
s∈S′

λk,s (E′) min
r∈R̂

{
d′k,r
dj,r

}
, nj

}
. (9)

Proof. The combination of (1), (3), and (4) yields Lemma 2.

In the following theorem we observe the envy-freeness of TSF-
ER.

Theorem 6. The TSF-ER rule satisfies EF.

Proof. We start by proving the envy-freeness for the saturated
users. Let λ be the TSF-ER resource allocation rule and E be an
arbitrary environment. Any user j /∈ Jactive (E;λ) must have been
saturated by Algorithm 1 and received the maximum number of
tasks that it can execute. Hence, it cannot envy any other user’s
allocation.

Next, we prove the envy-freeness for the unsaturated users.
Let j ∈ Jactive (E;λ) be any arbitrary unsaturated user and i ∈ J
be any arbitrary user. By Lemma 2, the number of tasks that user
j can execute with user i’s allocated resource, i.e., uj (ΛΛΛi (E)),
is no more than

∑
s∈S λi,s (E) min

r∈R̂

{
di,r
dj,r

}
. Furthermore, by

Lemma 1,
∑
s∈S λi,s (E) ≤ ηi

∑
s∈S λj,s(E)

ηj
. Hence, the number

of tasks that user j can execute with user i’s allocation is no more
than

∑
s∈S λj,s (E) min

r∈R̂

{
di,rηi
dj,rηj

}
, i.e.,

uj (ΛΛΛi (E)) ≤
∑
s∈S

λj,s (E) min
r∈R̂

{
di,rηi
dj,rηj

}
.

It remains to show that min
r∈R̂

{
di,rηi
dj,rηj

}
≤ 1.

We consider the following two cases and show that the
inequality holds in both cases.
Case 1. ηj = 1

dj,er
:

min
r∈R̂

{
di,rηi
dj,rηj

}
= min
r∈R̂

{
di,rηi

dj,r/dj,er

}
≤ di,erηi
dj,er/dj,er

≤ di,er

di,er
= 1.

9

Case 2. ηj =
∑
s∈S

min
r∈R

{
cs,r
dj,r

}
:

min
r∈R̂

{
di,rηi
dj,rηj

}
=

min
r∈R̂

{
di,r
dj,r

}
ηi∑

s∈S
min
r∈R

{
cs,r
dj,r

}

≤
min
r∈R̂

{
di,r
dj,r

} ∑
s∈S

min
r∈R

{
cs,r
di,r

}
∑
s∈S

min
r∈R

{
cs,r
dj,r

}

≤
min
r∈R

{
di,r
dj,r

} ∑
s∈S

min
r∈R

{
cs,r
di,r

}
∑
s∈S

min
r∈R

{
cs,r
dj,r

}

≤

∑
s∈S

min
r∈R

{
di,r
dj,r

}
min
r∈R

{
cs,r
di,r

}
∑
s∈S

min
r∈R

{
cs,r
dj,r

}

≤

∑
s∈S

min
r∈R

{
di,r
dj,r
× cs,r

di,r

}
∑
s∈S

min
r∈R

{
cs,r
dj,r

}

=

∑
s∈S

min
r∈R

{
cs,r
dj,r

}
∑
s∈S

min
r∈R

{
cs,r
dj,r

} = 1.

This concludes the proof of Theorem 6.

In the following theorem we observe the Pareto-optimality of
the TSF-ER allocation.

Theorem 7. The TSF-ER rule satisfies PO.

Proof. Let λ be the TSF-ER resource allocation rule. Assume, by
way of contradiction, that allocation obtained by λ does not satisfy
PO. Thus, there exists an environment E =

(
J ,S, R̂,u, c, cer

)
and a feasible task allocation x ∈ χ(E) for this environment
such that

∑
s∈S xi,s =

∑
s∈S λi,s (E) for any i /∈ Jactive (E;λ),∑

s∈S xi,s ≥
∑
s∈S λi,s (E) for any i ∈ Jactive (E;λ), and there

exists some user j ∈ Jactive (E;λ) with strict inequality. We use
x to construct x′ ∈ χ(E) such that∑

s∈S
x′i,s/ηi =

∑
s∈S

λi,s (E) /ηi, ∀i /∈ Jactive (E;λ) , (10)∑
s∈S

x′i,s/ηi >
∑
s∈S

λi,s (E) /ηi, ∀i ∈ Jactive (E;λ) . (11)

This contradicts the premise of max-min fairness of TSF-ER
allocation across the users’ normalized number of allocated tasks.
In what follows, we show how to construct x′.

Consider the feasible allocation x ∈ χ(E) and the user
j ∈ Jactive (E;λ) with

∑
s∈S xi,s >

∑
s∈S λi,s (E). There

exists some δ > 0 such that
∑
s∈S xj,s ≥

∑
s∈S λj,s (E)+ |S|δ.

Hence, there exists some server s0 such that xj,s0 ≥ λj,s0 (E)+δ.
We construct x′ by reducing δ tasks from user j in server s0 and

adding min

{
min
r∈R̂

{
δdj,r∑

k∈Jactive(E;λ)

dk,r

}
, nk −

∑
s∈S

xk,s

}
tasks to

each user k in Jactive (E;λ), including user j, in server s0. It is
easy to check that (10) and (11) hold and x′ ∈ χ(E).

Now, we propose the following two lemmas, which will be
used to prove that TSF-ER satisfies SP. In the following two

lemmas and Theorem 8, we let E =
(
J ,S, R̂,u, c, cer

)
be an

arbitrary environment in which user j reports its true demand,
i.e., d, and E′ =

(
J ,S, R̂,u′, c, cer

)
be the environment in

which user j reports some fake demand, i.e., d′ 6= d. Furthermore,
we denote the true maximum number of tasks that any arbitrary
user i ∈ J can execute when it monopolizes the servers in
environments E by ηi (i.e., (6)), and denote the fake maximum
number of tasks that any arbitrary user i ∈ J can execute
when it monopolizes the servers in environments E′ by η′i,

i.e., η′i = min
{∑
s∈S

min
r∈R

{
cs,r
d′i,r

}
, 1
d′i,er

}
. Note that η′i = ηi for

all i 6= j.
By Lemma 3, a user can benefit from reporting a fake demand

only if its resulting normalized number of allocated tasks is larger
than its original normalized number of allocated tasks when the
user reports its true demand. The proof of Lemma 3 is included in
Appendix 9.5.

Lemma 3. Let E, j, E′, ηi, and η′i be as defined above.
If the normalized number of tasks allocated to user j is
not increased in environment E′, i.e.,

∑
s∈S λj,s (E′)/η′j ≤∑

s∈S λj,s (E)/ηj , it does not benefit from the reported fake
demand, i.e., uj (Λj (E′)) ≤ uj (Λj (E)).

In Lemma 4 we study how the users’ normalized number of
allocated tasks change if a user could benefit from reporting a fake
demand. Consider two users j and k in the environment E such
that user k’s normalized number of allocated tasks is not greater
than that of user j. Let us assume that user j reports some fake
demand and increased its normalized number of allocated tasks
in this new environment E′. We show that user k’s normalized
number of allocated tasks in environment E′ cannot be smaller
than its normalized number of allocated tasks in environment E.
The proof of Lemma 4 is included in Appendix 9.6.

Lemma 4. LetE, j,E′, ηi, and η′i be as defined above. Let k 6= j
be a user such that

∑
s∈S λj,s (E)/ηj ≥

∑
s∈S λk,s (E)/ηk.

If the normalized number of allocated tasks to user j is in-
creased after reporting a fake demand, i.e.,

∑
s∈S λj,s (E′)/η′j >∑

s∈S λj,s (E)/ηj , user k’s number of allocated tasks cannot
decrease, i.e.,

∑
s∈S λk,s (E′) ≥

∑
s∈S λk,s (E).

Theorem 8. The TSF-ER rule satisfies SP.

Proof. Note that a user’s number of submitted tasks does not have
any impact on ηj and can only bound the number of tasks it
may receive. Hence, the users cannot benefit from reporting a
fake number of tasks. It remains to show that the users cannot
benefit from reporting a fake demand. Let E, j, E′, ηi, and
η′i be as defined above. If j /∈ Jactive (E;λ), user j cannot
benefit from reporting fake demand, since it already receives
the maximum number of tasks that it can execute, i.e., nj .
It remains to show that user j cannot benefit from reporting
fake demand even if j ∈ Jactive (E;λ). We prove it separately
for the cases of

∑
s∈S λj,s (E′)/η′j ≤

∑
s∈S λj,s (E)/ηj and∑

s∈S λj,s (E′)/η′j >
∑
s∈S λj,s (E)/ηj . In the first case,

Lemma 3 implies that user j cannot benefit from the reported
fake demand. In the latter case, since j ∈ Jactive (E;λ), we
have

∑
s∈S λj,s (E)/ηj ≥

∑
s∈S λk,s (E)/ηk for any k 6= j.

