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Abstract—The location of active users is an important factor in  resulting in independent and memoryless channel holding
the performance analysis of mobile multicell networks, butit is  times [5]-[7]. Although more general mobility and session
difficult to quantify due to the wide variety of user mobility models have been considered in the past literature [3], [4],

and session patterns. In this work, we study the stationary
distribution of users by modeling the system as a multi-rou¢ [8]-{11], to the best of our knowledge, none addresses all of

queueing network with Poisson inputs. We consider arbitray the challenges above.

routing and arbitrary joint probability distributions for  the In this paper, we study the joint stationary distributiom fo
channel holding times in each route. Through a decompositi®  the number of users in all cells in a multicell network, which
composition approach, we derive a closed-form expressioroff 4 imnortant utilization in network management and plan-
the joint stationary distribution for the number of users in - - . .

all cells. The stationary user distribution (1) is insensiive to n'n_g' Prior studies _ha\{e p,mposfed Se_Vera' analytical nsadel
the user movement patterns, (2) is insensitive to general an estimate the user distribution with various degrees ofidextal
dependently distributed channel holding times, (3) depenglonly generality [12]-[16]. Instead, we consider general mgbdind

on the average arrival rate and average channel holding tim&t  session patterns, only requiring that the new sessionadsriv
each cell, and (4) is completely characterized by an open neork — 4m 5 poisson process, which is well supported by experimen

with M /M /oo queues. We use the Dartmouth trace to validate . .
our analysis, which shows that the analytical model is accate tal data [16]-[18]. We model the user mobility with a general

when new session arrivals are Poisson and remains useful whe System with multiple routes, each representing one type of
non-Poisson session arrivals are also included in the datats Our  users with a specific movement pattern. A general probgbilit

results suggest that accurate calculation of the user distoution,  distribution is used to represent the session durationsa As
and other associated metrics such as the system workload,rcae consequence, the channel holding times at different celt si
achieved with much lower complexity than previously expedd. '
- . . . are no longer independent.
_Index Terms—Mobility modeling, multicell network, user dis- Through a decomposition-composition approach, we derive
tribution, insensitivity, dependent channel holding times. a closed-form expression for the joint stationary distittn
for the number of users in all cells. We observe five important
. INTRODUCTION conclusions on the stationary user distributidirst, it is

N designing ever more efficient and capable mobile acce8§ensitive to how the users move through the sysgsuond

networks, the accurate modeling of how user mobility arifiis insensitive to the general distribution of channeldiog
session connectivity patterns affect network performasas times; third, |_t |s_|nsen3|t|ve_ to the correlation among the
paramount interest. However, compared with wired networkg1annel holding timesipurth, it depends only on the average
the analytical modeling of mobile networks is burdened witfval rate and average channel holding time at each aedl; a
many additional technical challenges. Some of the most diffifth, it is perfectly captured by an open Jackson network with
cult factors are the following: M/M /oo queues. _ , ,

o The movement of users may be individually arbitran(} We .CO”f"”? our theoretical analysis throggh experimental

without following any common mobility pattern [2]. alidation using the Dartmouth user mobll|ty traces [19].
. The session durations may have a general probabilé hese traces provide a large data set, with 152 APs and more

distribution, supporting diverse data and multimedia a ran 5.0(.)0 users,_to §upport an accurate real life measuteme
o of the joint user distribution. They also contain a large anto
plications [3]. .
f handoff traffic among APs to create strong dependency

o The channel holding times at different cells are correlate ween channel holding times. which tests our claim of
dependent on the speed or trajectory of different users [ ween . ing U » Wi u :
insensitivity. The experimental results show that the peszal

. To T§C|I|tate tractable analysis, eX|st_|ng studies oftelopt analysis accurately predicts real-world user distrilngio
simplified models. For example, classical models assume eXpq conclusion of this work has important consequence to
ponentially distributed cell dwell times and session dore, performance analysis and practical system design. It stgge
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ical endeavors in system optimization. while the distribution of service times takes arbitrarynisr:

The rest of the paper is organized as follows. In Section Nyhen the service times are assumed independent among
we discuss the relation between our work and prior works. thifferent queues, there are several well known conditiams f
Section Ill, we present the system model. In Sections IV amasensitivity. For example, networks with symmetric queue
V, we derive the analytical stationary distributions fangle- are insensitive [20]. In [21] and [22], the partial balande o
route and multiple-route networks, respectively. In SetW!, probability flows is shown to be a sufficient condition for
we validate our analysis with experimental results from thasensitivity. In [23], partial reversibility is shown toeba
Dartmouth traces. Finally, concluding remarks are given imecessary and sufficient condition for insensitivity. Hoare
Section VII. none of these known results consider the case where the

service times between different queues are dependent. For
[l. RELATED WORK example, the queueing network closely related to ours is one

In the followi bseci t th lated with M/G /oo queues. It is known to be insensitive when
n the foflowing subsections, we present the related prife sorvice times are independent [20], but to the best of our

work in user distribution modeling and general results ie trl(nowledge there is no further general result for dependent
insensitivity of queueing networks. service tim'es

