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Abstract—We consider cooperative multiple-input multiple-
output (MIMO) precoding design with multiple access points
(APs) assisted by a central controller (CC) in a fading environ-
ment. Even though each AP may have its own local channel
state information (CSI), due to the communication delay in the
backhaul, neither the APs nor the CC has timely global CSI. Un-
der this hierarchical semi-online setting, our goal is to minimize
the accumulated precoding deviation, between the actual local
precoders executed by the APs and an ideal cooperative precoder
based on timely and perfect global CSI, subject to per-AP
transmit power limits. We propose an efficient algorithm, termed
Semi-Online Precoding with Information Parsing (SOPIP), which
accounts for the network heterogeneity in information timeliness
and computational capacity. SOPIP does not require the CC to
send the full global CSI to each AP. Instead, it takes advantage of
the precoder structure to substantially lower the communication
overhead, while allowing each AP to effectively combine its own
timely local CSI with the delayed global CSI to enable adaptive
precoder updates. We analyze the performance of SOPIP in
the presence of multi-slot communication delay, CSI inaccuracy,
and gradient estimation error, showing that it has a bounded
performance gap from an offline optimal solution. Simulation
results under typical cellular system settings further demonstrate
the substantial performance gain of SOPIP over other centralized
and distributed schemes.

Index Terms—Semi-online optimization, MIMO, cooperative
precoding, CSI delay, imperfect CSI, gradient algorithm.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) and cooperative
transmission have been recognized as two enabling techniques
to meet the ever-increasing service demand of mobile devices
[2]. In MIMO networks, each access point (AP) is equipped
with multiple antennas and serves multiple mobile devices
simultaneously via MIMO precoding [3]. Furthermore, coop-
erative transmission enables multiple APs to jointly transmit
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signals to the mobile devices to improve the received signal
strength and mitigate interference [4]. Different cooperation
schemes among APs have been proposed under various system
architectures, such as coordinated multi-point transmission in
cellular networks [5], cloud-radio access network [6], and cell-
free massive MIMO [7]. In a cooperative wireless network,
it is commonly assumed in the literature that the APs are
connected to a central controller (CC) via ideal backhaul.
However, in practical systems, cooperative transmission faces
the challenges of non-ideal backhaul with communication
delay and limited capacity.

Cooperative precoding design intrinsically requires the
knowledge of global channel state information (CSI) for inter-
ference management. Therefore, most prior works adopted a
global processing approach to design cooperative precoding at
the CC, assuming the global CSI is readily available [8]-[15].
Some other works have considered distributed cooperative
precoding design at the APs based only on the local CSI
[16]-[18]. However, due to the lack of global CSI, such
local processing approach cannot fully utilize the degrees
of freedom available in the system to effectively mitigate
interference. In contrast, the joint (global and local) processing
approach utilizes the computational capacity at both the CC
and the APs and exchanges information between them over
the backhaul to achieve full degrees of freedom [19]-[23]. In
this work, we adopt the joint processing approach.

All of the existing works that adopt the joint processing
approach have focused on one-shot or offline cooperative
precoding problems assuming the CSI is known beforehand.
These works implicitly assume the backhaul is ideal without
communication delay. However, in practical cooperative wire-
less networks, non-ideal backhaul can cause severe communi-
cation delay between the CC and the APs. Online precoding
design has been considered for global processing in [24]-[26]
based on delayed CSI. However, these works focused on the
single-cell scenario and did not consider cooperative trans-
mission among multiple cells. In [27], an online cooperative
zero-forcing (ZF) precoding was proposed under perfect CSI.
Given the practical imperfection, it is important to consider
online cooperative precoding design under non-ideal backhaul
in multi-cell networks. However, to the best of our knowledge,
this problem has not been studied in the literature. Focusing
on this problem, in this work, we consider a new hierarchical
semi-online cooperative precoding design for joint processing,
where the APs have the timely local CSI and the CC has the
delayed global CSI. Besides, the delayed global CSI at the
CC, we fully utilize the more recent local CSI at the APs to
improve the cooperative precoding performance.
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The challenges of hierarchical semi-online cooperative pre-
coding design for joint processing are multi-fold. First, the
design of cooperative precoding is intrinsically non-separable
among the APs and therefore requires the knowledge of
global CSI. Second, due to the non-ideal backhaul, neither
the CC nor the APs has the timely global CSI to design the
cooperative precoder. Third, besides the delayed global CSI at
the CC, the APs should take full advantage of the timely local
CSI to design their local precoders for improved cooperative
precoding performance. Furthermore, it is important to reduce
the communication overhead over the backhaul in such a
hierarchical design. Besides the above challenges, in practical
systems, only inaccurate CSI can be obtained at the APs.
Thus, it is also critical to account for inaccurate CSI in the
precoding design and analyze the impact of CSI inaccuracy
on the cooperative precoding performance.

In this work, we consider cooperative MIMO precoding
design with multiple APs assisted by a CC via a non-ideal
backhaul with communication delay. We aim at developing
a hierarchical semi-online optimization framework for a CC-
assisted cooperative precoding solution that fully utilizes the
timely local CSI at the APs. With only local CSI available at
each AP, we formulate a cooperative precoding optimization
problem to minimize the accumulated deviation between the
actual local precoders executed by the APs and the idealized
desired cooperative precoder. The main contributions of this
paper are as follows:

• We formulate the cooperative MIMO precoding problem
over non-ideal backhaul as a hierarchical semi-online
optimization problem, where the APs only have timely
inaccurate local CSI and require the assistance from a
CC with additional computational resource and delayed
inaccurate global CSI for the joint precoding design.
At every time slot, each AP computes and executes its
own local precoder, but all APs cooperatively minimize
the accumulated deviation between the actual cooperative
precoder formed by the APs and the idealized desired
cooperative precoder under the perfect global CSI without
delay, subject to the APs’ transmit power limits. Note that
due to inter-AP interference, the precoding deviation is
not separable among the APs; and the communication
delay between the CC and the APs may span multiple
time slots.

• We propose an efficient algorithm, termed Semi-Online
Precoding with Information Parsing (SOPIP), to fully
account for the heterogeneity in information timeliness
and computational capacity at the CC and the APs in the
cooperative network. SOPIP integrates both the timely
local CSI and the delayed global CSI to fully utilize
the CSI timeliness for precoder updates at the CC and
the APs. In particular, instead of sending the full global
CSI from the CC to each AP, the algorithm efficiently
parsed the channel and precoder information for the CC
to send, leading to greatly reduced communication load
on the backhaul. Furthermore, SOPIP performs adaptive
precoder updates through multi-step gradient descent to
fully utilize the available computational resources at the

CC and the APs. We further develop a variant of SOPIP
to accommodate multi-slot local CSI delay at the APs.

• We analyze the performance of SOPIP under the hier-
archical structure, in the presence of multi-slot commu-
nication delay, CSI inaccuracy, and gradient estimation
error. We show that SOPIP yields O(max{τΠT , ΔT })
performance gap to the optimal solution over T time
horizon using one-step gradient descent at either the
CC or the APs, where τ is the total delay, ΠT (to be
defined in (18)) represents the accumulated variation of
the desired cooperative precoder in T slots, and ΔT

(to be defined in (20)) measures the level of variation
in the gradient estimation error in T slots. We further
provide an improved performance bound, which shows
how the optimality gap decreases as the number of
gradient descent steps increases.

• Our simulation results under typical cellular system
settings show that SOPIP has fast convergence and is
tolerant to a wide range of communication delay. We
further demonstrate the performance advantage of SOPIP
over other existing centralized and distributed schemes.

In the conference version of this work [1], we only study
the problem under perfect CSI and no local CSI delay. In this
extended version, we consider more general models, including
inaccurate CSI and multi-slot local CSI delay, in designing
SOPIP, and provide new performance analysis and simulation
results under these imperfect scenarios.

Organization: The rest of this paper is organized as follows.
In Section II, we present the related work. Section III describes
the system model and problem formulation. In Section IV, we
present SOPIP, derive its performance bounds, and discuss its
performance merits. Then, in Section V, we extend SOPIP
to accommodate non-zero local delay. Simulation results are
presented in Section VI, followed by concluding remarks in
Section VII.

Notations: The transpose, Hermitian transpose, complex
conjugate, Euclidean norm, Frobenius norm, trace, and (i, j)
element of a matrix A are denoted by AT , AH , A∗, ‖A‖,
‖A‖F , tr{A}, and [A]i,j , respectively. The notation I denotes
an identity matrix, Ea{∙} denotes the expectation over the ran-
domness in a, and <{∙} denotes the real part of the enclosed
parameter. For g being an n×1 vector, g ∼ CN (0,C) means
that g is a circular complex Gaussian random vector with mean
0 and covariance C.

II. RELATED WORK

In this section, we survey relevant existing works on coop-
erative precoding in offline and online scenarios.

