
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XXXX 1

Online Resource Procurement and Allocation in a
Hybrid Edge-Cloud Computing System

Thinh Quang Dinh, Student Member, IEEE, Ben Liang, Fellow, IEEE,
Tony Q.S. Quek, Fellow, IEEE and Hyundong Shin, Senior Member, IEEE

Abstract—By acquiring cloud-like capacities at the edge of a
network, edge computing is expected to significantly improve
user experience. In this paper, we formulate a hybrid edge-
cloud computing system where an edge device with limited
local resources can rent more from a cloud node and perform
resource allocation to serve its users. The resource procurement
and allocation decisions depend not only on the cloud’s multiple
rental options but also on the edge’s local processing cost and
capacity. We first propose an offline algorithm whose decisions
are made with full information of future demand. Then, an online
algorithm is proposed where the edge node makes irrevocable
decisions in each timeslot without future information of demand.
We show that both algorithms have constant performance bounds
from the offline optimum. Numerical results acquired with
Google cluster-usage traces indicate that the cost of the edge node
can be substantially reduced by using the proposed algorithms,
up to 80% in comparison with baseline algorithms. We also
observe how the cloud’s pricing structure and edge’s local cost
influence the procurement decisions.

Index Terms—Mobile edge computing, resource management,
competitive analysis

I. INTRODUCTION

WIthin the last decade, we have witnessed tremendous
growth of data as well as the emergence of the Internet

of Things. As a consequence, there is an outburst of digital
business that utilizes more and more complex applications with
heterogeneous resource requirements. To satisfy the increasing

Manuscript received May 05, 2019; revised September 22, 2019, Novem-
ber 18, 2019; accepted December 20, 2019. Date of publication xx xx,
xxxx. This work was supported in part by the MOE ARF Tier 2 under
Grant MOE2015-T2-2-104, the SUTD-ZJU Research Collaboration under
Grant SUTD-ZJU/RES/01/2016, the SUTD-ZJU Research Collaboration un-
der Grant SUTD-ZJU/RES/05/2016, the National Research Foundation of
Korea Grant funded by the Korea Government (MSIP) under Grant NRF-
2019K2A9A2A06024389, and a Discovery Grant from the Natural Sciences
and Engineering Research Council (NSERC) of Canada. The associate editor
coordinating the review of this paper and approving it for publication was L.
Le (Corresponding author:).

T. Q. Dinh was with Singapore University of Technology and Design,
Singapore 487372. Emails (e-mail: quangthinh dinh@alumni.sutd.edu.sg).

B. Liang is with the Department of Electrical and Computer Engineering,
University of Toronto, Toronto, ON, M5S 3G4, Canada. Emails (e-mail:
liang@ece.utoronto.ca.).

T. Q. S. Quek is with Singapore University of Technology and Design,
Singapore 487372 and also with the Department of Electronics Engineer-
ing, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Korea (e-mail:
tonyquek@sutd.edu.sg).

H. Shin is with the Department of Electronic Engineering, Kyung Hee
University, Yongin 17104, South Korea (e-mail: hshin@khu.ac.kr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier xxxxxx/TWC.xxxxxx

demand of computational power, among contemporary solu-
tions, cloud computing is favored due to its high scalability,
accessibility, and availability that come with low storage and
computing costs [1]. Cloud providers offer Infrastructure-as-
a-Service (IaaS), which is a form of cloud computing that
provides instances of virtualized physical resources, generally
termed virtual machines (VMs). For example, Amazon EC2
[2] and Microsoft Azure [3] are two such services. There
are commonly two pricing options to rent virtual resources:
on-demand and reservation [2], [3]. In the first option, the
accounting is purely based on the number of instance-hours
used, while in the second one, the users pay a reservation fee
in advance, i.e., upfront fee, in exchange for free or discounted
resource usage over a certain period. The on-demand rental is
often considered a costly option, while the same can be said
about the upfront fee in the reservation option if the reserved
instances are not used sufficiently often. For organizations
or users, it is important to achieve cost effective resource
procurement and allocation of cloud computing resources.

Resource procurement and allocation in cloud computing
environments have been well-studied [4]–[9]. Many of these
works focused on resource allocation with only an on-demand
pricing model [4]–[6]. Since reserved resources are effective
within a period of time, reservation introduces time-correlation
in the decision of both resource procurement and resource
allocation. Hence, considering both on-demand and reservation
pricing options increases the complexity of the problem. How-
ever, leveraging the discount prices offered by the reservation
option can lead to substantial cost savings [7]–[9]. In [4]–
[9], application owners/organizations were usually assumed to
possess no computing or storage capacities.

Since the storage and computation cost has dramatically
decreased over the last decade, cloud-like capacities have been
moving toward the edge network. There are similarities in
concept among Edge Computing (EC) [10]–[15], fog com-
puting [16], and cloudlets [17], where services providers or
peer helpers, with their own computational and storage power,
can implement applications at near-user servers, namely edge
devices. However, the edge devices’ capacities are limited in
comparison with cloud providers. Therefore, it is necessary to
investigate hybrid edge-cloud computing systems, specifically,
how the edge’s capacity and its local processing cost affect the
previously mentioned resource allocation problem over cloud
computing environments.

There are very few existing works considering hybrid edge-

0000–0000/00$00.00 c© 2017 IEEE

2 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XXXX

cloud system, or hierarchical fog-cloud networks, where edge
devices/lower-tier cloud nodes with their limited resource
capacities need to cooperate with high-tier ones. They usually
considered free subscription of IaaS services or a simple cost
model (e.g., purely on-demand pricing) [18]–[23], which are
either impractical or costly. Hence, it remains an open question
how edge server parameters, such as computation capacity and
processing cost, as well as the public clouds’ pricing options,
impact the edge resource allocation decision.

This paper considers a hybrid edge-cloud computing sce-
nario with an edge node and a public cloud node. The edge
node has its own VMs. However, because the arriving VM
requests can exceed the edge node’s capacity, the edge node
also rents remote VMs from the cloud and allocates requests
to either rented remote VMs or its own VMs. We propose
an optimization framework where the edge node performs
resource procurement and allocation in order to minimize its
long-term operational cost. This scenario allows us to analyze
how the edge node’s total cost can be improved by its capacity
and the cloud node’s rental options. We first propose an offline
pseudo-polynomial algorithm whose decisions are made with
full information of future demand. We then propose an online
algorithm where the edge node makes irrevocable decisions
without knowing future information. Moreover, the proposed
algorithms’ performance guarantees are derived.