A. User Distribution in Mobile Networks . i
C. Preliminary Version

The user distribution is an important factor in the man- o . )
agement and planning of mobile networks. However, rela-A Préeliminary version of this work has appeared as [1].
tively few analytical models are available in the litergur This full version includes the following extensions: Firate
The uniform user distribution has been widely adopted féovide more detailed derivation and discussion in theyessl
mathematical convenience, but it does not account for nd-the single-route network in Sections IV. Second, we fully
homogeneity in the physical topology and is incorrect in sonXPand the analysis of the multiple-route network by prgvin
cases. For example, it is well known that the user distritsuti the theorem of insensitivity and deriving the stationargrus
is non-uniform under the random waypoint model [12]. _distribution of muI_ticeII networ_ks _in SecFion V. Third, we
Other previous works have proposed analytical moddRclude new experimental studies in Section VI.
using stochastic queueing networks to derive the useilaistr
tion in different environments, including wireless mulédia I1l. SYSTEM MODEL
networks [13], vehicular ad-hoc networks [14], and WLANs ) )
[15], [16]. However, they do not allow arbitrary mobility or Qon5|der a cellular _network W't_hf? cells. There areL
arbitrary session patterns. In terms of user movement, [L§]1ldu€routes each defined as a finite ordered sequence of
[14], and [16] assume that users move from one cell to anotif&!S: Thejth stage on théth route corresponds to thih
probabilistically and memorylessly, while [15] focuses off€!l N the sequence, which is denoted @ j). Let N be
scattered single cells, so that user movement among neultifié number of stages on thiéh route. Each user of thih
cells is not discussed. None of them consider the arbitreey yroute starts a new session in cell, 1); then it moves along
movement patterns. In terms of channel holding times, [15]€ route through cells(l, 1), ¢(1,2) ... ¢(, \;), as long as the
uses the sum of hyper-exponentials or the Coxian distohutiS€ssion remains aqtlve. Thg user |s.con5|dered to hgvetgldpar
to approximate arbitrary distributions; [15] assumes galhe the network when its session terminates or vyhen it exits cell
distributed channel holding times but concerns only a singf(/ Vi)- We allow an arbitrary number of arbitrary routes to
cell; and [14] and [16] consider generally but independentFOVer all possible movement patterns. _
distributed channel holding times in different cells. Narighe ~ FOr €ach route, we assume the arrivalsnefv sessions to
above works consider the dependence among channel holdffign @ Poisson process. Note that although the arrivals of
times. packets in the Internet may not form Poisson processes [24],
Note that the authors of [16] have also observed a surprisil{f @rivals of new sessions are at a much larger time scale
match between analysis and real-life user mobility trac88d are well justified as Poisson [17], [18]. Furthermore, in
from the Dartmouth study [19], even though their analysld6] @nd later in Section VI, experimental data show that new
assumes simpl&/ /G /oc mobility and session models withoutSessions in th_e type 0f_m0b|le networks under conS|derat|0n
considering arbitrary user movement patterns or depend@f indeed Poisson barring some extreme cases. We emphasize
channel holding times. No analytical explanation is givelfiat Only the new session arrivals are Poisson, while the-han
in [16] for this observation. In contrast, our work provideQﬁ arrivals at each cell have general statistics with caoapéd

theoretical support for it, since we show that the statipnaf€Pendencies. _ _
user distribution is also insensitive to arbitrary user emaent 1 he session duration of a user on e route is modeled

patterns and dependent channel holding times. as an arb?trarily Qistributed random variablle Let \;q be thg
new session arrival rate at thith route. After a new session
arrival, letr;; denote the residual cell dwell time of the user in
the 1st stage on théth route, which is arbitrarily distributed.
The insensitivity of queueing networks indicates the sit-et 7;, 2 < j < IV}, denote the cell dwell time of the user
uation where the stationary distribution remains unchdngm the jth stage on thdth route, which are also arbitrarily