A. One-Sided Global or Local Cooperative Precoding

Most existing works on cooperative precoding design are
based on global processing at the CC (or some equivalent
entity). A cooperative ZF precoding scheme was studied in
[8]. In [9], the impact of synchronization on the cooperative
system performance was investigated. Cooperative precoding
based on the multi-cell block diagonalization technique was
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proposed in [10] with per-AP transmit power limits. Compres-
sion techniques were used in [11], [12] to reduce the amount
of information exchange over the backhaul. In [13], the trade-
off between the backhaul cost and power consumption was
investigated. Cell-free massive MIMO was proposed in [14],
[15], where distributed single-antenna APs are deployed to
cooperatively transmit data to the users, and the distributed
APs rely on the CC for global processing. All of the above
works assume the CC has the knowledge of the global CSI
without delay, which is not realistic in practical cooperative
networks.

Distributed cooperative precoding schemes based only on
the local CSI at the APs was proposed in [16], [17]. Linear
precoding was proposed in [18] for each AP based on the
local CSI and the large-scale fading coefficients of the other
APs. However, due to the lack of global CSI, the local pro-
cessing approach may be highly suboptimal, since cooperative
precoding design naturally requires the global CSI to fully
utilize the degrees of freedom provided by MIMO antennas.
Furthermore, they do not utilize the computation capacity of
the CC to improve the system performance.

B. Joint Global and Local Cooperative Precoding

All prior works that adopt the joint global and local process-
ing approach perform one-shot or offline optimization. Coop-
erative precoding design with AP clustering was considered
in [19]. In [20], the local precoders were optimized through
forward and backward training between the CC and APs.
Cooperative transmission in a cognitive network was studied
in [21]. A user mobility cooperation approach was proposed
in [22] to utilize the moving users for interference mitigation.
Different levels of cooperations between the CC and APs for
cell-free massive MIMO systems was studied in [23]. None of
these works considered the impact of backhaul communication
delay on the cooperative precoding design. Furthermore, these
works do not consider the channel fluctuations or provide any
performance guarantees over time.

C. Online Convex Optimization for Precoding

The general online convex optimization (OCO) technique
[28] accounts for the delayed information in system design.
It has been applied to online precoding design problems with
delayed CSI in MIMO systems. For example, online projected
gradient descent was used in [24] for MIMO uplink precoding
design. Dynamic precoding design for point-to-point MIMO
systems was studied in [25]. Periodic precoding updates for
MIMO network virtualization was considered in [26]. How-
ever, these works focused on the single-cell MIMO scenario,
which cannot be applied to cooperative precoding design.
Lyapunov optimization technique was applied to study online
cooperative ZF precoding in multi-cell MIMO systems [27].
However, [27] focused on one-sided global precoding design
based on the timely and accurate CSI, which is substantially
different from this work on hierarchical precoding design with
delayed and possibly inaccurate CSI.

Fig. 1. An illustration of a cooperative MIMO wireless network with ideal
backhaul communication links.

D. Other Related Works

A part of our proposed algorithm uses the common gra-
dient descent method. However, different from the standard
distributed online gradient descent schemes that assume sepa-
rable objective functions [29]-[33], our objective function is
non-separable among the APs. Therefore, distributed OCO
algorithms based only on local information, such as those
in [29]-[33], are not applicable to our problem. The need to
consider non-ideal backhaul further adds to this challenge.

Decentralized coordinated precoding was considered in
[34]-[38]. Instead of cooperatively transmitting signals to a
user, the APs only focus on interference mitigation via coor-
dination. In contrast, we focus on the scenario of cooperative
transmission.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will first describe a general model
for cooperative MIMO networks under idealized conditions,
where timely and perfect local CSI is available at each AP, and
the backhaul communication experiences no delay. Following
this, we will then account for CSI inaccuracy and non-ideal
backhaul in our problem formulation. A further consideration
for the delayed CSI at each AP will be presented in Section V.
We summarize our key notations in Table I.

A. Idealized Cooperative MIMO Network Model

We consider a cooperative wireless MIMO network in a
time-slotted system with time index t. As shown in Fig. 1, a
total of C APs jointly serve K users with the assistance of a
CC over the ideal backhaul without communication delay and
error.1 We assume each user is equipped with a single antenna.
Each AP c has N c antennas, and there are N =

∑C
c=1 N c

antennas in the network. Let Hc
t ∈ CK×Nc

denote the local
channel state between the K users and AP c at time t. Let
Ht = [H1

t , . . . ,H
C
t ] ∈ CK×N denote the global channel

state between the K users and all the APs at time t. We
assume the considered cooperative network is under perfect
synchronization. Also, for cooperative precoding, the user
messages are assumed to be available at all the APs.

1The AP can represent a base station, a transmission and reception point,
or a remote radio unit. The CC is also referred to as central processor, central
processing unit, or base-band unit pool.
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TABLE I
SUMMARY OF KEY NOTATIONS

Notation Description

T Total number of time slots
C Total number of APs
K Total number of users
N Total number of antennas
JCC Total number of gradient descent steps at CC
JAP Total number of gradient descent steps at APs
Nc Number of antennas in AP c
u Uplink delay from APs to CC
d Downlink delay from CC to APs
τr Round-trip delay between APs and CC
τl Local delay at the APs
τ Total delay
Ht Accurate global channel state at time t

Ĥt Inaccurate global channel state at time t
Hc

t Accurate local channel state of AP c at time t

Ĥc
t Inaccurate local channel state of AP c at time t

Vt Global cooperative precoder at time t
Vc

t Local precoder of AP c at time t

V̂c,j
t

CC designed precoder for AP c at time t after
j-step of gradient descent

Ṽc,j
t

AP c designed precoder at time t after
j-step of gradient descent

Wt Desired cooperative precoder of CC at time t

Ŵt Inaccurate cooperative precoder of CC at time t

Ĝc
t CC parsed global information for AP c at time t

P c
max Maximum transmit power limit at AP c

V Feasible set of global cooperative precoder
Vc Feasible set of local precoder at AP c
yt Actual received signals of the K users at time t
ỹt Desired received signals of the K users at time t
xt Transmitted signals to the K users
ft(∙) Global precoding deviation at time t
∇fc

t (∙) Local gradient of AP c at time t

∇f̂c
t (∙) Estimated local gradient of AP c at time t

α Algorithm gradient descent step-size parameter
B Channel power upper bound

At each time slot t, each AP c measures the local channel
state between the K users and its N c antennas, and observes
the current local CSI Hc

t . With possible assistance from the
CC, each AP c determines its local precoder Vc

t ∈ CNc×K to
the K users. Let Vt = [V1

t
H

, . . . ,VC
t

H
]H ∈ CN×K denote

the cooperative precoder of all the APs, and let xt ∈ CK×1

be the signal vector intended for the K users at time slot
t. We assume the signal to each user has unit power and is
independent to each other, i.e., E{xtxH

t } = I, ∀t. Each AP c
has a maximum transmit power limit P c

max, which leads to the
following local precoder feasible set

Vc , {Vc : ‖Vc‖2
F ≤ P c

max}. (1)

Let V , {V : ‖Vc‖2
F ≤ P c

max, ∀c = 1, . . . , C} be the feasible
set of Vt. The actual received signal vector yt (noiseless) at
the K users is given by

yt = HtVtxt. (2)

Ideally, it is desirable for the APs to jointly design Vt to
achieve some joint performance objective, e.g., cooperative ZF
precoding by all the APs to eliminate inter-user interference
and maximize per-user received signal-to-noise ratio (SNR)

[8]. However, such joint design would require each AP to
obtain the global CSI, which is prohibitively expensive in
terms of the communication overhead. Therefore, a common
solution is to let a CC collect the local CSIs from APs to form
the global CSI and design Vt centrally.

Under the perfect condition, each AP c communicates Hc
t

to the CC without delay. With the global CSI Ht collected at
time slot t, the CC can design a desired cooperative precoder
Wt ∈ CN×K in V . Note that the design of Wt can be based
on the service needs of the K users and is not limited to any
specific precoding scheme. The desired received signal vector
(noiseless) ỹt is given by

ỹt = HtWtxt. (3)

Again, ideally the CC communicates Wt to the APs without
delay, and we have Vt = Wt and yt = ỹt. Therefore,
under the idealized case, Vt is not impacted by CSI delay
or inaccuracy.

B. Cooperative Precoding with Delayed and Inaccurate CSI

In practical massive MIMO systems, AP c cannot obtain
the accurate local CSI Hc

t . Instead, we consider AP c only
has an estimate of local CSI Ĥc

t . Furthermore, we consider
non-ideal backhaul communication links between the APs and
CC. Specifically, we assume the uplink delay in sending the
local information from each AP c to the CC is u slots and
the downlink delay for the CC to send the global information
back to the APs is d slots.2 We assume u ≥ 1, i.e., there is at
least one-slot uplink delay.