The contributions of this work are summarized as follows:
• An optimization framework is formulated where the edge

node exploits its own resources and the cloud’s pricing
structure to minimize its long-term operational cost. In
the offline setting with full information of future de-
mand, since finding an optimal solution is intractable, we
propose a pseudo-polynomial approximation algorithm,
which is shown to achieve a 2-approximation ratio.

• We then propose an online algorithm that does not
require any information of future demand. A noticeable
feature here is that the proposed online strategy makes
irrevocable decisions in each time slot. It achieves a
constant competitive ratio of max{6, 2p

λ }, where p and λ
are two hyper-parameters related to the pricing structure
which will be defined later in the paper.

• Through simulations based on Google cluster-usage
traces [24], we observe that the edge node can signifi-
cantly reduce its operational cost when the edge capacity
is considered. We also observe the impact of the cloud’s
pricing structure and edge’s processing cost on the pro-
curement decisions.

The rest of the paper is organized as follows. In Section II,
we present the related work. Section III describes the system
model and the problem formulation. In Section IV, we propose
an offline algorithm to solve this problem which has pseudo-
polynomial running time. Section V proposes an online algo-
rithm for this problem and presents its performance guarantee.
Section VI discusses the empirical evaluations based on real-
world traces. Conclusions are then given in Section VII.

II. RELATED WORK

Resource procurement and allocation have been well-
studied in many existing works on cloud computing. Some

works focused on resource allocation with a simple pro-
curement model (e.g., applying just on-demand pricing) [4]–
[6]. Mao and Humphrey [4] proposed heuristic workflow
scheduling strategies which minimized the execution cost of
the workflow. They tried to ensure the jobs’ execution deadline
as a soft constraint. The Dynamic Provisioning Dynamic
Scheduling algorithm was proposed by Malawski et al. [5],
which maximized the number of executed workflows under
some quality-of-service constraints. In [6] with the same ob-
jective as in [4], tasks on a partial critical path were allocated
on the same instance by Abrishami et al.’s algorithms.

On the other hand, other studies focused on procurement
by dealing with multiple pricing options including reserved
instances in order to take advantages of discounted prices
[7]–[9]. Wang et al. [7] considered one on-demand and one
reserved instance options and proposed online cloud instance
acquisition algorithms without full information of future de-
mand, while Hu et al. [8] considered multiple options of
different reserved instances in a similar online setting. Hong et
al. [9] first proposed a dynamic programming method to rent
purely on-demand instances to reduce their system’s margin
costs, and then proposed another algorithm utilizing both
on-demand and reserved instances to achieve their system’s
optimal true costs with full information of future demand.

There are few works considering resource allocation in
hybrid clouds, edge-cloud, or fog-cloud networks. Existing
works usually considered a simple cost model such as free
cloud access or purely on-demand pricing [18]–[23]. Chen
et al. [20], [21] proposed semidefinite-programming based
algorithms in order to minimize both energy and latency of
workloads in a simple hybrid edge-cloud system. Jiao et al.
[22] considered a task scheduling problem in multi-tier cloud
computing system where the system could jointly optimize
its own computational and network resources to reduce the
resource allocation cost and resource reconfiguration cost.
Furthermore, fog-cloud systems helped to improve the perfor-
mance of current services by reducing latency and bandwidth
consumption in online gaming [18], or the operational cost of
medical cyber-physical systems [19]. All of these works con-
sidered only on-demand pricing, while ignoring the available
discounts through reservation can lead to a costly design. In
this work, we leverage the local VMs at the edge node and
remote cloud VMs in both on-demand and reservation pricing
options.

Our proposed algorithm is an online strategy where the
sequence of decisions is irrevocably made without future
knowledge [25]. In our problem, the edge node needs to
decide whether to reserve instances at any time, which can
be classified as a variant of the ski rental problem [26], a
class of rent-or-buy problems. The ski rental problem has been
expanded in multiple directions such as the Bahncard problem
in transportation [27], TCP acknowledgement problem in net-
working [28], and resource acquisition and resource allocation
in cloud computing [7], [8]. In [26]–[28], a decision maker
only deals with a single level of demand. The problem in our
scenario is more complex as cloud computing demands are
in multiple levels (e.g., multiple VMs) [7], [8]. Dealing with
multiple levels of demand, Wang et al. [7] reduced their prob-

DINH et al.: ONLINE RESOURCE PROCUREMENT AND ALLOCATION IN A HYBRID EDGE-CLOUD COMPUTING SYSTEM 3

TABLE I
NOTATION USED THROUGHOUT THE PAPER.

Notation Definition
i, t index of time
l index of demand level
dt the aggregated demand of arrival VM re-

quests at t
rt the number of remote VMs reserved at t
nt the numbers of remote reserved VMs that

remain active at t
γ the upfront price for a remote reserved VM
θ the discount cost for using a remote re-

served VM per time slot
p′ the cost to rent an on-demand VM per time

slot
λ′ the physical cost of running one VM at the

edge per time slot
τ the reservation period of a remote reserved

VM
art the number of requests assigned to remote

reserved VMs at t
aot the number of requests assigned to remote

on-demand VMs at t
awt the number of requests assigned to the edge

node’s VMs at t
w the number of VMs at the edge

lem into multiple independent two-option ski rental problems.
Hu et al. [8] considered multiple reserved instance acquisition
as a two-dimensional parking-permit problem. However, in
previous works [7], [8], the number of cloud instances which
can be rent in each option is assumed to be infinite. In our
work, adding the edge’s limited capacity changes the structure
of the problem, since here when the edge node’s capacity is
fully occupied, the excess VM requests will be assigned to
the public cloud, in either on-demand VMs or reserved VMs.
Hence, our design must account for the impact of the edge’s
capacity, coupled with the cloud’s pricing structure, on the
procurement and allocation decisions.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we describe the overall system model, ex-
plain how the resource at the cloud and the edge is utilized, and
state our optimization problem. The commonly used notation
throughout this paper is given in Table I.

A. Computing System Model with Edge and Cloud

We consider a multi-tier computing system with one cloud
node and one edge node, as shown in Fig. 1. The edge node
serves multiple users, such as mobile users or IoT devices,
which have computational jobs to be executed. The system is
time slotted. User requests arrive at the edge node in every time
slot. Let dt be the total number of VMs requested by users at

Rented VMs

VM VM

Edge node

Cloud node

High-speed link

user

user

user

Fig. 1. Computing system with edge and cloud.

time t. For simplicity, we assume that each user request lasts
for one time slot. However, our system model can be extended
to accommodate user requests that last for multiple time slots.
In that case, dt accounts for all VMs from new and on-going
user requests in time slot t. However, our analysis neglects the
cost of re-assigning these user requests between VMs.