B. Insensitivity Property



start handoff handoff terminate
T TABLE |
SELECTEDDEFINITION OF VARIABLES
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T T s ¢ Name Definition
T x5, Number of sessions in thigh stage on théth route,
x x = [{zi;}]".
Zikij On thelth route, number of sessions lastihgstages,
X in the ith realization, in thejth stagex = [{Zixi; }]T.
Yn, ¥ The number of sessions in theh cell,y = [{y.}]".
ti; Random variable: on th&h route,
channel holding time at th¢th stage.
tAlkj Random variable: on th&h route, channel holding
time at thejth stage given that there akestages.
1 On thelth route, the average value of;,
given that the number of stages;.
T Random vector{ti, . . ., tuxk }-
. tikij Constant: on théth route,ith realization of channel
Fig. 1. System model. . . ) .
holding time atjth stage, when session lagtsstages.
i Constant vector{lixi1, . . . , Likik }-
distributed. Then, the channel holding time of tfth stage Pi On thelth @Ute' probability
on thelth route,t;;, if it exists, can be represented as follows: that sessm.n. lasts stgges. S
Qi On thelth route, probability of theth realization of
min{7}, 71}, if =1, a session, given that a session lastskfa@tages.
ty = . J—1 _ - _ P On thelth route, probability that a session lagts
min{7} — ZTlilej}v it Ty >3 mi2 < j < N stages and is in théh realization,Pir; = pixqie:.
=1 (1) Ao Arrival rate of thelth route.
Fig. 1 shows an example network withroutes. Routel Al 1/t;.
starts from celll and passes cell, 4 and6 (i.e., ¢(1,1) =1, Aikio Arrival rate of sessions lasting stages, in théth
c(1,2) = 3, ¢(1,3) = 4 and ¢(1,4) = 6). A user starts a realization, on théth route, \ixio = PiriAio.
session in celll, and the session is terminated in céllThe [, 1/tii;-
Corr¢3pondin@17711’ Ti2,T13, t11, L1z, andty; are labeled in wy; Invariant measure of memoryless network.
the figure. ;
Since there is a one-to-one mapping between active u‘"er,‘g” . Wiy [ -
and sessions, we do not distinguish the two. Note that givier-t:i Invariant measure °~f decoupled memoryless network
a route I, we know the sessions start at cef{l,1) but | i Wikig [ Atkis -
the cell where they end is random. Furthermore, we do nofo(x) | Stationary distribution of memoryless network wx.t
assume independence betweBnand 7;;, and the channel mp(X) | Stationary user distribution of decoupled network vt
holding timest;; are not independent either. Finally, each =(x) | Stationary user distribution of the original network wat.t
route defines the user movement trace and the distribution, (y) Stationary user distribution of multicell network w.gt
of channel holding times, which implicitly characterizése t X, Average arrival rate of theth cell.
speed of users on this route. t Average channel holding time of theth cell.

Let z;;, 1 <1 < L,1 < j < N, denote the number of
active users in thgth stage on théth route; lety,,, 1 < n <

C, denote the number of activ:,g users in tite cell. Leth: work, where all the channel holding times are independent-
[z : 1 <1< L1 <j<Ni}]" andy = [y1,42,.--,9c]"- |y and exponentially distributed. We prove insensitivity b
We aim to deriver(x) and m (y), the joint stationary user ghowing an equivalence between the original network and the

distributions forx andy, respectively. Note that since(x) memoryless network in terms of stationary user distributio
andm (y) are defined in the steady state, we explicitly ignore

any temporal fluctuation in these distributions.

s Lo . A. Queueing Network Model for Single-Route Network
A partial list of nomenclature is given in Table I.

Consider exclusively th&h route in the network. Through-
out this section, we will carry the route indedxin most
symbols, since they will be re-used in the analysis of midtip
route networks.

We first derive the stationary user distribution on a single As shown in Fig. 2(a), we model the route as a tandem-
route. We construct a reference single-route memoryless niked queueing network, except with early exists. The node

IV. STATIONARY USERDISTRIBUTION IN SINGLE-ROUTE
NETWORK



HH HH HH T]]]]]—* single-route network, where each queue has infinitely many
t.“ independent and exponential servers. An illustration @sh

in Fig. 2(b). By matching the mean service times in this

memoryless network with those of the original network, we

see that its external arrival rate Mgy, the service rate of the

(o) jth queue is\;; = =—. The routing probability from thé:th

Sinale-route net k\\/ queue to thdk + l)th queue is the probability that a session
(8) Single-route network. enters thgk + 1)th stage conditioned on it is in tHeh stage,

w The routing probability from théth queue to node
I 3 DIy (N —j=k Py
ij,'j,}“l § o e p,mm T z&\, 0'is —#=—. Thus, the service rate from ttigh queue to the
o =111 [T - j=k P
Py y (k + 1)th queue ISM)\ and the service rate from
PuN-1 0N, I(Ni—1) Z j=k Pij
the kth queue to node is Ak -
71» Pij
P, Let wj; denote the posmve invariant measure of tfta
p“ Lozt gqueue that satisfies the routing balance equations of the
= single-route memoryless networky, is the positive invariant
measure of the nodé We adopt the convention that, = 1.
@ It can be derived from the topology of Fig. 2(b) that
(b) Reference single-route memoryless network. w6 :)\lowh, (2)
Fig. 2. Single-route network ZNZ D1
. . = . — n
Lw/’— :U}/‘, 2§]§Nla (3)
N, 1j—1 15
Donej—1Pin
. which leads to
labeled withO represents the exogenous world. Tjitle queue,
1 < j < Ny, represents thgth stage of the route, and units in wy, =N, (4)
this queue represent sessions in jlfestage. Each queue has j
infinite segrlvers, since the sessions are served in paraiflel w wy; =Aio(1 — me), 2<j5<N,. 5)
no waiting.

