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Abstract—This paper presents a new virtualization method
for the downlink of a multi-cell multiple-input multiple-output
(MIMO) network, to achieve service isolation among multiple
Service Providers (SPs) that share the base station resources
of an Infrastructure Provider (InP). Each SP designs a virtual
precoder for its users in each cell, as its service demand to the
InP, without the need to be aware of the existence of the other
SPs or to know the channel state information (CSI) outside the
cell. The InP performs network virtualization to meet the SPs’
service demands while managing both the inter-SP and inter-
cell interference. We consider coordinated multi-cell precoding
at the InP and formulate an optimization problem to minimize
a weighted sum of signal leakage and precoding deviation,
with per-cell transmit power constraints. We propose a fully
distributed semi-closed-form solution at each cell, without any
CSI exchange across cells. We further propose a low-complexity
scheme to allocate the virtual transmit power, for the InP to
regulate between interference elimination and virtual demand
maximization. Simulation results demonstrate that our precoding
solution for network virtualization substantially outperforms the
traditional spectrum isolation alternative. It can approach the
performance of fully cooperative precoding when the number of
antennas is large.

Index Terms—Wireless network virtualization, MIMO, coor-
dinated precoding, distributed algorithm, resource allocation.

I. INTRODUCTION

High capital and operational expenses of wide-area wireless
networks discourage wireless service providers (SPs) from
technology upgrades and hinder new companies from entering
the industry. As a solution to this, wireless network virtualiza-
tion (WNV) has been proposed to reduce network deployment
and operation expenses by abstracting and sharing physical
resources [1]-[2]. It decouples distinct parts of the network,
making it easier for SPs to migrate to newer products and
technologies. WNV is particularly important when physical
infrastructure is expensive, such as a shopping mall with a
high density of service requests but limited space to install
many wireless base stations (BSs) from different SPs.

A virtualized network is generally composed of an infras-
tructure provider (InP), who owns and manages the physical
infrastructure, and multiple SPs, who utilize the physical
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infrastructure to provide services to their subscribing users.
In existing commercial networks, the InP can be referred to
the mobile network operator and the SPs are the mobile virtual
network operators. The InP virtualizes the physical resources
that it owns and splits them into virtual slices. The SPs lease
these virtual slices and operate them to provide end-to-end
services to their users without needing to know the underlying
physical infrastructure or the existence of the other SPs. As
a result, virtualization creates a set of logical entities from a
given set of physical entities in a manner that is transparent
to the SPs and their users, with the goal of service isolation
among SPs, i.e., the service to the users of one SP is minimally
affected by the other SPs.

For maximizing the potential of network virtualization,
effective resource allocation is critical to ensure service iso-
lation among SPs. However, service isolation is particularly
challenging in wireless networks with the presence of inter-
ference [3]. Most existing works (and commercially adopted
strategies) apply strict resource separation to achieve service
isolation, by dividing the wireless spectrum, resource blocks,
or antenna hardware among different SPs [4]-[9]. Such an
approach is rooted in prior works on computer virtualization
and wired network virtualization, which has been shown to be
highly effective. However, as future networks adopt massive
MIMO technology, strict resource separation limits the design
space of virtualization in the wireless environment, as it
does not explore the spatial dimension to allow more flexible
wireless resource sharing to achieve higher power and spectral
efficiency.

In contrast to strict resource separation, the wireless virtu-
alization method proposed in [10] leverages the interference
suppression capability of massive multiple-input multiple-
output (MIMO) when the InP is equipped with a large number
of antennas. Service isolation via spatial virtualization can be
achieved through the precoding design at the InP. Instead of
slicing resources physically, the InP can ensure the require-
ments of service isolation by using MIMO beamforming, while
improving the overall network performance.

The existing works on spatial virtualization are limited to
the single-cell case. In this work, we consider the virtualization
design in a multi-cell MIMO network, where the InP-owned
BS at each cell is simultaneously shared by multiple SPs
to serve their subscribing users (in their respective virtual
cells). Each SP designs the virtual precoder as its virtualization
demand based on the service needs and the local channel
state information (CSI) of its users. The InP designs the
actual precoder with the goal to meet all SPs’ demands, while
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ensuring service isolation among the SPs.
In a non-virtualized network, cooperative signal processing

across the BSs of multiple cells has been identified as a key
technique to mitigate inter-cell interference with significant
performance improvement over the non-cooperative networks.
Two levels of cooperation for transmitter precoding are often
considered: cooperative precoding [11]-[12] and coordinated
precoding [13]-[15]. The former refers to a fully cooperative
scenario at the signal level, treating antennas at different BSs
as distributed antennas forming a networked MIMO system.
It requires data sharing among the BSs and stringent synchro-
nization. In contrast, coordinated precoding does not require
signal-level synchronization but only requires beamforming-
level coordination without the need of data sharing.

In this work, we focus on the coordinated approach. Al-
though multi-cell coordinated precoding has been extensively
studied in non-virtualized wireless networks, new challenges
arise in a virtualized wireless network. Specifically, with
service isolation, each SP provides its own desired precoding
demand to the InP, and the InP designs the final precoder
to meet each SP’s demand. Oblivious to each other, each SP
in a cell only has the CSI of its serving users (in its virtual
cell), without access to the CSI of other SPs’ users within the
cell or users in the other cells. It follows that the SPs’ virtual
precoding demands sent to the InP do not consider either inter-
SP or inter-cell interference. As such, the InP must intelli-
gently design the actual precoder to manage the interference
among different SPs and cells, while trying to meet the SPs’
virtual precoding demands. Thus, this virtualized coordinated
precoding design problem is different from the traditional one
and requires careful investigation for its solution.

The main contributions of this paper are summarized below:

• We design downlink WNV in a multi-cell MIMO system,
by letting the InP decide the transmitter precoding to
achieve service isolation among the SPs based on their in-
dividual virtual precoding demand as the service request.
The design goal is to meet the SPs’ service requests under
interference management. To the best of our knowledge,
this is the first work to design a virtualized multi-cell
MIMO network with simultaneous utilization of all the
antennas and channel resources, while managing both
inter-SP and inter-cell interference.

• We consider virtualization via coordinated precoding at
the InP and formulate an optimization problem to min-
imize a weighted sum of signal leakage and precoding
deviation. We show that this problem can be decomposed
into per-cell subproblems. This enables us to develop a
fully distributed semi-closed-form solution at each cell,
without any CSI exchange across cells. Our solution
results in a significant saving of required computation
and communication overhead. We also consider two other
possible precoding optimization formulations with either
signal leakage or precoding deviation as constraints,
which are more complicated to solve. We show that
they can be equivalently converted to the weighted sum
cost minimization problem, for which we have a fully
distributed semi-closed-form solution.

• Since SPs are oblivious to each other, their virtual service
demands (via virtual precoding) are absent of interference
consideration. This requires the InP to carefully allocate
the virtual transmit power for each SP’s virtual service
demand, to regulate between maximizing the SPs’ virtual
service demands and managing interference. We pro-
pose a low-complexity virtual transmit power allocation
scheme to control the trade-off between interference
suppression and virtual demand maximization. With our
proposed virtual transmit power, we show that the semi-
closed-form precoding solution is further simplified to a
closed form with minimal computational complexity.

• We study the proposed precoding solution under the
typical urban micro-cell Long-Term Evolution (LTE)
network setting. Using both maximum ratio transmission
(MRT) precoding and zero forcing (ZF) precoding as
examples for the SPs’ precoding choices, we show that
our proposed precoding solution for network virtual-
ization substantially outperforms the spectrum isolation
alternative. In addition, it can approach the performance
of a fully cooperative network without service isolation
among SPs, when the number of antennas becomes large
such as in a massive MIMO system.

The rest of this paper is organized as follows. In Section II,
we discuss the related work. In Section III, we introduce the
system model for network virtualization in a multi-cell MIMO
system. In Section IV, we focus on the single-cell case and
derive a semi-closed-form precoding solution and an effective
virtual transmit power allocation scheme. In Section V, for the
general multi-cell case, we discuss three coordinated precod-
ing optimization formulations for virtualization, and present
the proposed virtualized coordinated precoding solution and
virtual transmit power allocation scheme. Simulation study
and discussion are presented in Section VI, followed by the
conclusion in Section VII.

Notations: The complex conjugate, Hermitian transpose,
inverse, Moore-Penrose inverse, Frobenius norm, trace, and
the (i, j) element of a matrix A are denoted by A∗,
AH , A−1, A†, ‖A‖F , tr{A}, and [A]i,j , respectively.
The notation blkdiag{A1, . . . ,An} denotes a block diagonal
matrix with diagonal elements being matrices A1, . . .An,
diag{g1, . . . , gn} denotes a diagonal matrix with diagonal
elements being g1, . . . , gn. Notation 0 denotes an all-zeros
matrix, I denotes an identity matrix, and E{∙} denotes expec-
tation. For g being an n × 1 vector, g ∼ CN (0, σ2I) means
that g is a circular complex Gaussian random vector with mean
0 and variance σ2I.