The edge node has its own VMs to process the requests.
However, since the capacity of the edge node is limited, the
edge node may need to rent remote VMs from the cloud node
to scale up its capacity. There are multiple cloud rental options,
each of which has a different cost structure. The edge node
decides how many remote VMs it should rent and how to
assign the arriving VM requests to its own VMs or the rented
VMs.

B. Cloud’s Resource

The cloud service provider offers the edge node two options
to rent its VMs. The first option is called “on-demand” where
the edge node can immediately rent a VM that lasts for one
time slot with an on-demand price p′. In the second option,
called “reserved”, if a VM is reserved at time t, it will be
effective from t to t+τ−1, where τ is the reservation period.
Here, τ is a given value, not a decision variable. Let γ and
θ denote the upfront price of renting a single remote reserved
VM and the per-slot cost of using a reserved VM, respectively.
Obviously, we should have 0 ≤ θ ≤ p′, since otherwise there
would be no business case for reserved VMs. Table II shows
two examples of on-demand and reservation prices in Amazon
EC2. For ease of exposition, we refer to a VM rented with on-
demand price as remote on-demand VM, and a VM reserved
within τ time slots remote reserved VM.

Let rt ≥ 0 denote the number of new remote reserved VMs
that the edge node decides to rent at time t. At time t, the
number of remote reserved VMs that remain active is

nt =

t∑
i=t−τ+1

ri. (1)

Let art and aot denote the number of VM requests assigned
to remote reserved VMs and remote on-demand VMs, respec-
tively. Clearly, we have art ≤ nt, and aot = 0 if there are
unused reserved VMs, i.e., art < nt.

4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XXXX

TABLE II
PRICING OF ON-DEMAND AND RESERVED INSTANCES (LINUX, US EAST)

IN AMAZON EC2, AS OF JAN. 10, 2018 [2].

Instance type Pricing option Upfront Hourly

m3.medium On-demand $0 $0.067
1-year reservation $211 $0.016

c3.large On-demand $0 $0.105
1-year reservation $326 $0.025

C. Edge’s Resource

The edge node has its own local capacity w, i.e., the number
of local VMs at the edge node. We define awt as the number
of VM requests the edge node locally processes and λ′ as
the cost of locally processing a unit of VM request. The local
processing cost is generally defined. As an example, in Section
VI, we consider it as the electrical cost incurred by physical
processors.

Remark 1. In the extreme case where the edge node’s
processing cost is greater than or equal to the price of using
a remote on-demand VM, i.e., λ′ ≥ p′, we should not use the
edge node, and should instead allocate VM requests to remote
reserved VMs and remote on-demand VMs. Then, the problem
is reduced to the one in [7].

In the case where the usage cost of a remote reserved VM
is greater than or equal to the edge node’s processing cost,
i.e., λ′ ≤ θ, a trivial solution is to allocate the VM requests to
the edge’s VMs first. Then, the excess requests are allocated to
either remote reserved VMs or remote on-demand VMs, which
is again reduced to the problem in [7].

Hence, in this work, we only need to consider the case where
θ < λ′ < p′.

D. Problem Formulation

We consider some time period of system operation T , which
is assumed to be a multiple of τ , i.e., T = Kτ where K is
a positive integer. The user demands over this time period is
{d1, . . . , dT }. To serve these demands, the edge node decides
in each time slot awt , aot , rt, and art . Then, its total cost is

c = λ′
T∑
t=1

awt + p′
T∑
t=1

aot + γ

T∑
t=1

rt + θ

T∑
t=1

art . (2)

The first term of (2) is the total cost of processing requests
at the edge; the second one is the total cost of using remote
on-demand VMs; the third and the final one are the total costs
of reserving and using remote reserved VMs, respectively.

Remark 2. At each timeslot, if nt > 0, the edge node should
assign new VM requests to remote reserved VMs first, since
θ < λ′ < p′ as explained in Remark 1. Hence,

art = min{nt, dt}. (3)

Furthermore, since λ′ < p′, we should always allocate the
remaining requests to local processing at the edge before using
remote on-demand instances. Hence, we have

awt =

{
dt − nt, if 0 < dt − nt ≤ w,
w, if dt − nt > w,

(4)

and,

aot = (dt − awt − nt)+, (5)

where

x+ = max{0, x}.

By observing the the relation between nt, art , a
w
t and aot as

explained in Remark 2, we can rewrite (2) as the following:

c =(λ′ − θ)
T∑
t=1

awt + (p′ − θ)
T∑
t=1

(dt − awt − nt)+

+ γ

T∑
t=1

rt + θ

T∑
t=1

dt, (6)

The final term of (6) is the cost of using only pre-reserved VMs
to serve all requests, which is the minimum cost to process
tasks no matter where they are allocated since θ < λ′ < p′.
The first three terms of (6) are the extra costs if VMs are
allocated to other VMs. These terms are analogous to the first
three terms of (2).

From the above, we see that the edge node only needs to
make a sequence of reservation decisions r = {r1, . . . , rT } to
minimize the total cost, i.e.,

P1 : min
r∈NT

λ

T∑
t=1

awt + p

T∑
t=1

(dt − awt − nt)+ + γ

T∑
t=1

rt, (7)

s.t. (1) and (4),

where p := p′− θ and λ := λ′− θ. Note that since θ
∑T
t=1 dt

is a constant, minimizing (7) is equivalent to minimize (6).
We note that P1 may be viewed as an extension to the

cloud instance acquisition problem in [7], where a cloud
broker rents remote reserved VMs and remote on-demand
VMs to serve users’ demand. The cloud broker in [7] can
be considered as an edge node without local capacity, i.e.,
w = 0. In our work, since we consider a more general
edge node with local computing capacity, its capacity and the
local processing cost affect the edge node’s cloud instance
procurement decisions. This substantially alters the structure
of the optimization problem and adds to its difficulty.

In P1, we focus on the cost at the edge node to serve user
demands, without considering the difference in user experience
between edge VMs and cloud VMs. However, our formulation
is generally applicable. Often the difference in user experience
can be negligible, e.g., when the edge node and the cloud are
connected by a high-speed link. If it is not negligible, we can
modify the cost of edge usage, λ′, to reflect the priority of
VM utilization due to user experience. However, we note also
that a decreasing λ′ pushes the problem P1 toward the second
case in Remark 1, and when λ′ ≤ θ, the problem is reduced
to the one in [7].