The channel holding time of a session in il stage/i;, IS Because each queue has infinite servers, the departursitgten
equivalent to the service time of théh queue. The handoff of gt theyth queue is\;;z;; when there arer;; users in it. Let
a session from th¢th stage to th¢j+ 1)th stage is equivalent wl]

= . Then the stationary user distribution w.ktof this
to a unit movement from thgth queue to thej + 1)th queue.

twork is [25]
The termination of a session is equivalent to the movement

from a queue to node. N oy 1
Let p;. denote the probability that a session lasts for mo(x) = He Twy ol (6)
stages. It is given by j=1

C. Insensitivity of Single-Route Network

For the original single route network, we employ a
decomposition-composition approach to derive its statipn
with p, = P, <] andpiy, = P [Z;Vlfl T < Tz} user distribution. _

Given that one session lasts férstages, we denote the
channel holding times askadimensional random vectop, =
stage, it enters thgk + 1)th stage with probablhtw {tAlkl,. tlkj, .. tlkk} Wheretum is the channel holding time

g=k Pl at thejth stage. We assume thaf; is an arbitrarily distributed

discrete random vector with/;;, possible realizatios For
anyi, 1 <i < My, we define ak-dimensional deterministic
B. Reference Single-Route Memoryless Network vectorty; = [tikiv, - - tikij» - - tuwar] T corresponding to the

We define a referenmng|e_r0ute memory|ess netwom ith realization Oft]k. Let Qiki be the probablllty of theth

a Jackson network with the same topology as the origin@alization given that the session lasts fostages. Also, let
Piii = piequi; denote the probability that a session lastsior

lUsers move into and out of each cell in parallel. Thereforéenv stages and it is in théh realization.
considering the channel holding time as the service time ofueue that i ;
models mobility, this is equwalent to all users being sdraethe same time by By domg S0, we decompose the orlglnal network into a
its own dedicated server, which is the same as having infeiteers. In terms Multiple-branch queueing network as shown in Fig. 3, which
of active user sessions, this model is accurate for comratioit systems
with no admission control (e.g., WiFi) and gives reasonapproximation to 2For a vector of continuous channel holding times, we can s&zaence of
systems with many available channels. discrete distributions with decreasing granularity torapgh its distribution.

. k
plk:P[Zle <T SZ%}, for2 <k <N —1,
- =

Note that we hav§:,C 1 i = 1. Given a session in thkth

and terminates with probabllltw.
j=k Plj
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Fig. 3. Decoupled network. Fig. 4. Reference memoryless decoupled network.

is referred to as thdecoupled networkin this network, there Palance equations with the convention that at node;, = 1.
are N, main branches, where thigh main branch representsSince €ach sub-branch is a chain network, we have

the event that a session lasts fbrstages. Thekth main = .

i Wi = PikiAio- (7
branch contains\/;;, sub-branches, WherNe theh sub-branch .
represents the realization whetgc = tuq. Furthermore, Let w;; = 2. Then the stationary user distribution of

the jth queue in theith sub-branch of théith main branch the decoupled Tetwork as well as the reference memoryless
represents thgth stage of theith realization of the sessionsyecoupled network is

that last fork stages. NNy A
Hence, each queue of the decoupled network has infinite =\ ey L
servers withdeterministicservice time/;;;, for the jth stage (%) = H H H ¢ " Wiki Tikij! (8)
of the ith sub-branch of théth main branch. Furthermore,
the arrival rate of theth sub-branch of théth main branch ~ The stationary user distribution of the original single teou
iS Mgio = Piriio- L&t X = [{Fppi; 0 1 <k < Nj,1 <5 < ne}\\fNorka(X)’ is the sum of p () 55.‘“5]‘}"”9 g =
k,1<i< My}]T be the vector of number of sessions in the_j—; >_i—1 Zikij» Vj. To deriver(x), we first introduce the
jth stage of theth sub-branch of théth main branch. Denote following lemma.
by 7p(X) the stationary user distribution of the decoupled Lemma 1:Consider a stationary open Jackson network with
network. N queues each with an infinite number of servers. Lebe
Note that the stationary distribution of a Jackson netwof€ number of units in thgth queue andc = [z1,...2n]".
with infinite servers at each queue is insensitive with respe>UPPOS€{J1, 7z, ... Ji} is a set of mutually exclusive
to the distribution of the service times [21]. Thereforg,(x) Subsetso{l,2,..., N}.Letz =3 ,c 7 #;,i=1,2,..., M,
remains unchanged if we create a reference Jackson netwdfRoting the sum of units in the queues inside Then, the
by replacing each queue witteterministic service timén distribution ofz = [e1, .. 2] s
the decoupled network with a queue that hagonential M 1
distributed memoryless service timéh the same mean (e.g., m(z) = H e Vi 9)
i=1

the service rate at thgth queue of theth sub-branch of the zil

kth main branch\;,;; = ——), as shown in Fig. 4, which is \wherey,; — > e wj, andw; is the expected number of units

j=1k=j i=1

lkij

referred to as theeference ]memoryless decoupled network in the jth queue.