II. RELATED WORK

WNV in MIMO systems has been studied mainly under two
approaches in the literature. The first approach adopts strict
physical resource isolation between the SPs [4]-[9]. Among
them, [4] and [5] studied throughput maximization and energy
minimization in orthogonal frequency division multiple access
systems with massive MIMO. Sub-carriers were exclusively
allocated to different SPs through a two-level hierarchical
auction architecture in [6]. Cloud radio networks and non-
orthogonal multiple access techniques were combined with
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virtualized MIMO systems in [7] and [8]. Antennas were
assigned among the SPs through pricing for massive MIMO
virtualization in [9]. However, restricting the SPs or even the
users to orthogonal channels and exclusive subsets of antennas
can lead to inefficient resource utilization and severe loss of
system throughput compared with the complete sharing of all
the antennas and channel resources.

The second approach uses MIMO precoding techniques to
achieve spatial isolation among the SPs. Each SP utilizes all
the antennas and channel resources, simultaneously with all
other SPs, and the InP uses signal processing techniques to
manage the inter-SP interference [10], [16]-[18]. However,
the above works on spatial virtualization are limited to the
single-cell case. The spatial service isolation approach was
first proposed in [10], where it was shown to substantially
outperform the strict physical resource isolation approach.
MIMO WNV in a fading environment was considered in [16]
and [17], where online precoding schemes with perfect and
imperfect CSI were proposed. A periodic precoder updating
scheme was proposed for online MIMO precoding design for
network virtualization with delayed CSI in [18]. Despite these
works, MIMO precoding for network virtualization has not
been investigated in a multi-cell system. In this work, we
study service isolation via spatial virtualization in a multi-
cell MIMO system. In this scenario, since each SP in a cell
does not consider either the inter-SP interference within a cell
or the inter-cell interference among the coordinated cells, it
is challenging for the InP to manage the interference while
meeting the service demands of SPs. To address this, we use a
virtual transmit power to trade-off interference suppression and
demand maximization. This strategy has not been considered
in [10], [16]-[18].

For the traditional non-virtualized cellular networks, multi-
cell cooperative precoding via multiple BSs at the signal level
can effectively mitigate inter-cell interference and has been
shown to significantly improve the system performance [11]-
[12]. However, the data streams of all users must be shared
across all cooperating cells and the synchronization accuracy
is critical. In contrast, multi-cell coordinated precoding only
requires cooperation at the beamforming level without sharing
the data streams [13]-[15]. Weighted sum transmit power
minimization subject to signal-to-interference-plus-noise ratio
(SINR) constraints was studied in [13]. The joint power control
and weighted sum rate maximization problem was addressed
in [14], where the proposed scheme requires CSI exchange
across the coordinated cells. The problem of maximizing the
minimum SINR subject to per-cell transmit power constraints
was studied in [15], where the proposed scheme requires
central update on the transmit power from each cell. Most
existing coordinated precoding schemes for non-virtualized
networks are centralized and of high computational complexity
and require CSI exchange across the coordinated cells through
the backhaul links or central update on the transmit power
from each cell. It is desirable for practical systems to have
a lower level of coordination, information exchange, and im-
plementation complexity. Our general coordinated precoding
solution for virtualized networks is fully distributed without
any CSI exchange across cells, and is in a semi-closed form.

Fig. 1. An illustration of downlink coordinated MIMO network virtualization
in a network with one InP and two SPs each serving its users in a virtual
network.

Besides the conventional cellular network architecture, cell-
free massive MIMO has been recently proposed, where dis-
tributed single-antenna access points are deployed and cooper-
atively transmit data to users [19]-[21]. The structure is a form
of distributed MIMO, and can be compared with a co-located
MIMO single-cell scenario. While distributed antennas bring
more diversity, there are also challenges faced in a cell-free
structure, such as stringent phase-synchronization for effective
interference suppression, delay and cost of the backhaul links
in a large network. WNV among SPs can be considered in
the cell-free structure, and our proposed spatial virtualization
approach for WNV may be applied to cell-free massive MIMO
systems for further investigation.

III. SYSTEM MODEL

Consider a virtualized multi-cell downlink MIMO network
in which an InP owns and operates the physical network
infrastructure and multiple SPs are responsible for the services
of their respective subscribing users. The InP performs cell
virtualization at each cell for the SPs. The subscribing-user
sets of different SPs are disjoint and each user is only served
by its serving cell. To mitigate interference, multiple cells are
coordinated at the transmission level, without CSI exchange
across cells. An illustrative example is shown in Fig. 1.

Specifically, we consider a total of C cells owned by the InP.
There are M SPs that share the hardware, wireless spectrum,
and transmission power provided by the InP at each cell
BS. Let C = {1, . . . , C} and M = {1, . . . ,M}. The BS
at each cell c ∈ C has Nc antennas, so there is a total of
N =

∑
c∈C Nc antennas in the network. Each SP m ∈ M

has Km
c subscribing users in cell c. The total number of users

in cell c is Kc =
∑

m∈M Km
c , and that in the network is

K =
∑

c∈C Kc.

A. Precoding Design by the InP and SPs

Each SP designs its desirable precoding matrix for its users,
and then sends it to the InP as its virtualization service
demand. Specifically, let Hm

cl ∈ CKm
c ×Nl denote the channel
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of the Km
c users of SP m in cell c from the BS in cell l.

In each cell c, the InP communicates with each SP m the
channel state Hm

cc of SP m’s serving users in cell c. Based on
the service needs and channel state Hm

cc of its users, each SP
m designs a normalized precoding matrix Wm

c ∈ CNc×Km
c

with ‖Wm
c ‖2

F = 1, to be sent to the InP as its precoding
demand. Note that each SP m designs Wm

c locally without
knowledge of the other SPs’ users in the cell or the users in
other cells, and it can choose any demanded precoding matrix.
For illustration, in Section VI, we will consider two most
commonly used linear precoding schemes, i.e., MRT precoding
and ZF precoding.

Let P max
c denote the maximum transmit power at the BS

in cell c. After collecting the precoding demand Wm
c from

each SP m in cell c, the InP allocates a virtual transmit
power αm

c P w
c to each SP m’s precoding demand, where

P w
c ≤ P max

c is the virtual transmit power allocated to cell
c, and αm

c is the virtual transmit power allocation factor for
SP m with

∑
m∈M αm

c = 1. Note that αm
c indicates the

fraction of InP’s transmit power allocated to SP m in cell c. We
assume αm

c is known apriori from the contractual agreement
between SP m and the InP. Its value may also depend on
the priority of the SP, user density, some bidding mechanism,
etc. Note that all existing spatial virtualization approaches
assume that the InP allocates full transmit power to the SPs’
precoding demands [10], [16]-[18]. This can lead to severe
inter-SP and inter-cell interference, which in turn deteriorates
the system performance. In this work, we propose a more
flexible virtual transmit power allocation scheme at the InP
to mitigate interference. It allows the InP to regulate between
managing interference and maximizing each SP’s demand. In
Section VI, we show that the proposed virtual transmit power
allocation scheme substantially outperforms the full transmit
power allocation approach.