Hence, by Lemma 4,
∑
s∈S λk,s (E′) ≥

∑
s∈S λk,s (E), i.e., the

number of tasks allocated to any user k 6= j does not decrease in
the new environment. If j executes more tasks with the resources
it receives in the new environment E′, we have found a feasible

10

allocation in which j is strictly better off and no user is worsen
off. This contradicts Pareto optimality of the TSF-ER rule. Hence,
j cannot execute more tasks with the resources it receives after
reporting the fake demand, and TSF-ER satisfies SP.

Finally, we show that TSF-ER satisfies SI.

Theorem 9. The TSF-ER rule satisfies SI.

Proof. It suffices to show that TSF-ER does not allocate fewer
than 1/|J | tasks to each user in the worst case scenario where
all users submitted an unlimited number of tasks. Consider the
feasible allocation of equally sharing each server and the exter-
nal resource among all users. Then, the normalized number of
allocated tasks for any user j is 1/|J |. Problem (8) maximizes
the equalized normalized number of allocated tasks. Hence, its
solution cannot be worse than 1/|J |. Therefore, TSF-ER satisfies
SI.

5 ONLINE IMPLEMENTATION OF TSF-ER WITH IN-
DIVISIBLE TASKS

In Sec. 4, we have studied the properties of TSF-ER. These
properties are defined for settings with divisible tasks, where
the allocation is recomputed whenever a user arrives or departs.
Under task indivisibility, TSF-ER can be implemented using a
simple online algorithm. We give the pseudo-code of this online
implementation of TSF-ER in Algorithm 2.

At the beginning of each reallocation time slot, TSF-ER runs
the Reallocation routine, which suspends all the running
tasks, adds them back to the waiting queue, resets the users’ fair
share, and releases all of the allocated resources. Next, it calls the
AllocateFromQueues routine. In each iteration, it allocates
one task of the user that is the furthest from its fair share (i.e., the
most disadvantaged user) and assigns it to the server that fits that
user’s demand best (line 6 of the AllocateFromQueues rou-
tine). In particular, this implementation of TSF-ER for indivisible
tasks serves users in ascending order of task shares. If multiple
users have the minimum task share, it chooses the user with the
minimum task share that produces the minimum increase in its
task share after allocating one task, i.e., the user with minimum
1/ηj . The algorithm keeps allocating the user with the least task
share until no more tasks can be scheduled, i.e., J feas = ∅. At this
point, the scheduler stops and waits for the next reallocation time
slot.

Upon task arrival in each reallocation time slot, TSF-ER runs
the TaskArrival routine. The arrived tasks are queued up to
be scheduled by the AllocateFromQueues routine in line 5 of
the TaskArrival routine. Note that the TaskArrival routine
does not revoke any of the tasks that are already running on the
machines, and it allocates tasks if there exist enough available
resources for them.

Upon task completion in each reallocation time slot,
TSF-ER runs the TaskDeparture routine. It removes
the completed tasks from their allocated machines and re-
leases the allocated resources accordingly. Finally, it calls the
AllocateFromQueues routine to see if the released resources
are enough to allocate any tasks in the waiting queue.

If no task arrival or departure has occurred during a reallo-
cation time slot, there is no need to reallocate the tasks at the
beginning of the next time slot and the Reallocation call
will be ignored. In designing the reallocation time slot length,

Algorithm 2: Computing TSF-ER allocation under task
indivisibility.

Input: J arr: Set of arrived users.
Ij : Set of arrived tasks of user j.

Procedure TaskArrival(J arr, (Ij)j∈J arr)

1 for j ∈ J arr do
2 Create a waiting task queue for the arrived user j
3 for i ∈ Ij do
4 Append the arrived task i to the waiting task

queue of user j
5 AllocateFromQueues ()

Input: J dep: Set of departing users.
Ij : Set of departing tasks of user j.

Procedure TaskDeparture(J dep, (Ij)j∈J dep)

1 for j ∈ J dep do
2 for i ∈ Ij do
3 Remove task i from its allocated machine and

release its allocated resources
4 sj ← sj − 1

ηj
. decrease user j’s active task share by one

task share
5 AllocateFromQueues ()

Procedure Reallocation()
1 Suspend all running tasks and add them back to their

corresponding waiting task queues
2 Set the active task share of all users to zero
3 Release the allocated resources
4 AllocateFromQueues ()

Procedure AllocateFromQueues()
1 J feas ← the set of users with feasible tasks in their

waiting task queue with respect to the available
resources

2 while J feas 6= ∅ do
3 J min ← arg min

j∈J feas
{sj}. sj is the active task share of user j

4 j∗ ← arg min
j∈J min

{
1
ηj

}
. select the user with the minimum one

task share

5 Sj∗ ← the set of feasible machines for the
selected task

6 m← arg min
s∈Sj∗

{∑
r∈R(as,r − dj∗,r)2

}
. find the

machine that fits user j∗’s demand

7 Select one task from user j∗’s waiting task queue
and assign it to machine m

8 Update the available resources
9 sj∗ ← sj∗ + 1

ηj∗
. increase user j∗’s active task share by

one task share

10 J feas ← the set of users with feasible tasks in
their waiting task queue with respect to the
available resources

the overhead caused by the suspend/resume procedure must be
considered. In the next section, we will study the trade-off between
the reallocation time slot length and job completion time.

The AllocateFromQueues call is the most computation-
ally intensive part of the TaskArrival, TaskDeparture,
and Reallocation routines. Due to line 10 of the

11

AllocateFromQueues routine, each iteration of the while
loop of this procedure has the computational complexity of
O(|J ||S||R|). Let n =

∑
j∈J nj denote the total number

of submitted tasks. The number of iterations of the while loop
is bounded by n. Hence, the computational complexity of the
AllocateFromQueues routine is O(n2|S||R|).

6 EXPERIMENTAL RESULTS

As summarized in Table 2, unlike the existing allocation rules,
TSF-ER algorithmically guarantees all of the fairness and effi-
ciency properties. This section further evaluates its performance
in job completion time, resource utilization, and fairness. First,
we evaluate the performance of TSF-ER, MNW, and CRU under
the fluid task model via Google cluster trace [50] with three-server
clusters. Next, we study their performance under task indivisibility
via large-scale simulation using Alibaba trace [51]. We emphasize
that TSF-ER is not explicitly designed to optimize the users’ job
completion time or resource utilization. Instead, the main benefit
of TSF-ER is that it simultaneously satisfies all four fairness and
efficiency properties EF, PO, SP, and SI.

6.1 Simulation Process

This section explains our simulation process under two different
models for users’ tasks, namely the fluid and indivisible task
models. In both models, the users submit some number of tasks for
execution and wait for their tasks to be executed by the servers and
leave the system afterward. A user’s job completion time (JCT) is
the time between its arrival and finishing all of its tasks.

Fluid task model: We assume that the tasks are infinitesimally
divisible and can be stopped, reallocated, and resumed anytime
without any overhead. Hence, upon arrival or departure of any
task, the scheduler stops all the running tasks, reallocates them as
per the allocation rule, and resumes their execution. Recall that
xj,s is the number of tasks that is allocated to user j on server s.
We interpret the total number of tasks allocated to user j in any
interval, i.e.,

∑
s∈S xj,s, as the processing rate of user j. User

j would leave the system when all its tasks are executed. The
user’s JCT is defined as the time between its arrival and departure.
Note that in the fluid model, we do not bound the processing rate
and allow the scheduler to allocate even more than the number of
submitted tasks.

Indivisible task model: We assume that the scheduler is not
allowed to allocate tasks fractionally, and it cannot allocate more
than the number of submitted tasks. Similar to [52] and [53], we
consider an overhead of 250 ms for suspend-resume caused by the
reallocation procedure. This overhead is due to suspending a task
and storing the task state for future allocation. The scheduling
procedure of TSF-ER is described in Algorithm 2. However,
extending MNW and CRU to the indivisible task model is not
straightforward and is beyond the scope of this paper. Here
we implement them by suspending all running tasks at each
reallocation time slot and finding the MNW and CRU fractional
allocation for the fluid task model. Next, the fractional allocation
is rounded down to suit the indivisible task model. Upon arrival
or departure of some users during each reallocation time slot, the
scheduler keeps allocating tasks to the server randomly until no
more tasks can be allocated.