Due to CSI inaccuracy and non-ideal backhaul, the actual
received signal yt in (2) is different from the desired ỹt in
(3). The expected deviation of the actual received signal vector
from the desired one is given by Ext{‖yt−ỹt‖2} = ‖HtVt−
HtWt‖2

F . Following this, we define the precoding deviation
of the APs’ precoders from the CC’s precoder as follows:

ft(Vt) , ‖HtVt − HtWt‖
2
F , ∀t. (4)

Note that ft(Vt) quantifies the difference between the actual
local precoders and the idealized cooperative (global) pre-
coder. We also note that, ft(Vt) is strongly convex in Vt.

The goal of our cooperative precoding design is to minimize
the accumulated precoding deviation over T time slots, subject
to per-AP transmit power limits. The optimization problem is
formulated as follows:

P1: min
{Vt∈V}T

t=1

T∑

t=1

ft(Vt).

Note that the precoding deviation ft(Vt) in (4) is non-
separable among the APs due to the coupling of local CSI
{Hc

t}
C
c=1 and local precoders {Vc

t}
C
c=1 creating inter-AP

interference. Therefore, each AP c cannot locally solve P1
without information exchange with other APs.

As discussed in Section I, existing works on online precod-
ing design adopt the one-sided global processing approach, and

2If the APs experience different delays, the CC can synchronize the
transmissions of the APs based on the maximum delay.
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the designs are based solely on the delayed global CSI under
the standard OCO setting. In contrast, we consider joint global
and local processing in a hierarchical cooperative network.
Furthermore, since each AP c has it own timely local CSI
while the global CSI at the CC is delayed, our optimization
setting is semi-online. Note that with delayed or inaccurate
global CSI, one cannot obtain an optimal solution.3 A widely
adopted performance measure in the OCO literature [39]-[46]
is the dynamic regret given by

REd
T ,

T∑

t=1

(
ft(Vt) − ft(V

?
t )
)

(5)

where {V?
t }

T
t=1 is an offline optimal solution assuming the

accurate global CSI {Ht}T
t=1 is known beforehand at the

CC and the backhaul communication experiences no delay.
In our case, it is clear that APs set V?

t = Wt for all t, so∑T
t=1 ft(V?

t ) = 0. Note that minimizing REd
T is equivalent to

solving P1.
In this paper, we consider both inaccurate CSI and non-

ideal backhaul with communication delay. In this case, the
APs cannot receive the ideal global precoder Wt from the CC
in time and the actual precoder Vt is impacted by both CSI
delay and inaccuracy. A naive solution is to directly set Vt as
the delayed and inaccurate precoder Ŵt−u−d received at the
APs. However, such solution does not utilize the information
timeliness of local CSI or the computational capacity at the
APs. Instead, we propose a semi-online precoding design that
exploits both the more timely local CSI and the available
computational resource at the APs. In Section VI, we will
show that our proposed solution significantly outperforms
other alternatives, including the naive solution Ŵt−u−d at the
APs.

IV. SEMI-ONLINE PRECODING WITH

INFORMATION PARSING

In this section, we present the details of SOPIP. We combine
the hierarchical semi-online setting with the gradient descent
approach commonly used in the OCO literature in order to
accommodate the delayed and inaccurate global CSI. However,
existing online gradient descent algorithms for distributed
networks, e.g., [29]-[33], are not applicable to P1, since they
implicitly assume the gradient can be computed based on the
local information only. For our non-separable global objective
function ft(Vt) in (4), even discounting the CSI delay and
inaccuracy, the current and accurate local gradient at each
AP c would be given by

∇f c
t (Vc

t ) ,
∂ft(Vt)
∂Vc

t
∗ = HcH

t

( C∑

l=1

(Hl
tV

l
t) − HtWt

)

(6)

where due to inter-AP interference in the received signal,
∇f c

t (Vc
t ) depends on its local CSI Hc

t , local precoder Vc
t ,

and the CSI Hl
t and precoder Vl

t at any other AP l 6= c.
Therefore, to compute its own gradient ∇f c

t (Vc
t ), each AP c

3In fact, even for the most basic centralized OCO problem with one-
slot delayed and accurate information [39], an optimal solution cannot be
found [40].

Fig. 2. An illustration of SOPIP for cooperative MIMO precoding design
with delayed and inaccurate CSI.

would need information from other APs. In SOPIP, with only
local CSI available at each AP, we design joint processing
algorithms at the APs and the CC to enable local gradient
updates at each AP.

Different from existing joint processing approaches, which
do not consider the timeliness of CSI or computational capac-
ity at the CC or the APs, our SOPIP integrates the timely local
and delayed global information to enable precoder updates at
both the CC and the APs. Furthermore, the number of precoder
updates at both the CC and the APs can be adjustable based
on the available computational resource. In the following, we
describe the algorithm details of SOPIP at the CC and the APs.

A. CC’s Algorithm

In practical cooperative networks, the CC often has a
rich amount of computational resource that can be used for
cooperative precoder design. As shown in Fig. 2, at each time
slot t, each AP c determines its current local precoder Vc

t

and then sends it together with its inaccurate local CSI Ĥc
t to

the CC. Due to the uplink delay, the CC receives the u-slot-
delayed local precoder Vc

t−u and inaccurate local CSI Ĥc
t−u

at time slot t. The CC then then use both Vc
t−u and Ĥc

t−u

to update the desired cooperative precoder and generate new
estimated local precoders for APs, to assist the local precoder
updates at the APs.

Note that the CC needs to accommodate the downlink delay
and design the precoders d slots ahead for the APs based on the
u-slot-delayed information. To compute the precoder for AP c,
the CC initializes an estimated precoder value V̂c,0

t+d = Vc
t−u

for each AP c, and performs JCC-step gradient descent to
generate V̂c,j

t+d, j = 1, . . . , JCC.4 Due to the uplink delay and
CSI error, the CC only has the delayed and inaccurate global
CSI Ĥt−u and computes the desired cooperative precoder
Ŵt−u that is delayed and inaccurate. Given Ĥt−u, Ŵt−u,
and V̂c,j−1

t+d , the CC generates an estimate of the local gradient
at V̂c,j−1

t+d as

∇f̂ c
t−u(V̂c,j−1

t+d )=ĤcH

t−u

( C∑

l=1

(Ĥl
t−uV̂

l,j−1

t+d )−Ĥt−uŴt−u

)

(7)

for j = 1, . . . , JCC.

4Later in Sections IV-D and VI, we show that multi-step gradient descent
in SOPIP improves the dynamic regret bound and the system performance.
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Algorithm 1 SOPIP: CC’s algorithm
1: Choose arbitrary α ≥ B and broadcast it all APs.
2: Receive Vc

t−u and Ĥc
t−u from each AP c.

3: Set V̂c,0
t+d = Vc

t−u for each AP c.
4: for j = 1 to JCC

5: Construct estimated gradient ∇f̂ c
t−u(V̂c,j−1

t+d ) in (7).
6: Update V̂c,j

t+d for each AP c via (8).
7: end for
8: Compute Ĝc

t−u for each AP c via (9)
9: Send V̂c,JCC

t+d and Ĝc
t−u to each AP c.

With previous precoder update V̂c,j−1
t+d and gradient estimate

in (7), the CC performs the following closed-form projected
gradient descent to update V̂c,j

t+d:

V̂c,j
t+d =PVc

{

V̂c,j−1
t+d −

1
α
∇f̂ c

t−u(V̂c,j−1
t+d )

}

, j =1, . . . , JCC (8)

where α > 0 is a step-size parameter and PVc{Vc} ,
arg minUc∈Vc{‖Uc − Vc‖2

F } is the projection operator onto
the local convex feasible set Vc. After the JCC-step gradient
descent procedure, to assist the local precoder update at each
AP c, the CC then sends V̂c,JCC

t+d to each AP c.
Furthermore, as an important feature of SOPIP, instead of

sending the global CSI to every AP, the CC sends to each AP c
the parsed global information on the precoding deviation given
by

Ĝc
t−u =

C∑

l=1,l 6=c

(
Ĥl

t−uV̂
l,JCC
t+d

)
− Ĥt−uŴt−u ∈ CK×K . (9)

Compared with ∇f̂ c
t−u(V̂c,JCC

t+d ) in (7), the global information
Ĝc

t−u in (9) for AP c does not contain the term Ĥc
t−uV̂

c,JCC
t+d ,

since more timely local CSI will be used by the AP for its
local precoder updates to reduce the gradient estimation error.

Note that since the global CSI is delayed and inaccurate, dif-
ferent from the existing global precoding design approaches, in
SOPIP, the precoders generated at the CC are not used directly
at the APs as the final precoders. Instead, the CC-generated
estimated local precoder V̂c,JCC

t+d along with the parsed global
information Ĝc

t−u are used at the APs to assist their local
precoder updates.

We summarize the CC’s algorithm in Algorithm 1.

B. AP’s Algorithm

Recall that since the precoding deviation ft(V) is non-
separable, each AP c cannot compute its local gradient
∇f c

t (Vc
t ) in (6) based only on its local CSI. To address this

issue, in SOPIP, the CC assists the local gradient estimation
by communicating the parsed global information Ĝc

t−u to
each AP c. Note that due to the communication delay and
CSI inaccuracy, the parsed global information is delayed and
inaccurate.