Letwy,,; be the positive invariant measure of tfte queue Proof: For a Jackson network with infinite servers at each
of theith sub-branch of théth main branch of the referencequeue, the stationary queue lengths are independent Roisso
memoryless decoupled network, which satisfies the routingndom variables with meam; for the jth queue. Hencey;
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0T e ] \ \ \ T \ \ \ \ A. Queueing Network Model for Multiple-Route Network

Since theL routes are independent, we model the multiple-
route network as a paralleling df single-route networks, as

| oo, shown in Fig. 5. Similar to Section IV, we consider a refeeenc
;LU multiple-route m_emo_ryless network, which is a paralleling
o ‘t‘L‘l‘ T ‘t‘L‘Q‘ T ‘t‘L‘J T]]E]—’ of L corresponding single-route memoryless networks. Then,
‘ P we construct the decoupled multiple-route network, which
is a paralleling of L corresponding single-route decoupled
~ networks.
N

B. Insensitivity ofr(x)

Theorem 2:The multiple-route network has the same sta-
tionary user distribution as that of the corresponding plei

is Poisson with meam; = 3", - w; for all i. Furthermore, foute memoryless network.

since{J;} are mutually excluswe{zz} are independent. m Proof: Since the routes are independent, the stationary
Next, we note that the expected service time spent in tHger distribution of the multiple-route network can be coiap

jth stage given that thgth stage exists, i.ej, < k for the kth  €d as the product of the stationary user distribution oflsing

Fig. 5. Multiple-route network.

main branch, can be computed as route networks:
N L N; 1
e s Z " Prritinig m(x) = H H e‘w”wfj”—'. (13)
lj = i\/z _Z]Wm P I=1j=1 g
=7 13
ZNz ZMUC Poiting Since the same holds for the multiple-route memoryless net-
. (10) work, we haver(x) = mo(x). [ |
1- Zn 1pln
Combining this with (7), we have C. Insensitivity ofr (y)
Np My M\ p Let )\, be the average total arrival rate to cellincluding
Zzw“”ﬂ ZZ 107 tki both new and handoff arrivals. L&t be the average channel
k=j i=1 k=j i=1 /\lkw holding time in celln, considering all routes and stages. Thus,
N; My, _ Ny My
=D NPty A= > D> MoPui, (14)
k=j i=1 1jre(l,j)=n k=j i=1
Jj—1 N, M ng
_ ol ) =n ki 2uim1 N0 Pikitii
=Mo(1 =Y pin)ti; T, = Lt jicll)= Zk—]ﬂvlz . L. (@15)
n=1 Dol jie(lg)=n 2keg 2aimt A0 Ll
—1
B @(1 _ Jz: ) Then from (11), we have
Aij “= lpm N, My,

= wyj. (12) Antn = Z Z Z Mo Pikitii

l,j:c(l,j)=n k=j i=1
Therefore, by Lemma 1, we have N M
! Ik

(%) = 3 (%) DD g

l,j:c(l,j)=n k=j i=1
X = E El T Tikij, Vi (4.4)

o = > wy (16)

— H e~ Wi l3| , (12) l,j:c(l,j)=n
The joint stationary user distribution among all cells can
which is restated as the following theorem: be computed as a summation over those entriesrotk)

Theorem 1:The single-route network has the same statiogatisfyingy, = >, ;.. jy—, 71;, ¥n. Then from Lemma 1,
ary user distribution as that of the corresponding singlee We obtain

memoryless networksr(x) = my(x). L N .

— —w Lj

m(y) = > [TITemwiy =
V. STATIONARY USERDISTRIBUTION IN T PPNy e 1j
‘ sgre(l,g)=n ’

MULTIPLE-ROUTE NETWORK Un
In this section, we study the general case with multiple _ H (et y=n wi5) 1
routes. We first extend the results from the previous section Ljee J) " Yn!

to shown(x) = my(x) in a multiple-route network. We then -
derive the stationary user distribution (y) with respect to = He_(’\"t") (/\n n y" ,. a7
cells and show its insensitivity. n Yn:



We make the following observations from (17): B. Data Preprocessing

 The number of users in each cell is independent and1) pata Extraction: Since the behavior of users may
Poisson. This is in accordance with Theorem 9.27 in [zalhange great|y between dayt|me and n|ghtt|me, or Workdays

o The stationary user distribution depends only on thghd holidays, we focus on data accumulated from 9 am to 5 pm
average arrival rates and average channel holding timg$ Monday to Friday. We also discard the data accumulated
in individual cells, having the exact same form of agyring the periods of holiday breaks, including Thanksugvi
M/M /oo open Jackson network. It is insensitive withNov, 26, 2003 to Nov. 30, 2003) and Christmas and New Year
respect to the distribution of channel holding times, qibec. 17, 2003 to Jan. 4, 2004). In addition, for some APs,
the correlation among them. Furthermore, it is insensitiVge observed periods when they are temporally power off. If
with respect to movement patterns, since the exact routiffg total service time of an AP on a certain day is less than
in the network is irrelevant. 1/3 of its average value, we discard the data for this day.

o The marginal distribution within a single cell depends 2) Trace Gap Padding:The session duration is defined
only on the average arrival rate and average channg the period of time during which a user is continuously
holding time at that cell. This useful property facilitatégonnected to the network. The user may move from one AP
efficient system management and planning in practicg, another during a session. Occasionally, a user may cisapp
helping to avoid the need for collecting a large amourfom the SNMP report and soon reappear. This may be caused
of user location data. by the user departing and then returning to the network, or

due to the missing of an SNMP report. Following the solution

. ) o . . ) _proposed in [16], we set a departure length threskgle- 10

In this section, our analysis is validated via experimentin, i tes. Only if a user disappears and reappears withirit

with real-world traces. We first present the data source af%dregarded as staying in the network and the missing SNMP
experimental settings. We then compare the experimental "’PBgs are padded.

analytical results.

