
1

Multi-user Multi-task Offloading and Resource
Allocation in Mobile Cloud Systems
Meng-Hsi Chen, Ben Liang, Fellow, IEEE, Min Dong, Senior Member, IEEE

Abstract—We consider a general multi-user Mobile Cloud
Computing (MCC) system where each mobile user has multiple
independent tasks. These mobile users share the computation
and communication resources while offloading tasks to the
cloud. We study both the conventional MCC where tasks are
offloaded to the cloud through a wireless access point, and
MCC with a computing access point (CAP), where the CAP
serves both as the network access gateway and a computation
service provider to the mobile users. We aim to jointly optimize
the offloading decisions of all users as well as the allocation
of computation and communication resources, to minimize the
overall cost of energy, computation, and delay for all users. The
optimization problem is formulated as a non-convex quadratically
constrained quadratic program, which is NP-hard in general.
For the case without a CAP, an efficient approximate solution
named MUMTO is proposed by using separable semidefinite
relaxation (SDR), followed by recovery of the binary offloading
decision and optimal allocation of the communication resource.
To solve the more complicated problem with a CAP, we further
propose an efficient three-step algorithm named MUMTO-C
comprising of generalized MUMTO SDR with CAP, alternating
optimization, and sequential tuning, which always computes a
locally optimal solution. For performance benchmarking, we
further present numerical lower bounds of the minimum system
cost with and without the CAP. By comparison with this lower
bound, our simulation results show that the proposed solutions
for both scenarios give nearly optimal performance under various
parameter settings, and the resultant efficient utilization of a CAP
can bring substantial cost benefit.

Index Terms—mobile cloud computing, computing access
point, task offloading, resource allocation, energy cost, delay cost,
computation cost.

I. INTRODUCTION

Mobile Cloud Computing (MCC) brings abundant cloud
resources to extend the capabilities of resource-limited mobiles
devices to improve the user experience [3] [4]. With the help
of cloud resources, mobile devices can potentially reduce
their energy consumption or processing delay by offloading
their tasks to the cloud. However, integration between mobile
devices and the cloud may affect the quality of service of
those offloaded tasks and overall mobile device energy usage
due to additional communication and computation delays and
transceiver energy consumption.

Meng-Hsi Chen and Ben Liang are with the Department of Electrical
and Computer Engineering, University of Toronto, Toronto, Canada (e-mail:
{mchen, liang}@ece.utoronto.ca).

Min Dong is with the Department of Electrical, Computer and Software
Engineering, University of Ontario Institute of Technology, Oshawa, Canada
(e-mail: min.dong@uoit.ca).

This work has been funded in part by a Natural Sciences and Engineering
Research Council (NSERC) of Canada Strategic Project Grant and in part by
NSERC Discovery Grants.

Preliminary result of this work has appeared in [1] and [2].

The case of a single mobile user offloading its entire
application to the cloud was studied in [5], [6]. Furthermore,
offloading by multiple mobile users was considered in [7]–
[9], where each user has a single application or task to be
offloaded to the cloud in its entirety. Different from such
whole-application offloading, the authors of [10]–[16] consid-
ered partitioning an application into multiple tasks. In all these
cases, the partitioning problem results in integer programming
that is NP-hard in general.

In conventional MCC systems, communication between
the mobile devices and the remote cloud server often is
over a long distance, which may result in large communi-
cation delay in task offloading. In contrast, with an aim to
reduce the communication delay for those offloaded tasks,
Mobile/Multiaccess Edge Computing (MEC), as defined by
the European Telecommunications Standards Institute, refers
to a distributed MCC system where computing resources are
installed locally at or near the base station of a cellular network
[17]–[19]. MEC shares similarities with micro cloud centers
[20], cloudlets [21], fog computing [22], and cyber-foraging
[23], except that the MEC computing servers are managed by
a mobile service provider, which allows more direct control
and resource management. Similar to the concept of MEC, one
may define a general computing access point (CAP), which is
a wireless access point or a cellular base station with built-in
computation capability to serve the mobile users’ computing
tasks. These tasks may be processed locally at the mobile
devices, sent to the CAP, or further forwarded to a remote
cloud server. With the additional option of computation by
the CAP, we can reduce the need for access to the remote
cloud server, hence decreasing the communication delay and
also potentially the overall energy and computation cost.

In this work, we study the joint optimization of task offload-
ing and resource allocation in a general mobile cloud access
network consisting of multiple mobile users, each having
multiple independent tasks. The wireless access point may
serve its conventional networking function and only forward
the received tasks to the remote cloud server, or it may
be a CAP that additionally has limited built-in computation
capability to directly process some of the tasks by itself. We
take into consideration the computation and communication
energies, CAP and cloud usage costs, and communication and
processing delays at local user devices, the CAP, and the
remote cloud server.

The multi-user multi-task scenario adds substantial chal-
lenge to system design, since we need to jointly consider both
the offloading decisions and the sharing of limited computation
and communication resources among all users as they compete

2

with each other while offloading tasks. In particular, the
delays of the offloaded tasks of a user will be affected by
its assigned computation and communication resources, as
well as the scheduling of those tasks in the computation and
communication pipelines. Therefore, scheduling the tasks of
even a single user contains a multi-machine flow-shop problem
[24], which has no known optimal solution in the literature.
In this work, we propose efficient heuristic solutions based on
semi-definite relaxation methods, together with delay bound-
ing techniques, iterative optimization, and further sequential
performance tuning, which are numerically shown to provide
nearly optimal performance. The contributions of this work
are summarized below:

• Conventional MCC with a non-computing AP: We first
consider the conventional MCC with a non-computing AP,
and formulate the problem to jointly optimize the offloading
decision and the communication resource allocation of
all tasks, to minimize a weighted sum of the costs of
energy, computation, and delay for all users. The resulting
mixed integer programming problem can be reformulated as
a non-convex quadratically constrained quadratic program
(QCQP) [25], which is NP-hard in general. To solve this
challenging problem, we first present a performance bound-
ing framework that utilizes both the upper and lower bounds
of the multi-task total communication and computation
delay for each user. We then propose an efficient Multi-
User Multi-Task Offloading (MUMTO) algorithm based on
separable semidefinite relaxation (SDR) [26], with recovery
of the binary offloading decision and subsequent optimal
allocation of the communication resource.

• MCC with a CAP: We next consider the presence of a CAP
in the MCC, aiming to jointly optimize the task offloading
decisions and the allocation of computation and commu-
nication resources of all tasks. However, the availability
of CAP computation further complicates mobile task of-
floading decisions, adding an extra dimension of variability
at the CAP. To solve this challenging problem, we further
propose an efficient three-step algorithm named MUMTO
with CAP (MUMTO-C), which first utilizes a generalized
version of the MUMTO SDR with an added CAP, and then
performs additional alternating optimization and sequential
tuning. We show that it always computes a locally optimal
solution, which contains the binary offloading decision
and subsequent optimal allocation of the computation and
communication resources.

• Lower bounds and performance: For both two scenarios
considered above, we obtain lower bounds for the mini-
mum cost as the benchmark for performance evaluation.
Simulation results show that MUMTO and MUMTO-C both
give nearly optimal performance under various parameter
settings. Furthermore, for the case with a CAP, we conduct
simulation experiments on alternative combinations of the
three components of the MUMTO-C algorithm, clarifying
their roles and contributions to the overall system perfor-
mance. Finally, we compare the performance of MUMTO-
C against that of purely local processing, purely cloud
processing, and hybrid local-cloud processing without the

CAP, which demonstrates the effectiveness of the proposed
algorithm in joint management of the computation and
communication resources in the three-tier computing system
of local devices, CAP, and remote cloud server.

Organization: The rest of this paper is organized as follows.
In Section II, we discuss the related work. In Section III, we
describe the system model. In Section IV, we provide details
of the problem formulation, the proposed algorithm, and the
lower bound of minimum system cost for the conventional
MCC without a CAP. In Section V, the impact on the presence
of the CAP is further studied. We present numerical results in
Section VI and conclude in Section VII.

Notations: Trace and transpose of matrix A are denoted by
Tr(A) and AT , respectively. A positive semi-definite matrix
A is denoted as A < 0. Notation diag(a) denotes a diagonal
matrix with diagonal elements being elements of vector a, and
A(i, j) denotes the (i, j)th entry of matrix A.

II. RELATED WORK

A. Two-Tier Offloading System

Many existing studies focus on two-tier cloud networks with
mobile users and another tier of external processors.

For a single user offloading its entire application, the
tradeoff between energy saving and computing performance
was studied in [5], [6], [27]. Different from the above whole-
application offloading, the authors of [10]–[16] considered
partitioning an application into multiple tasks. Specifically, the
authors of [10]–[12] focus on the implementation of offloading
mechanisms from the mobile device to the cloud, while the
discussion on optimizing the offloading decisions was limited.
In [13], a heuristic offloading policy was proposed for a mobile
user with sequential tasks. In [14]–[16], the problem of cloud
offloading for a mobile user with dependent tasks was studied.
All of the above studies focus on the single-user case.

The case of task offloading by multiple mobile users has
been considered in [7]–[9], [28]–[31], but in all of these
works, each user only has a single task to process. Without
considering resource allocation, the authors of [7], [9], [28],
[29] proposed different approaches to obtain the offloading
decisions for each user. In [8], [30], when all tasks are always
offloaded, the authors optimized the allocation of computation
and communication resources. In contrast to the above studies,
instead of optimizing either the offloading decision only or
the resource allocation only, in this work we study the joint
optimization as they are inter-dependent. The authors of [31]
considered the joint allocation of offloading decision and
resource allocation with a sequential optimization heuristic.
The method can only be applied to the case where each user
has a single task. In contrast, in this work, the system design
is much more challenging since we consider the general multi-
user multi-task scenario.