Let xm
c represent the downlink transmitted signal vector for

the users of SP m in cell c. With the precoding demand Wm
c

and virtual transmit power αm
c P w

c , the virtual received signal
vector at the Km

c users of SP m in cell c is given by

ỹm
c =

√
αm

c P w
c Hm

ccW
m
c xm

c , ∀m ∈ M. (1)

The virtual received signal vector ỹc = [ỹ1
c
H

, . . . , ỹM
c

H
]H at

all Kc users in cell c is given by

ỹc =
√

P w
c Dcxc, ∀c ∈ C (2)

where xc = [x1
c
H

, . . . ,xM
c

H
]H is the overall signal vector

for Kc users in cell c with E{xcxH
c } = I, ∀c ∈ C, and

Dc , blkdiag{
√

α1
cH

1
ccW

1
c , . . . ,

√
αM

c HM
cc W

M
c } is the vir-

tualization demand from cell c.
The InP virtualizes BS c (and its serving cell) to meet

the virtualization service demands of the SPs. Based on
the channel states of all users, as well as the demanded
precoding matrices Wm

c from the SPs, the InP designs the
actual downlink precoding Ṽc = [V1

c , . . . ,V
M
c ] ∈ CNc×Kc ,

to meet the SPs’ demands, where Vm
c ∈ CNc×Km

c is the actual
precoding designed for SP m in cell c. The actual received

signal at the Km
c users originated from the serving BS using

the InP-designed precoding matrix Ṽc at cell c is given by

ym
cc = Hm

ccV
m
c xm

c +
∑

i 6=m,i∈M

Hm
ccV

i
cx

i
c, ∀m ∈ M (3)

where the second term is the intra-cell inter-SP interference
to the users of SP m from the other SPs. Note that ym

cc only
contains signals from the BS in cell c and does not contain
inter-cell interference. The actual received signal at users in
cell l from the BS in cell c is given by

ylc = H̄lcṼcxc, ∀l, c ∈ C. (4)

where H̄lc = [H1
lc

H
, . . . ,HM

lc

H
]H ∈ CKl×Nc is the channel

state between the Kl users in cell l and the BS in cell c.
As shown in Fig. 1, the virtualization procedure in each

cell c is summarized as follows: 1) the InP communicates the
local channel state Hm

cc of subscribing users to each SP m;
2) SP m designs the normalized virtual precoding matrix Wm

c

and sends it to the InP as the virtualization service demand;
3) the InP allocates a virtual transmit power αm

c P w
c to each SP

m, and designs the actual precoding matrix Ṽc for downlink
transmission for users in cell c.1

B. Signal Leakage and Precoding Deviation

Since Wm
c is designed locally by SP m without considering

either inter-SP or inter-cell interference, the InP needs to
design the actual precoding Ṽc to mitigate interference and
ensure the actual received signal ym

cc in (3) reflects the service
demand of SP m in cell c. For this purpose, we consider two
design metrics. First, to quantity the difference between the
actual precoding by the InP and the virtual precoding by the
SPs for cell c, we define the precoding deviation based on (2)
and (4) as

ρc(Ṽc) , Exc{‖ycc − ỹc‖
2
F } =‖H̄ccṼc −

√
P w

c Dc‖
2
F . (5)

Note that the precoding deviation defined above serves as
a natural performance metric to quantify how well the SPs’
service demands are satisfied by the InP in the virtualized net-
work with service isolation. It represents the unique demand-
response mechanism between the SPs and the InP.

Next, to quantify inter-cell interference by the InP precod-
ing, we consider the signal leakage defined as

fc(Ṽc) , Exc






∑

l 6=c,l∈C

‖ylc‖
2
F





=

∑

l 6=c,l∈C

‖H̄lcṼc‖
2
F . (6)

It indicates the amount of inter-cell interference generated
by cell c to all the other cells. The signal leakage is often
considered as a design criterion for interference management
in conventional non-virtualized MIMO systems [22].

Ideally, the InP designs the precoding matrix Ṽc to elimi-
nate inter-SP interference in cell c and inter-cell interference,
such that it meets the precoding demands with zero precoding
deviation ρc(Ṽc) = 0 and generates no signal leakage to other

1Note that in our precoding design, each SP m designs Wm
c locally and

does not handle intra-SP inter-cell interference. The inter-cell interference is
solely handled by the InP.
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cells fc(Ṽc) = 0. However, these two cannot be satisfied in
general. This is because interference management limits the
degrees of freedom for precoding within an SP’s user set. In
Section IV, we first consider a single-cell MIMO virtualization
design to minimize the precoding deviation. We then extend
the virtualization design to the multi-cell scenario where we
consider the trade-off between precoding deviation and signal
leakage. This trade-off is unique to the virtualization design,
and has not been considered in traditional precoding problems
before.

IV. SINGLE-CELL MIMO NETWORK VIRTUALIZATION

For clarity of presentation, we first consider network vir-
tualization design in a single-cell MIMO system. The results
obtained in the single-cell case will be used for the multi-cell
case in Section V. We note that the proposed solution here
is different from those in [10], [16]-[18]. The objective of
[10] is power minimization, while [16]-[18] focus on online
optimization only. Furthermore, none of these works consider
virtual transmit power.

A. Precoding Deviation Minimization

Consider MIMO virtualization in a single cell. Since there is
only one cell, to ease the description, we simplify the notations
to omit the cell index c. Specifically, the BS has N antennas.
Each SP m has Km users, and their channels from the BS
is Hm ∈ CKm×N . Based on the virtualization procedure
described in Section III-A, SP m’s service demand is the
normalized precoding matrix Wm ∈ CN×Km

. The virtual
transmit power that the InP allocates to SP m is αmP w, where
P w and αm are as defined in Section III-A, with cell index c
removed. The global channel state of users of all SPs in the cell
is denoted by H = [H1H

, . . . ,HM H
]H ∈ CK×N . The InP

designs the precoding matrix V = [V1, . . . ,VM ] ∈ CN×K ,
where Vm ∈ CN×Km

corresponds to the precoding for the
users of SP m.

Following (1) and (3), the virtual received signal based on
the service needs of SP m is given by

ỹm =
√

αmP wHmWmxm, ∀m ∈ M

where xm is the downlink messages for the Km users of SP
m, and the actual received signal at the users of SP m is given
by

ym = HmVmxm +
∑

i 6=m,i∈M

HmVixi, ∀m ∈ M.

Based on (5), the precoding deviation between the actual
precoding by the InP and the virtual precoding demand by
the SPs is given by

ρ(V) , ‖HV −
√

P wD‖2
F (7)

where D , blkdiag{
√

α1H1W1, . . . ,
√

αMHMWM}. Re-
call that the virtual transmit power P w regulates between
interference suppression and each SP’s demand maximization.
Since it is a single-cell scenario, the signal leakage is not
considered.

For the virtualized MIMO system, our goal for the InP
precoding design is to minimize the the precoding deviation
subject to the maximum transmit power limit

P : min
V

ρ(V)

s.t. ‖V‖2
F − P max ≤ 0. (8)

Note that the virtual transmit power P w serves as a tuning
parameter in ρ(V) to reach a certain desired system perfor-
mance for SPs (e.g., minimum rate, sum-rate). Next, we show
that the problem of precoding deviation minimization P leads
to an interesting semi-closed-form solution.

B. Semi-Closed-Form Precoding Solution

Now we solve the precoding deviation minimization prob-
lem P to obtain the optimal solution V◦ at the InP for any
given virtual transmit power P w ≤ P max. Note that P is
a convex problem and in fact is a constrained least-square
problem. We can derive a semi-closed-form solution using the
Karush-Kuhn-Tucker (KKT) conditions [23].

The Lagrangian for P is

L(V, λ) = ‖HV −
√

P wD‖2
F + λ(‖V‖2

F − P max) (9)

where λ is the Lagrange multiplier for the power constraint
(8). The KKT conditions for (V◦, λ◦) being globally optimal
are given by

∇L(V◦, λ◦) = HH(HV◦ −
√

P wD) + λ◦V◦ = 0, (10)

‖V◦‖2
F ≤ P max, (11)

λ◦ ≥ 0, (12)

λ◦(‖V◦‖2
F − P max) = 0 (13)

where in (10), we use the equalities ‖A‖2
F = tr{AAH},

∇B∗ tr{ABH} = A, and ∇B∗ tr{AB} = 0 [24] to derive
the partial derivative of L(V◦, λ◦) with respect to the complex
conjugate of V◦.

Based on (10)-(13), we discuss the optimal solution in the
following two cases.

1) λ◦ = 0: From (10), the optimal solution must satisfy

HHHV◦ =
√

P wHHD. (14)

The solution V◦ depends on the relation of N and K, given
in the following two subcases. i) N ≥ K: In this case,
HHH ∈ CN×N is rank deficient, and there are infinitely many
solutions for V◦. We choose V◦ to minimize ‖V◦‖2

F subject
to (14), which is an under-determined least square problem
with a closed-form solution given by

V◦ =
√

P wHH(HHH)−1D. (15)

Note that in the special case N = K, (15) can be simply
written as V◦ =

√
P wH−1D. ii) N < K: In this case,

HHH ∈ CN×N is full rank2, and we have a unique solution
for V◦ given by

V◦ =
√

P w(HHH)−1HHD. (16)

2For users at different locations, it is typically satisfied that the channels
from the BS to users are linearly independent, i.e., H is of full rank.
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For both subcases i) and ii), V◦ in (15) or (16) is optimal only
if it satisfies the power constraint (11). Otherwise, it means the
condition λ◦ = 0 for in Case 1) does not hold at optimality,
and we have λ◦ > 0, which is discussed in the next case.

2) λ◦ > 0: From (10), we have

V◦ =
√

P w(HHH + λ◦I)−1HHD (17)

where by (13), λ◦ is such that P w‖(HHH +
λ◦I)−1HHD‖2

F = P max. The optimal λ◦ > 0 can be
obtained using the bisection search. The search range is
described in the following proposition.