6.2 Small-scale Experiments with Google Cluster Trace

In this section, we evaluate the performance of the allocation rules
under fluid and indivisible task models with a small number of
users dynamically arriving in the system with three machines and
an external resource. This small-scale simulation setting allows us
to run the experiment for over 10K resource allocation problem
instances and study the effect of various parameters, namely the
number of arriving users, server heterogeneity, external resource
capacity, and reallocation slot length, on the users’ JCT. We are
not aware of any publicly available MEC datasets in which users
require multiple resources and a resource external to them, which
also specifies the users’ demand for each resource. Therefore, we
use Google cluster trace datasets to simulate an MEC environment
and synthesize users’ demand for bandwidth (i.e., the external
resource) from their CPU demands. In what follows, we explain
our simulation settings and introduce the notion of JCT factor.

User configuration: The Google cluster trace describes every
job submission and its resource usage in the Google Borg compute
cluster for a month. Each job is divided into tasks with the
same resource demands, and the jobs’ arrival time, the number
of submitted tasks, per task execution time, and per task CPU
and memory demands are included in the trace. For simplicity,
we consider each job in the trace as a distinct user in our
simulation setting. Thus, in what follows, we use job and user
interchangeably. Similar to [54] - [57], we synthesize the users’
required bit rate by assuming that dj,CPUfCPU = Xdj,bps, where
dj,CPU is the CPU demand of user j, fCPU is the CPU frequency
of the servers, dj,bps is the required bit rate of user j, and X
is a random variable with Gamma distribution. We set the CPU
frequency to be 2.6 GHz and follow [54] to set the shape and
rate parameter of X to 4 and 200, respectively. We consider a
general MEC system with frequency division multiple access with
spectral efficiency of 3.5 bit/s/Hz and find user j’s demand for
the external resource, i.e., bandwidth, as dj,er = dj,bps/3.5. In
each resource allocation problem instance, we set the number of
users that dynamically arrive to the MEC environment to 10, 15,
or 20. In each resource allocation problem instance, the users are
uniformly sampled from the first 1000 job submissions in Google
cluster trace, which span over the first 48 hours of the Google
cluster trace.

Server and external resource configuration: In the Google
cluster trace, the tasks’ demand and the servers’ capacity for
each resource are scaled to make the maximum capacity of each
resource in the servers of the Google Borg compute cluster equal
to 1. We pick the server with the capacity of (1, 1) from the
Google cluster trace, where the first and the second entry denote
the scaled capacity for CPU cores and memory, and add two
synthesized servers with the capacity of (1 + ρ, 1 − ρ), and
(1−ρ, 1+ρ), where ρ represents the level of heterogeneity among
the servers, while keeping the aggregate capacity of each resource
equal to 3. In particular, in each resource allocation problem
instance, we set ρ to 0.5, 0.7, or 0.9 to study three levels of
server heterogeneity. For the external resource, we set the BW
of the wireless communication channel to 1, 2, and 3 MHz to
study the sensitivity of the four allocation rules to the external
resource capacity. Our simulation results show that having a BW
of larger than 3 MHz makes BW irrelevant due to the absence of
competition over this resource.

JCT factor: The first 1000 job submissions in the Google
cluster trace contain jobs with per task execution time from 15

12

A
v
e
ra

g
e
 m

in
im

u
m

 t
a
s
k
 r

a
ti
o

T
 m

e
 r

a
ti
o

 o
f
S

I
v
io

la
ti
o
n

TSF-ER

DRF-ER

MNW

CRU

ρ

ρ

DRF-mem

DRF-cpu

DRF-eq

TSF-cpu

TSF-mem

TSF-eq

1.0

1.0

0.4

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.6

0.8

0.2

0.4 0.6 0.8 1.0

0.4 0.6 0.8 1.0

Fig. 3. SI violation vs. server heterogeneity. DRF-αααer, TSF-αααer, and DRF-
ER are further away from satisfying SI and violate SI more often when
the server heterogeneity increases.

seconds to 28 days. Moreover, the number of tasks that jobs
submit varies from 1 to 2854, and their requested resources could
be drastically different. Hence, instead of a user’s JCT under an
allocation rule, we study the JCT factor, that is the ratio of the
user’s standalone JCT to the user’s JCT. A user’s standalone JCT
is defined as its JCT if it had received all resources of all servers. In
Sec. 6.2.1 and 6.2.2, the users’ standalone JCT is calculated based
on the fluid task model and the indivisible task model, respectively.
Note that the users’ JCT factor is bounded by 1, and the larger it
is, the happier the user is with its resource allocation experience.

Before presenting our main simulation results, we study the
performance of naive extension of DRFH and TSF, namely DRF-
αααer and TSF-αααer, and DRF-ER, and argue that TSF-ER domi-
nates them. Theorems 3 and 4 show that there always exists
some environment in which DRF-αααer and TSF-αααer fail to find
an allocation that provides PO or SI. To see how often these
allocation rules violate these properties in realistic environments,
we evaluate their performance using the Google cluster trace. We
use DRF-cpu (resp. TSF-cpu), DRF-mem (resp. TSF-mem), and
DRF-eq (resp. TSF-eq) to denote the three specific design options
of DRF-αααer (resp. TSF-αααer) when αααer is equal to (cs,CPU)s∈S ,
(cs,mem)s∈S , and (1/|S|)s∈S , respectively. Thus, the external
resource reservation profile of DRF-cpu (resp. DRF-mem) follows
the same pattern as the servers CPU (resp. memory) capacity, and
DRF-eq corresponds to the case where the external resource is
equally reserved among the servers.

Given x∗j,s, an allocation rule’s number of allocated tasks to
user j on server s, and the total number of tasks that user j can
execute when the resources are equally split among the users,
denoted by ψj , the task ratio of user j is defined as

∑
x∗j,s
ψj

. To
study the SI violation by an allocation rule, we restrict the task
ratio by 1 (i.e., min

{∑
x∗j,s
ψj

, 1
}

), and if this value is equal to 1,
user j does not benefit from receiving an equal share. We derive

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ρ

ρ

TSF-ER

DRF-ER

MNW

CRU

D
o
m

in
a
ti
o
n
 f
a
c
to

r
T

im
e

 R
a
ti
o
 o

f
P

O
 V

io
la

ti
o
n

0.4

0.4 0.6 0.8

DRF-mem

DRF-cpu

DRF-eq

TSF-cpu

TSF-mem

TSF-eq

1.0

1.0

1.0

0.0

0.4 0.6 0.8

0.6

0.8

0.2

Fig. 4. PO violation vs. server heterogeneity. DRF-αααer and TSF-αααer

are less Pareto efficient and more often violate PO when the server
heterogeneity increases.

the minimum restricted task ratio (i.e., min
j∈J

{
min

{∑
x∗j,s
ψj

, 1
}}

)

to find the most disadvantaged user at a given time instance. Note
that if an allocation rule satisfies SI, the minimum restricted task
ratio equals 1 for any environment at any time. In Fig. 3, the
average minimum restricted task ratio and the time ratio that SI
is violated during the simulation are plotted versus ρ, when 100
jobs are uniformly sampled from the first 1000 job submission in
the Google cluster trace, and the BW capacity is set to 2 MHz.
The average minimum restricted task ratio of DRF-αααer, TSF-
αααer, and DRF-ER decreases as ρ increases, i.e., they are further
away from satisfying SI when the server heterogeneity increases.
Furthermore, DRF-αααer, TSF-αααer, and DRF-ER violate SI more
often when the server heterogeneity increases.

In Fig. 4, we study the performance of the allocation rules
in terms of PO. The domination factor denotes how Pareto
dominating is an allocation. Given, x∗j,s, an allocation rule’s
number of allocated task to user j on server s at a given
time instance, we find the dominating allocation with the maxi-
mum social utility (i.e., maximizing

∑
j∈J

∑
s∈S xj,s such that∑

s∈S xj,s ≥
∑
s∈S x

∗
j,s for all j ∈ J). The domination

factor at that time instance is defined as the ratio of the social
utility of the found dominating allocation to the social utility of
the allocation derived from the allocation rule. Note that if an
allocation rule satisfies PO, the domination factor at any time
instance equals 1 for any environment. In Fig. 4, we illustrate
the average domination factor over the simulation time versus ρ,
when 100 users are uniformly sampled from the first 1000 job
submission in the Google cluster trace, and the BW capacity is set
to 2 MHz. We observe that DRF-αααer and TSF-αααer are less Pareto
efficient and more often violate PO when the server heterogeneity
increases.

Figures 3 and 4 together with Table 2 show that TSF-ER is
superior to DRF-αααer, TSF-αααer, and DRF-ER, both in theory and
practice. Therefore, in what follows, we compare the performance

13

TABLE 3
Average of the users’ JCT factor for TSF-ER, MNW, and CRU under fluid task model. The overall efficiency of TSF-ER is at most 6.5% lower than

CRU and MNW, which is a price that TSF-ER has to pay to satisfy SP. However, TSF-ER, unlike the other allocation rules, satisfies the four
properties altogether.