Problem P1 is combinatorial optimization. It is generally
challenging to solve even in the offline setting where the
user demands are known in advance. In the more practical
online setting, where random user demands arrive dynamically
over time, it is even more challenging to design a solution to
provide a certain performance guarantee.

DINH et al.: ONLINE RESOURCE PROCUREMENT AND ALLOCATION IN A HYBRID EDGE-CLOUD COMPUTING SYSTEM 5

5

4

3

2

1

0 1 2 3 4 5 6

D
e
m

a
n
d

Time (hour)

Reservation Edge processing On - demand

Level 5

Level 4

Level 3

Level 2

Level 1

Fig. 2. The resource planning with τ = 6 and T = 6, r = 2 and w = 2.

E. Approximation and Competitive Ratios

In the following, we state the standard definitions of ap-
proximation and competitive ratios, which will be used in the
evaluation of the performance of the proposed solution.

Definition 1. Given a sequence of demands d =
{d1, . . . , dT }, let c∗(d) denote the offline optimal cost that
could be achieved. Suppose an offline algorithm achieves a
cost cOff(d). An approximation ratio ξ of this offline algorithm
is a constant such that for all possible d,

cOff(d)

c∗(d)
≤ ξ.

Definition 2. Given a sequence of demands d =
{d1, . . . , dT }, suppose an online algorithm achieves a cost
cOn(d). An competitive ratio ζ of this online algorithm is a
constant such that for all possible d,

cOn(d)

c∗(d)
≤ ζ.

Hence, the approximation ratio and competitive ratio are
metrics to analyze worst-case performance of offline and
online algorithms, respectively. Note that these two ratios
are greater than or equal to one. Hence, with θ ≥ 0, any
ratios obtained with respect to (7) still hold with respect
to (6). Therefore, in this work, we focus on analyzing the
approximation and competitive ratios with respect to (7).

IV. OFFLINE RESOURCE PROCUREMENT AND
ALLOCATION ALGORITHM

In this section, we propose an offline approximation algo-
rithm when the demands in all time slots d = {d1, . . . , dT }
are given, which has pseudo-polynomial run time. The design
of this offline algorithm will inspire the online algorithm in
Section V. Furthermore, its approximation ratio provides an
intermediate step to derive the competitive ratio of the online
algorithm.

A. Algorithm Description

We divide the demands into dmax levels, where dmax is
the peak demand, i.e., dmax := maxt dt. For example, in Fig.
2, the demands are divided into 5 levels. Let dlt denote the
demand at time t in level l, such that

dlt =

{
1 if dt ≥ l,
0 otherwise.

(8)

Let utilization ul denote the number of time slots dt is greater
than or equal to l, i.e.,

ul =

T∑
t=1

dlt. (9)

We note that since dlt ≤ dl−1
t , ul is a non-increasing function

with respect to l.
The offline algorithm is described as follows. First, we

consider the K non-overlapping intervals, each of τ duration,
that comprise the T time period as described in Section III-D.
Let Ik, k ∈ {1, . . . ,K}, denote the intervals. The proposed
offline algorithm decides how many remote VMs should be
reserved at the beginning of each interval Ik, i.e., when
t = (k − 1)τ + 1. Let

ulk =
∑
t∈Ik

dlt (10)

denote the utilization of level l in Ik.
Consider level l = 1. Based on Remark 2, if a VM is

reserved for the demand at this level, user requests from l = 2
to w+1 are allocated to edge VMs and the ones from l = w+2
to dmax are allocated to on-demand VMs. Otherwise, the
requests from l = 1 to w are allocated to edge VMs and
the ones from w+1 to dmax are allocated to on-demand VM.
Therefore, VM reservation is justified if

γ + λ

1+w∑
j=2

ujk + p

dmax∑
j=w+2

ujk ≤ λ
w∑
j=l

ujk + p

dmax∑
j=w+1

ujk,

which implies,

γ ≤ λu1
k + (p− λ)uw+1

k .

More generally, consider level l when l − 1 VMs are already
reserved, the reservation at level l is justified if

lγ + λ

l+w∑
j=l+1

ujk + p

dmax∑
j=l+w+1

ujk ≤ (l − 1)γ + λ

l+w−1∑
j=l

ujk + p

dmax∑
j=l+w

ujk,

which implies

γ ≤ λulk + (p− λ)ul+wk .

Therefore, from demand level l = 1 to dmax, the edge node
reserves one additional VM at each level l if and only if

γ ≤ λulk + (p− λ)ul+wk . (11)

This algorithm gives the total number of VMs that should
be reserved for Ik. Then, the user requests are allocated to
the three types of VMs according to (3), (4), and (5). We
term this the Offline Resource Procurement and Allocation
Algorithm (OfflineRPAA) and summarize it in Algorithm 1.
This algorithm has O(dmaxT) time complexity and O(T)
space complexity, where T is the length of time horizon and
dmax is the peak computing demand.

B. Performance Guarantee

In this section, we show that Algorithm 1 achieves a 2-
approximation ratio. First, let X ′ ⊂ NT denote the set of

6 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XXXX

Algorithm 1 Offline Resource Procurement and Allocation
Algorithm (OfflineRPAA)
Input: Segment T into intervals {Ik}k=1,2,...,K , each with

length τ . Initiate rt := 0 for all t. For each segment Ik,
the edge node knows dt, t ∈ Ik, the pricing structure’s
hyper-parameters γ, p, and λ.

Output: For each Ik, we compute reservation decision
r(k−1)τ+1, allocation decisions art , a

o
t and awt , t ∈ Ik.

1: for all intervals {Ik} do
2: for l = 1 to l = dmax do
3: if γ ≤ λulk + (p− λ)ul+wk then
4: r(k−1)τ+1 ← r(k−1)τ+1 + 1.
5: end if
6: end for
7: end for
8: At each time slot t,

art = min{nt, dt}

awt =

{
(dt − nt)+, if 0 ≤ dt − nt ≤ w
w, if dt − nt > w

aot = (dt − awt − nt)+.

solutions in which reservation decisions are made only at the
beginning of each interval, i.e.,

X ′ =
{
{rt} ∈ NT |rt = 0,when t 6= (k − 1)τ + 1,

k ∈ {1, . . . ,K}
}
. (12)

We will show that the solution generated by Algorithm
1 achieves the smallest cost among all r ∈ X ′ for P1.
Then, we will show that there exists a solution rf ∈ X ′ that
achieves a 2-approximation ratio. Hence, Algorithm 1 achieves
2-approximation ratio.