As shown in Fig. 2, at time slot t, taking into account
the additional downlink delay, each AP c receives the parsed
global information Ĝc

t−u−d and the estimated precoder V̂c,JCC
t

from the CC. Based on V̂c,JCC
t , each AP c initializes its own

Algorithm 2 SOPIP: AP c’s algorithm
1: Initialize Vc

t ∈ Vc at random for any t ≤ u.
2: Receive V̂c,JCC

t and Ĝc
t−u−d from the CC.

3: Set Ṽc,0
t = V̂c,JCC

t .
4: for j = 1 to JAP

5: Construct estimated gradient ∇f̂ c
t (Ṽc,j−1

t ) in (10).
6: Update Ṽc,j

t via (11).
7: end for
8: Set Vc

t = Ṽc,JAP
t and execute Vc

t .
9: Send Vc

t and Ĥc
t to the CC.

estimated local precoder Ṽc,0
t = V̂c,JCC

t and performs JAP-step
local gradient descent to generate Ṽc,JAP

t . For each gradient
descent step j = 1, . . . , JAP, based on (6) and with the current
local inaccurate CSI Ĥc

t , each AP c computes an estimate of
the current local gradient at Ṽc,j−1

t as

∇f̂ c
t (Ṽc,j−1

t ) = ĤcH

t

(

Ĥc
tṼ

c,j−1
t + Ĝc

t−u−d

)

. (10)

Note that the above estimated gradient takes full advantage of
the timely local CSI at the AP c, as well as the global infor-
mation provided by the CC, for the local precoder updates.

Using Ṽc,j−1
t from the previous step and ∇f̂ c

t (Ṽc,j−1
t ) in

(10), each AP c performs the following closed-form projected
gradient descent to update Ṽc,j

t :

Ṽc,j
t = PVc

{

Ṽc,j−1
t −

1
α
∇f̂ c

t (Ṽc,j−1
t )

}

, j =1, . . . , JAP. (11)

Finally, each AP c uses Vc
t = Ṽc,JAP

t as its local precoder
for cooperative MIMO transmission with other APs at time
slot t. Each AP c then communicates Vc

t together with the
inaccurate local CSI Ĥc

t to the CC.
We summarize AP c’s algorithm in Algorithm 2.

C. Discussion on Communication and Computation

If the CC sends the exact global information Ĥt−u, V̂JCC
t+d,

and Ŵt−u to each AP c to enable its local precoder updates,
the amount of communication overhead would be 3NK. By
communicating V̂c,JCC

t+d and Ĝc
t−u to each AP c, the amount

of overhead is (N c + K)K, which is a substantial reduction
since we generally have N � K in a massive MIMO
network. Furthermore, instead of sending specific Ĝc

t−u to
each AP c, the CC can broadcast the shared global infor-
mation

∑C
l=1(Ĥ

l
t−uV̂

l,JCC
t+d ) − Ĥt−uŴt−u ∈ CK×K on the

precoding deviation to all the APs. Each AP c can then
recover Ĝc

t−u−d locally by subtracting Ĥc
t−u−dV̂

c,JCC
t at each

time slot t using its local historical CSI information Ĥc
t−u−d.

In addition, compared with the standard single-step gradient
descent algorithms, performing multi-step gradient descent at
the CC (and the APs) can greatly improve the convergence
speed, saving a substantial amount of overall communication
overhead.

The computational complexity of the precoder updates in
(8) and (11) for each AP c are dominated by matrix multipli-
cations, which are in the order of O(NK2) and O(N cK2),
respectively. Note that they are similar to the complexity of
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the ZF precoding scheme commonly employed for MIMO
transmission in practical systems. Since only closed-form com-
putations are involved, the overall computational complexity
of SOPIP is very low at both the CC and the APs. In addition,
instead of a total AP transmit power limit, per-antenna transmit
power constraints at each AP c can also be incorporated into
the local feasible set Vc. In this case, we still have closed-form
solutions similar to (8) and (11), with the projection operator
modified to be now onto the new feasible set Vc.

D. Performance Analysis for SOPIP

We now analyze SOPIP by providing the performance
bound for it. In particular, we develop new techniques to be
able to account for the multi-step gradient descent at both the
CC and the APs with estimated gradients, in the presence of
multi-slot delay.

We first observe that the channel power is always bounded
in practice, i.e., there exists some constant B > 0, such that

‖Ht‖
2
F ≤ B, ∀t. (12)

In the following lemma, we show that P1 satisfies several
properties that are used in the subsequence analysis: 1) The ob-
jective function ft(V) is strongly convex; 2) ft(V) is smooth;
3) The impact of the compact convex set V is bounded; 4)
The gradient of the objective function ∇ft(V) , ∂ft(V)

∂V∗ is
bounded.

Lemma 1. Assume the bounded channel power in (12) sat-
isfies B ≥ 2.5 Then, the following statements hold for any
U,V ∈ V and any t:

ft(U)≥ft(V)+〈∇ft(V),U−V〉F +‖U−V‖2
F , (13)

ft(U)≤ft(V)+〈∇ft(V),U−V〉F +
B

2
‖U−V‖2

F , (14)

‖U − V‖F ≤ R, (15)

‖∇ft(V)‖F ≤ D (16)

where 〈A,B〉F , 2<{tr{AHB}}, R = 2
√∑C

c=1 P c
max, and

D = BR.

Proof: See Appendix A.
To proceed with our analysis, we first need to quantify

the impact of one-step estimated gradient descent in terms
of the gradient estimation error. This is given in the following
lemma. Here, for notation simplicity, we denote by ∇f̂t(V) a
global gradient estimation function with respect to the accurate
global gradient ∇ft(V), which provides an upper bound on
the estimation error for the local gradient estimation schemes
in (7) and (10).

Lemma 2. Let U = PV{V − 1
α∇f̂t(V)}. If α ≥ B and

γ ∈ (0, 4), we have

‖U−Wt‖
2
F ≤ η‖V−Wt‖

2
F + β‖∇ft(V)−∇f̂t(V)‖2

F (17)

where η = α−2
α+2−γ < 1 and β = 4

γ(α+2−γ) .

5For a μ-strongly convex and L-smooth function, we always have L ≥ μ
[42]. For our loss function ft(V) in (4), we have μ ∈ (0, 2] and L ∈ (0, B].
To have the smallest contraction constant η in Lemma 2, we set μ = 2 in
(13) and therefore implicitly requires B ≥ 2 in (14).

Proof: See Appendix B.

Remark 1. We point out a few differences of the contraction
analysis in Lemma 2 and those in [42]-[44] for general
OCO. From (17), the sufficient condition for ‖U−Wt‖2

F <

‖V−Wt‖2
F is ‖∇ft(V)−∇f̂t(V)‖2

F < γ(4−γ)
4 ‖V−Wt‖2

F .
This condition on the gradient estimation error is most easily
satisfied when γ = 2. In this case, the contraction constant
η = α−2

α recovers the one in [42]. Furthermore, as γ
approaches 0, η approaches the contraction constant α−2

α+2 in
[43]. Different from [42] and [43], our analysis takes into
account the gradient estimation error and recovers the results
in [42] and [43] as special cases. The contraction analysis in
[44] requires additional assumptions on the gradient descent
step-size and the gradient estimation error.

Next, we examine the impact of multi-step gradient descent
on the dynamic regret bound of SOPIP, in the presence of both
gradient estimation error and multi-slot delay. To this end, we
need to quantify the accumulated variations of the underlying
time-varying system. We define the accumulated variation of
the globally optimal solution {Wt}T

T=1, which is also referred
to as the path-length in the OCO literature [39], given by

ΠT ,
T∑

t=1

‖Wt − Wt−1‖F . (18)

Another important variation measure is the squared path-
length, defined as

Π2,T ,
T∑

t=1

‖Wt − Wt−1‖
2
F . (19)

Note that Π2,T is often smaller than ΠT in terms of the
growth order [43].6 Further variation measures are required
when we use estimated gradients. To this end, we define the
accumulated gradient error as

ΔT ,
T∑

t=1

max
V∈V

‖∇ft(V) −∇f̂t(V)‖F , (20)

and the accumulated squared gradient error as

Δ2,T ,
T∑

t=1

max
V∈V

‖∇ft(V) −∇f̂t(V)‖2
F . (21)

Based on Lemmas 1-2, for any number of total gradient
descent steps JAP + JCC ≥ 1, we provide an upper bound on
the dynamic regret REd

T of SOPIP in the following theorem.
Note that the precoders designed at the CC are based on the
information at time slot t − u and arrive at the APs at time
slot t+d. One can easily verify that only the round-trip delay
τr = u+d determines the timeliness of the precoders received
at the APs. Therefore, with out loss of generality, we can
equivalently consider the case of τr-slot uplink delay and zero
downlink delay in our analysis.