Allocation rule

n 10 15 20 15 15 15 15 15 15

ρ 0.7 0.7 0.7 0.5 0.7 0.9 0.7 0.7 0.7

BW 2 MHz 2 MHz 2 MHz 2 MHz 2 MHz 2 MHz 1 MHz 2 MHz 3 MHz

TSF-ER 0.608 0.491 0.410 0.477 0.491 0.500 0.442 0.491 0.516

MNW 0.621 0.510 0.432 0.492 0.510 0.519 0.448 0.510 0.536

CRU 0.623 0.514 0.437 0.495 0.514 0.524 0.448 0.514 0.540

TABLE 4
Average of the users’ JCT factor for TSF-ER, MNW, and CRU under the indivisible task model. Unlike MNW and CRU, TSF-ER could be efficiently

extended to the indivisible task model and performs well in realistic environments.

Allocation rule

n 10 15 20 15 15 15 15 15 15 15 15 15

ρ 0.7 0.7 0.7 0.5 0.7 0.9 0.7 0.7 0.7 0.7 0.7 0.7

BW 2 MHz 2 MHz 2 MHz 2 MHz 2 MHz 2 MHz 1 MHz 2 MHz 3 MHz 2 MHz 2 MHz 2 MHz

reallocation slot 256 s 256 s 256 s 256 s 256 s 256 s 256 s 256 s 256 s 64 s 256 s 1024 s

TSF-ER 0.904 0.849 0.797 0.837 0.849 0.853 0.766 0.849 0.877 0.872 0.849 0.845

MNW 0.262 0.174 0.128 0.172 0.174 0.183 0.158 0.174 0.182 0.178 0.174 0.173

CRU 0.305 0.200 0.143 0.219 0.200 0.187 0.186 0.200 0.205 0.212 0.200 0.193

of TSF-ER, i.e., the best egalitarian allocation rule, with MNW
and CRU, which represent Nash welfare and utilitarian welfare,
respectively.

6.2.1 Small-scale Experiments with Fluid Task Model
In Table 3, we study the impact of the number of arriving
users, server heterogeneity (i.e., ρ), and external resource capacity
(i.e., BW) on the average of the users’ JCT factor under fluid task
model. Our simulation results show that CRU and MNW attain
better overall efficiency because CRU and MNW maximize the
summation and product of users’ number of allocated tasks. In
particular, by definition, CRU finds the allocation with the best
overall efficiency among all the allocations that provide EF and SI.
TSF-ER focuses on fairness and equalizes the task shares across
the users. Therefore, the overall efficiency of TSF-ER is lower
than CRU and MNW, which is a price that TSF-ER has to pay
to satisfy SP. However, TSF-ER, unlike the other allocation rules,
satisfies the four properties altogether. The maximum drop in the
average JCT factor of TSF-ER compared with CRU is only 6.5%,
and it occurs when the number of users, ρ, and BW are 20, 0.7,
and 2 MHz, respectively.

Table 3 shows that the average JCT factor decreases by
increasing the number of arriving users, which makes the compe-
tition over the available resources more intensive and reduces the
number of tasks, hence the JCT factor that each user can receive.
Furthermore, our simulation results show that the performance
of the allocation rules does not change by increasing ρ, and
they are resilient to server heterogeneity. Decreasing BW makes
the external resource the bottleneck resource for more users.
Hence, when the BW capacity is too small, our fair multi-resource
allocation problem reduces to a fair single-resource allocation

problem. Since these allocation rules satisfy EF, they produce the
equal BW division in the case of a single-resource environment.
Therefore, the allocations they produce become more similar with
smaller BW, as confirmed by Table 3.

6.2.2 Small-scale Experiments with Indivisible Task Model
Table 4 illustrates the impact of the number of users, ρ, BW, and
the reallocation slot length on the average users’ JCT factor under
the indivisible task model. It shows that the proposed implemen-
tation of TSF-ER for the indivisible task model performs well
in realistic environments. Under task indivisibility, this allocation
rule successfully provides high utilization (large average JCT
factor for all users). Moreover, MNW and CRU fail to adapt to the
indivisible task model and perform poorly compared to TSF-ER.
This is mainly due to the naive extension of these two allocation
rules to the indivisible task model.

Under task indivisibility, TSF-ER attempts to reproduce its
fairness and efficiency properties by following the same criterion
used in the divisible task model. More specifically, TSF-ER at-
tempts to keep the user’s task shares equalized by allocating tasks
to the users furthest from their fair share. Under task divisibility,
MNW and CRU’s criteria for a fair and efficient allocation are
maximizing the product of utilities and the sum of utilities,
respectively. To extend MNW (rep. CRU) to the indivisible task
model so that the product (resp. sum) of utilities is approximately
maximized is not straightforward and beyond the scope of this
paper. Our simulation result shows that the most obvious extension
of MNW and CRU to the indivisible task model, which finds the
fractional allocation followed by rounding it, fails to approximate
the desired criteria. This result is in line with the observation
in [58] that the “integrality gap of the natural fractional relaxation

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

25

50

75

100

125

150

175

200
#

o
f
a
rr

iv
e
d

ta
s
k
s

in
th

e
p
a
s
t
h
o
u
r

Time (day)

Fig. 5. The number of arrived tasks during the past hour vs. time. We
uniformly sampled 4% of the first two weeks of job submissions in the
Alibaba cluster trace.

is exponential” for a simpler model with additive utility functions.
Unfortunately, we are not aware of any better method to extend
MNW and CRU to the indivisible task model.

6.3 Large-scale Experiments with Alibaba Cluster
Trace Under Indivisible Task Model

In this section, we evaluate the performance of the allocation rules
under the indivisible task model with a large number of users
dynamically arriving in a twenty-server system and an external
resource. We use the Alibaba cluster trace to simulate an MEC
environment for machine learning jobs and synthesize the users’
demand for bandwidth (i.e., the external resource) from their CPU
demands [54] - [57]. The Alibaba cluster trace describes the
AI/ML workloads in the machine-learning-as-a-service provided
by the Alibaba platform for artificial intelligence on a GPU cluster
with over 1800 servers over a 2-month period. In what follows,
we introduce our simulation settings. The notion of JCT factor is
defined in Sec. 6.2.

User configuration: Similar to the Google cluster trace, each
job in the Alibaba cluster trace is divided into tasks with the same
resource demands and the jobs’ arrival time, number of submitted
tasks, per task execution time, and per task CPU, memory, and
GPU demands are included in the trace. Similar to Sec. 6.2, we
consider each job in the trace as a distinct user in our simulation
setting and synthesize users’ required bit-rate based on users’
required CPU cores and a random Gamma distribution. We use
the same CPU frequency, shape and rate parameter for the Gamma
random variable, and wireless channel model as in Sec. 6.2. We
uniformly sampled 4% of the first two weeks of job submissions
in the Alibaba cluster trace. Figure 5 illustrates the number of
arrived tasks in each hour for the sampled job submission.

Server and external resource configuration: We uniformly
sample 20 servers from the Alibaba cluster trace. Table 5 demon-
strates the server configuration. Moreover, we set the BW of the
wireless communication channel to 1.5 GHz.

In the indivisible task model, no allocation rule can satisfy the
fairness and efficiency properties (see Sec. 7 for a list of works
that satisfy the approximate versions of these properties under the
indivisible task model). In what follows, we study the performance
of TSF-ER, MNW, and CRU in terms of fairness and efficiency.

Verifying whether an allocation is Pareto-optimal requires
solving an integer program and is challenging. Hence, in this

TABLE 5
The server configuration of the large-scale simulation.

CPU cores Memory GPUs Number of servers
64 512 GB 2 9
96 512 GB 2 4
96 512 GB 8 3
96 384 GB 8 4

section, we consider resource utilization as a proxy for the
efficiency of an allocation rule. In Figure 6 we illustrate the
resource utilization of the allocation rules when the reallocation
slot is 1 hour. Note that after 14 days, we assume there is
no new job submission to the system. We conjecture that the
jittering resource utilization of MNW and CRU is due to their
random scheduling policy during the reallocation slots. MNW
and CRU perform poorly under the indivisible task model, and
their throughput is 35% and 11% worse than that of TSF-ER,
respectively. Furthermore, MNW and CRU fail to stabilize the
waiting queue, as illustrated in Figure 7. We note that MNW and
CRU perform better with smaller reallocation slot length since the
reallocation procedure is activated more often. However, due to
the severe disruption and high overhead of resource reallocation,
in practice we expect the reallocation slot to be at least in the order
of hours.