B. Three-Tier Offloading System

Besides the two-tier cloud networks above, the three-tier
network model, consisting of mobile users, a local computing
node (e.g., cloudlet or CAP), and a remote cloud server, has

3

Remote
 Cloud

Access PointMobile
User 1

M tasks

Mobile
User 2

Mobile
User N

M tasks

M tasks

Fig. 1. Multi-user multi-task offloading system model. The AP may serve
its conventional networking function and forward tasks to the remote cloud
server, or be a CAP with built-in computation capability to directly process
some received tasks by itself.

been studied in [32]–[38]. Compared with two-tier systems,
the three-tier system adds extra flexibility for task offloading.
In [32]–[35], the authors only focused on optimizing the
offloading decisions without considering the allocation of
computation and communication resources. However, since
both computation and communication resources are limited
and shared among all users, without efficiently allocating those
limited resources to different users, the full benefit of task
offloading cannot be realized. The joint optimization of the
offloading decision and the allocation of computation and
communication resources for a general three-tier multi-user
multi-task offloading system has not been investigated before,
and it is much more complicated to solve.

We have previously studied the scheduling of computation
and communication resources in a CAP for a single mobile
user [36] and multiple mobile users each with a single
task only [37], [38], showing substantial system performance
improvement under such simplified system models. In this
work, we focus on the joint optimization problem for a general
multi-user multi-task scenario.

III. SYSTEM MODEL

A. Mobile Cloud Offloading with Multiple Users and Tasks

Consider a general cloud access network consisting of one
cloud server, one AP, and N mobile users, each having M
independent tasks, as shown in Fig. 1.1 Examples of the AP
may be a cellular base station or a WiFi access point. The AP
may serve its conventional networking function and forward
received tasks to the remote cloud server, or directly process
some of the tasks by itself when it has built-in computation
capability. In the latter case, we name it CAP. In this work,
we first study a conventional mobile cloud offloading scenario
without the CAP, aiming to obtain optimal offloading decisions
for all mobile users’ tasks as well as resource allocation.
Then, we will further study a more general scenario with the
presence of the CAP, showing substantial system performance
improvement. Notice that we do not consider any specific
queueing model for each user’s tasks. We will show latter
in Sections IV-C and V-C that our proposed solutions are
generally applicable to any queueing discipline.

1We assume the same number of tasks M for all users only for the notation
simplicity. Our proposed solutions can be easily extended to the general
scenario where each mobile user has a different number of tasks Mi.

TABLE I
LIST OF MAIN SYMBOLS

Symbol Description
El

ij local processing energy of user i’s task j
Et

ij , Er
ij uplink transmitting energy and downlink

receiving energy of user i’s task j between the
mobile user and the AP

T l
ij , T a

ij , T c
ij local processing time, CAP processing time, and

cloud processing time of user i’s task j
T t

ij , T r
ij uplink transmission time and downlink

transmission time of user i’s task j between the
mobile user and the AP

T ac
ij transmission time of user i’s task j between the

AP and the cloud
CUL, CDL uplink bandwidth and downlink bandwidth for

transmission between mobile users and the AP
CTotal total transmission bandwidth between mobile

users and the AP
cu

i , cd
i uplink bandwidth and downlink bandwidth

assigned to user i
ηu

i , ηd
i spectral efficiency of uplink and downlink

transmission between user i and the AP
rac transmission rate between the AP and the cloud
fa

i CAP processing rate assigned to user i’s tasks
fA total CAP processing rate
fc cloud processing rate for each user

Ca
ij CAP usage cost of user i’s task j

Cc
ij cloud usage cost of user i’s task j

Remark: Our system model is a common one considered in
many previous studies [7], [9], [13], [14], [16], [28]–[31], [34],
where all M tasks of each user are assumed to be available
at the starting time. For a dynamic system where the tasks
arrive at different times, we may apply our model and the
proposed solution in a quasi-static manner, where the system
processes the tasks in batches as they are collected [39]. Also,
note that for the mobile cloud system considered, we focus on
the bandwidth sharing of wireless communication links among
users, while assuming that the statistics of each wireless link
remain unchanged during the processing of the users’ tasks.
This reflects a relatively static or low-mobility scenario. The
mobility issue and its effect on the offloading performance is
not considered this work and will be left for future work.

The main symbols used in the system model are summarized
in Table I.

B. Cost of Local Processing

We denote by Din(ij), Dout(ij), and Y (ij) the input data
size, output data size, and processing cycles2 of user i’s task
j, respectively.3 For task j being locally processed by user i,
the corresponding energy consumed for processing is denoted
by El

ij and the processing time is denoted by T l
ij .

C. Cost of Remote Cloud Processing

When user i’s task j is offloaded to the AP, we de-
note by Et

ij and Er
ij , respectively, the energy consumed

2The processing cycles of user i’s task j depends on the input data size
and the application type.

3These quantities may be obtained by applying a program profiler [10]–
[12], as similarly used in [6], [7], [9], [27], [29]–[31].

4

for wireless transmission and reception by the user. For
the wireless connections between mobile users and the AP,
we denote the uplink and downlink transmission times by
T t

ij = Din(ij)/(ηu
i cu

i) and T r
ij = Dout(ij)/(ηd

i cd
i), respec-

tively, where cu
i and cd

i are uplink and downlink bandwidth
allocated to user i, and ηu

i and ηd
i are the spectral efficiency

of uplink and downlink transmission between user i and the
AP, respectively4. We have the following constraints on cu

i

and cd
i as they are limited by the uplink bandwidth CUL and

downlink bandwidth CDL

N∑

i=1

cu
i ≤ CUL, (1)

and
N∑

i=1

cd
i ≤ CDL. (2)

We may consider also a total bandwidth constraint
N∑

i=1

(cu
i + cd

i) ≤ CTotal. (3)

Since the AP has to further offload the task to the cloud,
there is the additional transmission time between the AP and
the cloud denoted by T ac

ij = (Din(ij) + Dout(ij))/rac, and
the cloud processing time denoted by T c

ij = Y (ij)/f c, where
rac is the transmission rate between the AP and the cloud and
f c is the cloud processing rate for each user. The rate rac is
assumed to be a pre-determined value regardless of the number
of users, since the AP-cloud link is likely to be a high-capacity
wired connection in comparison with the limited wireless links
between the mobile users and the AP, so that there is no need to
consider bandwidth sharing among the users. Similarly, f c is
also assumed to be a pre-determined value because of the high
computational capacity and dedicated service of the remote
cloud server. Thus, T ac

ij and T c
ij only depend on user i’s task

j itself.
Finally, the cloud usage cost of processing user i’s task j at

the cloud is denoted by Cc
ij . The usage cost may depend on

the data size and processing cycles of a task and the hardware
and energy cost to maintain the cloud server, but such detail
is outside the scope of this work. Here we simply assume that
Cc

ij is given for all i and j.

D. Cost of CAP Processing

When we consider the presence of a CAP, some of the
offloaded tasks can be directly processed by the CAP. If
user i’s task j is processed by the CAP (i.e., instead of
being further forwarded to the remote cloud), besides the
communication energy (i.e., Et

ij and Er
ij) and delay (i.e., T t

ij

and T r
ij) mentioned above, we denote the CAP processing time

by T a
ij = Y (ij)/fa

i , where fa
i is the assigned processing rate,

which is limited by the total processing rate fA at the CAP
N∑

i=1

fa
i ≤ fA. (4)

4The spectral efficiency can be approximated by log(1+SNR) where SNR
is the link quality between user i and the AP.

Similarly, denote the CAP usage cost of processing user i’s
task j at the CAP by Ca

ij . In the following, we first study the
conventional MCC without considering the CAP. The impact
on the presence of a CAP will be further studied in Section
V.

IV. MULTI-USER MULTI-TASK OFFLOADING WITHOUT

CAP

In this section, we study the conventional mobile cloud
network where the AP always forwards the received tasks
to the remote cloud server. In this case, we have a two-tier
offloading system, and we focus on jointly optimizing the
offloading decision and the communication resource allocation
of all tasks, to minimize a weighted sum of the costs of energy,
computation, and the delay for all users.

A. Offloading Decision

Since there is no CAP, each mobile user can either process
its tasks locally or offload some of them to the cloud for
processing through the AP. Let xij denote the offloading
decision for task j of user i, given by

xij =

{
0, process task j of user i locally;

1, offload task j of user i to the cloud.

B. Problem Formulation

We aim at reducing mobile users’ energy consumption and
maintain the service quality of processing their tasks, measured
by the delays incurred due to transmission and/or processing.
For this goal, we define the total system cost as the weighted
sum of total energy consumption, the costs to offload and
process all tasks, and the corresponding transmission and
processing delays for all users. Our objective is to minimize
the total system cost by jointly optimizing the task offloading
decisions xij and the communication bandwidth resource allo-
cation ri = [cu

i , cd
i]

T . This optimization problem is formulated
as follows:

min
{xij},{ri}

N∑

i=1

[M∑

j=1

(El
ij(1 − xij)+ EC

ijxij)+ ρi max{TL
i , T C

i }

]

(5)

s.t. (1), (2), (3),

ru
i , rd

i ,≥ 0, ∀i, (6)

xij ∈ {0, 1}, ∀i, j, (7)

where EC
ij , (Et

ij +Er
ij +βCc

ij) is the weighted transmission
energy and processing cost of offloading and processing task
j of user i to the cloud, with β being the relative weight;
in addition, TL

i is the processing delay of tasks processed by
the mobile user i itself, T C

i is the overall transmission and
remote-processing delay for tasks of mobile user i processed
at the cloud, and ρi is the weight on the task processing delay
relative to energy consumption in the total system cost.