6For instance ‖Wt − Wt−1‖F ∝ T κ for any t, then ΠT = O(T 1+κ)
and Π2,T = O(T 1+2κ). For a sublinear ΠT or Π2,T , we have κ < 0 and
therefore Π2,T is smaller than ΠT in terms of the growth rate. Particularly,

if κ = − 1
2

, we have Π2,T = O(1) and ΠT = O(T
1
2 ).
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Theorem 1. For JAP +JCC ≥ 1, if α ≥ B, the dynamic regret
yielded by SOPIP is bounded for any γ ∈ (0, 4) as follows:

REd
T ≤2τrDR +

2D

1−
√

ηJAP+JCC

(

τrR + τrΠT +
2
√

β

1−
√

η
ΔT

)

.

(22)

Proof: We have

REd
T =

T∑

t=1

(
ft(Vt) − ft(Wt)

)

(a)

≤
T∑

t=1

〈∇ft(Vt),Vt − Wt〉F

(b)

≤ 2
T∑

t=1

‖∇ft(Vt)‖F ‖Vt − Wt‖F

(c)

≤ 2τrDR + 2D

T∑

t=τr+1

‖Vt − Wt‖F (23)

where (a) follows from the convexity of ft(V), (b) is because
〈A,B〉F ≤ 2| tr{AHB}| ≤ 2‖A‖F ‖B‖F , and (c) follows
from the feasible set V and the gradient ∇ft(V) being
bounded in (15) and (16), respectively.

We now bound the RHS of (23). We have

T∑

t=τr+1

‖Vt − Wt‖F

(a)

≤
T∑

t=τr+1

(√
ηJAP‖V̂JCC

t − Wt‖F

+
√

β

JAP∑

j=1

√
η

j−1‖∇ft(Ṽ
JAP−j
t ) −∇f̂t(Ṽ

JAP−j
t )‖F

)

≤
√

ηJAP

T∑

t=τr+1

‖V̂JCC
t − Wt‖F

+
√

β
1 −

√
ηJAP

1 −
√

η

T∑

t=τr+1

max
V∈V

‖∇ft(V) −∇f̂t(V)‖F

(b)

≤
√

ηJAP

T∑

t=τr+1

‖V̂JCC
t − Wt‖F +

√
βΔT

1 −
√

η
(24)

where (a) follows from applying Lemma 2 to (11) for JAP

times and ‖A‖2
F + ‖B‖2

F ≤ (‖A‖F + ‖B‖F )2 such that
‖Ṽj

t − Wt‖F ≤
√

η‖Ṽj−1
t − Wt‖F +

√
β‖∇ft(Ṽ

j−1
t ) −

∇f̂t(Ṽ
j−1
t )‖F , ∀j = 1, . . . , JAP, and (b) is because of the

definition of ΔT in (18) and η < 1.
We continue to bound the first term on the RHS of (24) as

follows:
T∑

t=τr+1

‖V̂JCC
t − Wt‖F

(a)

≤
T∑

t=τr+1

(
‖V̂JCC

t − Wt−τr
‖F + ‖Wt − Wt−τr

‖F

)

(b)

≤
√

ηJCC

T∑

t=τr+1

‖Vt−τr −Wt−τr‖F +

√
βΔT

1−
√

η
+ τrΠT (25)

where (a) is because ‖A + B‖F ≤ ‖A‖F + ‖B‖F and (b)
follows from applying Lemma 2 to (8) for JCC times similar

to the proof of (24) and the definition of ΠT .

Substituting (25) into (24), and rearranging terms, we have

(
1−
√

ηJAP+JCC

) T∑

t=τr+1

‖Vt−Wt‖F −
√

ηJAP+JCC

τr∑

t=1

‖Vt−Wt‖F

≤
√

ηJAPτrΠT +
(
√

ηJAP + 1)
√

β

1 − η
ΔT . (26)

Substituting (26) into (23) and noting that η < 1 and the
feasible set V being bounded in (15), we have (22).

The dynamic regret bound (22) in Theorem 1 improves as
the total number of gradient descent steps JAP+JCC increases.
When JAP + JCC is sufficiently large, we provide another
dynamic regret bound for SOPIP below.

Theorem 2. For JAP +JCC > logη( 1
2 ), if α ≥ B, the dynamic

regret yielded by SOPIP is bounded for any γ ∈ (0, 4) as
follows:

REd
T ≤

B

2(1−2ηJAP+JCC)

(

2τrR
2+2τ2

r Π2,T +
3β

1−η
Δ2,T

)

.(27)

Proof: We have

REd
T

(a)

≤
T∑

t=1

〈∇ft(Wt),Vt − Wt〉F +
B

2
‖Vt − Wt‖

2
F

(b)

≤
B

2
τrR

2 +
B

2

T∑

t=τr+1

‖Vt − Wt‖
2
F (28)

where (a) follows from the objective function ft(V) being
B-smooth in (14), and (b) is because ∇ft(Wt) = 0 and the
feasible set V being bounded in (15).

We now bound the RHS of (28). We have

T∑

t=τr+1

‖Vt − Wt‖
2
F

(a)

≤
T∑

t=τr+1

(
ηJAP‖V̂JCC

t − Wt‖
2
F

+ β

JAP∑

j=1

ηj−1‖∇f̂t(Ṽ
JAP−j
t ) −∇ft(Ṽ

JAP−j
t )‖2

F

)

≤ ηJAP

T∑

t=τr+1

‖V̂JCC
t − Wt‖

2
F

+ β
1 − ηJAP

1 − η

T∑

t=τr+1

max
V∈V

‖∇f̂t(V) −∇ft(V)‖2
F

(b)

≤ ηJAP

T∑

t=τr+1

‖V̂JCC
t − Wt‖F +

βΔ2,T

1 − η
(29)

where (a) follows from applying Lemma 2 to (11) for JAP

times and (b) is because Δ2,T being defined in (21) and η < 1.

We continue to bound the RHS of (29) as follows:

T∑

t=τr+1

‖V̂JCC
t − Wt‖

2
F

(a)

≤ 2
T∑

t=τr+1

(
‖V̂JCC

t − Wt−τr‖
2
F + ‖Wt − Wt−τr‖

2
F

)
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(b)

≤ 2
T∑

t=τr+1

‖V̂JCC
t − Wt−τr

‖2
F + 2τ2

r Π2,T

(c)

≤ 2ηJCC

T∑

t=τr+1

‖Vt−τr − Wt−τr‖
2
F +

2βΔ2,T

1 − η
+ 2τ2

r Π2,T

(30)

where (a) is because ‖A + B‖2
F ≤ 2(‖A‖2

F + ‖B‖2
F ),

(b) follows from ‖Wt − Wt−τr‖
2
F ≤ τr

∑τr

i=1 ‖Wt−τr+i −
Wt−τr+i−1‖2

F and the definition of Π2,T in (19), and (c)
follows from applying Lemma 2 to (8) for JCC times similar
to (29).

Substituting (30) into (29) and rearranging terms, we have

(
1−2ηJAP+JCC

) T∑

t=τr+1

‖Vt−Wt‖
2
F −2ηJAP+JCC

τr∑

t=1

‖Vt−Wt‖
2
F

≤ 2ηJAPτ2
r Π2,T +

(2ηJAP + 1)β
1 − η

Δ2,T . (31)

Substituting (31) into (28), noting that η < 1 and the
radius of V being bounded in (15), and on the condition that
2ηJAP+JCC < 1, we have (27).

From Theorems 1 and 2, we directly conclude the growth
rates of the dynamic regret of SOPIP in the following corol-
lary. The proof can be obtained by removing the constant terms
in (22) and (27) under the total number of gradient descent
steps JAP + JCC specified in Theorems 1 and 2, respectively,
and is omitted for brevity.

Corollary 1. For JAP + JCC ≥ 1, we have

REd
T = O(max{τrΠT , ΔT }). (32)

For JAP + JCC > logη( 1
2 ), we have

REd
T =O

(
min

{
max{τrΠT , ΔT }, max{τ2

r Π2,T , Δ2,T }
})

.(33)

Remark 2. Note that the feedback delay is always bounded
by some constant in practice, i.e., τr = O(1). Thus, from
Corollary 1, a sufficient condition for SOPIP to yield sub-
linear dynamic regret is either max{ΠT , ΔT } = o(T ) or
max{Π2,T , Δ2,T } = o(T ), i.e., the variation measures grow
sublinearly over time. The significance of achieving sublinear
dynamic regret is that it implies the time-averaged precoding
deviation converges to zero as T goes to infinity. Furthermore,
note that sublinearity of the variation measures is necessary
to have sublinear dynamic regret for a system with delayed
system information. This can be seen from the dynamic regret
bounds derived in the OCO literature [39]-[46]. In systems that
stabilize over time, leading to sublinear variation measures, we
have sublinear dynamic regret.