VI. EXPERIMENTAL STUDY

3) Multiple Association and Ping-Pong EffeciVe also

A. Requirements and the Dartmouth Traces obse_rve that some users are simultaneously associate_d with
) ] ] ) _multiple APs within a small time interval. Some even ping-

There are serval publicly available traces online, incigdi ong among multiple APs. We use two methods to offset these

the Dartmouth traces [26] [27] [19], the UCSD traces [28lyfacts. First, when multiple associations occur, we chbek

the IBM-Watson traces [29], and the Montreal traces [30k,mper of packets exchanged with the user. We deem the user

To choose proper traces, we need to consider the followiRg associated with the AP which has exchanged the largest

requirementskirst, there should be a large amount of samplgmper of packets with the user during its multiple assamiat

points to facilitate an estimation of the user distributioy heriod. |n addition, if a user leaves one AP and then returns

relative frequency, which is to be compared with the distrib \yithin 5 minutes, it is regarded as having stayed in the AP.

tion derived by the proposed analysis. Note that the sumdort 4) Open Users:a fraction of the users may stay in the

the user distribution increases exponentially with the bem ¢, ctem during almost all working hours. These users are re-
of cells. Most available traces do not have a large enou ﬁrded as closed users. Since our analytical model assumes a
data setSecondthe location of cells should be close enougBpen network, the closed users are excluded in our expetimen
so that there is enough handoff traffic among them to cregfe; ser stays for greater than or equal®é hours during
strong dependency between channel holding times. Data froiBrking hours on a valid day, it is regarded as a closed user. |
already independently operated cells can be analyzed Usfif experiment, we observe tHap1% of all users are closed
exiting techniques and hence are not challenging enough,fQrs. an analytical model for accommodating closed users |

test our analytical model. To the best of our knowledge, ﬂ}'ﬁ'ovided in [16], which can also be applied to our work.
Dartmouth traces are the most recent public traces satgsfyi

both requirements. They have been widely studied in the _

literature [31] [32] [33] [16]. We use data from the academiC: Trace Analysis

area in the Dartmouth traces [19], a comprehensive record ofl) Poisson Arrivals: Analysis of the Dartmouth trace in
network activities in a large wireless LAN (using 802.11) i[16] has shown that the overalew session arrivals into the
Dartmouth College. The traces includes the data of 152 ARstwork are well modeled by a Poisson process. In this work,
and more than 5000 users, during a 17-week period (Nov.vte further test the arrival process of new sessiahsach
2003 to Feb. 28, 2004). Most users are students walkiAd® against the Poisson assumption. This is divided into two
on campus. We focus on the Simple Network Managemesieps. In the first step, we run andependence tgsivhich
Protocol (SNMP) logs of the traces, which are constructéadicates whether the numbers of arrivals in different time
every five minutes, when each AP polls all the users attachiatervals are independent. Since it is not practical to anto

to it. Each polling message includes the information sudhr all time intervals, we test the independence of arrivals
as the name of AP, timestamp, the MAC and IP addresde® consecutive hours at each AP. If the AP passes the test, we
of users attached to it, signal strength, and the number refyard the arrivals at this AP to be sufficiently independent
packets transmitted. By analyzing such data, we can derivet H, denote the entropy in the number of new arrivals in two
the average arrival rate, average channel holding timetteand consecutive hours anff; denote the entropy in the number
user distribution by relative frequency. of arrivals in one hour. Let) = 2£i-12 be the normalized



TABLE Il

NUMBER OF STAGES 0.35
Stages I 2 [ 3 | 4 [>5 "o Stage 2 userl
Observations | 80448 | 15767 | 7410 | 3553 | 6107 0.3 -A- Stage 3 users
—oe— Stage 4 users
0.25-
entropy gap. Ifn < 0.15, we regard the AP as passing the 0ol &
independence test. We observe thét of the 152 APs pass
the independence test. oad !
In the second step, we run Boisson distribution test
which indicates whether the number of arrivals is Poissc 0.1+
distributed in a fixed time interval. For each AP that pass:
the independence test, we count the number of new arriv 0.05
in each hour and calculate its real distribution. Furtheemo 8388888884, ., _
by using the actual average arrival rate per hour, we ¢ % 50 100 150

minutes

determine the corresponding theoretical Poisson digtoibu
Then, we compute the Kullback-Leibler (KL) divergentlg
between the real distribution and the theoretical distidns.