Depending on the performance requirement, the value of ρi

can be adjusted to impose different emphasis on delay and

5

energy consumption.5 The proposed optimization problem (5)
can be solved by any controller in this network after collecting
all required information. In practice, the controller could be
the AP. That is, each user provides its information to the AP,
and the AP broadcasts the obtained offloading decisions (and
the corresponding resource allocations) to all users by solving
problem (5).

The above mixed-integer programming problem is difficult
to solve in general. Based on the offloading decision xij for
each task, we have the total local processing delay for each
user TL

i =
∑M

j=1 T l
ij(1−xij), for all i. However, we note that

the overall delay for remote processing, T C
i , is challenging

to calculate exactly. This is because, when there are multiple
tasks offloaded by a users, the transmission times and pro-
cessing times may overlap in an unpredictable manner, which
depends on the offloading decision, communication resource
allocation, and task scheduling order. In fact, since TC

i consists
of the uplink transmission times, remote-processing time, and
downlink transmissions times of all tasks, it may be viewed
as the output of a multi-machine flowshop schedule, which
remains an open research problem [24]. Since TC

i is not
precisely tractable, we will use both upper and lower bounds of
TC

i in our proposed solution and performance benchmarking.
Under the MUMTO algorithm, they are shown to give total
system costs that are close to each other.

C. Multi-user Multi-task Offloading (MUMTO) Algorithm

The joint optimization problem (5) is a mixed-integer non-
convex programming problem. To find an efficient solution to
the original problem (5), in the following, we first propose
both upper bound and lower bound formulations of TC

i ,
then transform the optimization problem (5) into a separable
QCQP, and finally propose a separable SDR approach to obtain
the binary offloading decisions {xij} and the communication
resource allocation {ri}.

1) Bounds of Remote-Processing Delay: When a mobile
user offloads more than one task to the cloud, there will
be overlaps in the communication and processing times as
mentioned above, making it difficult to exactly characterize
the overall delay TC

i . However, we have the following upper
bound of TC

i as the worst-case delay formulation:

T
C(U)

i =
M∑

j=1

(
Din(ij)
ηu

i cu
i

+
Dout(ij)

ηd
i cd

i

+ T ac
ij + T c

ij

)

xij , ∀i. (8)

Since the worst-case delay sums the transmission delays and
processing delays together without any overlap, it will always
be greater than the real delay given the same offloading
decision and resource allocation. On the other hand, we
separate the offloading delays of all mobile users into several
components and only consider the largest one as the lower
bound of TC

i :

T
C(L)

i = max{Tu
i , T d

i , T uac
i , T dac

i , T c′

i }, ∀i, (9)

5To avoid mathematical redundancy, we only put the weight in front of
the delay and normalize the weighted sum cost to have the unit of energy.
However, it can be easily extended to an objective with some arbitrary unit
(e.g., dollars).

where Tu
i =

∑M
j=1 Din(ij)xij/(ηu

i cu
i) and T d

i =
∑M

j=1 Dout(ij)xij/(ηd
i cd

i) are total uplink and downlink trans-
mission times between the user and the AP for user i,
respectively, T uac

i =
∑M

j=1 Din(ij)xij/rac and T dac
i =

∑M
j=1 Dout(ij)xij/rac are total uplink and downlink trans-

mission times between the AP and the cloud for user i,
respectively, and T c′

i =
∑M

j=1 Y (ij)xij/f c is the total cloud
processing time for user i.

In the following, we will use the worst-case delay T
C(U)

i in
optimization problem (5) to obtain an approximate solution,
which can provide an upper bound to the total system cost.
We then use T

C(L)

i similarly, to obtain a lower bound of the
total system cost, for performance benchmarking. In Section
VI, by comparing both cases, we show that the MUMTO
algorithm based on the worst case formulation gives nearly
optimal performance.

2) QCQP Transformation and Semidefinite Relaxation:
We first replace TC

i with T
C(U)

i in problem (5), and rewrite
the integer constraint (7) as

xij(xij − 1) = 0, ∀i, j. (10)

We also introduce a additional auxiliary variable ti for
max{TL

i , T
C(U)

i }, the problem (5) is now transformed into
the following equivalent problem:

min
{xij},{ri,ti}

N∑

i=1

[M∑

j=1

(El
ij(1 − xij) + EC

ijxij) + ρiti

]

(11)

s.t.
M∑

j=1

T l
ij(1 − xij) ≤ ti, ∀i, (12)

M∑

j=1

(
Din(ij)
ηu

i cu
i

+
Dout(ij)

ηu
i cd

i

+T ac
ij +T c

ij

)

xij ≤ ti, ∀i,

(13)

(1), (2), (3), (6), and (10).

In order to obtain the eventual SDR formulation, we first
transform the optimization problem (11) into a separable
QCQP problem by the following steps.

First, we introduce two auxiliary variables Du
i and Dd

i ,
and replace constraint (13) with the following equivalent
constraints:

Du
i + Dd

i +
M∑

j=1

(T ac
ij + T c

ij)xij ≤ ti, ∀i, (14)

M∑

j=1

Din(ij)xij

ηu
i cu

i

≤ Du
i , ∀i, (15)

and
M∑

j=1

Dout(ij)xij

ηd
i cd

i

≤ Dd
i , ∀i, (16)

where (14) is the overall offloading delay constraint, and (15)
and (16) correspond to the uplink transmission time and the
downlink transmission time, respectively.

6

Next, we vectorize the variables and parameters in problem
(11). Define

wi , [xi1, . . . , xiM , cu
i , Du

i , cd
i , D

d
i , ti]T , ∀i, (17)

which is the decision vector for user i with all decision
variables. Then, the objective in problem (11) can be rewritten
as

N∑

i=1

bT
i wi +

N∑

i=1

M∑

j=1

El
ij , (18)

where bi , [(EC
i1 − El

i1), . . . , (EC
iM − El

iM), 01×4, ρi]T .
We rewrite the local processing delay constraint (12) as

(bl
i)

T wi ≤ −
M∑

j=1

T l
ij , ∀i, (19)

where bl
i , −[T l

i1, . . . , T l
iM , 01×4, 1]T . For the cloud

processing delay constraint (14), it can be rewritten as

(bc
i)

T wi ≤ 0, ∀i, (20)

where bc
i , [(T ac

i1 + T c
i1), . . . , (T ac

iM + T c
iM), 0, 1, 0, 1,−1]T .

The matrix forms of constraints (15) and (16) are

wT
i Aμ

i wi + (bμ
i)T wi ≤ 0, μ ∈ {u, d}, ∀i, (21)

where

Aμ′

i , −
1
2

[
0 ημ

i

ημ
i 0

]

, μ ∈ {u, d},

Au
i ,




0M×M 0M×2 0M×3

02×M Au′

i 02×3

03×M 03×2 03×3



 ,

Ad
i ,




0(M+2)×(M+2) 0(M+2)×2 0(M+2)×1

02×(M+2) Ad′

i 02×1

01×(M+2) 01×2 0



 ,

bu
i , [Din(i1), . . . , Din(iM), 01×5]

T ,

bd
i , [Dout(i1), . . . , Dout(iM), 01×5]

T .

The uplink and downlink bandwidth resource constraints (1)
and (2) correspond to

N∑

i=1

(bU
i)T wi = CUL, (22)

and
N∑

i=1

(bD
i)T wi = CDL, (23)

respectively, where bU
i , [01×M , 1, 01×4]T and bD

i ,
[01×M+2, 1, 01×2]T . Similarly, the total bandwidth constraint
(3) is rewritten as

N∑

i=1

(bS
i)T wi ≤ CTotal, (24)

where bS
i , [01×M , 1, 0, 1, 0, 0]T . The constraint (6) used to

ensure all variables great than or equal to 0 is replaced by

wi < 0, ∀i. (25)

Finally, we rewrite the integer constraint (10) as

wT
i diag(ej)wi − eT

j wi = 0, ∀i, j, (26)

where ej as the (M +5)×1 standard unit vector with the jth
entry being 1.

By further defining zi , [wT
i , 1]T , together with the above

matrix form presentations, and dropping the constant term∑N
i=1

∑M
j=1 El

ij from the objective function in (18), problem
(11) can now be further transformed into the following homo-
geneous separable QCQP formulation:

min
{zi}

N∑

i=1

zT
i Gizi (27)

s.t. zT
i Gl

izi ≤ −
M∑

j=1

T l
ij , ∀i, (28)

zT
i Gc

izi ≤ 0, ∀i, (29)

zT
i Gμ

i zi ≤ 0, μ ∈ {u, d}, ∀i, (30)
N∑

i=1

zT
i GU

i zi ≤ CUL,

N∑

i=1

zT
i GD

i zi ≤ CDL, (31)

N∑

i=1

zT
i GS

i zi ≤ CTotal, (32)

zT
i GI

jzi = 0, ∀i, j, (33)

zi < 0, ∀i, (34)

where

Gi ,

[
0 1

2bi
1
2b

T
i 0

]

, Gμ
i ,

[
Aμ

i
1
2b

μ
i

1
2 (bμ

i)T 0

]

, μ ∈ {u, d},

Gπ
i ,

[
0 1

2b
π
i

1
2 (bπ

i)T 0

]

, π ∈ {l, c, U,D, S},

GI
j ,

[
diag(ej) − 1

2ej

− 1
2e

T
j 0

]

.

As problems (11) and (27) are equivalent, all constraints have
one-to-one correspondence.