Remark 3. To further understand the differences between
SOPIP and the existing general OCO algorithms, note that the
semi-online joint global and local gradient descent structure of
SOPIP may be viewed as a generalization of several existing
studies on generic OCO with strongly convex and smooth
objective functions [42]-[44]. However, all of these works
consider only centralized gradient descent, and they are limited
to one-slot information delay. With one-step and multi-step
gradient descent algorithms, O(ΠT ) and O(min{ΠT , Π2,T })

dynamic regrets were achieved in [42] and [43], respectively,
while [44] showed that O (max{ΠT , ΔT }) dynamic regret
can be achieved with one-step gradient descent using inexact
gradients. It is easy to see that these regret bounds are special
cases of the ones yielded by SOPIP in (32) and (33).

V. SOPIP WITH LOCAL CSI DELAY

In the previous section, we have proposed SOPIP assuming
the local CSI at each AP experiences no delay. In practice,
there often is delay in obtaining the CSI. This is the case
especially for MIMO fading channels, where the channel
varies over time and the feedback resource is limited. Thus,
in this section, we extend SOPIP to the case of delayed local
CSI at the APs. Note that local CSI delay affects transmission
at both the APs and the CC, since precoder updates and
information parsing happen at both the APs and the CC in
the considered hierarchical cooperative network. Therefore,
inaccurate CSI and delay due to non-ideal backhaul further
complicate the consideration of local CSI delay in SOPIP.
We will further study the impact of the delayed local CSI
on system performance.

We now consider the scenario where the APs receive their
local CSI after τl > 0 time slots. Specifically, each AP c
only has the τl-delayed inaccurate local CSI Ĥc

t−τl
at each

time slot t. Let τ = τl + τr be the total delay. Below, We
extend Algorithms 1 and 2 to handle τl-delayed local CSI,
where the modifications are mainly on the time stamps of the
gradient estimation, precoder update, and information parsing
in (7)-(11).7 SOPIP with local delay for CC and AP c are
summarized in Algorithm 3 and 4, respectively.

To extend Algorithm 1 to Algorithm 3, we make the follow-
ing modifications: i) Start the algorithm at t > τ ; ii) In Step 2,
change Vc

t−u and Ĥc
t−u to Vc

t−τ and Ĥc
t−τ , respectively; iii)

In Step 3, set V̂c,0
t = Vc

t−τ ; iv) In Step 5, construct gradient
∇f̂ c

t−τ (V̂c,j−1
t ) in (7) with Ĥt−u and Ŵt−u replaced by

Ĥt−τ and Ŵt−τ , respectively; v) In Step 6, update precoder
V̂c,j

t using ∇f̂ c
t−τ (V̂c,j−1

t ) instead of ∇f̂ c
t−u(V̂c,j−1

t+d ); vi) In
Step 8, construct global information Ĝc

t−τ in (9) with Ĥt−u

and Ŵt−u replaced by Ĥt−τ and Ŵt−τ , respectively; vii)
In Step 9, modify V̂c,JCC

t+d and Ĝt−u to V̂c,JCC
t and Ĝt−τ ,

respectively.
We make the following changes to extend Algorithm 2 to

Algorithm 4: i) Start the algorithm at t > τ ; ii) In Step 3,
change Ĝc

t−u−d to Ĝc
t−τ ; iii) In Step 5, construct gradient

∇f̂ c
t−τl

(Ṽc,j−1
t ) in (10) with Ĥc

t and Ĝc
t−u−d replaced by

Ĥc
t−τl

and Ĝc
t−τ , respectively; iv) In Step 6, update precoder

Ṽc,j
t using ∇f̂ c

t−τl
(Ṽc,j−1

t ) instead of ∇f̂ c
t (Ṽc,j−1

t ); v) In
Step 9, modify Ĥc

t to Ĥc
t−τl

.
Using similar techniques as those in the proofs of Theorem 1

and 2, we provide dynamic regret bounds for SOPIP with local
delay under different values of the total gradient descent steps
JAP + JCC in the following theorem.

7A more recent precoder Vc
t−τl

than the less recent CSI Ĥc
t−τ at the

CC does not help improve the accuracy of gradient estimation. Therefore, the
timeliness of Vc

t−τl
is not useful at the CC.
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Algorithm 3 SOPIP with local CSI delay: CC’s algorithm
1: Choose arbitrary α ≥ B and broadcast it all APs.
2: Receive Vc

t−τ and Ĥc
t−τ from each AP c.

3: Set V̂c,0
t = Vc

t−τ for each AP c.
4: for j = 1 to JCC

5: Construct estimated gradient ∇f̂ c
t−τ (V̂c,j−1

t ) via

∇f̂ c
t−τ (V̂c,j−1

t )=ĤcH

t−τ

( C∑

l=1

(Ĥl
t−τV̂

l,j−1

t )−Ĥt−τŴt−τ

)

.

6: Update V̂c,j
t for each AP c via

V̂c,j
t = PVc

{

V̂c,j−1
t −

1
α
∇f̂ c

t−τ (V̂c,j−1
t )

}

. (34)

7: end for
8: Compute Ĝc

t−τ for each AP c via

Ĝc
t−τ =

(
Ĥl

t−τ V̂
l,JCC
t

)
− Ĥt−τŴt−τ

9: Send V̂c,JCC
t and Ĝc

t−τ to each AP c.

Theorem 3. If α ≥ B, the dynamic regret yielded by SOPIP
with local delay is bounded for any γ ∈ (0, 4) as follows:

i) For JAP + JCC ≥ 1, we have

REd
T ≤2τDR+

D

1−
√

ηJAP+JCC

(
τR+τΠT +

2
√

β

1−
√

η
ΔT

)
. (35)

ii) For JAP + JCC > logη( 1
4 ), we have

REd
T ≤

B

2(1 − 4ηJAP+JCC)

(
5τR2 + (2τ2

l + 4τ2
r )Π2,T

+
6β

1 − η
Δ2,T

)
. (36)

Proof: We first prove (35). We can show that (23) still holds
by replacing τr with τ . Similar to the proof of (24) and (25),
applying Lemma 2 to (38) and (34) for JAP and JCC times,
respectively, we can show that

T∑

t=τ+1

‖Vt − Wt‖F ≤ τlΠT +
T∑

t=τ+1

‖Vt − Wt−τl
‖F

≤ τlΠT +
√

ηJAP

T∑

t=τ+1

‖V̂JCC
t − Wt−τl

‖F +

√
βΔT

1 −
√

η

≤ τlΠT +
√

ηJAPτrΠT +
√

ηJAP+JCC

T∑

t=τ+1

‖Vt−τ − Wt−τ‖F

+
(
√

ηJAP + 1)
√

βΔT

1 −
√

η
. (37)

Substituting (37) into the version of (23) with τr replaced by
τ and following the proof of (26), we have (35).

We now prove (36). We have

T∑

t=τ+1

‖Vt − Wt‖
2
F

≤ 2
T∑

t=τ+1

(
‖Vt − Wt−τl

‖2
F + ‖Wt − Wt−τl

‖2
F

)

Algorithm 4 SOPIP with local CSI delay: AP c’s algorithm
1: Initialize Vc

t ∈ Vc at random for any t ≤ τ .
2: Receive V̂c,JCC

t and Ĝc
t−τ from the CC.

3: Set Ṽc,0
t = V̂c,JCC

t .
4: for j = 1 to JAP

5: Construct estimated gradient ∇f̂ c
t−τl

(Ṽc,j−1
t ) via

∇f̂ c
t−τl

(Ṽc,j−1
t ) = ĤcH

t−τl

(

Ĥc
t−τl

V̂c,j−1
t + Ĝc

t−τ

)

.

6: Update Ṽc,j
t via (11).

Ṽc,j
t = PVc

{

Ṽc,j−1
t −

1
α
∇f̂ c

t−τl
(Ṽc,j−1

t )

}

. (38)

7: end for
8: Set Vc

t = Ṽc,JAP
t and execute Vc

t .
9: Send Vc

t and Ĥc
t−τl

to the CC.

≤ 2τ2
l Π2,T + 2

T∑

t=τ+1

‖Vt − Wt−τl
‖2

F . (39)

Similar to the proof of (29) and (30), applying Lemma 2
to (38) and (34) for JAP and JCC times, respectively, we can
show that

T∑

t=τ+1

‖Vt − Wt−τl
‖2

F

≤ ηJAP

T∑

t=τ+1

‖V̂JCC
t − Wt−τl

‖2
F +

βΔ2,T

1 − η

≤ 2ηJAP

T∑

t=τ+1

‖V̂JCC
t − Wt−τ‖

2
F + 2ηJAPτ2

r Π2,T +
βΔ2,T

1 − η

≤ 2ηJAP+JCC

T∑

t=τ+1

‖Vt−τ − Wt−τ‖
2
F + 2ηJAPτ2

r Π2,T

+
(2ηJAP + 1)βΔ2,T

1 − η
. (40)

Substituting (40) into (39) and rearranging terms, we have

(1−4ηJAP+JCC)
T∑

t=τ+1

‖Vt−Wt‖
2
F − 4ηJAP+JCC

τ∑

t=1

‖Vt−Wt‖
2
F

≤ (2τ2
l + 4ηJAPτ2

r )Π2,T +
(4ηJAP + 2)βΔ2,T

1−η
. (41)

We can show that (28) still holds by replacing τr with τ .
Substituting (41) into the version of (28) with τr replaced by
τ , and noting that η < 1 and 4ηJAP+JCC < 1, we have (36).