Proposition 1. For V◦ in (17), the optimal Lagrange multi-

plier λ◦ lies in the interval λ◦ ∈
(
0, ‖H‖2

F

√
NP w

P max

]
.

Proof: See Appendix A.
The optimal solution V◦ for P is the one that results in the

minimum ρ(V) in P . Note that if λ◦ = 0 at optimality, we
have a closed-form solution for V◦ in (15) or (16). Otherwise,
we have a semi-closed form solution for V◦ in (17), where
λ◦ > 0 can be obtained by the bisection search within the
interval shown in Proposition 1. The computational complexity
for calculating V◦ is dominated by matrix inversion, and thus
is O(min{N,K}3).

Remark. Note that our semi-closed form solution structure
in (17) is similar to the transmit minimum-mean-square-error
(MMSE) precoding. However, there are some key differences
between the two: 1) the solution in (17) contains an additional
matrix D that represents the virtualization demand of the
SPs; 2) the solution in (17) contains a virtual transmit power
P w to regulate between interference suppression and demand
maximization.

C. Virtual Transmit Power Allocation P w

Recall that Wm is a normalized precoding matrix as SP m’s
service demand. It indicates the relative desired service that
the SP provides among its users. Proper power allocation is
required to reflect the actual desired service quality (e.g., rate).
Since the InP needs to mitigate inter-SP interference (which
uses some power), the transmit power allocated to each SP for
its own precoding purpose is less than the maximum transmit
power P max. The virtual transmit power P w in ρ(V) is
intended to regulate between interference suppression and each
SP’s demand maximization. However, the optimization of the
system performance (e.g., minimum rate, sum rate) w.r.t. P w

is usually non-convex. Also, the range to search the optimal
P w could be very large, making the search computationally
expensive. Therefore, we propose an intuitive virtual transmit
power allocation scheme to simplify the searching process.
We will show in Section VI that the proposed virtual transmit
power allocation strategy achieves system performance that
is close to the optimum. To the best of our knowledge, the
use of virtual transmit power to trade-off between interference
suppression and virtualization demand maximization has not
been considered in existing literature.

Consider the idealized case where the actual precoding
matrix V achieves zero precoding deviation ρ(V) = 0, i.e.,

HV −
√

P wD = 0 (18)

while meeting the power constraint in (8). We notice that
the virtual transmit power P w can be viewed as a power
regularization factor for the least-square precoding solution
V◦ in (15) or (16), such that ‖V◦‖2

F ≤ P max in (8). It follows
that the maximum value of P w for V◦ in (15) or (16) to satisfy
(8) with equality is given by

P w◦ = min

{
P max

‖H†D‖2
F

, P max

}

. (19)

Note that under the precoding matrix V◦ in (15) or (16), the
SINR of each user in the cell monotonically increases with
P w, and thus is maximized under the virtual transmit power
P w◦ in (19). As a result, we propose to use P w◦ in the solution
to (18) V◦ =

√
P w◦H†D.

As indicated earlier, when N ≥ K, the solution to (18) is
not unique. The optimal V◦ that minimizes ‖V‖2

F is given in
(15), where H† = HH(HHH)−1. In this case, the precoding
solution V◦ completely nulls the inter-SP interference, which
is desired for the service isolation among SPs in WNV, and
P w◦ is the maximum possible power for each SP’s demand
after inter-SP interference cancellation. When N < K , the
equation in (18) is over-determined and the optimal V◦ is
the least-square solution for ‖HV−

√
P wD‖2

F given in (16),
where H† = (HHH)−1HH . In this case, since the inter-
SP interference cannot be completely eliminated, the virtual
transmit power P w◦ regularizes the interference suppression
and the demand maximization at SPs.

Note that when the virtual transmit power P w◦ in (19) is
used, we effectively adopt the closed-form optimal solution
V◦ to P given in (15) or (16), instead of the semi-closed-
form solution in (17), which is invoked only when P w > P w◦.
Through simulation, we will show that this choice of P w◦ (and
V◦) results in system performance at each SP (e.g., average
rate or minimum rate) close to the maximum, and thus is a
near optimal value.

V. MULTI-CELL MIMO NETWORK VIRTUALIZATION

In this section, we extend the MIMO precoding virtualiza-
tion solution of the single-cell case to the multi-cell scenario.
For a multi-cell MIMO network, the level of coordination and
how to perform distributed implementation are two critical
issues. We consider multi-cell precoding coordination in the
MIMO WNV systems. Our proposed coordinated precoding
scheme for network virtualization naturally leads to a fully
distributed implementation at each cell.

A. Precoding Virtualization Formulation

In a virtualized multi-cell MIMO system, due to inter-cell
interference, the leakage fc(Ṽc) in (6) and the precoding
deviation ρc(Ṽc) in (5) cannot be completely eliminated. In
general, the two criteria constrain each other in the design.
As a result, the system performance (e.g., minimum rate,
sum rate) depends on both fc(Ṽc) and ρc(Ṽc). We design
the InP precoding to trade-off the effect of signal leakage
and precoding deviation to achieve certain desired system
performance.

For the precoding virtualization design at the InP, we
consider three problem formulations as follows:
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1) Weighted leakage and precoding deviation: We first
consider the precoding optimization at the InP to minimize
a weighted sum of signal leakage and precoding deviation,
subject to the per-cell maximum transmit power constraints,
given by

Pw(θ) : min
{Ṽc}

∑

c∈C

(1 − θc)fc(Ṽc) + θcρc(Ṽc)

s.t. ‖Ṽc‖
2
F − P max

c ≤ 0, ∀c ∈ C (20)

where θ = [θ1, . . . , θC ]T , with θc ∈ [0, 1], is the weight vector
that sets the relative importance between the signal leakage
and precoding deviation in the cost function; it can be tuned
by the InP to optimize certain specified system performance
for each SP.

2) Constrained leakage minimization: We can also formu-
late the problem to minimize the signal leakage, while limiting
the precoding deviation below a threshold. The resulting
constrained leakage minimization problem is given by

P lk(δ) : min
{Ṽc}

∑

c∈C

fc(Ṽc)

s.t. ρc(Ṽc) ≤ δc and (20), ∀c ∈ C,

where δ = [δ1, . . . , δC ]T , with δc ∈ [0,∞), is the limit on the
precoding deviation that can be tuned by the InP.

3) Constrained precoding deviation minimization: The in-
verse problem for P lk(δ) is to minimize the precoding de-
viation, subject to the signal leakage constraint. The result-
ing constrained precoding deviation minimization problem is
given by

Pd(η) : min
{Ṽc}

∑

c∈C

ρc(Ṽc)

s.t. fc(Ṽc) ≤ ηc and (20), ∀c ∈ C,

where η = [η1, . . . , ηC ]T , with ηc ∈ [0,∞), is the limit
imposed on the signal leakage.

Note that the above three problems Pw(θ), P lk(δ), and
Pd(η) are all convex. Furthermore, P lk(δ) and Pd(η) can be
subsumed by Pw(θ). In the following, we discuss the relation
of P lk(δ) to Pw(θ) as an example.

First, we note that Pw(θ) can be decomposed into C
subproblems, each corresponding to a local precoding design
optimization problem for cell c, given by

Pw
c (θc) : min

Ṽc

(1 − θc)fc(Ṽc) + θcρc(Ṽc)

s.t. ‖Ṽc‖
2
F − P max

c ≤ 0. (21)

Note that in Pw
c (θc), the objective is a local weighted sum

of leakage and precoding deviation, which only depends on
the local channel states {H̄lc}C

l=1. As a result, the InP designs
Ṽc based only on {H̄lc}C

l=1 to minimize the local objective
in cell c, subject to the maximum transmit power constraint.
As such, the coordinated precoding optimization problem in
Pw(θ) is fully distributed, without any CSI exchange across
cells or cental update on transmit power from each cell.

The problem P lk(δ) can also be decomposed into C sub-
problems, each being a local precoding optimization problem
at cell c, given by

P lk
c (δc) : min

Ṽc

fc(Ṽc)

s.t. ρc(Ṽc) ≤ δc and (21).

However, there is always a feasible solution to Pw
c (θc),

while P lk
c (δc) has a feasibility issue depending on the value

of δc. Let Ṽw◦
c (θc) denote an optimal solution to Pw

c (θc), the
following lemma gives a necessary and sufficient condition on
the feasibility of P lk

c (δc).

Lemma 1. Problem P lk
c (δc) is feasible if and only if

δc ≥ δw
c , ρc(Ṽ

w◦
c (1)). (22)

Proof: See Appendix B.
In Lemma 1, the feasibility region of P lk

c (δc) is shown
in terms of the precoding deviation limit δw

c . This limit
δw
c depends on the maximum transmit power P max

c , virtual
transmit power P w

c , and the CSI of all users in cell c, which
may cause intra-cell inter-SP interference.