The optimization problem (27) is a non-convex separable
QCQP problem [25]. This problem is NP-hard. To show this,
first, we note that problems (11) and (27) are equivalent. For
problem (11), when we only consider the offloading decisions
as variables (i.e., each user has already been assigned some
fixed communication and computation resources), the problem
is reduced to a linear integer programming problem. Then, if
the ti values are further given, (e.g., ti =

∑M
j=1 Tij), problem

(11) is reduced to the 0-1 knapsack problem, which is NP-
hard.

To find an approximate solution, we apply the separable
SDR approach [26], where we relax the problem into a sepa-
rable semidefinite programming (SDP) problem. Specifically,
define Zi , zizT

i . The following equality holds:

zT
i Gzi = Tr(GZi), (35)

with rank(Zi) = 1. By dropping the rank constraint
rank(Zi) = 1, we have the following separable SDP problem:

min
{Zi}

N∑

i=1

Tr(GiZi) (36)

7

Algorithm 1 MUMTO Algorithm
1: Obtain optimal solution Z∗

i ’s of the separable SDP problem (36).
2: Extract Z∗

i (M + 6, k), for k = 1, ..., M , from Z∗
i .

3: Record the values of Z∗
i (M + 6, k), for k = 1, ..., M , as pi =

[pi1, . . . , piM]T .
4: Set xsdr

ij = round(pij), ∀i, j.
5: Set xsdr = [(xsdr

1)T , . . . , (xsdr
N)T]T , where xsdr

i =
[xsdr

i1 , . . . , xsdr
iM]T .

6: Solve the resource allocation problem (44) based on xsdr;
7: Compare the minimum cost of (44) under xsdr with those under

the local processing only and cloud processing only solutions.
Select the one that yields the minimum system cost as xsdr∗ .

8: Output: the proposed offloading solution xsdr∗ and the corre-
sponding optimal resource allocation {rsdr∗

i }.

s.t. Tr(Gl
iZi) ≤ −

M∑

j=1

T l
ij , ∀i, (37)

Tr(Gr
i Zi) ≤ 0, r ∈ {c, u, d}, ∀i, (38)

N∑

i=1

Tr(GU
i Zi) ≤ CUL,

N∑

i=1

Tr(GD
i Zi) ≤ CDL, (39)

N∑

i=1

Tr(GS
i Zi) ≤ CTotal, (40)

Tr(GI
jZi) = 0, ∀i, j, (41)

Zi(M + 6,M + 6) = 1, ∀i, (42)

Zi < 0, ∀i. (43)

The optimal solution {Z∗
i } to the above separable SDP

problem can be obtained efficiently in polynomial time using
standard SDP software, such as SeDuMi [40]. However, since
problem (36) is a relaxation of the problem (27), the optimal
objective of the problem (36) is only a lower bound of the
optimal solution of the problem (27) if {Z∗

i } does not have
rank 1. Therefore, once {Z∗

i } is obtained, we still need to
recover a rank-1 solution from {Z∗

i } for the original problem
(5). In the following, we propose an algorithm to obtain
the binary offloading decisions {xij} and the corresponding
optimal communication resource allocation {ri} for problem
(5).

3) Binary Offloading Decisions and Resource Allocation:
Define the offloading solution vector as x , [xT

1 , . . . ,xT
N]T ,

where xi , [xi1, . . . , xiM]T , for all i. Since the rank-1
constraint has been removed from the relaxed problem (36),
the obtained solution Z∗

i for problem (36) contains only real
numbers. Our goal is to obtain appropriate offloading decisions
from Z∗

i by mapping its elements to binary numbers. Note that
only the first M elements in zi correspond to the offloading
decision variables for user i (see wi in (17)). Also, we have
Zi = zizT

i and zi(M + 6) = 1, which means the last row
of Zi satisfies Zi(M + 6, k) = zi(k), for all k. Hence, we
can use the values of Z∗

i (M + 6, k) to recover the binary
offloading decision zi(k), for k = 1, ...,M . In addition, it can
be shown that Z∗

i (M +6, k) ∈ [0, 1], for k = 1, ...,M . Define
pi , [pi1, . . . , piM]T , [Z∗

i (M +6, 1), ∙ ∙ ∙ ,Z∗
i (M +6,M)]T .

We have pij ∈ [0, 1], ∀i, j. We recover the feasible decisions
xsdr

i using pi, where xsdr
ij = round(pij) is the rounding

result, and obtain the overall offloading decision as xsdr =
[(xsdr

1)T , . . . , (xsdr
N)T]T .

Once the offloading decision xsdr is obtained, the optimiza-
tion problem (5) reduces to the optimization of communication
resource allocation {ri}, which is given by

min
{ri}

(

E +
N∑

i=1

ρi max{TLi , T
C(U)

i }

)

(44)

s.t. (1), (2), (3), and (6),

where E ,
∑N

i=1

∑M
j=1(E

l
ij(1− xij) + EC

ijxij) is a constant
value once {xij} are given. This resource allocation problem
(44) is convex, which can be solved optimally using standard
convex optimization solvers. Note that to obtain the best
offloading decision, in practice, we should compare xsdr with
local processing only and cloud processing only decisions,
and select the one resulting in the minimum total system cost
objective of (44) as the final offloading decision xsdr∗ .

We summarize MUMTO in Algorithm 1. Notice that the
SDP problem (36) can be solved within precision ε by the
interior point method in O(

√
MN log(1/ε)) iterations, where

the amount of work per iteration is O(M6N4) [41], while
there are 2MN choices in exhaustive search to find the optimal
offloading decision. In addition, once the offloading decision
is made, we may schedule the multiple tasks to be offloaded in
any arbitrary order. The resultant TC

i will be less than T
C(U)

i .
To measure the effectiveness of this solution, in the following,
we introduce a lower bound of the optimal solution to the
original problem (5).

D. Lower Bound on the Optimal Solution

Previously, the cost function in our original optimiza-
tion problem (5) considers the worst-case transmission-plus-
processing delay (8) for all users. Once the offloading decision
is made, we may schedule the multiple tasks to be offloaded in
any arbitrary order. The resultant TC

i will be less than T
C(U)

i .
Therefore, the actual cost based on MUMTO will be lower
than the worst-case cost.

However, we are still interested in the performance of
MUMTO compared with an optimal solution. Therefore, we
introduce a lower bound of the optimal solution to the original
problem (5). We first introduce a new optimization problem,
where T

C(L)

i are used instead of TC
i and the objective function

is replaced by its lower bound, as follows:

min
{xij},{ri}

N∑

i=1

[M∑

j=1

(El
ij(1 − xij) + EC

ijxij)

+ ρi max{T L
i , T u

i , T d
i , T uac

i , T dac
i , T c′

i }

]

(45)

s.t. (1), (2), (3), (6), and (7).

Notice that under the same offloading decisions and commu-
nication resource allocation, this new objective function will
always give us a lower cost than the real cost.

Since the above optimization problem (45) is still non-
convex, we formulate a separable SDR problem similar to
(36), whose details are omitted due to page limitation. We

8

note that the optimal objective of this SDR problem is smaller
than the optimal objective of (45). Hence, it can serve as a
lower bound of the minimum total system cost defined by the
original optimization problem (5). In Section VI-B, we show
that MUMTO provides nearly optimal performance under a
wide range of parameter settings.

V. MULTI-USER MULTI-TASK OFFLOADING WITH CAP

When we consider the presence of a CAP, it may serve
its conventional networking function and forward the task to
the remote cloud server, or directly process the task by itself.
Each task may be processed locally at the mobile device, at
the CAP, or at the remote cloud server. An optimal offloading
decision must take into consideration the computation and
communication energies, computation costs, and communi-
cation and processing delays at all three locations. In this
section, we further study the mobile cloud computing network
with the presence of the CAP, aiming to jointly optimize the
task offloading decisions and the communication and CAP
processing resource allocation.

A. Offloading Decision

Each mobile user can process its tasks locally or offload
some of them. With the presence of a CAP, those offloaded
tasks may be processed at the CAP or be further forwarded to
the remote cloud. Instead of only using xij , we denote the of-
floading decisions for user i’s task j by xl

ij , x
a
ij , x

c
ij ∈ {0, 1},

indicating whether user i’s task j is processed locally, at the
CAP, or at the cloud, respectively. The offloading decisions
are constrained by

xl
ij + xa

ij + xc
ij = 1. (46)

Notice that only one of xl
ij , x

a
ij , and xc

ij for user i’s task j
could be 1.