From Theorem 3, we can derive the growth rates of the
dynamic regret of SOPIP under different total numbers of
gradient descent steps JCC + JAP in the following corollary.
The proof follows directly from removing the constant terms
in (35) and (36) under the total number of gradient descent
steps JCC + JAP specified in Theorem 3, respectively, and is
omitted for brevity.

Corollary 2. For JAP + JCC ≥ 1, we have

REd
T = O(max{τΠT , ΔT }). (42)
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TABLE II
DYNAMIC REGRET OF SOPIP

τl > 0 JCC + JAP REd
T

No ≥ 1 O(max{τrΠT , ΔT })
No > logη( 1

2
) O

(
min

{
max{τrΠT , ΔT }, max{τ2

r Π2,T , Δ2,T }
})

Yes ≥ 1 O(max{τΠT , ΔT })
Yes > logη( 1

4
) O

(
min

{
max{τΠT , ΔT }, max{τ2Π2,T , Δ2,T }

})

For JAP + JCC > logη( 1
4 ), we have

REd
T =O

(
min

{
max{τΠT , ΔT }, max{τ2Π2,T , Δ2,T }

})
. (43)

From Corollary 2, the total number of gradient descent steps
JAP+JCC needs to be larger than logη( 1

4 ) for (43). This condi-
tion is more stringent than the condition JAP +JCC > logη( 1

2 )
in Corollary 1 for (33) due to the additional local delay.
However, the growth rates of the dynamic regret bounds in
Corollary 2 are still dominated by the accumulated system
variation measures ΠT , Π2,T , ΔT , and Δ2,T , and are the same
as those in Corollary 1 without local delay. We summarize the
dynamic regret of SOPIP under different conditions in Table II.

VI. SIMULATION RESULTS

In this section, under typical cellular system settings, we
study the impacts of various system parameters on the con-
vergence and performance of SOPIP and demonstrate the
performance advantage of SOPIP over other centralized and
distributed alternatives.8

A. Simulation Setup

We consider an urban micro-cell of radius 500 m, with C =
3 APs equally spaced to each other with 250 m distance to the
cell center. Each AP c is equipped with N c = 16 antennas by
default. We set 5 co-located users at the mid-point between
every two adjacent APs, for a total of K = 15 users in the
network by default. Different N and K values will be studied
later.

Following the typical cellular system settings [47], we con-
sider transmission over one subcarrier of bandwidth BW = 15
kHz and set one time slot to one symbol duration 1

BW
=

66.7 μs. We set the maximum transmit power limit P c
max =

30 dBm for all c. The receiver thermal noise power spectral
density is N0 = −174 dBm/Hz and noise figure is NF = 10
dB. We model the fading channel between AP c and user k
over time as a first-order Gauss-Markov process [48] given by
hc,k

t+1 = αhh
c,k
t +zc,k

t , where αh ∈ [0, 1] is the channel corre-
lation coefficient, hc,k

t ∼ CN (0, βc,kI) with βc,k representing
the large-scale fading variation that includes both the path-loss
and shadowing, and zc,k

t ∼ CN (0, (1−α2
h)βc,kI) is indepen-

dent of hc,k
t . We set βc,k[dB] = −31.54−33 log10(d

c,k)−ψc,k

[47], where dc,k is the distance from AP c to user k, and
ψc,k ∼ CN (0, σ2

φ) models the shadowing effect with σ2
φ =

8 dB. We set αh = 0.998 as default, which corresponds to the
user speed 1 km/h. We emphasize here that the Gauss-Markov
channel model is used for illustration only. SOPIP can be
applied to any wireless propagation environment, and neither
the CC nor the APs needs to know the channel statistics.

8Our codes are available at https://github.com/juncheng-wang/SOPIP.

Note that the impact of inaccurate local CSI Ĥc
t−τl

can
be emulated by increasing the local delay τl in Hc

t−τl
under

the Gauss-Markov channel model. Thus, we assume that each
AP c communicates the accurate local CSI Hc

t−τl
to the

CC at each time t. We assume the CC adopts cooperative
ZF precoding as its desired cooperative precoder given by
WZF

t =
√

P ZF
t HH

t (HtHH
t )−1, where P ZF

t is a power nor-
malizing factor. Note that we require N ≥ K to perform
ZF precoding. The receiver noise power at each user is
σ2

n = NF + N0BW . Thus, by using WZF
t , all the users will

have the same data rate log2(1 + P ZF
t

σ2
n

). The CC adopts the
following power normalizing factor

P ZF?
t = min

c∈{1,...,C}

P c
max

‖HcH
t (HtHH

t )−1‖2
F

,

which is the optimal solution of the following sum-rate max-
imization problem with per-AP transmit power limits [49]:

P2: max
P ZF

t

K log2

(
1 +

P ZF
t

σ2
n

)

s.t. P ZF
t ‖HcH

t (HtH
H
t )−1‖2

F ≤ P c
max, ∀c.

To measure the performance, we define the time-averaged
normalized precoding deviation as

f̄(T ) ,
1
T

T∑

t=1

ft(Vt)
‖HtWZF

t ‖
2
F

, (44)

and the time-averaged per-user rate as

R̄(T ) ,
1

TK

T∑

t=1

K∑

k=1

log2(1 + SINRk
t ) (45)

where SINRk
t = |[HtVt]k,k|

2
∑

j 6=k |[HtVt]k,j |2+σ2
n

is the signal-to-
interference-plus-noise-ratio (SINR) of user k at time slot t.

B. The Impact of The Number of Precoder Update Steps

Fig. 3 and Fig. 4 show f̄(T ) and R̄(T ) yielded by SOPIP
over T , respectively, for different numbers of the precoder
update steps JCC at the CC and JAP at the APs. We first
consider zero local delay and set the round-trip delay τr = 1.
We observe that the performance of SOPIP converges fast
(within T = 100 time slots). Furthermore, the steady-state
performance improves as JCC or JAP increases, which demon-
strates the performance gain brought by performing multi-
step precoder updates with our proposed gradient estimation
scheme at both the CC and the APs. As shown in Fig. 3, the
steady-state values of f̄(T ) and R̄(T ) no longer change much
when JCC ≥ 8. With this and the fact that the APs usually
have less computation capacity than the CC, we set JCC = 8
and JAP = 4 as default parameters in the rest of simulation
studies presented below.

C. Performance Comparison

For comparison, we consider the following schemes.
• Delayed Optimal: The CC collects the global CSI from

all APs, computes the optimal cooperative precoder, and
sends it to all APs. However, due to communication delay,
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(b) R̄(T ) vs. T .

Fig. 3. f̄(T ) and R̄(T ) vs. T with JAP = 1.

the APs actually execute the delayed precoder ŴZF
t−τ that

is received from the CC at each time slot t. Note that the
cooperative ZF precoding WZF

t is the optimal solution for
the sum-rate maximization problem with per-AP transmit
power limits based on the perfect global CSI [49], i.e.,
P2.

• Centralized OCO: We run Algorithm 1 at the CC with
different numbers of cooperative precoder updates. Each
AP c executes the precoder V̂c,JCC

t (generated based on
the delayed global CSI Ht−τ ) that can be received from
the CC at each time slot t, without performing any local
precoder update. This can be viewed as the centralized
OCO approach [42]-[44].9

• Local CSI (LCSI) Dynamic User Association (UA): We
consider the following distributed precoding scheme.
Each user k selects the AP with the highest channel
gain for downlink transmission at each time slot t based
on the local CSI Hc

t−τl
. Let the number of users asso-

ciated with AP c be Kc
t−τl

. Let H̄c
t−τl

∈ CKc
t−τl

×Nc

denote the available channel state between the Kc
t−τl

users and AP c. Each AP c adopts ZF precoding to
serve the Kc

t−τl
users at each time slot t, given by

V̄c
t =

√
P̄ c

t−τl
H̄cH

t−τl
(H̄c

t−τl
H̄cH

t−τl
)−1, where P̄ c

t−τl
is set

such that ‖V̄c
t−τl

‖2
F = P c

max.
• LCSI Fixed UA: This is a more realistic alternative to

LCSI Dynamic UA. Each user k selects the AP that has
the lowest path loss to the user. The user association does
not change during our simulation. The APs operate in the
same way as under LCSI Dynamic UA.