In Figure 8, we consider more realistic values for the real-
location slot and study its impact on the average of the users’
JCT factor. For instance, consider the reallocation slot of 2 weeks,
which activates the reallocation procedure only once during the
scheduling process of the allocation rules. In this case, MNW and
CRU randomly assign tasks to the servers almost all the time.
However, TSF-ER attempts to equalize the fair share of the users
all the time and provides a higher JCT factor level.

Given an allocation rule, let ΛΛΛj be the resource allocation
profile of user j derived by that allocation rule. Consider the
ratio of the number of tasks that user j can execute with
its resource allocation profile to the number of tasks that it
can execute with user i’s resource allocation profile at a given
time instance restricted by 1 (i.e., min {uj(ΛΛΛj)/uj(ΛΛΛi), 1}). The
smaller this value is, the more envious user j is toward user i
at that time instance. Furthermore, if it equals 1, user j does
not envy user i. Hence, we define EF satisfaction (EF-SAT) of

user j at that time instance as min
{

min
i∈J
{uj(ΛΛΛj)/uj(ΛΛΛi)} , 1

}
.

The minimum EF-SAT (MIN-EF-SAT) of the users at a time

instance, i.e., min
{

min
i,j∈J

{uj(ΛΛΛj)/uj(ΛΛΛi)} , 1
}

, represents the

EF violation by the most envious user at that time instance.
Figure 9 illustrates the average MIN-EF-SAT over the simulation
time versus the reallocation slot length, and it shows that TSF-
ER substantially outperforms MNW and CRU in terms of envy-
freeness.

Similar to Sec. 6.2, we find the task ratio of a user at a time
instance as the ratio of the number of tasks allocated to that user
to the number of tasks that it can execute when the resources are
equally allocated to all users in the system at that time instance.
We define SI satisfaction (SI-SAT) of a user as the minimum of
its task ratio and 1. Hence, any SI-SAT of less than 1 implies
that the user prefers the equal division allocation over what is
allocated to it. The minimum SI-SAT (MIN-SI-SAT) of the users
at a time instance represents the violation of SI for the most

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

20

40

60

80

100
C

P
U

u
ti
liz

a
ti
o

n
TSF-ER

MNW

CRU

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

20

40

60

80

100

m
e

m
o

ry
u

ti
liz

a
ti
o

n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

20

40

60

80

100

G
P

U
u

ti
liz

a
ti
o

n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

20

40

60

80

100

B
W

u
ti
liz

a
ti
o

n

Time (day)

Time (day)

Time (day)

Time (day)

Fig. 6. Averaged resource utilization over the past hour vs. time when the reallocation slot is 1 hour. MNW and CRU perform poorly under the
indivisible task model, and their throughput is 35% and 11% worse than that of TSF-ER, respectively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

500

1000

1500

2000

2500

#
ta

s
k
s

in
th

e
w

a
it
in

g
q
u
e

u
e

TSF-ER

MNW

CRU

Time (day)

Fig. 7. Number of tasks waiting in the queue vs. time when the realloca-
tion slot is 1 hour. MNW and CRU fail to stabilize the waiting queue.

disadvantaged user. Figure 10 illustrates the average MIN-SI-SAT
over the simulation time, and it shows that TSF-ER provides far
better sharing incentive across the users in comparison to MNW
and CRU.

7 RELATED WORK

A fair division of goods is a well-studied problem in microe-
conomics. There have been two well-known general solutions
to this problem, namely Kalai-Smorodinsky (KS) bargaining so-
lution [59] and Nash Bargaining Solution (NBS) [7], [8]. The
KS solution equalizes the relative gains (i.e. fraction of maximal
feasible gains) of all users [31]. When utility functions are lin-
ear, KS corresponds to the egalitarian equivalent allocation [47],
which finds the maximum ω such that everyone is indifferent
between receiving their allocated share or the fraction ω of the
total resources [59]. NBS, however, looks for a spot between
the utilitarian notion (i.e., maximizing the sum of utilities) and
the egalitarian notion (i.e., maximize the minimum utility) by
maximizing the utility product [26].

1 hour 1 day 1 week 2 week

0.4

0.6

0.8
U

s
e

rs
’
m

e
a

n
J
C

T
fa

c
to

r

TSF-ER

MNW

CRU

Reallocation slot length

Fig. 8. Users’ mean JCT factor vs. reallocation slot. With more realistic
values for the reallocation slot, MNW and CRU randomly assign tasks to
the servers almost all the time. However, TSF-ER attempts to equalize
the fair share of the users all the time and provides a higher JCT factor.

Khamse-ashari et al. proposed the notion of dominant virtual
share (VDS) [60] to address the trade-off between efficiency
and fairness; they chose to allocate resources at each server by
applying the so-called α-proportional fairness on VDS (αPF-
VDS) [61]. We focus on the case when α = 1 since αPF-
VDS does not satisfy PO otherwise. αPF-VDS corresponds to
NBS when α = 1 and finds the same allocation as Competitive
Equilibrium from Equal Income (CEEI). In [48], a different
environment is studied where a user’s demand for a resource
may vary in different servers. It was shown in [48] that there
exists no allocation rule for this environment such that it can
satisfy EF, PO, SP, and SI altogether. Hence, the authors proposed
Maximizing Task Product (MTP), which finds an NBS and proved
that it satisfies EF, PO, and SI. Unfortunately, CEEI, αPF-VDS,
and MTP are not strategy-proof in our environment. Therefore, we
rule them out as desirable solutions.

Ghodsi et al. studied the problem of multi-resource allocation

16

1 hour 1 day 1 week 2 week

0.0

0.1

0.2

0.3

0.4

A
ve

ra
g
e

M
IN

-E
F
-S

A
T

TSF-ER

MNW

CRU

Reallocation slot length

Fig. 9. Average MIN-EF-SAT over the simulation process vs. reallocation
slot. By attempting to equalize the fair share of the users, TSF-ER
substantially outperforms MNW and CRU in terms of envy-freeness.

1 hour 1 day 1 week 2 week

0.0

0.1

0.2

0.3

0.4

A
ve

ra
g
e

M
IN

-S
I-

S
A
T

TSF-ER

MNW

CRU

Reallocation slot length

Fig. 10. Average MIN-SI-SAT over the simulation process vs. realloca-
tion slot. By attempting to equalize the fair share of the users, TSF-ER
provides far better sharing incentive across the users in comparison with
MNW and CRU.

in the context of cloud computing [2], in which users have Leontief
preference, i.e. each user requires resources in a customized
proportion [2], [13], [62], [63]. Furthermore, to avoid waste,
no redundant resource should be allocated. Under these circum-
stances, along with divisible resources, Ghodsi et al. proposed
DRF, which is an Egalitarian Equivalent (EE) based mechanism.
DRF is guaranteed to satisfy PO, EF, SI, and SP altogether [2], and
it has been implemented in many practical systems [64], [65], [66].
Subsequently, Li et al. studied the egalitarian division under more
general preferences (i.e., generalized Leontief preferences) and
proposed generalized egalitarian rules that can satisfy the required
properties [30]. Parkes et al. extended DRF to work under the cir-
cumstances that users have zero demands for certain resources [5].
Furthermore, Gutman et al. extended DRF to a larger class of user
utilities with perfect complement demands [67], where the users’
preferences do not allow any substitution between different goods.
Moreover, Kash et al. extended DRF to a dynamic setting where
the users dynamically arrive over time but never depart [13].

DRF has been extended to achieve better fairness-efficiency
tradeoff in [68], [69], [70], [71]. Fairness-efficiency tradeoff in
multi-resource environment is studied by Dolev et al. [63]
and Bonald et al. [72] in which they proposed other fairness
notions based on the system’s bottleneck resources. Joe-Wong
et al. studied the fairness-efficiency tradeoff for single-server

multi-resource cloud computing allocation problem by proposing
a unifying framework that characterizes the fairness-efficiency
tradeoff [62].

The problem of fair resource allocation in cloud computing
environments with heterogeneous servers is studied in [3], [6],
[33]. In [6], Friedman et al. pointed out that DRF can be inter-
preted as a KS bargaining solution [31]. In this interpretation,
DRF applies max-min fairness across the users’ normalized task
allocation. The normalized task allocation is the number of tasks
allocated to a user divided by the maximum number of tasks that
user can execute, i.e. the number of executable tasks when a user
monopolizes the servers. Friedman et al. used the KS solution to
propose a mechanism for heterogeneous server settings, which
also considers the environments where containers are used to
achieve performance isolation between tenants [6]. In [3], Wang
et al. extended DRF to heterogeneous server settings (DRFH) and
showed that it satisfies EF, PO, and SP but fails to satisfy SI. To
overcome this shortcoming, Wang et al. proposed TSF, which finds
the KS solution in heterogeneous server settings with divisible
resources [33].