The following lemma gives the condition on δc such that
the strong duality holds for P lk

c (δc).

Lemma 2. The strong duality holds for P lk
c (δc), for δc > δw

c .

Proof: See Appendix C.
By Lemma 2, for any δc > δw

c , we can solve P lk
c (δc) through

its dual problem instead. The Lagrange function for P lk
c (δc)

is given by

Llk
c (Ṽc, νc, μc; δc)

= fc(Ṽc) + νc[ρc(Ṽc) − δc] + μc(‖Ṽc‖
2
F − P max

c )

where νc ≥ 0 and μc ≥ 0 are the Lagrange multipliers
associated with the precoding deviation constraint and the
maximum transmit power constraint, respectively. The dual
problem of P lk

c (δc) is given by

Dlk
c (δc) : max

νc≥0,μc≥0
min
Ṽc

Llk
c (Ṽc, νc, μc; δc).

Let (Ṽlk◦
c (δc), ν◦

c (δc), μ◦
c(δc)) denote an optimal solution to

Dlk
c (δc). We can also solve Pw

c (θc) through its dual prob-
lem since its strong duality always holds. Define Vw

c (θc) ,
{Ṽw◦

c (θc)} and V lk
c (δc) , {Ṽlk◦

c (δc)} as the sets of all optimal
solutions to Pw

c (θc) and P lk
c (δc), respectively. By comparing

the dual problems of P lk
c (δc) and Pw

c (θc), the following lemma
shows that, for any δc > δw

c , there exists θc ∈ [0, 1), such that
the two problems P lk

c (δc) and Pw
c (θc) are equivalent.

Lemma 3. For any δc > δw
c , if θc = ν◦

c (δc)
1+ν◦

c (δc)
, then Pw

c (θc)
and P lk

c (δc) are equivalent, i.e.,

Vw
c

(
ν◦

c (δc)
1 + ν◦

c (δc)

)

= V lk
c (δc), ∀δc > δw

c . (23)

Proof: See Appendix D.
Based on Lemmas 1-3, we conclude in the following

theorem that any optimal solution to P lk
c (δc) is also optimal

for Pw
c (θc) for some θc ∈ [0, 1].
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Theorem 1. For P lk
c (δc) being feasible, the following relations

hold for Pw
c (θc) and P lk

c (δc):
i) For any δc > δw

c , there exists θc ∈ [0, 1), such that
V lk

c (δc) = Vw
c (θc).

ii) V lk
c (δw

c ) ⊆ Vw
c (1).

Proof: See Appendix E.
Theorem 1 shows that all the feasible precoding solutions

to P lk
c (δc) can be obtained by solving Pw

c (θc), for some θc,
instead for each cell c. This conclusion is important since,
as we will show next, Pw(θ) has a semi-closed-form solu-
tion. In contrast, directly solving P lk(δ) is more complicated
and does not yield such a simple semi-closed-form solution.
Also, for P lk(δ), the relationship between δ and the system
performance, e.g., the average per-user rate, can be highly
complicated, which adds difficulty in choosing δ to maximize
the system performance. The selection of θ in Pw(θ) is much
easier, as we will show in our simulation study. Furthermore,
the result indicates that, for any system performance measure,
the best performance achieved by solving Pw(θ) is no worse
than the one obtained from solving P lk(δ). As a result, for
the multi-cell virtualization,we can focus on Pw(θ).

The above analysis can be similarly extended to the relation
between Pd(η) and Pw(θ) with some care of technical details
and hence is omitted.

B. Fully Distributed Semi-Closed-Form Solution

We now consider solving Pw(θ). Note that, for a practically
sound virtualization design, both signal leakage and precoding
deviation need to be jointly considered. Thus, in solving
Pw(θ) below, we only focus on θc ∈ (0, 1), ∀c ∈ C. From
the above discussion, we can solve Pw(θ) distributively by its
local precoding optimization problem Pw

c (θc) at each cell c,
without any CSI exchange across cells or central update on the
transmit power from each cell that is required by conventional
coordinated precoding schemes [13]-[15].

In Section IV, we have shown that the precoding deviation
minimization problem P for the single-cell case has a semi-
closed-form precoding solution as shown in (15)-(17) and
Proposition 1. In the following, we show that the weighted
sum cost minimization problem Pw

c (θc) for the multi-cell case
can be transformed into a similar format as P .

We first observe that the objective of Pw
c (θc) can be

rewritten as follows:

(1 − θc)fc(Ṽc) + θcρc(Ṽc)

= (1 − θc)
∑

l 6=c,l∈C

‖H̄lcṼc‖
2
F + θc‖H̄ccṼc −

√
P w

c Dc‖
2
F

= θc‖H
eff
c Ṽc −

√
P w

c D̃c‖
2
F (24)

where we define the effective channel matrix as Heff
c ,

[
β1H̄H

1c, . . . , βCH̄H
Cc

]H
, where βc = 1, βl =

√
1−θc

θc
, ∀l 6=

c, l ∈ C, and D̃c , [0, . . . ,DH
c , . . . , 0]H ∈ CK×Kc . Thus,

Pw
c (θc) is equivalently transformed to the following problem:

P̃w
c (θc) : min

Ṽc

‖Heff
c Ṽc −

√
P w

c D̃c‖
2
F

s.t. ‖Ṽc‖
2
F − P max

c ≤ 0

which has the same form as P in the single-cell case.
Therefore, Pw

c (θc) can be viewed as an effective precoding
deviation minimization problem in the network similar to P .
In particular, weight factor θc controls the significance of
interfering channel H̄lc in the effective channel Heff

c , leading to
the trade-off between signal leakage and precoding deviation.

As a result, the optimal solution Ṽw◦
c (θc) to Pw

c (θc) is in a
semi-closed form similar to that for P in Section IV-B, given
as follows:

Ṽw◦
c (θc) =

√
P w

c Heff
c
†D̃c, (25)

if P w
c ‖Heff

c
†D̃c‖2

F ≤ P max
c . Otherwise,

Ṽw◦
c (θc) =

√
P w

c (Heff
c

HHeff
c + λ◦

cI)
−1Heff

c
HD̃c (26)

where λ◦
c > 0 is set such that power constraint (21) is met

with equality. The search range for λ◦
c is given in the following

proposition. The proof is similar to the proof of Proposition 1
and hence is omitted.

Proposition 2. For Ṽw◦
c (θc) in (26), the optimal Lagrange

multiplier λ◦
c lies in the interval λ◦

c ∈
(
0, ‖Heff

c ‖
2
F

√
NcP w

c

P max
c

]
.

For this distributed solution, the computational complex-
ity for solving the subproblem Pw

c (θc) is in the order of
O(min(Nc,K)3), and overall is O(

∑
c∈C min(Nc,K)3) for

the original problem Pw(θ) in the worst case. It is significantly
less than O(min(N,K)3) for solving Pw(θ) directly, e.g.,
using an interior-point method, especially when Nc and Kc

are large.
So far we have obtained the precoding solution to Pw(θ)

for given θ. What remains at the InP is to determine weight θ
for the virtualization design. Note that the weighted sum cost
minimization objective in Pw(θ) is tailored for WNV, and
therefore is not directly related to the conventional system
performance metrics in terms of the data rates for non-
virtualized networks. In a virtualized network, each SP has
its own performance metric in generating its virtualization
demand, e.g., one SP could be interested in the sum rate
while another SP may be more concerned about the minimum
rate guarantee, for their respective sets of subscribing users.
These performance targets are oblivious to the InP, who is
only concerned about meeting the virtualization demands pro-
vided by the SPs. Compared with conventional non-virtualized
networks, our proposed virtualized precoding solution caters
to different service needs of SPs, allowing the network to be
shared in a more flexible manner.