Finding a solution r ∈ X ′ to minimize P1 is equivalent to
the following:

P2 : min
r∈X ′

K∑
k=1

[
λ
∑
t∈Ik

awt + p
∑
t∈Ik

(dt − awt − nt)+ + γ
∑
t∈Ik

rt

]
.

Since the remote reserved VMs under Algorithm 1 span only
one interval, P2 can be decomposed into K independent sub-
problems as follows.

Pk
2 : min

r(k−1)τ+1

γr(k−1)τ+1 + p
∑
t∈Ik

(dt − awt − nt)+

+ λ
∑
t∈Ik

awt . (13)

Lemma 1. Algorithm 1 achieves an optimal decision in each
Pk

2 . In other words, Algorithm 1 provides the lowest cost for
P1, restricted to r ∈ X ′.

Proof. Firstly, the cost incurred by an algorithm is equal to the
sum of the cost of each level of demand. Hence, an algorithm
that provides the lowest sum of all levels’ cost is optimal.

Consider an interval Ik, let r+
k denote the optimal number

of reserved VMs for Ik. From (1), we have n+
t = r+

k ,∀t ∈ Ik.

According to Remark 2, at t with nt > 0, we should allocate
requests to reserved VMs first. As a result, with n+

t = r+
k , we

should allocate dt to r+
k reserved VMs first for all t ∈ Ik, i.e.,

all utilizations ulk from l = 1 to r+
k are allocated to reserved

VMs without any gaps in between.
Consider level r+

k + 1 of demand, reserving one more VM
at this level increases the cost within Ik. Formally, this is
expressed by the following inequality.

(r+
k+ 1)γ + λ

r+k +w+1∑
j=r+k +2

ujk + p

dmax∑
j=r+k +w+2

ujk >r
+
k γ + λ

r+k +w∑
j=r+k +1

ujk + p

dmax∑
j=r+k +w

ujk,

which implies

γ > λu
r+k +1

k + (p− λ)ur
+
k +w+1

k .

Since ul is a non-increasing function respect to l,

γ > λulk + (p− λ)ul+wk , ∀l > r+
k . (14)

Hence, from (14) and (11), we see that Algorithm 1 does not
reserve at any levels higher than level r+

k .
Suppose Algorithm 1 reserves VMs from levels l = 1 to l′,

and l′ < r+
k . Consider level l′+ i, i ∈ N such that l′ < l′+ i ≤

r+
k . According to Algorithm 1, since a VM is not reserved at

level l′ + i, we have

γ > λul
′+i
k + (p− λ)ul

′+i+w
k .

However, the optimal solution reserves at level l, which
implies

γ ≤ λur
+
k

k + (p− λ)ur
+
k +w

k .

Thus,

λul
′+i
k + (p− λ)ul

′+i+w
k < λu

r+k
k + (p− λ)ur

+
k +w

k . (15)

However, since ulk is a non-increasing function with respect to
l, (15) does not hold. As a result, Algorithm 1 reserves until
reaching level r+

k . The lemma is proven.

Let cAlg 1 denote the cost achieved by Algorithm 1. By
applying Lemma 1 above, we obtain the following main
proposition:

Proposition 1. Algorithm 1 has 2-approximation ratio, i.e.,
cAlg 1 ≤ 2c∗.

Proof. Let OPT denote the optimal solution where r∗ =
{r∗1 , . . . , r∗T } is the optimal reservation of P1. There exists
a solution rf ∈ X ′, whose reservation decisions rft at
t = (k − 1)τ + 1 are as follows:

rf(k−1)τ+1 =

{∑τ
i=1 r

∗
i , if k = 1,∑kτ

i=(k−2)τ+1 r
∗
i , if k = 2, . . . ,K.

(16)

We note that rf(k−1)τ+1 is the sum of the optimal reservations
in the previous interval [(k−2)τ+1, (k−1)τ] and the current
interval [(k − 1)τ + 1, kτ] when k > 1. Then, we have

T∑
t=1

rft ≤ 2

T∑
t=1

r∗t . (17)

DINH et al.: ONLINE RESOURCE PROCUREMENT AND ALLOCATION IN A HYBRID EDGE-CLOUD COMPUTING SYSTEM 7

Let n∗t and nft denote the numbers of remote reserved VMs
that remain effective at time t of the optimal strategy and rf ,
respectively. Now, we compare nft and n∗t . For t ∈ {1, . . . , τ},
we have

n∗t =

t∑
i=1

r∗i ,

nft =

t∑
i=1

rfi
{a}
= rf1 =

τ∑
i=1

r∗i ,

where
{a}
= above is because rfi = 0 if i 6= 1. Hence, nft ≥

n∗t , when t ∈ {1, . . . , τ}. For t = (k − 1)τ + j, where j ∈
{1, . . . , τ} and k > 1, we have

n∗(k−1)τ+j =

(k−1)τ+j∑
i=(k−2)τ+j+1

r∗i ,

nf(k−1)τ+j =

(k−1)τ+j∑
i=(k−2)τ+j+1

rfi
{b}
= rf(k−1)τ+1 =

kτ∑
i=(k−2)τ+1

r∗i ,

where
{b}
= above is because rft = 0 if t 6= (k − 1)τ + 1. For

any j ∈ {1, . . . , τ}, we have (k− 2)τ +1 ≤ (k− 2)τ + j +1
and kτ ≥ (k − 1)τ + j. Hence we have

nft ≥ n∗t , for t = (k − 1)τ + j, j ∈ {1, . . . , τ}.

Hence,

nft ≥ n∗t , ∀t. (18)

From (18), according to Remark 2, for both OPT and Algo-
rithm 1, given the same demand d, they both allocate requests
to remote reserved VMs first, local VMs second, and then on-
demand VM last. Therefore, we achieve

aw
f

t ≤ aw
∗

t , (19)

and

ao
f

t = (dt − aw
f

t − n
f
t)

+ ≤ (dt − aw
∗

t − n∗t)+ = ao
∗

t ,∀t.
(20)

Let c∗ and cf be the objective values of (7) of the optimal
solution and rf , respectively. From (17), (19), and (20), we
have

cf = γ

T∑
t=1

rft + p

T∑
t=1

(dt − aw
f

t − nw
f

t)+ + λ

T∑
t=1

aw
f

t

≤ 2γ

T∑
t=1

r∗t + p

T∑
t=1

(dt − aw
∗

t − n∗t)+ + λ

T∑
t=1

aw
∗

t

≤ 2c∗.