Let 0 = % be the normalized KL value. I# < 0.15, we

1

regard the AP as passing the Poisson distribution test. \Wechannel holding times at stages2,3 and 4 are 4.0657,
observe that 24 of the 144 APs pass the Poisson distributiors 4172, 3.3942 and 2.9792, respectively, in bits. The entropy
test. of their joint distribution is10.2998 bits. Hence, the entropy

Those124 APs are referred to asalid APs as the new gap is4.0657+3.4172 +3.3942+2.9792 — 10.2998 = 3.5565
arrivals at these APs can be well approximated as Poiss@. Hits, much larger thaf. This shows that the channel holding
other28 APs are referred to asvalid APs In our experiments, times at different stages are dependent.
we study the effects of both including and excluding the non- 3) AP Locations and Distance ConstrainAPs that are far
Poisson new sessions. We emphasize that the Poisson @&y are likely to have little effect on each other, regasslief
is for new arrivals only. Even for those APs that pass thfie mobility and session patterns. Therefore, to rigogotesit
Poisson test, the overall session arrival process inclbdés the joint distribution of multiple APs, we are more intersbt
new arrivals and handoff arrivals and hence is non-Poissorn selecting adjacent APs with spatial correlation. We set a

From the SNMP logs, we observe that the invalid APs tenfistance constraintunder which APs are located pairwisely
to have occasional bursty arrivals. Since they are with# thess than500 meters from each other. In the experiments,
academic area, we conjecture that they correspond to laggigen we study the joint distribution over multiple APs, this
classrooms, which experience periodic rushes a the beginngistance constraint is enforced by default, unless ottserwi
of lecture hours. Even though such APs do not match ostated. However, we will also present comparison results fo
analytical model, their user distribution is likely easypt@dict cases with and without it.
in practice.

2) Number of Stages and Channel Holding Timé& have D. Marginal User Distribution at a Single AP
collected the distributions of number of stages in eacherout \ye first show the marginal user distribution at individual

which is shown in Table II. It can be seen that there is &pg For this test, we applied all data after the pre-prangss

large percentage of sessions staying for just one stage. glQcriped in Section VI-B, without further exclusions. We
rigorously test the analytical stationary user distribofiwe g0 4 sampling of thé52 APs. In order to avoid selection

will later present different cases where one-stage SeSS® hjas we choose APs according to their numeric identity. For
either included or excluded. _ each building (with at least one AP), we select the AP with

Note that if the channel holding times are independently &ye smallest identity number (i.6AP1f it exists; otherwise,
ponentially distributed, our conclusions on the statignaser |« seleciAP2if it exists; and so forth). There ag2 buildings
distribution trivially holds. Therefore, more challengighan- it at least one AP. and thdg APs are selected accordingly.
nel holding times (i.e., arbitrarily distributed and cdated)  Fig 7 shows a comparison between the real distributions
are necessary to test our analytical results. Fig. 6 showeetll - 5 the analytical distributions of these APs. Each sukiplot
distributions of channel holding times in different stageéis |5peled withY or N. whereY indicates that the AP passes
figure illustrates that none of them are exponentially thigtr e two-step Poisson test and indicates the opposite. The
ed. Furthermore, we check the dependency of channel holdijgre jllustrates that the real distributions and the atizay
times in different stages. The entropies of the distrimdio gistributions agree well with each other for those APs that
pass the Poisson test.

Fig. 6. The pdf of channel holding time in different stages.

SKullback-Leibler (KL) divergence is a standard approachmeasure the
difference between two probability distributiod$ andY’. It can be regarded
as a measure of the information lost (in bits) wheéris used to represent. E. KL Divergence and Entropy Gap for Multiple APs
When KL divergence i9, Y is exactly the same witlX . If the KL divergence . .
is small compared with the entropy of the distributidh the distributionY” In this paper, we use KL dNergendékl to compare the

is a close approximation of that of . real and analytical joint distributions of multiple APs. We
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with the number of cells, and the real user distribution is
counted through its relative frequency, we limit< 5 in the
experiment in order to ensure enough data are counted for
each sample point.

1) Influence of Non-Poisson ArrivalsClearly, excluding
also test the independence of the numbers of users in differgon-Poisson arrivals could improve the accuracy of the an-
cells by computing the entropy gali,.,, between the sum alytical model. We comparéfy;, Hy.p,, and H,., under
of the entropies of real marginal distributions and the@myr the conditions of either including or excluding non-Poisso
of the real joint distribution. The entropy of the real joinkyrivals.
distribution H,. is also presented for reference. Note that A direct method to exclude non-Poisson session arrivals is
if Hy, is much smaller thar/,..;, the analytical distribution to remove from the data set all sessions that are initiated at
is a close approximation of the real distribution; Afy.; IS invalid APs. However, this will reduce the number of handoff
much smaller tharf,..;, the numbers of users of single APssessjon arrivals even in valid APs, hence biasing the aisalys
are approximately independent. An alternate approach is to simply remove the invalid APs