B. Problem Formulation

The new total system cost is defined as the weighted sum of
total energy consumption, the costs to offload and process all
tasks, and the transmission and processing delays for all users.
Define offloading decision vector xij , [xl

ij , x
a
ij , x

c
ij]

T . With
a CAP, both communication and CAP processing resources
needs to be considered, defined by ri , [cu

i , cd
i , f

a
i]T . Similar

to Section IV-B, our objective is to minimize the total sys-
tem cost by jointly optimizing the task offloading decisions
{xij} and the communication and CAP processing resource
allocation {ri}. This optimization problem is formulated as
follows:

min
{xij},{ri}

N∑

i=1

[M∑

j=1

(El
ijx

l
ij + EA

ijx
a
ij + EC

ijx
c
ij)

+ ρi max{TL
i , T A

i , T C
i }

]

(47)

s.t. (1), (2), (3), (4), (46),

cu
i , cd

i , f
a
i ,≥ 0, ∀i, (48)

xl
ij , x

a
ij , x

c
ij ∈ {0, 1}, ∀i, j, (49)

where EA
ij , (Et

ij +Er
ij +αCa

ij) and EC
ij , (Et

ij +Er
ij +βCc

ij)
are the weighted transmission energy and processing costs of
offloading and processing task j of user i to the CAP and
cloud, with α and β being their relative weights, respectively;
also, TL

i is the processing delay of tasks processed by the
mobile user i itself, TA

i and TC
i are the overall transmission

and remote-processing delays for the tasks of mobile user
i processed at the CAP and cloud, respectively, and ρi is
the weight on the task processing delay relative to energy
consumption for user i. Comparing with the optimization
problem (5) in the no-CAP case, the above mixed-integer
programming problem (47) is even more complicated due
to the additional CAP processing cost, EA

ij , CAP processing
delay, TA

i , and the placement constraint (46).
For optimization problem (47), we have the overall local

processing delay for each user as TL
i =

∑M
j=1 T l

ijx
l
ij , for all

i. However, as similarly discussed in problem (5), the overall
delay for CAP processing, T A

i , and for cloud processing, TC
i ,

are not precisely tractable due to multiple offloaded tasks may
have overlapping transmission or processing time. Therefore,
we use both upper and lower bounds of T A

i and TC
i in our

proposed solution and performance benchmarking. We will
show later that, with the proposed MUMTO-C algorithm, the
upper and lower bounds give estimates to the total system cost
that are close to each other.

C. Multi-user Multi-task Offloading with CAP (MUMTO-C)
Algorithm

To find an efficient solution to the mixed-integer non-convex
programming problem (47), in the following, we first propose
upper-bound and lower-bound formulations of both TA

i and
TC

i , then transform the optimization problem (47) into a
separable QCQP and the corresponding SDR problem. Finally,
we will propose a three-step MUMTO-C algorithm to obtain
the binary offloading decisions {xij} and the communication
and processing resource allocation {ri}.

1) Bounds of CAP-Processing and Cloud-Processing De-
lays: Similar to Section IV-C1, we have the following upper
bounds, i.e., the worst-case delays:

T
A(U)

i =
M∑

j=1

((T t
ij + T r

ij)(x
a
ij + xc

ij) + T a
ijx

a
ij), (50)

T
C(U)

i =
M∑

j=1

((T t
ij + T r

ij)(x
a
ij + xc

ij) + (T ac
ij + T c

ij)x
c
ij). (51)

In the above expressions, T
A(U)

i and T
C(U)

i represent the
direct summing of the transmission delays and processing
delays without any overlap. They are always greater than the
actual delay given the same offloading decision and resource
allocation.

For performance benchmarking, we will also need the best-
case delays. By separating the offloading delays of all mobile
users into several components and only considering the largest
one among them, the lower bounds of TA

i and TC
i are

T
A(L)

i = max{Tu′

i , T d′

i , T a′

i }, (52)

9

T
C(L)

i = max{Tu
i , T d

i , T uac
i , T dac

i , T c′

i }, (53)

where Tu′

i =
∑M

j=1 T t
ijx

a
ij and T d′

i =
∑M

j=1 T r
ijx

a
ij are the

total uplink and downlink transmission times between the
user and the CAP for user i’s tasks processed at the CAP,
respectively, Tu

i =
∑M

j=1 T t
ijx

c
ij and T d

i =
∑M

j=1 T r
ijx

c
ij are

the total uplink and downlink transmission times between
the user and the CAP for user i’s tasks processed at the
cloud, respectively, Tuac

i =
∑M

j=1 Din(ij)xc
ij/rac and T dac

i =
∑M

j=1 Dout(ij)xc
ij/rac are the total uplink and downlink trans-

mission times between the CAP and the cloud for user i,
respectively, and T a′

i =
∑M

j=1 T a
ijx

a
ij and T c′

i =
∑M

j=1 T c
ijx

c
ij

are the total CAP and cloud processing times for user i,
respectively.

In the following subsections, we describe the details of the
proposed three-step MUMTO-C algorithm, using the worst-
case delays T

A(U)

i and T
C(U)

i in optimization problem (47) to
obtain an approximate solution, which gives an upper bound
to the actual total system cost. Furthermore, we show the local
optimum property of the obtained binary offloading decisions
{xij} and communication and processing resource allocation
{ri}. Similarly, T

A(L)

i and T
C(L)

i are used to obtain a lower
bound of the total system cost for performance benchmarking.
Finally, we show in Section VI-C that MUMTO-C achieve
actual system cost that is close to the lower bound of the
system cost, and hence is also close to the optimal system
cost.

2) Step 1: QCQP Transformation and Semidefinite Re-
laxation: As mentioned before, optimization problem (47) is
more complicated than problem (5) due to the availability of
the CAP. In order to obtain the eventual SDR formulation, we
first rewrite the integer constraint (49) as

xs
ij(x

s
ij − 1) = 0, ∀i, j, (54)

for s ∈ {l, a, c}, and replace TA
i and TC

i in (47) with T
A(U)

i

and T
C(U)

i , respectively. Following the similar procedure in
Section IV-C2, we move the delay term from the objective to
the constraints by using additional auxiliary variables ti, and
rewrite (47) as

min
{xij},{ri,ti}

N∑

i=1

[M∑

j=1

(El
ijx

l
ij + EA

ijx
a
ij + EC

ijx
c
ij) + ρiti

]

(55)

s.t.
M∑

j=1

T l
ijx

l
ij ≤ ti, ∀i,

M∑

j=1

(
Din(ij)
ηu

i cu
i

+
Dout(ij)

ηd
i cd

i

)

(xa
ij + xc

ij)

+
M∑

j=1

Y (ij)
fa

i

xa
ij ≤ ti, ∀i,

M∑

j=1

(
Din(ij)
ηu

i cu
i

+
Dout(ij)

ηd
i cd

i

)

(xa
ij + xc

ij)

+
M∑

j=1

(T ac
ij + T c

ij)x
c
ij ≤ ti, ∀i,

(1), (2), (3), (4), (46), (48), and (54).

Comparing problem (55) with problem (11), we observe
that they share a similar structure. Therefore, we can apply a
similar procedure to transform problem (55) into a non-convex
separable QCQP problem that is similar to problem (27),
with the optimization vector now defined by vi , [w̃T

i , 1]T ,
where w̃i , [xT

i1, ∙ ∙ ∙ ,xT
iM , cu

i , Du
i , cd

i , D
d
i , fa

i , Da
i , ti]T , with

Du
i , Dd

i and Da
i being the auxiliary variables introduced

corresponding to the uplink transmission time, downlink trans-
mission time, and the CAP processing time, respectively.
Auxiliary variables Du

i and Dd
i are similarly defined as in (15)

and (16), except that xij in (15) and (16) is now replaced by
(xa

ij +xc
ij). Similar to these two constraints, the new auxiliary

variable Da
i for the CAP processing time also introduces a

new constraint
∑M

j=1 Y (ij)xa
ij/fa

i ≤ Da
i . Using the separable

SDR approach, we solve the relaxed separable SDP problem
that is similar to problem (36), with optimization matrix
defined by Vi = vivT

i with size (3M + 8) × (3M + 8).
The details are omitted to avoid redundancy.

Denote {V∗
i } as the optimal solution of the corresponding

separable SDR problem for the optimization problem (55). We
need to recover a rank-one solution from {V∗

i } for problem
(55). However, the reconstruction of binary offloading decision
{xij} in Section IV-C3, as part of the MUMTO algorithm,
cannot be directly applied to find a feasible solution for
problem (55) due to the additional placement constraint (46)
for each user’s tasks. To deal with this challenge, in the
following, we propose an modified method, termed MUMTO
SDR with CAP (SDR-C), to obtain the binary offloading
decisions {xij} and the corresponding optimal communication
resource allocation {ri} from {V∗

i }.
Define x , [xT

1 , . . . ,xT
N]T , where xi , [xi1, . . . ,xiM]T ,

for all i. As similarly discussed in Section IV-C3, Vi(3M +
8, k) = vi(k), for k = 1, ∙ ∙ ∙ , 3M , which correspond to
offloading decision xi for user i. It can be proven that optimal
solution V∗

i (3M + 8, k) ∈ [0, 1], for k = 1, ..., 3M . Denote
pij , [pl

ij , p
a
ij , p

c
ij]

T and pi , [pT
i1, . . . ,p

T
iM]T , [V∗

i (3M +
8, 1), ∙ ∙ ∙ ,V∗

i (3M + 8, 3M)]T . Then, we have each element
in pi having its value within [0, 1], ∀i. We recover the feasible
decisions xsdr

i using pi as follows: for j = 1, ∙ ∙ ∙ ,M , set

xsdr
ij =






[1, 0, 0]T, if max
s∈{l,a,c}

ps
ij =pl

ij (local processing)

[0, 1, 0]T, if max
s∈{l,a,c}

ps
ij =pa

ij (CAP processing)

[0, 0, 1]T, if max
s∈{l,a,c}

ps
ij =pc

ij (cloud processing),

(56)

The overall offloading decision is obtained as xsdr =
[(xsdr

1)T , . . . , (xsdr
N)T]T .

After obtaining the offloading decision xsdr, optimization
problem (47) is reduced to the optimization of computation
and communication resource allocation {ri}, which is given
by

min
{ri}

(

E +
N∑

i=1

ρi max{TL
i , T

A(U)

i , T
C(U)

i }

)

(57)

s.t. (1), (2), (3), (4), and (48),

10

where E ,
∑N

i=1

∑M
j=1(E

l
ijx

l
ij + EA

ijx
a
ij + EC

ijx
c
ij) is a

constant value once {xij} are given. Similar to problem (44),
problem (57) is convex, so it can be solved optimally.