In [37], we studied the problem of multi-resource fair alloca-
tion in an MEC environment and proposed DRF-ER. It applies
max-min fairness across the users’ share of dominant resource,
and dynamically selects the best communication link reservation
profile that leads to the highest equalized share of dominant
resource for the users. In [37], we showed that DRF-ER could
satisfy EF, PO, and SP, but fails to satisfy SI. Unfortunately,
extending TSF in the same way to dynamically select the best
communication link reservation profile leads into a non-convex
optimization problem. Instead, in this work, we present TSF-ER,
which redefines the notion of task normalization and finds a KS
bargaining solution.

8 CONCLUSION AND DISCUSSION

In this paper, we study the problem of fair resource allocation in
systems with heterogeneous servers along with a resource type
external to those servers. The external resource is a dedicated
resource that exists outside of the servers and is shared by all
agents to access the servers. This makes it impossible to satisfy the
fairness and efficiency properties with the existing multi-resource
fair allocation mechanisms. For this novel environment, we have
proposed a multi-resource fair allocation rule termed TSF-ER. We
have shown that this allocation rule satisfies important desirable
properties. It is envy-free, Pareto optimal, and truthful. Moreover,
it satisfies sharing incentive. Trace-driven simulations show that,
compared with the two direct extensions of DRF and TSF, namely
DRF-αααer and TSF-αααer, TSF-ER achieves significant improvements
in sharing incentive and Pareto-optimality. Furthermore, unlike
DRF-ER, which can be derived by modifying (9f) to equalize the
active users’ dominant shares and fails to satisfy sharing incentive,
TSF-ER satisfies sharing incentive while maintaining effective
resource utilization and satisfying Pareto optimality. Moreover,
unlike CRU and MNW, which sacrifice strategy-proofness to
attain envy-freeness, Pareto optimality, and sharing incentive,
TSF-ER maintains strategy-proofness together with the three other
properties.

TSF-ER, as presented in Algorithm 1, is suitable for en-
vironments with a single external resource. However, in some
practical cases, there may exist multiple external resources (e.g.,
link bandwidth and power). TSF-ER can be extended to such

17

cases by adding more constraints regarding the other external
resources to problem (8) in Algorithm 1. Moreover, each user
may be assigned a weight, wi, to indicate its relative importance
in the system. Algorithm 1 can be modified to incorporate users
with weights by normalizing the number of allocated tasks of a
user with respect to wiηi. Note that envy-freeness and sharing
incentive should be redefined in the existence of users’ weights by
scaling a user’s allocation in proportion to its weight. The proofs
of Theorems 7, 6, 8 and 9 can be easily modified to show that
TSF-ER satisfies these properties in the case of multiple external
resources and weights.

Finally, TSF-ER can be extended to MEC environments in
which different subsets of the servers share some common ex-
ternal resource, e.g., multi-access points MEC environments. If
a user’s demand for the external resource is fixed, the proofs
of Theorems 6, 7, 8 and 9 can be easily modified to show that
TSF-ER satisfies all the required properties in such environments.
However, in [48], we have proved that if users’ demands for the
external resource vary at each access point, it is impossible to
satisfy the four properties altogether. Another interesting common
scenario is where each user is allowed to establish a connection
with only one of the MEC access points at any time [73]. To obtain
similar results for more general settings remains an open problem
for future research.

REFERENCES

[1] S. Bouveret and J. Lang, “Efficiency and envy-freeness in fair division
of indivisible goods: Logical representation and complexity,” Journal of
Artificial Intelligence Research, vol. 32, no. 1, pp. 525–564, June 2008.

[2] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple re-
source types.” in Proc. USENIX Conference on Networked Systems
Design and Implementation, 2011.

[3] W. Wang, B. Liang, and B. Li, “Multi-resource fair allocation in het-
erogeneous cloud computing systems,” IEEE Trans. on Parallel and
Distributed Systems, vol. 26, no. 10, pp. 2822–2835, Oct. 2015.

[4] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” in Proc. ACM SIGCOMM Conference
on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, 2012.

[5] D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond dominant resource
fairness: Extensions, limitations, and indivisibilities,” ACM Trans. on
Economics and Computation, vol. 3, no. 1, pp. 1–22, Mar. 2015.

[6] E. Friedman, A. Ghodsi, and C.-A. Psomas, “Strategyproof allocation
of discrete jobs on multiple machines,” in Proc. ACM Conference on
Economics and Computation, 2014.

[7] D. K. Foley, “Resource allocation and the public sector,” Yale economic
essays, vol. 7, no. 1, pp. 45–98, 1967.

[8] H. R. Varian, “Equity, envy, and efficiency,” Journal of Economic Theory,
vol. 9, no. 1, pp. 63–91, 1974.

[9] J. Robertson and W. Webb, Cake-cutting algorithms: Be fair if you can.
CRC Press, 1998.

[10] A. Rubinstein, “Fair division,” Economics and Philosophy, vol. 13, no. 1,
pp. 113–117, 1997.

[11] G. Amanatidis, G. Birmpas, and E. Markakis, “On truthful mechanisms
for maximin share allocations,” in Proc. International Joint Conference
on Artificial Intelligence (IJCAI), 2016.

[12] H. Steihaus, “The problem of fair division,” Econometrica, vol. 16, no. 1,
pp. 101–104, Jan. 1948.

[13] I. Kash, A. D. Procaccia, and N. Shah, “No agent left behind: Dynamic
fair division of multiple resources,” Journal of Artificial Intelligence
Research, vol. 51, pp. 579–603, Jan. 2014.

[14] E. Friedman, C.-A. Psomas, and S. Vardi, “Dynamic fair division with
minimal disruptions,” in Proc. ACM conference on Economics and
Computation, 2015.

[15] ——, “Controlled dynamic fair division,” in Proc. ACM Conference on
Economics and Computation, 2017.

[16] V. Conitzer, R. Freeman, and N. Shah, “Fair public decision making,” in
Proc. ACM Conference on Economics and Computing, 2017.

[17] B. Fain, K. Munagala, and N. Shah, “Fair allocation of indivisible public
goods,” in Proc. ACM Conference on Economics and Computation, 2018.

[18] I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and
J. Wang, “The unreasonable fairness of maximum Nash welfare,” ACM
Trans. on Economics and Computation (TEAC), vol. 7, no. 3, pp. 1–32,
2019.

[19] G. Amanatidis, E. Markakis, A. Nikzad, and A. Saberi, “Approximation
algorithms for computing maximin share allocations,” ACM Trans. on
Algorithms (TALG), vol. 13, no. 4, pp. 1–28, 2017.

[20] D. Kurokawa, A. D. Procaccia, and J. Wang, “Fair enough: Guaranteeing
approximate maximin shares,” Journal of the ACM (JACM), vol. 65,
no. 2, pp. 1–27, 2018.

[21] J. Garg and S. Taki, “An improved approximation algorithm for maximin
shares,” Artificial Intelligence, 2021.

[22] L. Zhou, “Inefficiency of strategy-proof allocation mechanisms in pure
exchange economies,” Social Choice and Welfare, vol. 8, no. 3, pp. 247–
254, 1991.

[23] S. M. Zahedi and B. C. Lee, “Ref: Resource elasticity fairness with
sharing incentives for multiprocessors,” ACM SIGARCH Computer Ar-
chitecture News, vol. 42, no. 1, pp. 145–160, Feb. 2014.

[24] M. Voorneveld, “From preferences to leontief utility,” Economic Theory
Bulletin, vol. 2, no. 2, pp. 197–204, Oct. 2014.

[25] K. Hashimoto, “Strategy-proofness versus efficiency on the cobb-douglas
domain of exchange economies,” Social Choice and Welfare, vol. 31,
no. 3, pp. 457–473, Oct. 2008.

[26] J. Nash, “The bargaining problem,” Econometrica, vol. 18, no. 2, pp.
155–162, 1950.

[27] A. Muthoo, Bargaining theory with applications. Cambridge University
Press, 1999.

[28] S. M. Zahedi and B. C. Lee, “Sharing incentives and fair division for
multiprocessors,” IEEE Micro, vol. 35, no. 3, pp. 92–100, 2015.

[29] A. Nicoló, “Efficiency and truthfulness with Leontief preferences. a note
on two-agent, two-good economies,” Review of Economic Design, vol. 8,
no. 4, pp. 373–382, Apr. 2004.

[30] J. Li and J. Xue, “Egalitarian division under Leontief preferences,”
Economic Theory, vol. 54, no. 3, pp. 597–622, Nov. 2013.