Givenn, the number of APs we aim to study, we randoml§rom the data set, while allowing those non-Poisson sessmn
choosen different APs. Then we comput&y;, H,.,, and be counted in the valid APs that they pass through. In this way
H,.,; with respect to these APs. By running this procedui@ccurate average arrival rates at the valid APs are magdain
100 times, we obtain the sample mean and sample standard’hus, we study the following three cases: 1) Excluding
deviation of Hy;, Hgqp, and H,.q. In subsequent studies,sessions initiating at invalid APs (i.e., invalid sessjor®)
we plot the sample mean versus along with bars showing Excluding invalid APs; and 3) Without exclusion. Fig. 8
one sample standard deviation, in Fig. 8-11. Note that tiieistrates Hy; compared withH,..,; for the three cases, and
plot points are slightly shifted to avoid overlaps. Becaud&g. 9 illustratesH,,, compared withH,., for the three
the sample space of user distribution increases expofignti@ases. We observe that bath,; and H,,, are much smaller

Fig. 7. Comparison of distributions for single APs. Realriisitions are in
solid lines; analytical distributions are in dashed lines.
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Fig. 10. Hy;, Hgap and H,..,; under the influence of distance restriction.Fig. 11. Hy;, Hgap and H,..,; under the influence of one-stage sessions.

thanH,...;, when we either exclude invalid sessions or excludgieue model [15]. Thus, in practice, one may separately
invalid APs, illustrating that the real distributions alese to analyze one-stage and multiple-stage sessions and combine
the analytical distributions, and the numbers of usersrajlsi the resultant user distributions.

APs are approximately independent. When we do not exclude
invalid sessions or invalid AP<{;; and H,,, become larger,
showing that the analytical distribution is influenced by th
non-Poisson arrivals. HoweveHy; and Hy,, remain much |5 this paper, we have studied the user distribution in
smaller thanf,...;, illustrating that the analytical distribution p, iticell network by establishing a precise analytical m@ipd

is still valid to approximate the real distribution, everethconsidering arbitrary user movement and arbitrarily and de
arrivals are not strictly Poisson. endently distributed channel holding times. We have éelriv

In addition, excluding invalid sessions only brings sma[)he stationary distribution of the number of users in eadh ce
decrements i, and Hy,, compared with excluding invalid hich is only related to the average arrival rate and theageer
APs. Note that when we exclude invalid sessions, both thgannel holding time of each cell, and hance is insensitivit
one-stage and multiple-stage non-Poisson arrival sessi® jth respect to the general movement and session patterns.
excluded; when we exclude invalid APs, only the one-stagge have used the Dartmouth trace to validate our analysis,
non-Poisson arrival sessions are excluded. This illestrtttat \yhich shows that the analytical model is accurate when new
multiple-stage non-Poisson arrival sessions have onlykWegession arrivals are Poisson and remains useful when non-
influence on the modeling accuracy. Poisson session arrivals are also included in the data set.

2) Influence of Distance Constrainttig. 10 showsH,, The demonstration of modeling accuracy using an open
Hgap, and Hyc,; with and without the distance constraint, s /)/ /o Jackson network implies that the number of user-
For both cases, we exclude the invalid APs. We observe thain each cell is independently Poisson. This spatial non-
Hy, Hgap, and H,q are nearly unchanged with or withouthomogeneous Poisson model is commonly used in the ge-
the distance constraint, confirming our expectation that thmetric analysis of interference in wireless networks [34]
distance constraint does not influence the accuracy of t[g%]' It can alternatively be inferred from associating the
analytical model, since the analytical model predicts that ser trajectory as location-dependent marks to a spa@e-tim
numbers of users of adjacent APs are independent. Poisson process representing the entry location and time of

3) Influence of One-Stage SessiorfSg. 11 showsHy,, the users [25]. Our results additionally show that the mean
Hgqp, and Hy¢q With and without the one-stage sessions. Fialues for the Poisson distributions in different cells are
both cases, we exclude the invalid APs. We observe that whBensitive to the arbitrary and dependent channel holding
we exclude the one-stage sessioh§,; and Hy,, becomes times. This enables simple yet accurate computation ofela

smaller, suggesting that our model is even more accuralisin fperformance measures in a complex mobile system.
case. This is an apparently counter-intuitive result, esitiee
analytical distribution trivially holds for one-stage sEss. An
explanation for this is the following. Since one-stage isgss REFERENCES
are more.“kely to be new sessions correspo_ndlng to attgrTdITI] W. Bao and B. Liang, “On the insensitivity of user distrton in
|eC_tureS in a classroom, thGY_ are more likely to be non-" myicell networks under general mobility and sessionguatt,” inProc.
Poisson. Since not all non-Poisson arrivals can be excluded of IEEE INFOCOM Mini-ConferenceTurin, Italy, Apr. 2013.
by removing the invalid APs, when we further exclude onef?] E Camp, J-kBO'engv ﬁw\/-l Davies, “A survey of mObi"%’ld“‘S for ad

. . . oc network research\Vireless Communications & Mobile Computing
stage sessions, we obtain more accurate analytical results (WCMC): Special Issue on Mobile Ad Hoc Networking: Research

Note that one-stage sessions can be analyzed as a single-Trends and Applicationsvol. 2, no. 5, pp. 483 — 502, Sept. 2002.

VII. CONCLUSION AND DISCUSSION
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