3) Step 2: Improvement to SDR-C by Alternating
Optimization (AO): After obtaining a feasible solution
{xsdr, {rsdr∗

i }} from the SDR-C step above, to further reduce
the overall system cost, in the following we introduce an
iterative alternating optimization method to further improve
the offloading decision, by using {xsdr, {rsdr∗

i }} as the starting
point of iteration.

As mentioned above, given any offloading decision, the
optimization problem (47) is reduced to the resource allocation
problem (57), which is convex and the optimal resource
allocation can be obtained. On the other hand, once the
resource allocation {ri} is given, the optimization problem
(47) is reduced to the optimization of offloading decisions
{xij} as follows:

min
{xij}

N∑

i=1

[M∑

j=1

(El
ijx

l
ij + EA

ijx
a
ij + EC

ijx
c
ij)

+ ρi max{TL
i , T

A(U)

i , T
C(U)

i }

]

(58)

s.t. (46) and (54).

The offloading decision problem (58) is an integer program-
ming problem. However, it can be separated into N indepen-
dent sub-problems, where each sub-problem only considers
the offloading decision of one user. As shown in [36], this can
be solved near-optimally by either using an SDR approach or
relaxing the integer constraints to interval constraints. Since
the optimization problem (47) can be separated into two sub-
problems (57) and (58). We propose the following alternating
optimization procedure to further reduce the total system cost.

Set (xao∗ , {rao∗
i }) = (xsdr, {rsdr∗

i }) as the initial point. At
each iteration:

i) Solve problem (58) based on {rao∗
i } to find the corre-

sponding offloading decision xao′ .
ii) Solve problem (57) based on xao′ to find the minimum

system cost and the corresponding resource allocation
{rao′

i }. If this provides a lower total system cost, update
(xao∗ , {rao∗

i }) = (xao′ , {rao′
i }).

Repeat steps i and ii until the the total system cost cannot be
further decreased. Then output the solution of the alternating
optimization procedure as (xao∗ , {rao∗

i }).
Note that, despite the approximation in solving (58), since

we only accept a better solution in each iteration, and the
system cost is lower bounded, AO always converges. Further-
more, by design, the solution (xao∗ , {rao∗

i }) is better than or
at least as good as (xsdr, {rsdr∗

i }).
4) Step 3: Sequential Tuning (ST) to Reach Local Opti-

mum: In this step, we propose an iterative procedure starting
from {xao∗ , {rao∗

i }}, termed sequential tuning, to further re-
duce the system cost and eventually achieve a local optimum
for (47).

Set (xst∗ , {rst∗
i }) = (xao∗ , {rao∗

i }) as the initial point. At
each iteration:

i) Randomly order the lists of all users and their tasks.

ii) Go through the user list one by one. For each examined
user, sequentially check each of its tasks for the three
possible offloading decisions, while the offloading deci-
sions of all other tasks of all users remain unchanged.
For each offloading decision, find the total system cost
by solving problem (57). As soon as some user i is found
to admit a lower total system cost by changing the of-
floading decision of one of its tasks, update (xst∗ , {rst∗

i })
to the new offloading decision and resource allocation
that give the lower cost, and exit the iteration.

Repeat steps i and ii until xst∗ converges, i.e., no change for
xst∗ can be made. Then output the solution of the sequential
turning procedure as (xst∗ , {rst∗

i }).
The above procedure is guaranteed to converge. This is

because there is a finite number of possible values for xst
i .

The iteration eventually will reach some (xst∗ , {rst∗
i }), where

the total system cost cannot be further reduced by modifying
any user’s offloading decision (and corresponding resource
allocation). It is straightforward to show that (xst∗ , {rst∗

i }) is
a local optimum of problem (47), since it gives the lowest
system cost in the joint binary-valued neighborhood of x and
neighborhood of {ri}. This result is stated in the following
proposition.

Proposition 1: The solution (xst∗ , {rst∗
i }) obtained from the

sequential tuning procedure is a locally optimal solution to the
original non-convex optimization problem (47).

5) Overall MUMTO-C Algorithm: We summarize the
above three-step MUMTO-C algorithm in Algorithm 2.

Even though each of the SDR-C, AO, and ST steps above
can be used separately to provide a feasible solution to the
original optimization problem (47), when combined together
in the proposed manner, they each serves an important role
in the overall algorithm design. First, SDR-C provides a
suitable starting point for AO. Without it, i.e., if we start
the AO iteration from some randomly chosen point in the
solution space, as shown in Section VI-C, AO can converge to
some highly sub-optimal solution. Second, with an appropriate
starting point, AO pushes the solution to one that is closer
to the optimum. This provide a suitable starting point for
ST, which helps reduce the number of iterations in ST. This
is an important step, since each of the ST iterations can
be computationally expensive, as it potentially may require
searching over a large number of tasks. Finally, ST further
improves the solution, and more importantly, it guarantees
that the final solution is a local optimum. Further numerical
evaluation of the roles and contributions of each of these steps
is given in Section VI-C.

D. Lower Bound on the Optimal Solution

Similar to the case of MUMTO in Section IV-D, to study
the performance of MUMTO-C compared with an optimal
solution, we find a lower bound of the optimal solution by
introducing a new optimization problem in which T

A(L)

i and
T

C(L)

i are used instead as

min
{xij},{ri}

N∑

i=1

[M∑

j=1

(El
ijx

l
ij + EA

ijx
a
ij + EC

ijx
c
ij)

11

Algorithm 2 MUMTO-C Algorithm
Step 1: Initial offloading solution via SDR-C

1: Transform the original problem (47) into the SDR problem and
obtain the optimal solution {V∗

i }.
2: Extract V∗

i (3M + 8, k), for k = 1, ..., 3M , from V∗
i .

3: Record the values of V∗
i (3M + 8, k), for k = 1, ..., 3M , by

pi = [pT
i1, . . . ,p

T
iM]T , where pij = [pl

ij , p
a
ij , p

c
ij]

T .
4: Set xsdr = [(xsdr

1)T , . . . , (xsdr
N)T]T , where xsdr

i is given by (56),
and solve problem (57) based on xsdr.
Step 2: Alternating optimization (AO)

5: Set (xao∗ , {rao∗
i }) = (xsdr, {rsdr∗

i }), and record the corresponding
total system cost as J ao∗ ; set AO = False.

6: while AO == False do
7: Solve problem (58) based on {rao∗

i } to find the corresponding
offloading decision xao′ ;

8: Solve problem (57) based on xao′ to find the minimum system
cost J ao′ and {rao′

i };
9: if J ao′ < J ao∗ then

10: Set (xao∗ , {rao∗
i }) = (xao′ , {rao′

i }), J ao∗ = J ao′ ;
11: else
12: Set AO = True; . Exit while loop
13: end if
14: end while

Step 3: Sequential tuning (ST)
15: Set (xst∗ , {rst∗

i }) = (xao∗ , {rao∗
i }), and record the corresponding

total system cost as J st∗ ; set ST = False.
16: while ST == False do
17: Randomly order the lists of all users and their tasks; set user

index n = 1; set task index m = 1;
18: while n ≤ N and m ≤M do
19: While keeping xst∗

n′m′ unchanged for all (n′, m′) except
(n′, m′) = (n, m), inspect the three possible offloading
choices of xst∗

nm; find their respective total system costs
by solving problem (57); set Jst′ as the minimum cost
among these three choices, and record the corresponding
solution as (xst′ , {rst′

i });
20: if J st′ < J st∗ then
21: Set (xst∗ , {rst∗

i }) = (xst′ , {rst′
i }), J st∗ = J st′ ;

n← N + 1;
22: else if n == N and m == M then
23: n← N + 1; ST = True; . No change of xst∗ can

be found; exit
24: else if n < N and m == M then
25: n← n + 1; m← 1;
26: else
27: m← m + 1;
28: end if
29: end while
30: end while
31: Output: The offloading decision xst∗ and the corresponding

resource allocation {rst∗
i }.

+ ρi max{TL
i , T

A(L)

i , T
C(L)

i }

]

(59)

s.t. (1), (2), (3), (4), (46), (48), and (54).

Under the same offloading decisions and resource allocation,
the objective function in (59) is always lower than the actual
cost. We apply the same approach to solve the corresponding
separable SDR problem of the above non-convex problem
(59). Since the optimal objective of this SDR problem is
smaller than the optimal objective of (59), it can serve as a
lower bound to the minimum total system cost defined by the
original optimization problem (47).

TABLE II
DEFAULT PARAMETER SETTINGS.

Description Default Value
number of users N 5
number of tasks per user M 4
total CAP processing rate fA 10× 109 cycle/s
cloud processing rate fc 10× 109 cycle/s
weight on CAP usage cost α 1.5× 10−7 J/bit
weight on cloud usage cost β 2.5× 10−7 J/bit
weight on delays ρi 1 J/s

In Section VI, we show that the proposed MUMTO-C
method provides not only a local optimum solution but also
nearly optimal performance compared with the lower bound.

VI. PERFORMANCE EVALUATION

In this section, we provide computer simulation to study
the performance of both proposed MUMTO and MUMTO-
C offloading solutions, respectively, under different parameter
settings.

A. Simulation Setup

The following default parameter values are used unless
specified otherwise later. We adopt the mobile device char-
acteristics from [42], which is based on a Nokia smart device.
According to Tables 1 and 3 in [42], the mobile device has
CPU rate 500 × 106 cycles/s and unit processing energy
consumption 1

730×106 J/cycle. The local computation time per
bit is 4.75 × 10−7 s and local processing energy consump-
tion per bit is 3.25 × 10−7 J. We consider the x264 CBR
encode application, which requires 1900 cycles/byte [42], i.e.,
Y (ij) = 1900Din(ij). The input and output data sizes of each
task are assumed to be uniformly distributed from 10 to 30MB
and from 1 to 3MB, respectively.