According to Lemma 1, since rf ∈ X ′, we have cAlg 1 ≤ cf .
Hence, cAlg 1 ≤ cf ≤ 2c∗. This proves the proposition.

We note that although the approximation ratio that Algo-
rithm 1 achieves is similar to that of the offline algorithm
proposed in [7], the proof of Proposition 1 is substantially
different and utilizes Remark 2 with the assumption of θ ≤
λ′ ≤ p′.

V. ONLINE RESOURCE PROCUREMENT AND ALLOCATION
ALGORITHM

In this section, we consider an online strategy without any
prior knowledge about the future demand. We keep track of
the past demand of users and make decision at each time slot
t after the current demand arrives.

A. Algorithm Description
Inspired by Algorithm 1 and Proposition 1, we again divide

the time axis into intervals of length τ timeslots. Within any of
such interval Ik, at each time slot t ∈ Ik, i.e., t = (k−1)τ + i
for i ∈ {1, . . . , τ}, we dynamically update the sequence of
reservation decisions {rt} from the current time slot to the end
of the interval. Note that since the edge node makes irrevocable
reservations, at each time slot t ∈ Ik, we can only update {rt′}
for t′ ∈ {t, . . . , kτ}. In addition, the value of rt can only
increase or remain unchanged, as we make new reservation
decisions in each timeslot.

Our decision is based on the history of demand dt, the num-
ber of previously added reserved VMs rt, and the number of
remaining active reserved VMs nt′ for t′ ∈ {t, . . . , t+ τ −1}.
Similarly to how the offline Algorithm 1 uses (11), in the
online algorithm, the edge node will reserve a VM at level l
if

γ ≤ λ
t∑

i=(k−1)τ+1

dli + (p− λ)
t∑

i=(k−1)τ+1

dl+wi . (21)

Then, the VM requests are allocated to the three types of VMs
according to Remark 2. Note that (11) suggests the edge node
should reserve at level l if the gain of reserving one more
VM is higher than its upfront cost. In contrast, (21) suggests
the edge node should reserve if the gain of the hypothetical
scenario, where the edge node had reserved a VM at the
beginning of interval Ik, is higher than the upfront cost.

We further note that in some intervals, if a remote reserved
VM is procured at level l while there is no reserved instance at
level l−1, the reserved instance is assigned at l−1. Moreover,
while there is already a VM reserved at level l, the edge node
will postpone to reserve at level l until the VM expires. The
resultant algorithm is termed the Online Resource Procurement
and Allocation Algorithm (Online RPPA) and is summarized
in Algorithm 2, which is run continuously at each timeslot t.

We note in particular that, for each time t, with the knowl-
edge of the number of remaining active reserved VM nt′ from
t′ = 1 to t+ τ − 1, if (21) is satisfied, then, from lines 4 to 8
of Algorithm 2, we inspect the number of reservations from
the current time t to the end of Ik, and then we reserve a VM
at level l only if there exists a t′ such that nt′ < l. Under this
procedure, we reserve at most one VM within Ik at any given
level l, to avoid redundant reservations.

Since T goes to infinity, we consider the complexity of
Algorithm 2 in a single time slot. Assuming that dmax is given,
it has O(dmaxτ) time complexity and O(τ) space complexity.

B. Performance Guarantee
Among the intervals of τ timeslots defined above, let

Icheap denote the set of intervals in which Algorithm 1 does

8 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XXXX

Algorithm 2 Online Resource Procurement and Allocation
Algorithm (OnlineRPAA)
Input: demand dt, corresponding Ik, previously added re-

served VM rt′ for t′ ∈ {t, . . . , kτ} and the number of re-
maining active reserved VM nt′ for t′ ∈ {t, . . . , t+τ−1},
the pricing structure’s hyper-parameters γ, p, λ

Output: updated reservation decisions r′t with t′ ∈
{t, . . . , kτ}, allocation decisions art , a

o
t and awt

1: for l = 1 to dt do
2: if γ ≤ λ

∑t
i=(k−1)τ+1 d

l
i+(p−λ)

∑t
i=(k−1)τ+1 d

l+w
i

then
3: for t′ = t to kτ do
4: if nt′ < l then
5: rt′ ← rt′ + 1.
6: end if
7: end for
8: end if
9: end for

10: The VM requests are assigned as follows:

art = min{nt, dt}

awt =

{
(dt − nt)+, if 0 ≤ dt − nt ≤ w
w, if dt − nt > w

aot = (dt − awt − nt)+.

not reserve any remote VMs, and let Iexpensive denote the
set of intervals in which Algorithm 1 reserves at least one
remote VM. Recall that the objective value of (7) achieved by
Algorithm 1 is denoted by cAlg 1. We further let cAlg 2 denote
the part of the objective value of (7) resulting from Algorithm
2. We also let ck denote the objective values of (7) within Ik

ck = γ
∑
t∈Ik

rt + λ
∑
t∈Ik

awt + p
∑
t∈Ik

(dt − awt − nt)+. (22)

Since Ik are non-overlapping intervals, cAlg 1 =
∑
k c

Alg 1
k and

cAlg 2 =
∑
k c

Alg 2
k .

Lemma 2. Within Ik ∈ Icheap, cAlg 2
k ≤ cAlg 1

k .