Even in the case all SPs use a common performance metric
and the InP uses it (e.g., sum rate or minimum rate) to
optimize the weight θ, the problem is still very challenging,
as the objective may be highly non-convex w.r.t. θ. Let
yc =

∑
l∈C ycl be the actual received signal at the Kc users in

cell c. The global received signal at all K users in the network
y = [yH

1 , . . .yH
C ]H in compact form is given by

y = HVx (27)

where H = [H̃1, . . . , H̃C ], V = blkdiag{Ṽ1, . . . , ṼC}, and
x = [xH

1 , . . . ,xH
C ]H with E{xxH} = I. The virtual received
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signal at all K users in the network ỹ = [ỹH
1 , . . . , ỹH

C ]H is
given by

ỹ = PwDx (28)

where Pw = blkdiag{
√

P w
1 I, . . . ,

√
P w

CI} and D =
blkdiag{D1, . . . ,DC}. Note that the virtual received signal ỹ
does not consider either the intra-cell inter-SP interference or
the inter-cell interference. The expected deviation of received
signals at all K users, between the actual precoding by the
InP and precoding demand by the SPs, is given by

Ex{‖y − ỹ‖2
F } =

∑

c∈C

‖H̃cṼc −
√

P w
c D̃c‖

2
F

=
∑

c∈C




∑

l 6=c,l∈C

‖H̄lcṼc‖
2
F + ‖H̄ccṼc −

√
P w

c Dc‖
2
F





=
∑

c∈C

(
fc(Ṽc) + ρc(Ṽc)

)

which is exactly the objective of Pw(1
2 ), where 1

2 =
[ 12 , . . . , 1

2 ]. Therefore, at θ = 1
2 , the InP is equivalently

minimizing the global total precoding deviation. When it is
zero, the precoding demands of all SPs in the network are
met, without either the intra-cell inter-SP interference or the
inter-cell interference. This suggests that θ = 1

2 is a special
weight vector from the InP’s perspective of whole network
operation. Indeed, in Section VI, we numerically show that
θ = 1

2 can achieve close to optimal system performance for the
two metrics of sum rate and minimum rate. However, since the
global total precoding deviation does not necessarily indicate
the individual cell performance, we emphasize that θ may be
designed to control the relative performance across cells.

C. Fully Distributed Virtual Transmit Power Allocation P w
c

The solution obtained for P̃w
c (θc) so far is for given virtual

transmit power P w
c ≤ P max

c , for c ∈ C. Recall from the
discussion in Section IV-C that P w

c is intended to regulate
between interference suppression and each SP’s virtualization
demand maximization. It needs to be properly determined to
reflect the actual desired service quality, but is challenging to
be optimized. Instead of computationally expensive exhaustive
search for each optimal P w

c , we extend the virtual power
allocation scheme proposed in Section IV-C to the multi-cell
case. We propose an intuitive and computationally efficient
virtual transmit power allocation scheme for {P w

c } for the
virtualized multi-cell MIMO system. Since P̃w

c (θc) and P have
the same format, similar to (18) and (19) in the single-cell
case, the maximum value of P w

c for Ṽ◦
c (θc) in (25) to satisfy

(21) is given by

P w◦
c = min

{
P max

c

‖Heff
c
†D̃c‖2

F

, P max
c

}

, c ∈ C. (32)

Note that, given fixed Ṽl for all l 6= c, with Ṽw◦
c (θc) in (25),

the SINR of each user in cell c is monotonically increasing
with the virtual transit power P w

c . As such, P w◦
c in (32)

greedily maximizes the SINRs of the Kc users in cell c.
Therefore, we propose to use P w◦

c in (32) to the solution to
P̃w

c (θc) as Ṽw◦
c (θc) =

√
P w◦

c Heff
c
†D̃.

Note that P w◦
c depends, through Heff

c , on θc and all the
channels to users in cell c. Also note that if Nc ≥ K, i.e.,
there are sufficient degrees of freedom, the objective function
in P̃w

c (θc) is under-determined and the optimal value is zero,
i.e., the InP can achieve zero leakage and inter-SP interference
using the precoding Ṽw◦

c (θc) in (25) and achieves complete
service isolation desired for WNV. In this case, the proposed
virtual transmit power allocation P w◦

c in (32) at cell c is the
maximum power to meet the SP precoding demand while
nulling the inter-SP interference in cell c without generating
any signal leakage to the other cells. If Nc < K , there is
not enough degrees of freedom for the InP to eliminate signal
leakage and inter-SP interference at the same time.

Similar to the proposed virtual transmit power P w◦ in (19)
for the single-cell case, the choice of P w◦

c in (32) leads
to a closed-form precoding solution Ṽw◦

c (θc) given in (25),
instead of (26), which is for P w

c > P w◦
c . Through simulation,

we will show that this choice of P w◦
c (and Ṽw◦

c (θc)) gives
close to optimal system performance in terms of average
rate or minimum rate, among all possible values of P w

c . In
particular, setting P w

c > P w◦
c may lead to much degraded

system performance.

VI. SIMULATION RESULTS

Our coordinated MIMO virtualized precoding design trades-
off the signal leakage and precoding deviation at the SPs to
reach certain desired system performance. In our simulation,
we consider two important system performance measures
commonly used for non-virtualized networks, the sum rate and
the minimum user rate. Our first system performance metric
is the average per-user rate in the network defined as

R̄(V) ,
1
K

∑

c∈C

∑

m∈M

∑

k∈Km
c

log2(1 + SINRcmk) (30)

where Km
c = {1, . . . ,Km

c }, and SINRcmk is the SINR of
the k-th user of SP m in cell c given by (31). The second
performance metric is the averaged minimum rates of all SPs,
given by

R̄min(V) ,
1

CM

∑

c∈C

∑

m∈M

min
k∈Km

c

log2(1 + SINRcmk). (32)

It is the minimum rate at each virtual cell of an SP, averaged
over all SPs and all cells, and normalized by the system
bandwidth bandwidth. Both R̄(V) and R̄min(V) are highly
non-convex w.r.t. precoding matrix V, and thus are challenging
to optimize, even in non-virtualized networks.

SINRcmk =
|[Hm

ccV
m
c ]k,k|2∑

i 6=k,i∈Km
c

|[Hm
ccV

m
c ]k,i|

2 +
∑

j 6=m,j∈M

∑

i∈Kj
c

|[Hm
ccV

j
c]k,i|

2 +
∑

l 6=c,l∈C

∑

j∈M

∑

i∈Kj
l

|[Hm
clV

j
l ]k,i|

2 + σ2
n

. (31)
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(a) Nc = 32 < K = 56.
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Fig. 2. R̄ vs. P w and θ when all SPs adopt MRT precoding (the same legend
in Fig. 2(a) also applies to Fig. 2(b)).

A. Simulation Setup

We consider that an InP owns a MIMO cellular network
consisting of C = 7 urban hexagon micro cells. Each cell c
has radius Rc = 500 m. The InP serves M = 4 SPs, and
each SP m serves Km

c = 2 users in cell c. Following the
standard LTE specifications [25], we set the following default
parameters. The maximum transmit power to P max

c = 33 dBm,
noise spectral density N0 = −174 dBm/Hz, and noise figure
NF = 10 dB. We focus on transmission over one subcarrier
with bandwidth BW = 15 kHz. The channel between BS c
and user k is modeled as hk

c =
√

βk
c gk

c , ∀c ∈ C, ∀k ∈ K,
where K = {1, . . . ,K}, gk

c ∼ CN (0, I), βk
c [dB] = −31.54 −

33 log10(d
k
c )−ψk

c represents the path-loss and shadowing with
dk

c being the distance in kilometers from the BS in cell c
to user k and ψk

c ∼ CN (0, σ2
ψ) being the shadowing with

σψ = 8 dB. To study the impact of inaccurate CSI, for channel
state hk

c , we generate its CSI error through CN (0, e2
Hβk

c I),
where eH controls the CSI inaccuracy.

For our performance study, we consider that each SP m
adopts either MRT or ZF precoding, two commonly used
precoding schemes in MIMO systems, to design its normalized
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(a) Nc = 32 < K = 56.
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(b) Nc = 64 > K = 56.

Fig. 3. R̄min vs. P w and θ when all SPs adopt ZF precoding (the same legend
in Fig. 3(a) also applies to Fig. 3(b)).

virtual precoding matrix. They are given by

Wm
c =

{
$m

c Hm
cc

H , for MRT
$m

c Hm
cc

H(Hm
ccH

m
cc

H)−1, for ZF
(33)

where $m
c is a power normalization factor such that

‖Wm
c ‖2

F = 1. We assume that the InP allocates equal virtual
transmit power to the SPs in each cell for fair resource allo-
cation among the SPs, i.e., αm

c = 1
M , ∀m ∈ M, ∀c ∈ C. Note

that the optimal max-min SINR precoder under the single-cell
setting is in fact a MMSE precoder [26]. In the high signal-
to-noise ratio (SNR) region, ZF precoding approaches the
MMSE precoder [27]. Indeed, in our simulation, we observe
negligible performance difference between the case when all
SPs adopt the max-min SINR precoding [26] and the case
when all SPs adopt ZF precoding. Therefore, in the following,
if user fairness is of interest at an SP, we assume it adopts ZF
precoding to design its virtualization service demand.