Fig. 6 and Fig. 5 compare the performance between SOPIP
and the alternative schemes in terms of the steady state value of

9As explained in Section II-D, distributed OCO schemes [29]-[33] are not
applicable to P1, since they assume separable objective functions.
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Fig. 4. f̄(T ) and R̄(T ) vs. T with JCC = 8.

f̄(T ) and R̄(T ) versus the round-trip delay τr and local delay
τl. Note that f̄ is relevant only to SOPIP and Centralized
OCO. As shown in Fig. 6, for a wide range of τr values,
SOPIP outperforms the distributed alternatives LCSI Dynamic
UA and LCSI Fixed UA. This demonstrates that even with a
large round-trip delay τr, performing global precoder updates
at the CC using the delayed global information is beneficial for
improving the performance. Furthermore, SOPIP outperforms
the centralized alternatives Delayed Optimal and Centralized
OCO. This demonstrates the importance of performing local
precoder updates at the APs using more timely local CSI.
As shorn in Fig. 5, the performance gain of SOPIP over
Centralized OCO decreases as the local delay τl increases.
This indicates the importance of timely information on the
performance brought by local precoder updates. Overall, we
observe that, by fully taking advantage of the timely local
CSI at the APs and delayed global CSI at the CC for precoder
updates, SOPIP substantially outperforms the other centralized
or distributed alternatives over a wide range of delay settings.

In Fig. 7 and Fig. 8, we further study the impacts of the
numbers of antennas N c and users K on the performance
of SOPIP with local CSI delay τl = 0 and round-trip delay
τr = 4. Fig. 7 shows that the steady-state per-user rate R̄
increases as N c increases. This is because the APs have more
degrees of freedom to design their cooperative precoding.
The steady-state per-user rate R̄ dramatically improves as N c

increases, showing the precoding gain provided by massive
MIMO. Fig. 8 shows that R̄ decreases as K increases, due to
the increased inter-user interference. Note that for cooperative
ZF precoding at the CC, we require K ≤ N = 48. We observe
that SOPIP substantially outperforms Delayed Optimal when
the K is close to N . Furthermore, in a wide range of N c

and K values, SOPIP yields the best performance among all
schemes.
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Fig. 5. Performance comparison on f̄ and R̄ vs. local delay τl with round-trip
delay τr = 8.
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Fig. 6. Performance comparison on f̄ and R̄ vs. round-trip delay τr with
local delay τl = 0.

VII. CONCLUSIONS

We have studied cooperative precoding design in a MIMO
network, where multiple APs jointly serve all the users with
the assistance of a CC over non-ideal backhaul. We propose
an efficient SOPIP algorithm to minimize the accumulated
precoding deviation between the actual and desired coop-
erative precoders, subject to per-AP transmit power limits.
SOPIP allows both timely local precoder updates at the
APs and delayed cooperative precoder updates at the CC,
by effectively parsing the channel and precoder information
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Fig. 7. Performance comparison on f̄ and R̄ vs. Nc with K = 15.

9 12 15 18 21 24 27 30 33 36 39 42 45 48
0

20

40

60

(a) f̄ vs. K.

9 12 15 18 21 24 27 30 33 36 39 42 45 48
0

2

4

6

8

(b) R̄ vs. K.

Fig. 8. Performance comparison on f̄ and R̄ vs. K with Nc = 16.

to reduce the communication overhead. Furthermore, SOPIP
allows multi-step precoder updates at both the APs and the
CC via hierarchical gradient descent to fully utilize their
available computational resource. Our performance analysis
of SOPIP takes into account of the impacts of the multi-step
gradient descent at both the CC and the APs, as well as multi-
slot delay, CSI inaccuracy, and gradient estimation error, in
deriving the bounds on the performance gap to the optimal
solution. Our simulation results demonstrate that SOPIP has
the superior tolerance of delay and has a substantial advantage
over other centralized and distributed alternatives in a wide
rage of scenarios.
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APPENDIX A
PROOF OF LEMMA 1

Proof: Note that ft(V) = ‖HtV − HtWt‖2
F is a squared

Frobenius norm. Therefore, ft(V) is 2-strongly convex w.r.t.
‖ ∙ ‖F .

From ∇ft(V) = HH
t (HtV − HtW), we have

‖∇ft(U) −∇ft(V)‖F

= ‖HH
t (HtU − HtW) − HH

t (HtV − HtW)‖F

= ‖HH
t HtU − HH

t HtV‖F = ‖HH
t Ht(U − V)‖F

(a)

≤ ‖Ht‖
2
F ‖U − V‖F

(b)

≤ B‖U − V‖F (46)

where (a) follows from ‖AB‖F ≤ ‖A‖F ‖B‖F and (b) is
because ‖Ht‖2

F being bounded in (12). The above inequality
implies that ∇ft(V) is B-Lipschitz continuous. Therefore,
ft(V) is B-smooth.

We now show (15). For any U,V ∈ V , we have

‖U − V‖F

(a)

≤ ‖U‖F + ‖V‖F

(b)

≤ 2

√√
√
√

C∑

c=1

P c
max. (47)

where (a) is because ‖A + B‖F ≤ ‖A‖F + ‖B‖F and (b)
follows from V = {V : ‖Vc‖2

F ≤ P c
max, ∀c = 1, . . . , C} such

that ‖V‖2
F =

∑C
c=1 ‖V

c‖2
F ≤

∑C
c=1 P c

max for any V ∈ V .
Finally, we have

‖∇ft(V)‖F = ‖HH
t (HtV − HtW)‖F

≤ ‖Ht‖F ‖HtVt − HtWt‖F

≤ ‖Ht‖
2
F ‖Vt − Wt‖F

(a)

≤ BR (48)

where (a) follows from the channel power bound in (12) and
the precoder feasible set V being bounded in (15).

APPENDIX B
PROOF OF LEMMA 2

Proof: We first state the property of a μ-strongly convex
function below, which is shown in Lemma 2.8 in [28].

Lemma 3. ([28, Lemma 2.8]) Let X ∈ Rn be a nonempty
convex set. Let h(x) : Rn → R be a μ-strongly con-
vex function over X with respect to a norm ‖ ∙ ‖. Let
y = arg minx∈X {h(x)}. Then, for any z ∈ X , we have
h(y) ≤ h(z) − μ

2 ‖z − y‖2.

Note that U is the optimal solution to the following opti-
mization problem

min
W∈V

〈∇f̂t(V),W − V〉F +
α

2
‖W − V‖2

F .

Since the objective of the above optimization problem is α-
strongly convex w.r.t. ‖ ∙ ‖F , from Lemma 3, we have

〈∇ft(V),U − V〉F +
α

2
‖U − V‖2

F

+ 〈∇f̂t(V) −∇ft(V),U − V〉F

≤ 〈∇ft(V),Wt − V〉F +
α

2
‖Wt − V‖2

F −
α

2
‖U − Wt‖

2
F

+ 〈∇f̂t(V) −∇ft(V),Wt − V〉F . (49)

From ft(x) being 2-strongly convex in (13), we have

ft(Wt) ≥ ft(V) + 〈∇ft(V),Wt−V〉F + ‖Wt−V‖2
F . (50)

Adding ft(V) on both sides of (49), applying (14) and (50)
respectively to the left-hand side (LHS) and right-hand side
(RHS) of (49), we have

ft(U) −
B

2
‖U − V‖F +

α

2
‖U − V‖2

F

+ 〈∇f̂t(V) −∇ft(V),U − V〉F

≤ ft(Wt) − ‖Wt − V‖2
F +

α

2
‖Wt−V‖2

F −
α

2
‖U − Wt‖

2
F

+ 〈∇f̂t(V) −∇ft(V),Wt − V〉F . (51)

Rearranging terms of (51), we have

ft(U) −
B

2
‖U − V‖2

F +
α

2
‖U − V‖2

F

≤ ft(Wt) +
α − 2

2
‖Wt−V‖2

F −
α

2
‖U−Wt‖

2
F

+ 〈∇ft(V) −∇f̂t(V),U − Wt〉F . (52)

Since Wt ∈ arg minV∈V ft(V) and ft(V) is 2-strongly
convex as in (13), from Lemma 3, we have

ft(Wt) ≤ ft(U) − ‖U − Wt‖
2
F . (53)

Applying (53) to the RHS of (52) and rearranging terms,
we have

α + 2
2

‖U − Wt‖
2
F +

α − B

2
‖U − V‖2

F

≤
α − 2

2
‖V − Wt‖

2
F + 〈∇ft(V) −∇f̂t(V),U − Wt〉F

(a)

≤
α − 2

2
‖V − Wt‖

2
F +

γ

2
‖U − Wt‖

2
F

+
2
γ
‖∇ft(V)−∇̂ft(V)‖2

F (54)

where (a) follows from 〈A,B〉F = 2<{tr{AHB}} ≤
2
γ ‖A‖2

F + γ
2 ‖B‖2

F , ∀γ > 0.
Rearranging terms on both sides of (54), we have

α + 2 − γ

2
‖U − Wt‖

2
F +

α − B

2
‖U − V‖2

F

≤
α − 2

2
‖V − Wt‖

2
F +

2
γ
‖∇ft(V)−∇̂ft(V)‖2

F . (55)

Note that B ≥ 2. Therefore, if α ≥ B and γ < 4, we have
α + 2− γ > 0. Multiplying both sides of (55) by 2

α+2−γ , we
have (17).
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