Proof. Algorithm 1 does not reserve any VMs within any Ik ∈
Icheap, i.e., rAlg 1

t = nAlg 1
t = 0,∀t ∈ Ik. From (21), Algorithm

2 also does not reserve any VM within Ik, i.e., rAlg 2
t = 0,∀t ∈

Ik, which is equivalent to

rAlg 1
t = rAlg 2

t = 0,∀t ∈ Ik. (23)

However, Algorithm 2 can reserve at any time t, not just
at the beginning of each Ik. Therefore, there may be some
remaining active reserved VMs from the previous interval
(which necessarily is in Iexpensive), i.e., nAlg 2

t ≥ nAlg 1
t . Hence,

similar to how we obtain (19) and (20) from (18), we have,
∀t ∈ Ik,

aw
Alg 2

t ≤ aw
Alg 1

t ,

ao
Alg 2

t = (dt − aw
Alg 2

t − nAlg 2
t)+

≤ (dt − aw
Alg 1

t − nAlg 1
t)+ = ao

Alg 1

t . (24)

Moreover, by substituting (23) and (24) into (13), we have

p
∑
t∈Ik

(dt − aw
Alg 2

t − nAlg 2
t)+ + λ

∑
t∈Ik

aw
Alg 2

t

≤p
∑
t∈Ik

(dt − aw
Alg 1

t − nAlg 1
t)+ + λ

∑
t∈Ik

aw
Alg 1

t ,

which is equivalent to

cAlg 2
k ≤ cAlg 1

k . (25)

Next, we consider an arbitrary Ik ∈ Iexpensive. For this case,
we need to define the cost of a reservation strategy (i.e., the
objective values of (7) for either Algorithm 1 or Algorithm 2)
at level l within interval Ik as follows:

ck,l =
∑
t∈Ik

[
γI(rt ≥ l) + dlt

(
λI(nt < l ≤ nt + w)

+ pI(l > nt + w)
)]

(26)

=γ
∑
t∈Ik

I(rt ≥ l) + λ
∑
t∈Ik

dltI(nt < l ≤ nt + w)

+p
∑
t∈Ik

dltI(l > nt + w), (27)

where I(·) is the indicator function.
The following lemma indicates that this definition of ck,l

properly separates the total cost by demand levels:

Lemma 3. In any interval Ik, ck =
∑
l ck,l.

Proof. Consider the first element of (27) and (22), we have∑
l

γ
∑
t∈Ik

I(rt ≥ l)

=γ
∑
l

(
I(r(k−1)τ+1 ≥ l) + . . .+ I(rkτ ≥ l)

)
=γ
(∑

l

I(r(k−1)τ+1 ≥ l) + . . .+
∑
l

I(rkτ ≥ l)
)

=γ
(
r(k−1)τ+1 + . . .+ rkτ

)
=γ

∑
t∈Ik

rt. (28)

Consider the second element of (27) and (22), we have∑
l

λ
∑
t∈Ik

dltI(nt < l ≤ nt + w)

=λ
∑
t∈Ik

[
(dt − nt)I(nt < dt ≤ nt + w) + wI(dt > nt + w)

]
=λ

∑
t∈Ik

awt . (29)

Consider the last element of (27) and (22), we have∑
l

p
∑
t∈Ik

dltI(l > nt + w)

=p
∑
t∈Ik

(dt − w − nt)I(dt > nt + w). (30)

DINH et al.: ONLINE RESOURCE PROCUREMENT AND ALLOCATION IN A HYBRID EDGE-CLOUD COMPUTING SYSTEM 9

TABLE III
POWER CONSUMPTION OF PHYSICAL PROCESSORS CORRESPONDING TO EC2 INSTANCE OFFERS.1

Instance type Equivalent Physical Processor Full Load Hourly On-demand Price
m3.medium Intel Xeon E5-2670 305W $0.067

c3.large Intel Xeon E5-2680 425W $0.105

Moreover, when nt < l ≤ nt + w, we have

awt = dt − nt.

Hence,

p
∑
t∈Ik

(dt − w − nt)I(dt > nt + w)

=p
∑
t∈Ik

(dt − w − nt)I(dt > nt + w)

+ p
∑
t∈Ik

(dt − awt − nt)I(nt < dt ≤ nt + w)

=p
∑
t∈Ik

(dt − awt − nt)+. (31)

From (28), (29), (30), and (31), we have ck =
∑
l ck,l.

Let cAlg 1
k,l and cAlg 2

k,l be the objective values of (7) for
Algorithm 1 and Algorithm 2, respectively. Then from Lemma
3, we have cAlg 1

k =
∑
l c

Alg 1
k,l and cAlg 2

k =
∑
l c

Alg 2
k,l . In

the next two lemmas, we compare cAlg 1
k,l and cAlg 2

k,l for two
difference cases of the value of level l, which are then
combined in Lemma 6 to provide a bound on the ratio between
cAlg 1
k and cAlg 2

k .

Lemma 4. Within Ik ∈ Iexpensive, let lr be the number of
VMs that Algorithm 1 reserves in the first time slot of Ik. For
l ∈ {1, . . . , lr}, cAlg 2

k,l ≤ 3cAlg 1
k,l .

Proof. The proof is omitted due to space limit.

Lemma 5. Within Ik ∈ Iexpensive, let lr be the number of
VMs that Algorithm 1 reserves in the first time slot of Ik. For
l ∈ {lr + 1, . . . , dmax}, cAlg 2

k,l ≤
p
λc

Alg 1
k,l .

Proof. At any levels at or above lr +1, Algorithm 1 does not
reserve a remote VM. Thus, (11) is not satisfied. As a result,
for any t ∈ {(k − 1)τ + 1, . . . , kτ}, (21) is also not satisfied,
which implies that Algorithm 2 does not reserve any VMs.
Hence, the cost resulted from Algorithm 1 and Algorithm
2 is from remote on-demand instances and local processing.
Since λ < p, the cost of Algorithm 1 is lower-bounded by the
local processing cost, while the cost of Algorithm 2 is upper-
bounded by the cost of using remote on-demand instances.

Thus, the ratio of
cAlg 2
k,l

cAlg 1
k,l

is upper-bounded by p
λ .

Lemma 6. Within Ik ∈ Iexpensive, cAlg 2
k ≤ max{3, pλ}c

Alg 1
k .

Proof. From Lemma 3, Lemma 4, and Lemma 5, for Ik ∈
Iexpensive, we have

cAlg 2
k

cAlg 1
k

≤ max
l

{
cAlg 2
k,l

cAlg 1
k,l

}
= max{3, p

λ
}. (32)

From Lemma 6, we obtain the following main proposition
on the performance of Algorithm 2:

Proposition 2. Algorithm 2 has max{6, 2p
λ } competitive ratio.

Proof. We have

cAlg 2

cAlg 1 =

∑
k∈Icheap

cAlg 2
k +

∑
k∈Iexpensive

cAlg 2
k∑

k∈Icheap
cAlg 1
k +

∑
k∈Iexpensive

cAlg 1
k

≤ max

{
cAlg 2
k

cAlg 1
k

|Ik ∈ Icheap,
cAlg 2
k

cAlg 1
k

|Ik ∈ Iexpensive

}
= max

{
1,max{3, p

λ
}
}

= max{3, p
λ
}.