The total transmission bandwidth between the mobile users
and the CAP is set to 40 MHz, with no additional limit on
the uplink or downlink, and the transmission and receiving
energy consumptions of the mobile user are both 1.42× 10−7

J/bit as indicated in Table 2 in [42]. For simplicity, we set
ηu

i = ηd
i = 3.5 b/s/Hz for all i. When tasks are sent from the

CAP to the cloud, the transmission rate rac is 15 Mpbs. The
cloud and CAP usage costs are assumed to be Cc

ij = Din(ij)+
λ1/f c + λ2/CUL + λ3/CDL and Ca

ij = Din(ij) + λ1/fA +
λ2/CUL+λ3/CDL, respectively, where λ1 = 1018 bit×cycle/s
and λ2 = λ3 = 1016 bit×MHz, which accounts for the input
data size, processing rate, and uplink and downlink capacities.

The default values for other parameters are summarized in
Table II. Unless specified otherwise, these default values are
used in the figures below. All simulation results are obtained
by averaging over 100 realizations of the input and output data
sizes of each task.

B. Performance Evaluation for MUMTO without CAP

For comparison, we also consider the following methods: 1)
the local processing only scheme where all tasks are processed
by mobile users, 2) the cloud processing only scheme where
all tasks are offloaded to the cloud and the cost is obtained

12

1.5 2 2.5 3 3.5
 (J/bit) 10-7

1500

2000

2500

3000

3500

4000
to

ta
l c

os
t (

J)

local processing
cloud processing
MUMTO
lower bound of optimum

Fig. 2. Total system cost versus β without CAP.

0.5 1 1.5

fc (cycle/sec) 1010

2200

2400

2600

2800

3000

3200

to
ta

l c
os

t (
J)

local processing
cloud processing
MUMTO
lower bound of optimum

Fig. 3. Total system cost versus cloud CPU rate fc without CAP.

based on T
C(L)

i , 3) the lower bound of optimum, which is
obtained from the optimal objective value of the SDR of
problem (45). Notice that in all figures the real cost under the
same offloading decision and resource allocation will always
fall between the costs of the proposed MUMTO and the lower
bound of optimum.

In Fig. 2, we show the system cost vs. the weight β on
the system utility cost. When β becomes large, all tasks
are more likely to be processed by mobile users themselves.
Both MUMTO and the lower bound of optimum in this case
converge to the local processing only method. Though the
existence of the cloud can provide additional computation
capacity, the processing time at the cloud depends on the cloud
CPU rate f c assigned to each user. In Fig. 3, we plot the total
system cost vs. f c. As expected, a more powerful per-user
cloud CPU can dramatically increase system performance, and
MUMTO converges to the local processing only method when
the per-user cloud CPU rate is too slow to help.

In Fig. 4, we study the system cost under various values of
weight ρi = ρ on the delays. We observe that MUMTO sub-
stantially outperforms all other methods. Finally, we examine
the scalability of MUMTO. Fig. 5 plot the total system cost
vs. the number of tasks M per user. We see that MUMTO

0.5 1 1.5
 (J/sec)

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

to
ta

l c
os

t (
J)

local processing
cloud processing
MUMTO
lower bound of optimum

Fig. 4. Total system cost versus ρ (ρi) without CAP.

4 5 6 7 8 9 10
number of tasks per user

2000

3000

4000

5000

6000

7000

to
ta

l c
os

t (
J)

local processing
cloud processing
MUMTO
lower bound of optimum

Fig. 5. Total system cost versus the number of tasks M per user without
CAP.

is close to the lower bound of optimum, indicating that it is
nearly optimal for all M values.

C. Performance Evaluation for MUMTO-C with CAP

1) Contribution of the Algorithm Components: To demon-
strate the role and contribution of each step in the MUMTO-
C algorithm, we first compare it with the following methods:
1) the SDR-C method where only the first step of MUMTO-
C is applied, 2) the SDR-C-ST method where the AO step
is skipped, 3) the AO-ST method where only the last two
steps of MUMTO-C are applied by using random offloading
decisions for all tasks as the starting point for the iterations of
AO, 4) the ST method where only the last step of MUMTO-
C is applied by using random offloading decisions for all
tasks as the starting point for the iterations of ST, and 5) the
lower bound of optimum, which is obtained from the optimal
objective value of the SDR lower bound of problem (59).

We show the system cost and the run time ratio vs. α in
Figs. 6 and 7, respectively. Since α is the weight on the CAP
usage cost, more tasks compete at the CAP when α is smaller.
We observe that MUMTO-C can reduce the system cost by up
to 20% compared with purely applying SDR-C and is much

13

1 1.5 2 2.5 3
 (J/bit) 10-7

1200

1400

1600

1800

2000

2200

2400

2600
to

ta
l c

os
t (

J)

SDR-C
SDR-C-ST
MUMTO-C
ST
AO-ST
lower bound of optimum

Fig. 6. Total system cost versus α with CAP.

1 1.5 2 2.5 3
 (J/bit) 10-7

1

2

3

4

5

6

7

ru
n

tim
e

ra
tio

ST/MUMTO-C
AO-ST/MUMTO-C
SDR-C-ST/MUMTO-C

Fig. 7. Run time ratio versus α with CAP.

closer to the lower bound of optimum with CAP. Furthermore,
though SDR-C-ST, AO-ST, and ST can provide similarly low
cost as MUMTO-C, which can be attributed to the sequential
searching of ST, they require much longer run time to obtain
their solutions. This demonstrates that we require both the
SDR-C and AO steps in the proposed algorithm to provide
an effective starting point for the ST step to reach a local
minimum solution quickly.

Similar observations can be made in Figs. 8 and 9, where
we show the system cost and the run time ratio vs. the weight
β on the cloud usage cost, and in Figs. 10 and 11, where
we show the system cost and the run time ratio vs. M , the
number of tasks per user. When β is large, all tasks are more
likely to be processed by either the mobile users or the CAP.
More importantly, MUMTO-C is shown to be more scalable,
since the run-time ratios are nearly linearly increasing with
the number of tasks per user.

2) Comparison with Further Alternatives: For further per-
formance evaluation, we also consider the following schemes:
1) the local processing only scheme, 2) the cloud processing
only scheme, 3) the lower bound of local-cloud, which is the
same as lower bound of optimum defined in Sec. VI-B, and 4)
the random mapping scheme where each task is processed
at different locations with equal probability. As shown in

1 1.5 2 2.5 3 3.5 4 4.5 5
 (J/bit) 10-7

1500

2000

2500

3000

to
ta

l c
os

t (
J)

SDR-C
SDR-C-ST
MUMTO-C
ST
AO-ST
lower bound of optimum

Fig. 8. Total system cost versus β with CAP.

1 1.5 2 2.5 3 3.5 4 4.5 5
 (J/bit) 10-7

0

1

2

3

4

5

6

7

8

9

ru
n

tim
e

ra
tio

ST/MUMTO-C
AO-ST/MUMTO-C
SDR-C-ST/MUMTO-C

Fig. 9. Run time ratio versus β with CAP.

Figs. 12 and 13, the lower bound of optimum with CAP
converges to the lower bound of local-cloud as α becomes
large and the lower bound of local-cloud converges to the local
only method as β becomes large. In both figures, MUMTO-C
is near-optimal and substantially outperforms all alternatives
especially when the cost of using the CAP is small or the cost
of using the cloud is large.

VII. CONCLUSION

In this work, we have considered a general mobile cloud
computing system consisting of multiple users and one remote
cloud server, where each user has multiple independent tasks.
To minimize a weighted total cost of energy, computation, and
the delay of all users, we aim to find the overall optimal tasks
offloading decisions and communication resource allocation.
We show that the resultant optimization problem is a non-
convex separable QCQP. The proposed MUMTO algorithm
uses SDR and binary recovery to jointly compute the offload-
ing decision and communication resource allocation. For the
scenario with the presence of a CAP, the resultant optimization
problem is even more complicated. We further propose a
three-step MUMTO-C algorithm, which always compute a
locally optimal solution. By comparison with a lower bound
of the minimum cost for both scenarios, we show that both

14

4 5 6 7 8 9 10
number of tasks per user

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000
to

ta
l c

os
t (

J)
SDR-C
SDR-C-ST
MUMTO-C
ST
AO-ST
lower bound of optimum

Fig. 10. Total system cost versus the number of tasks M per user with CAP.

4 5 6 7 8 9 10
number of tasks per user

0

2

4

6

8

10

12

ru
n

tim
e

ra
tio

ST/MUMTO-C
AO-ST/MUMTO-C
SDR-C-ST/MUMTO-C

Fig. 11. Run time ratio versus the number of tasks M per user with CAP.

MUMTO and MUMTO-C give nearly optimal performance
and can substantially out perform existing alternatives over
a wide range of parameter settings. Finally, we remark that
there are several interesting directions for future study, such as
scheduling tasks with strict delay constraints, user mobility and
its impact on the offloading and resource allocation, designing
improved methods to better handle dynamically arriving tasks,
and investigating into a more general scenario with multiple
CAPs.

REFERENCES

[1] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision and
resource allocation for multi-user multi-task mobile cloud,” in Proc.
IEEE Int. Conf. Communications (ICC), May 2016.

[2] ——, “Joint offloading and resource allocation for computation and
communication in mobile cloud with computing access point,” in Proc.
IEEE Conf. on Computer Communications (INFOCOM), May 2017.

[3] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Netw. Appl., vol. 18, no. 1, pp.
129–140, Feb. 2013.