B. Impact of Virtual Transmit Power P w
c

The search space of {P w
c , θc} in Pw(θ) to reach the optimal

R̄(V) or R̄min(V) is very large. For the purpose of illustration,
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we assume that the InP sets the same virtual transmit power
P w

c = P w and the same weight factor θc = θ, for all c ∈ C.
We vary P w and θ to study the impacts of signal leakage
and precoding deviation on the performance of our algorithm,
where we obtain R̄(V) or R̄min(V) for given P w and θ based
on the solution {Ṽw◦

c (θ)} in (25) or (26). Fig. 2 shows the
average per-user rate R̄ versus P w for different values of θ,
when all SPs adopt MRT precoding. We show the virtual
received signal ỹ in (28) as the desired signal by the SPs
based on their virtual precoding {Wm

c } in (33).
Fig. 2(a) shows the case when the number of antennas

Nc = 32 and the total users in the network K = 56, where
there is not enough degrees of freedom to eliminate signal
leakage and achieve zero precoding deviation at the same
time. Note that ỹ in (28) is only what the SP wants, without
considering either the inter-SP interference or the inter-cell
interference. Therefore, R̄ achieved by ỹ is higher than that
achieved by the actual received signal y in (27) due to the
proposed precoding scheme that considers both the inter-SP
and inter-cell interference. When Nc < K , we observe that
R̄ does not scale with the virtual transmit power P w. This
is because there is not enough degrees of freedom in the
system for the InP to mitigate the interference while satisfying
the SPs’ demands. The system becomes interference-limited.
As a result, increasing power P w (increasing virtualization
demand) does not help to improve the system performance.
As the virtual transmit power P w increases, we observe that
R̄ increases first and then decreases at a much faster rate. This
implies that allocating the maximum transmit power as the
virtual power to the SPs at each cell c, i.e., P w

c = P max
c , ∀c ∈ C

(as used in [10], [16]-[18]), leaves limited freedom to the InP
for interference suppression in the precoding design, and this
in turn may lead to severe system performance degradation.

Fig. 2(b) shows the opposite case when Nc = 64 and
K = 56. As Nc > K , with sufficient degrees of freedom, the
system performance gap to the one under the virtual signal
ỹ is drastically reduced (compared with Fig. 2(a)). As the
InP-designed precoding can eliminate the signal leakage to
other cells and null the inter-SP interference, when the virtual
transmit power P w

c is low, the actual received signal y is
identical to the desired virtual signal ỹ, leading to identical R̄.
Furthermore, we observe that setting the weight factor θ = 1

2
yields R̄ that is close to the maximum among different values
of θ.

For both Fig. 2(a) and Fig. 2(b), we indicate the performance
R̄ at P̄ w◦ = 1

C

∑
c∈C P w◦

c as the averaged value of the
proposed virtual transmit power {P w◦

c } in (32). It is interesting
to observe that, in both plots, R̄ achieved by {P w◦

c } is close
to the maximum value of R̄.

Fig. 3 shows the averaged minimum rates R̄min of all SPs
versus P w for different values of θ, when all SPs adopt ZF
precoding. Compared with MRT precoding, R̄min achieved by
ZF precoding is much higher. This is because our system is
operated at high SNR, and ZF precoding is close to optimal
precoding in this region. Similar to Fig 2(a), in Fig. 3(a), when
Nc < K , there is insufficient degrees of freedom to mitigate
interference, and the system is interference-limited. Thus, R̄min

does not scale with P w. Similar to the MRT precoding case,

setting θ = 1
2 yields close to the maximum value of R̄min

among different values of θ, and R̄min achieved with {P w◦
c }

is close to the maximum value of R̄min.
We have shown that setting weight factor θ = 1

2 is close-
to-optimal and the proposed virtual transmit power {P w◦

c } is
effective, for both the average per-user rate R̄ and the averaged
minimum rates of the SPs R̄min. As such, in practice, the InP
can simply set θc = 1

2 and allocate P w◦
c in (32) to each cell

c ∈ C. In this case, the weighted sum minimization problem
Pw(1

2 ) has a closed-form solution {Ṽw◦
c ( 1

2 )} in (25).

C. Benefit of Service Isolation via Spatial Virtualization

Based on the results above, in the following simulation, we
use the closed-form precoding solution Ṽw◦

c ( 1
2 ) in (25) with

the proposed virtual transmit power P w◦
c in (32), for each cell

c ∈ C. We assume each SP m adopts ZF precoding to design
its normalized virtual precoding Wm

c in each cell c ∈ C and
focus on the study of the averaged minimum rates of all SPs
R̄min.

For a performance upper bound, we consider the idealized
cooperative precoding, which is highly complicated to im-
plement but can substantially outperform the more practical
coordinate precoding approach that we consider in this work.
Furthermore, since there is no low-complexity solution to
cooperative precoding with per-cell transmit power constraints,
we resort to assuming cooperative precoding with a sum power
constraint over all cells, which further favors its performance.
In the case of ZF precoding, this is given by

VZF = $HH(HHH)−1 (34)

where $ is a power normalization factor such that ‖VZF‖2
F =∑

c∈C P max
c . Note that VZF in (34) requires sharing both the

global channel state H and the global transmit signal x at
each cell c ∈ C, while the proposed coordinated precoding
uses only the local channel state H̃c and the local transmit
signal xc. Since the system is operated at high SNR, VZF in
(34) is close to optimal precoding.

We also consider service isolation via orthogonal bandwidth
allocation, which is commonly adopted in existing literature
[4]-[6], [8]. Specifically, we consider a frequency division
(FD) scheme that allocates equal bandwidth BW

M to each SP m.
We apply the proposed closed-form coordinated precoding
solution to each SP. This is a special case of a single SP in our
general solution {Ṽw◦

c ( 1
2 )} in (25). This precoding scheme

uses the local CSI to minimize the inter-cell signal leakage
while meeting each SP’s demand. It can be considered as a
FD leakage minimization scheme. Note that the rate for each
SP is normalized by the system bandwidth BW .

Fig. 4 shows the performance comparison between the
proposed virtualized coordinated precoding, cooperative ZF
precoding, and FD leakage minimization precoding under
perfect CSI. Fig. 4(a) shows the impact of Nc on the system
performance with fixed number of users per cell Kc = 8. In
Fig. 4(b), we examine the impact of user density by varying
Kc with the BS antennas fixed at Nc = 128. When the BSs
are equipped with enough antennas relative to the total users
in the network, i.e., Nc ≥ K, ∀c ∈ C, as Nc increases, the
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(b) R̄min vs. Kc with Nc = 128 and different values of Rc.

Fig. 4. Comparison of R̄min among different precoding schemes under perfect
CSI (the same legend in Fig. 4(a) also applied to Fig. 4(b)).

performance achieved by our proposed virtualized coordinated
precoding grows closer to that of the idealized cooperative
precoding. When the number of BS antennas is small, i.e.,
Nc < K , the proposed virtualized coordinated precoding does
not have enough degrees of freedom to mitigate the inter-
ference among the SPs and cells, which leads to noticeably
performance degradation. We also observe from both Fig. 4(a)
and Fig. 4(b) that, as the cell size increases, the performance
gap to that of the cooperative ZF precoding reduces. This
is because there is less inter-cell interference for the InP to
control and thus more virtual transmit power can be allocated
to the SPs.

When the number of antennas is large, the proposed vir-
tualized coordinated precoding substantially outperforms the
FD leakage minimization scheme. This demonstrates the ef-
fectiveness of the proposed spatial isolation approach with
simultaneously sharing all the frequency channel resources
among SPs. Note that when there is not enough antennas for
spatial isolation, e.g., the case of Nc = 16 < K = 56 in
Fig. 4(a), the user received SINR is low due to high interfer-
ence. In this regime, applying FD can be more effective than
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18

Fig. 5. Comparison of R̄min among different precoding schemes under
inaccurate CSI, with K = 56.

spatial isolation with full bandwidth, by isolating interference
to increase SINR.

Fig. 5 shows the impact of imperfect CSI on the system
performance when K = 56. As the number of antennas Nc in-
creases, the performance gap of our proposed virtualized coor-
dinated precoding to that of cooperative precoding decreases,
indicating the robustness of our design to CSI inaccuracy for
coordinated multi-cell WNV. We observe that the proposed
virtualized coordinated precoding substantially outperforms
the FD signal minimization precoding in a wide range of CSI
inaccuracy levels, indicating the performance gain of spatial
virtualization over the spectrum isolation schemes for MIMO
WNV [4]-[6], [8].