[31] E. Kalai and M. Smorodinsky, “Other solutions to Nash’s bargaining
problem,” Econometrica, vol. 43, no. 3, pp. 513–518, 1975.

[32] H. Imai, “Individual monotonicity and lexicographic maxmin solution,”
Econometrica, vol. 51, no. 2, pp. 389–401, 1983.

[33] W. Wang, B. Li, B. Liang, and J. Li, “Multi-resource fair sharing
for datacenter jobs with placement constraints,” in Proc. ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2016.

[34] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” ACM SIGCOMM Com-
puter Communication Review, vol. 44, no. 4, pp. 455–466, 2015.

[35] B. Liang, “Mobile edge computing” in Key Technologies for 5G Wireless
Systems, V. W. S. Wong and R. S. and D. W. K. Ng and L.-C. Wang, Eds.
Cambridge University Press, 2017.

[36] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[37] E. Meskar and B. Liang, “Fair multi-resource allocation with external
resource for mobile edge computing,” in Proc. IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), Apr. 2018.

[38] X. Cao, “Preference functions and bargaining solutions,” in IEEE Con-
ference on Decision and Control, 1982, pp. 164–171.

[39] A. Dhillon, “Extended Pareto rules and relative utilitarianism,” Social
Choice and Welfare, vol. 15, no. 4, pp. 521–542, 1998.

[40] A. Dhillon and J.-F. Mertens, “Relative utilitarianism,” Econometrica,
vol. 67, no. 3, pp. 471–498, 1999.

[41] E. Karni, “Impartiality: definition and representation,” Econometrica,
vol. 66, no. 6, pp. 1405–1415, 1998.

[42] U. Segal, “Let’s agree that all dictatorships are equally bad,” Journal of
Political Economy, vol. 108, no. 3, pp. 569–589, 2000.

[43] M. Pivato, “Twofold optimality of the relative utilitarian bargaining
solution,” Social Choice and Welfare, vol. 32, no. 1, pp. 79–92, 2009.

[44] F. Kelly, “Charging and rate control for elastic traffic,” European Trans.
on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.

[45] A. Hylland and R. Zeckhauser, “The efficient allocation of individuals
to positions,” Journal of Political Economy, vol. 87, no. 2, pp. 293–314,
1979.

[46] D. Bertsimas, V. F. Farias, and N. Trichakis, “The price of fairness,”
Operations Research, vol. 59, no. 1, pp. 17–31, 2011.

[47] H. Moulin, Fair division and collective welfare. MIT Press, 2004.

18

[48] E. Meskar and B. Liang, “Fair multi-resource allocation in mobile edge
computing with multiple access points,” in Proc. ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
2020, pp. 241–250.

[49] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization.
Athena Scientific Belmont, MA, 1997, vol. 6.

[50] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”
in Proc. ACM Symposium on Cloud Computing, 2012.

[51] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “MLaaS in the wild: Workload analysis and
scheduling in Large-Scale heterogeneous GPU clusters,” in USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
Apr. 2022, pp. 945–960.

[52] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gandiva: In-
trospective cluster scheduling for deep learning,” in USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Carlsbad, CA,
Oct. 2018, pp. 595–610.

[53] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and S. Viswanatha,
“Balancing efficiency and fairness in heterogeneous GPU clusters for
deep learning,” in Proc. European Conference on Computer Systems
(EuroSys). Association for Computing Machinery, 2020.

[54] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Trans. on Wireless Communications, vol. 12, no. 9, pp. 4569–4581,
Sep. 2013.

[55] W. Yuan and K. Nahrstedt, “Energy-efficient CPU scheduling for multi-
media applications,” ACM Trans. Computer Systems, vol. 24, no. 3, pp.
292–331, Aug. 2006.

[56] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling
algorithms with PACE,” in Proc. ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, June
2001.

[57] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU schedul-
ing for mobile multimedia systems,” in Proc. ACM Symposium on
Operating Systems Principles, Oct. 2003.

[58] R. Cole and V. Gkatzelis, “Approximating the Nash social welfare with
indivisible items,” in Proc. ACM Symposium on Theory of Computing
(STOC), 2015, pp. 371–380.

[59] E. A. Pazner and D. Schmeidler, “Egalitarian equivalent allocations: A
new concept of economic equity,” The Quarterly Journal of Economics,
vol. 92, no. 4, pp. 671–687, 1978.

[60] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y. Q.
Zhao, “Per-server dominant-share fairness (PS-DSF): A multi-resource
fair allocation mechanism for heterogeneous servers,” in Proc. IEEE
International Conference on Communications (ICC), May 2017.

[61] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y. Zhao,
“An efficient and fair multi-resource allocation mechanism for heteroge-
neous servers,” IEEE Trans. on Parallel and Distributed Systems, vol. 29,
no. 12, pp. 2686–2699, 2018.

[62] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource allocation:
Fairness-efficiency tradeoffs in a unifying framework,” IEEE/ACM Trans.
on Networking (TON), vol. 21, no. 6, pp. 1785–1798, 2013.

[63] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and N. Linial,
“No justified complaints: On fair sharing of multiple resources,” in
Proc. ACM Conference on Innovations in Theoretical Computer Science
(ITCS), 2012.

[64] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in Proc. USENIX Conference on
Networked Systems Design and Implementation, 2011.

[65] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop
YARN: Yet another resource negotiator,” in Proc. ACM Annual Sympo-
sium on Cloud Computing, 2013.

[66] A. Beltre, P. Saha, and M. Govindaraju, “KubeSphere: An approach
to multi-tenant fair scheduling for Kubernetes clusters,” in IEEE Cloud
Summit, 2019, pp. 14–20.

[67] A. Gutman and N. Nisan, “Fair allocation without trade,” in Proc. In-
ternational Conference on Autonomous Agents and Multiagent Systems,
2012.

[68] H. Hamzeh, S. Meacham, B. Virginas, K. Khan, and K. Phalp, “MLF-
DRS: A multi-level fair resource allocation algorithm in heterogeneous
cloud computing systems,” in Proc. IEEE International Conference on
Computer and Communication Systems (ICCCS), 2019.

[69] Youngmi Jin and M. Hayashi, “Efficiency comparison between propor-
tional fairness and dominant resource fairness with two different type
resources,” in Proc. Annual Conference on Information Science and
Systems (CISS), 2016.

[70] L. Zhao, M. Du, and L. Chen, “A new multi-resource allocation mech-
anism: A tradeoff between fairness and efficiency in cloud computing,”
China Communications, vol. 15, no. 3, pp. 57–77, 2018.

[71] Y. Jin and M. Hayashi, “Trade-off between fairness and efficiency in
dominant alpha-fairness family,” in Proc. IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2018.

[72] T. Bonald and J. Roberts, “Multi-resource fairness: Objectives, algo-
rithms and performance,” in Proc. ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, 2015.

[73] E. Meskar and B. Liang, “MAGIKS: Fair multi-resource allocation game
induced by kalai-smorodinsky bargaining solution,” IEEE Open Journal
of the Communications Society, vol. 3, pp. 797–810, 2022.

9 APPENDIX

In this section, we present the proofs for the theorems in Sec. 3
and the lemmas in Sec. 4.

9.1 Proof of Theorem 1

Proof. Due to restricting CRU to the set of feasible envy-free
allocations with sharing incentive, CRU trivially satisfies EF and
SI. To prove Pareto optimality of the CRU allocations, assume by
way of contradiction that CRU does not satisfy PO. Thus, there
exists an environment E such that its CRU allocation is not on
the Pareto frontier of χ(E). Let x denote the CRU allocation
for this environment. Hence, there exists some y ∈ χ(E) such
that

∑
s∈S yi,s ≥

∑
s∈S xi,s for all i ∈ J and

∑
s∈S yj,s >∑

s∈S xj,s for some j ∈ J . We build upon y to create another
allocation z such that

∑
s∈S zi,s =

∑
s∈S xi,s for any user i ∈

J . This can be achieved by setting zi,s =
∑
s∈S xi,s∑
s∈S yi,s

yi,s for any
user i ∈ J and server s ∈ S . Since

∑
s∈S yj,s >

∑
s∈S xj,s for

some j ∈ J , there exists some server t ∈ S such that all resources
are under-utilized on server t. We construct z by equally splitting
the unutilized resources of t among all users and adding it to the
allocation y. It is easy to check that z ∈ χ(E). Moreover, since
x ∈ χSI(E) and

∑
s∈S zi,s ≥

∑
s∈S xi,s for all i ∈ J , we

have z ∈ χSI(E). Finally, we prove that no user prefers another
user’s allocation, i.e., z ∈ χEF(E). This contradicts x being the
CRU allocation for this environment, since z ∈ χ(E)∩χEF(E)∩
χSI(E) and

∑
j∈J

∑
s∈S zj,s
ηj

>
∑
j∈J

∑
s∈S xj,s
ηj

.
We show that CRU fails to satisfy SP by presenting a coun-

terexample. Consider the simple environment with a single server
with a single resource, e.g., CPU, and BW as the external resource.
Let there be 10 units of CPU and 10 units of BW available
in the environment. There are two users in the system. User A
requires 6 units of CPU and 3 units of BW per task, and user
B requires 2 units of CPU and 9 units of BW per task. CRU
allocates 0.625 task to user B. However, user B can benefit by
reporting the fake demand of 4 units of CPU and 7 units of BW
per task. With this fake demand, CRU allocates 0.832 tasks to
user B. Hence user B can improve it number of tasks from 0.625
to 0.832 × min {4/2, 7/9} ≈ 0.647. Therefore, CRU does not
satisfy SP.