[4] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
Commun. Mobile Comput., vol. 13, no. 18, pp. 1587–1611, 2013.

[5] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, Apr. 2010.

1 1.5 2 2.5 3
 (J/bit) 10-7

1000

1500

2000

2500

3000

to
ta

l c
os

t (
J)

MUMTO-C
random mapping
local processing
cloud processing
lower bound of local-cloud
lower bound of optimum

Fig. 12. Total system cost versus α with CAP.

1 1.5 2 2.5 3 3.5 4 4.5 5
 (J/bit) 10-7

1000

1500

2000

2500

3000

3500

4000

4500

5000

to
ta

l c
os

t (
J)

MUMTO-C
random mapping
local processing
cloud processing
lower bound of local-cloud
lower bound of optimum

Fig. 13. Total system cost versus β with CAP.

[6] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,”
in Proc. IEEE Conf. on Computer Communications (INFOCOM), Mar.
2012, pp. 2716–2720.

[7] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–
983, Apr. 2015.

[8] S. Ren and M. van der Schaar, “Efficient resource provisioning and
rate selection for stream mining in a community cloud,” IEEE Trans.
Multimedia, vol. 15, no. 4, pp. 723–734, Jun. 2013.

[9] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy aware
offloading for competing users on a shared communication channel,”
IEEE Trans. Mobile Comput., vol. 16, no. 1, pp. 87–96, Jan. 2017.

[10] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer with
code offload,” in Proc. ACM Int. Conf. on Mobile Systems, Applications,
and Services (MobiSys), Jan. 2010, pp. 49–62.

[11] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proc. ACM Conf.
on Computer Systems (EuroSys), Apr. 2011, pp. 301–314.

[12] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dy-
namic resource allocation and parallel execution in the cloud for mobile
code offloading,” in Proc. IEEE Conf. on Computer Communications
(INFOCOM), Mar. 2012, pp. 945–953.

[13] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling policy
for collaborative execution in mobile cloud computing,” in Proc. IEEE
Conf. on Computer Communications (INFOCOM), Apr. 2013, pp. 190–
194.

[14] Y. H. Kao, B. Krishnamachari, M. R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile computing,”
in Proc. IEEE Conf. on Computer Communications (INFOCOM), Apr.
2015, pp. 1894–1902.

15

[15] S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal joint
scheduling and cloud offloading for mobile applications,” IEEE Trans.
Cloud Comput., Apr. 2016.

[16] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, “An optimal offloading
partitioning algorithm in mobile cloud computing,” in Proc. Int. Conf.
on Quantitative Evaluation of Systems, Aug. 2016, pp. 311–328.

[17] ETSI Group Specification, “Mobile edge computing (MEC); framework
and reference architecture,” ETSI GS MEC 003 V1.1.1, 2016.

[18] B. Liang, “Mobile edge computing,” in Key Technologies for 5G Wireless
Systems, V. W. S. Wong, R. Schober, D. W. K. Ng, and L.-C. Wang,
Eds., Cambridge University Press, 2017.

[19] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 2017.

[20] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, Dec. 2008.

[21] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct. 2009.

[22] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proc. ACM SIGCOMM Workshop on
Mobile Cloud Comput., Aug. 2012, pp. 13–16.

[23] G. Lewis and P. Lago, “Architectural tactics for cyber-foraging: Results
of a systematic literature review,” J. Syst. Softw., vol. 107, pp. 158 –
186, 2015.

[24] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop
and jobshop scheduling,” Math. Oper. Res., vol. 1, no. 2, pp. 117–129,
May 1976.

[25] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[26] Z.-Q. Luo, W.-K. Ma, A.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20–34, May 2010.

[27] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp.
4738–4755, Oct. 2015.

[28] R. Kaewpuang, D. Niyato, P. Wang, and E. Hossain, “A framework for
cooperative resource management in mobile cloud computing,” IEEE J.
Select. Areas Commun., vol. 31, no. 12, pp. 2685–2700, Dec. 2013.

[29] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct 2016.

[30] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Trans. Signal Inf. Process. Netw., vol. 1, no. 2, pp. 89–103, Jun.
2015.

[31] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task
offloading and resource optimization in proximate clouds,” IEEE Trans.
Veh. Technol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[32] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V. Vasi-
lakos, “Mapcloud: Mobile applications on an elastic and scalable 2-tier
cloud architecture,” in Proc. IEEE/ACM Int. Conf. on Utility and Cloud
Comput., Nov. 2012, pp. 83–90.

[33] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “Music:
Mobility-aware optimal service allocation in mobile cloud computing,”
in Proc. IEEE Int. Conf. on Cloud Comput., Jun. 2013, pp. 75–82.

[34] J. Song, Y. Cui, M. Li, J. Qiu, and R. Buyya, “Energy-traffic tradeoff
cooperative offloading for mobile cloud computing,” in Proc. IEEE Int.
Symposium of Quality of Service (IWQoS), May 2014, pp. 284–289.

[35] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei, V. Grassi,
F. Lo Presti, and V. Piccialli, “A game-theoretic approach to computation
offloading in mobile cloud computing,” Math. Prog., vol. 157, no. 2, pp.
421–449, 2016.

[36] M.-H. Chen, B. Liang, and M. Dong, “A semidefinite relaxation ap-
proach to mobile cloud offloading with computing access point,” in Proc.
IEEE Int. Workshop on Signal Process. advances in Wireless Commun.
(SPAWC), Jun. 2015, pp. 186–190.

[37] M.-H. Chen, M. Dong, and B. Liang, “Joint offloading decision and
resource allocation for mobile cloud with computing access point,” in
Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP),
Mar. 2016, pp. 3516–3520.

[38] ——, “Resource sharing of a computing access point for multi-user mo-
bile cloud offloading with delay constraints,” IEEE Trans. Mobile Com-
puting, Mar. 2018, online early access doi: 10.1109/TMC.2018.2815533.

[39] D. B. Shmoys, J. Wein, and D. P. Williamson, “Scheduling parallel
machines on-line,” SIAM J. Comput., vol. 24, no. 6, pp. 1313–1331,
Dec. 1995.

[40] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined
convex programming,” 2009. [Online]. Available: http://cvxr.com/cvx/

[41] Y. Nesterov, A. Nemirovskii, and Y. Ye, Interior-point polynomial
algorithms in convex programming. SIAM, 1994.

[42] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. USENIX Conf. on Hot Topics in Cloud
Comput. (HotCloud), Jun. 2010, pp. 4–11.

Meng-Hsi Chen received the B.S. degree in Elec-
trical Engineering and M.S. degree in Communi-
cations Engineering from the National Tsing Hua
University (NTHU), Hsinchu, Taiwan, in 2009 and
2011, respectively, and the Ph.D. degree in Electrical
and Computer Engineering from the University of
Toronto, Toronto, Canada, in 2017. His research
interests are in the areas of mobile cloud systems,
wireless communications, and optimization.

Min Dong (S’00-M’05-SM’09) received the B.Eng.
degree from Tsinghua University, Beijing, China, in
1998, and the Ph.D. degree in electrical and com-
puter engineering with minor in applied mathematics
from Cornell University, Ithaca, NY, in 2004. From
2004 to 2008, she was with Corporate Research
and Development, Qualcomm Inc., San Diego, CA.
In 2008, she joined the Department of Electrical,
Computer and Software Engineering at University
of Ontario Institute of Technology, Ontario, Canada,
where she is currently an Associate Professor. She

also holds a status-only Associate Professor appointment with the Department
of Electrical and Computer Engineering at University of Toronto. Her research
interests are in the areas of statistical signal processing for communication net-
works, cooperative communications and networking techniques, and stochastic
network optimization in dynamic networks and systems.

Dr. Dong received the Early Researcher Award from Ontario Ministry of
Research and Innovation in 2012, the Best Paper Award at IEEE ICCC in
2012, and the 2004 IEEE Signal Processing Society Best Paper Award. She
is a co-author of ICASSP 2016 Best Student Paper of Signal Processing for
Communications and Networking at IEEE ICASSP 2016. She currently serves
as an Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICA-
TIONS. She served as an Associate Editor for the IEEE TRANSACTIONS
ON SIGNAL PROCESSING (2010-2014), and as an Associate Editor for
the IEEE SIGNAL PROCESSING LETTERS (2009-2013). She was the
symposium lead co-chair of the Communications and Networks to Enable the
Smart Grid Symposium at the IEEE International Conference on Smart Grid
Communications (SmartGridComm) in 2014. She has been an elected member
of IEEE Signal Processing Society Signal Processing for Communications and
Networking (SP-COM) Technical Committee since 2013.

16

Ben Liang (S’94-M’01-SM’06-F’18) received
honors-simultaneous B.Sc. (valedictorian) and M.Sc.
degrees in Electrical Engineering from Polytechnic
University in Brooklyn, New York, in 1997 and
the Ph.D. degree in Electrical Engineering with a
minor in Computer Science from Cornell University
in Ithaca, New York, in 2001. In the 2001 - 2002
academic year, he was a visiting lecturer and post-
doctoral research associate with Cornell University.
He joined the Department of Electrical and Com-
puter Engineering at the University of Toronto in

2002, where he is now a Professor. His current research interests are in
networked systems and mobile communications. He has served as an editor
for the IEEE Transactions on Communications since 2014 and an associate
editor for the IEEE Transactions on Mobile Computing since 2017, and he
was an editor for the IEEE Transactions on Wireless Communications from
2008 to 2013 and an associate editor for Wiley Security and Communication
Networks from 2007 to 2016. He regularly serves on the organizational and
technical committees of a number of conferences. He is an IEEE Fellow and
a member of ACM and Tau Beta Pi.