VII. CONCLUSION

In this paper, we considered the design of MIMO WNV to
achieve service isolation among the SPs in a multi-cell sce-
nario, where the InP decides the transmitter precoding based
on SPs’ individual service demands. To the best of our knowl-
edge, this is the first work to achieve spatial virtualization in
a multi-cell MIMO system with simultaneous utilization of
all antennas and channel resources, while managing both the
inter-SP and inter-cell interference. We show that the resultant
coordinated precoding optimization problem, to minimize a
weighted sum of signal leakage and precoding deviation under
per-cell transmit power limits, can be decomposed into per-cell
subproblems, leading to a fully distributed semi-closed-form
solution at each cell. We also propose a low-complexity virtual
transmit power allocation scheme for each SP’s virtual service
demand to regulate between interference elimination and vir-
tual demand maximization. Simulation results demonstrate that
the system performance of a virtualized network enabled by
our proposed solution is substantially higher than that of the
common frequency isolation alternative, and it can approach
the performance of an idealized cooperative scheme when the
number of antennas becomes large.
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APPENDIX A
PROOF OF PROPOSITION 1

Proof: Let HHH + λ◦I = UΣU, where Σ = diag{σ1 +
λ◦, . . . , σN + λ◦} with σn being the eigenvalues of HHH,
and U is a unitary matrix. If λ◦ > 0, from (17), we have

‖V◦‖2
F = P w‖(HHH + λ◦I)−1HHD‖2

F

(a)

≤ P w‖(HHH + λ◦I)−1‖2
F ‖H‖2

F ‖D‖2
F

(b)

≤ P w‖(HHH + λ◦I)−1‖2
F ‖H‖4

F

(c)

≤ P w‖H‖4
F

N

λ◦2
(35)

where (a) follows from ‖AB‖F ≤ ‖A‖F ‖B‖F , (b) is
because αm ≤ 1 and ‖Wm‖2

F = 1, ∀m ∈ M, and thus

‖D‖2
F =

∑

m∈M

αm‖HmWm‖2
F ≤

∑

m∈M

‖Hm‖2
F = ‖H‖2

F ,

and (c) is because σn ≥ 0, n = 1, . . . , N and thus

‖(HHH + λ◦I)−1‖2
F =

N∑

n=1

1
(σn + λ◦)2

≤
N

λ◦2
.

Since by (13), the equality holds for (11) at optimality,

following (35), we have λ◦ ≤ ‖H‖2
F

√
NP w

P max .

APPENDIX B
PROOF OF LEMMA 1

Proof: We first prove “only if” by contradiction, i.e., δc ≥
δw
c if P lk

c (δc) is feasible. Suppose there exists a δ′c < δw
c

such that P lk
c (δ′c) is feasible. We have ρc(Ṽlk◦

c (δ′c)) ≤ δ′c and
‖Ṽlk◦

c (δ′c)‖
2
F −P max

c ≤ 0. By (21), Ṽlk◦
c (δ′c) is also a feasible

solution to Pw
c (1). From the above assumption, we also have

ρc(Ṽlk◦
c (δ′c)) < ρc(Ṽw◦

c (1)) = δw
c , which contradicts the fact

that Ṽw◦
c (1) is an optimal solution to Pw

c (1).
To prove “if”, note that, when δc ≥ δw

c , from the definition
of δw

c in (22), we have ρc(Ṽw◦
c (1)) ≤ δc. Also, Ṽw◦

c (1)
satisfies the transmit power constraint (21). Thus, Ṽw◦

c (1) is
a feasible solution to P lk

c (δc) for any δc ≥ δw
c .

APPENDIX C
PROOF OF LEMMA 2

Proof: Since P lk
c (δc) is convex for δc > δw

c , we prove strong
duality by showing the Slater’s condition holds. We prove the
lemma by considering the following two cases.

1) ‖Ṽlk◦
c (δw

c )‖2
F < P max

c : Since ρc(Ṽlk◦
c (δw

c )) = δw
c < δc,

Ṽlk◦
c (δw

c ) satisfies the Slater’s condition.
2) ‖Ṽlk◦

c (δw
c )‖2

F = P max
c : From the convexity of the power

constraint function in (21), for any t ∈ (0, 1], we have

‖t0 + (1 − t)Ṽlk◦
c (δw

c )‖2
F − P max

c

≤ t
(
‖0‖2

F − P max
c

)
+ (1 − t)

(
‖Ṽlk◦

c (δw
c )‖2

F − P max
c

)

= −tP max
c < 0. (36)

Similarly, from the convexity of ρc(Ṽc) in (5), for any t ∈
(0, 1], we have

ρc(t0 + (1 − t)Ṽlk◦
c (δw

c ))

≤ tρc(0)+(1−t)ρc(Ṽlk◦
c (δw

c ))= tρc(0) +(1−t)δw
c . (37)

We further discuss (37) in the following two subcases:
2.i) If ρc(0) = δw

c , we have

ρc(t0 + (1 − t)Ṽlk◦
c (δw

c )) ≤ δw
c < δc. (38)

From (36) and (38), (1 − t)Ṽlk◦
c (δw

c ), ∀t ∈ (0, 1] satisfies the
Slater’s condition.

2.ii) If ρc(0) > δw
c , we can set t′ = δ′

c−δw
c

ρc(0)−δw
c

, for any
δ′c ∈ (δw

c , min{δc, ρc(0)}) such that

ρc(t
′0 + (1 − t′)Ṽlk◦

c (δw
c )) ≤ δ′c < δc. (39)

From (36) and (39), we have found a t′ ∈ (0, 1) such that
(1 − t′)Ṽlk◦

c (δw
c ) satisfies the Slater’s condition.

Combining Cases 1) and 2), we complete the proof.

APPENDIX D
PROOF OF LEMMA 3

Proof: Since the strong duality holds for Pw
c (θc) for any

θc ≥ 0, we can solve Pw
c (θc) through its dual problem. The

Lagrangian for Pw
c (θc) is

Lw
c (Ṽc, λc; θc)

= (1 − θc)fc(Ṽc) + θcρc(Ṽc) + λc(‖Ṽc‖
2
F − P max

c )

where λc ≥ 0 is the Lagrange multiplier associated with
constraint (21). The dual problem of Pw

c (θc) is given by

Dw
c (θc) : max

λc≥0
min
Ṽc

Lw
c (Ṽc, λc; θc).

Let (Ṽw◦
c (θc), λ◦

c(θc)) denote an optimal solution to Dw
c (θc).

By setting θc = ν◦
c (δc)

1+ν◦
c (δc)

∈ [0, 1) and adding a constant

− ν◦
c (δc)δc

1+ν◦
c (δc)

to the objective in Dw
c

(
ν◦

c (δc)
1+ν◦

c (δc)

)
, the optimization

problem is equivalent to

max
λ̃c≥0

min
Ṽc

fc(Ṽc) + ν◦
c (δc)[ρc(Ṽc) − δc]

+ λ̃c(‖Ṽc‖
2
F − P max

c ) (40)

where λ̃c , λc(1+ν◦
c (δc)). The dual problem Dlk

c (δc) for any
δc > δw

c is given by

max
νc≥0,μc≥0

min
Ṽc

fc(Ṽc) + νc[ρc(Ṽc) − δc]

+ μc(‖Ṽc‖
2
F − P max

c ). (41)

Comparing Dw
c

(
ν◦

c (δc)
1+ν◦

c (δc)

)
in (40) with Dlk

c (δc) in (41), we

can treat ν◦
c (δc) in Dw

c

(
ν◦

c (δc)
1+ν◦

c (δc)

)
as a predetermined value

of Lagrange multiplier νc in Dlk
c (δc). Noting that ν◦

c (δc) is
optimal for Dlk

c (δc), we have Ṽw◦
c

(
ν◦

c (δc)
1+ν◦

c (δc)

)
∈ V lk

c (δc) and

Ṽlk◦
c (δc) ∈ Vw◦

c

(
ν◦

c (δc)
1+ν◦

c (δc)

)
. Thus, we complete the proof.
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APPENDIX E
PROOF OF THEOREM 1

Proof: By Lemma 1, we only consider δc ≥ δw
c for feasible

P lk
c (δc). By Lemma 3, claim i) holds. We now prove claim ii).

From Lemma 1, P lk
c (δw

c ) is feasible, we have ρc(Ṽlk◦
c (δw

c )) =
δw
c and Ṽlk◦

c (δw
c ) satisfies (21). Thus, Ṽlk◦

c (δw
c ) is also a

feasible solution to Pw
c (1). Noting that ρc(Ṽw◦

c (1)) = δw
c in

(22), we have ρc(Ṽlk◦
c (δw

c )) = ρc(Ṽw◦
c (1)). Since ρc(Ṽw◦

c (1))
is the minimum objective value of Pw

c (1), Ṽlk◦
c (δw

c ) is also an
optimal solution to Pw

c (1), i.e., Ṽlk◦
c (δw

c ) ∈ Vw
c (1), for any

Ṽlk◦
c (δw

c ) ∈ V lk
c (δw

c ). Therefore, we complete the proof.
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