19

9.2 Proof of Theorem 2

Proof. Instead of the geometric mean of the users’ utilities, we
can maximize its logarithm, i.e.,

max
x

∑
j∈J

log
∑
s∈S

xj,s (12a)

s.t.
∑
j∈J

xj,s dj,r ≤ cs,r,∀r ∈ R, s ∈ S, (12b)∑
j∈J

xj,s dj,er ≤ αer
s ,∀s ∈ S, (12c)∑

j∈J
xj,s ≥ 0,∀j ∈ J , s ∈ S. (12d)

Pareto optimality of MNW is trivial. We show that MNW fails
to satisfy SP by presenting a counter example. Let x∗, p∗s,r and
p∗er denote the primal and dual solution of Problem (12). The
allocation-price pair (x∗, (p∗s,r , p∗er)) forms the CEEI of the virtual
market constructed by the same set of users and resources and
assigning an artificial price to each resource3. Note that at CEEI,
each user receives its optimal utility that can be afforded with its
artificial $1 income, and the price of each user’s received resource
bundle is exactly $1. This directly implies that MNW satisfies EF.
Furthermore, the KKT conditions of Problem (12) imply that with
(p∗s,r , p∗er), the total price for purchasing all resources in the system
is |J |. Hence, the price for purchasing the equal division share
(i.e., 1/|J | of each server) is $1. Therefore, no user prefers the
equal division share, since with x∗ and (p∗s,r , p∗er), no user prefers
any bundle of resource that costs $1 to its allocated resource
bundle. Thus, MNW satisfies SI.

We use the exact same counterexample presented in the proof
of Theorem 1 to prove that MNW does not satisfy SP. MNW
allocates 0.625 task to user B with the true reported demand.
However, MNW allocates 1 task to user B when it reports the
fake demand of 4 units of CPU and 7 units of BW per task.
Hence user B can improve its number of tasks from 0.625 to
1 × min {4/2, 7/9} ≈ 0.777. Therefore, MNW does not satisfy
SP.

9.3 Proof of Theorem 3

Proof. Consider a server configuration in which the servers are
not the scaled version of the exact same server, i.e., there exist
s1, s2 ∈ S and r1, r2 ∈ R such that cs1,r1

cs1,r2
6= cs2,r1

cs2,r2
. Note

that for any s ∈ S and r ∈ R,
∑
s∈S

cs,r = cer = 1. For such

an environment, given any feasible external resource reservation
profile αααer, there exists some r0 ∈ {r1, r2}, and δ > 0 such that
αer
s2

cs2,r0
< δ <

αer
s1

cs1,r0
. We construct a simple scenario in which

there exists only one user in the environment, to show that DRF-
αααer does not satisfy PO. Let us denote this user by j. We construct
the demand profile of user j such that δdj,r0 = dj,er, and for any
r ∈ R/{r0} and s ∈ S , cs,r

dj,r
> max

{
cs,r0
dj,r0

,
αer
s

dj,er

}
. With the

external resource reservation profile αααer, the number of allocated

3. This can be confirmed by examining the KKT conditions of problem (12).

tasks by DRF-αααer is∑
s∈S

min
{
αer
s

dj,er
,
cs,r0
dj,r0

}
= min

{
αer
s1

dj,er
,
cs1,r0
dj,r0

}
+ min

{
αer
s2

dj,er
,
cs2,r0
dj,r0

}
+

∑
s6=s1,s2

min
{
αer
s

dj,er
,
cs,r0
dj,r0

}
< min

{
1

dj,er
,

1

dj,r0

}
.

However, without using any external resource reservation pro-
file, we can allocate all the servers to user j and end up
min

{
1

dj,r0
, 1
dj,er

}
tasks. Hence, DRF-αααer does not satisfy PO.

Furthermore, since user j is the only user in the system, the per
server equal share is equivalent to allocating the entire system
to this user. Hence, similar to the case for PO, we can show that
αααer-DRF does not satisfy SI. We can generalize this result to multi-
user scenarios by adding more users with the exact same demand
profiles.

9.4 Proof of Lemma 1
Proof. If i ∈ Jactive (E;λ), the procedure LP-TaskShare equalizes
the task share of user i and j and the inequality in Lemma 1 holds.
If i /∈ Jactive (E;λ), it means that at some iteration n of the while
loop of procedure TSF-ER, user i was saturated and its task share
was not increased afterwards. The task share of user j at iteration
n is not less than user i’s task share and its task share does not
decrease in the remaining iterations.

9.5 Proof of Lemma 3
Proof. Since the normalized number of tasks allocated to
user j is not increased in environment E′, we have∑
s∈S λj,s(E

′)
η′j

≤
∑
s∈S λj,s(E)

ηj
. Therefore, for any

r ∈ R̂,
∑
s∈S

λj,s (E′)
d′j,r
dj,r

≤
∑
s∈S

λj,s (E)
η′j
ηj

d′j,r
dj,r

. Hence,∑
s∈S

λj,s (E′) min
r∈R̂

{
d′j,r
dj,r

}
≤

∑
s∈S

λj,s (E)
η′j
ηj

min
r∈R̂

{
d′j,r
dj,r

}
. By

Lemma 2, uj (Λj (E′)) =
∑
s∈S λj,s (E′) min

r∈R̂

{
d′j,r
dj,r

}
. There-

fore, uj (Λj (E′)) ≤
∑
s∈S λj,s (E) min

r∈R̂

{
η′jd
′
j,r

ηjdj,r

}
. Further-

more, Lemma 1 implies that min
r∈R̂

{
η′jd
′
j,r

ηjdj,r

}
≤ 1. Therefore,

uj (Λj (E′)) ≤ uj (Λj (E)).

9.6 Proof of Lemma 4
Proof. It suffices to prove that user k’s normalized num-
ber of tasks is not decreased, i.e.,

∑
s∈S λk,s (E′)/η′k ≥∑

s∈S λk,s (E)/ηk. Note that η′k = ηk for any k 6= j. Assume
by way of contradiction that user k’s normalized number of tasks
is decrease. We can decrease the number of tasks allocated to user
j (i.e.,

∑
s∈S

λj,s (E′)) and increase the number of tasks allocated

to user k (i.e.,
∑
s∈S

λk,s (E′)). This contradicts the premise of

max-min fairness of TSF-ER allocation across users’ normalized
number of allocated tasks.

20

Erfan Meskar received B.Sc. degree in electri-
cal engineering from the Amirkabir University of
Technology, Tehran, Iran, in 2013, the M.A.Sc.
degree in electrical and computer engineering
from McMaster University, Hamilton, Canada, in
2015, and the Ph.D. degree in electrical and
computer engineering from University of Toronto,
Toronto, Canada, in 2022. He is currently a post-
doctoral researcher at University of Toronto and
his current research interests are in algorithmic
fairness, algorithmic game theory, mobile edge

computing, and network anomaly detection.

Ben Liang (Fellow, IEEE) received honors-
simultaneous B.Sc. (valedictorian) and M.Sc.
degrees in Electrical Engineering from Polytech-
nic University (now the engineering school of
New York University) in 1997 and the Ph.D.
degree in Electrical Engineering with a minor
in Computer Science from Cornell University
in 2001. He was a visiting lecturer and post-
doctoral research associate at Cornell University
in the 2001 - 2002 academic year. He joined
the Department of Electrical and Computer En-

gineering at the University of Toronto in 2002, where he is now Professor
and L. Lau Chair in Electrical and Computer Engineering. His current re-
search interests are in networked systems and mobile communications.
He is an associate editor for the IEEE Transactions on Mobile Computing
and has served on the editorial boards of the IEEE Transactions on
Communications, the IEEE Transactions on Wireless Communications,
and the Wiley Security and Communication Networks. He regularly
serves on the organizational and technical committees of a number of
conferences. He is a Fellow of IEEE and a member of ACM and Tau
Beta Pi.