From Proposition 1, Algorithm 1 has 2-approximation ratio,
i.e., cAlg 1 ≤ 2c∗. Hence, cAlg 2 ≤ max{6, 2p

λ }c
∗.

Next, we consider the performance of Algorithm 2 in a
special case where the local capacity at the edge node is
zero. In this case, the system is reduced to the one in [7].
However, we note that Algorithm 2 is different from the
online algorithm proposed in [7] because Algorithm 2 does
not consider past history in the beginning of each interval. It
only considers the history within each Ik. This is in contrast to
[7], where at any given t, the proposed online algorithm always
considers historical demand from t− τ +1 to t. Nevertheless,
as shown in the following, in this case Algorithm 2 has the
same competitive ratio as the online algorithm proposed in [7].

Proposition 3. When there is no edge capacity, i.e., w = 0,
Algorithm 2 has 4 competitive ratio.

Proof. The proof is omitted due to space limit.

VI. NUMERICAL RESULTS

Besides the approximation and competitive ratios derived
in the previous sections, we numerically evaluate the perfor-
mance of the proposed algorithms with extensive simulation
based on the parameters specified in Amazon pricing policies
[2] and Google cluster-usage traces [24]. We set p′ = $0.067
and γ = $1.0452. We also consider Amazon’s reserved
instance “m3.medium” whose equivalent physical processor is
Intel Xeon E5-2670.1 From [30], [31], its power consumption
in full utilization is 305 W, as shown in Table III. The edge
processing cost λ′ is set at $0.03 based on electricity usage,
assuming the electricity price at $0.1 per 1 kWh.2 Unless
otherwise specified, the default value of the edge’s capacity

1The equivalent processors are according to [29]. The power consumption
of processors is measured under stress tests in [30], [31].

2The electricity price in US in Oct. 2017 is from g8.20 to g15.40 [32].

10 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XXXX

φ(w)
1 2 3 4

T
ot

al
 c

os
t,

[m
il

li
o

n
 U

S
D

]

1.2

1.3

1.4

1.5

1.6

1.7

1.8
OPT
OfflineRPAA
OnlineRPAA

(a) Group: 1

φ(w)
1 2 3 4

T
ot

al
 c

os
t,

[m
il

lo
n

 U
S

D
]

1

1.2

1.4

1.6

1.8

2

OPT
OfflineRPAA
OfflineRPAA

(b) Group: 2

φ(w)
1 2 3 4

T
ot

al
 c

os
t,

[m
il

lo
n

 U
S

D
]

0.08

0.09

0.1

0.11

0.12

0.13

OPT
OfflineRPAA
OnlineRPAA

(c) Group: 3

Fig. 3. The impact of the edge node’s capacities on the total cost.

is set at one standard deviation of the demand, and the default
effective reservation time τ is one week. Google cluster-usage
traces were measured in one month, i.e., T = one month
(4 weeks). With these pricing structures, even though the
edge processing is computed only from electricity cost, the
competitive ratio is 6 with “m3.medium” and “c3.large”. As
explained in Section III, the value of θ is not important.
Therefore, without loss of generality, we set θ = 0.

A. Comparison Targets

We compare the performance of the two proposed algo-
rithms with the following baselines.

1. Edge and On-Demand: Here, we process VM requests
first at the edge (see Remark 2). The excess requests are
offloaded to the cloud with remote on-demand VMs. This
strategy is labeled as “E+Od”.

2. Wang et. al: Here, we apply the online algorithm pro-
posed by Wang et. al in [7] where the authors only
consider remote reserved VMs and remote on-demand
VMs. This algorithm is labeled as “Wang”.

3. Edge + Wang et. al: Here, we process VM requests first at
the edge. The excess requests are allocated by following
the algorithm “Wang” above. This strategy is labeled as
“E+Wang”.

4. On-Demand Only: Here, all VM requests are served by
remote on-demand VMs.

These algorithms are compared in different scenarios where
demands have different fluctuation levels, in order to reveal
the effects of the edge node’s capacities and the cloud node’s
pricing structure on the performance of these algorithms. We
also investigate the impact of the reservation period on the
algorithms’ performance.

B. Google Cluster-Usage Traces

Since the workload information in public clouds is often
confidential, we use Google cluster-usage traces [24] to exam-
ine the proposed algorithms in practical scenarios. We assume
that Google’s computing demands approximate public IaaS
servers’ demands [7]. Google recorded tasks arriving at one of
its server clusters of about 12500 physical machines within one

month in May 2011. Here, we use the revised data, version 2.1,
which was updated on Nov. 11, 2014. Since user names are
encrypted by strings of characters, we use function “as.factor”
in the R programming language to determine the number of
different strings. We find 901 users within the trace period.
After that, we use function “as.numeric” in R to produce a
one-to-one mapping from strings to numbers. As a result, user
names are converted from strings to numbers. Tasks arrive in
the time scale of µs, while the billing cycle of on-demand
VMs is one hour. For simplicity, each task is assumed to be
equivalent to one VM request, which takes one hour to be
processed. We also assume that an instance is required to serve
each VM request. Therefore, for each user, its demand curve
is computed by counting the number of tasks arriving in each
hour. We then analyze the users’ demand within the month.
Similar to [7], we also divide users into 3 groups based on
their demand fluctuation level, i.e., the ratio between the user
demand’s standard deviation and mean.
1. Group 1 (High Fluctuation): Users in this group have

demand fluctuation level greater than 5. There are 570
users in this group.

2. Group 2 (Medium Fluctuation): Users in this group have
demand fluctuation levels between 1 and 5. There are 308
users in this group.

3. Group 3 (Low Fluctuation): Users in this group have
demand fluctuation levels less than 1. There are 23 users
in this group.

The edge node simply adds up all users’ demand as the
aggregate demand. Since the data is recorded in one month,
the length of the aggregate demand vector is 672 timeslots in
length, which is equivalent to the number of hours in 4 weeks.

C. Impact of Edge Node’s Capacity

In this section, we investigate the impact of the edge node’s
capacity. Here, the algorithms’ performance is evaluated based
on their cost savings over purely allocating VM requests to
remote on-demand VMs. For each group, we consider the
aggregate demand of the group. Let σ denote the standard
deviation of the aggregate demand, and φ(w) = w

σ be the ratio
of edge node’s capacity over the demand standard deviation.

DINH et al.: ONLINE RESOURCE PROCUREMENT AND ALLOCATION IN A HYBRID EDGE-CLOUD COMPUTING SYSTEM 11

φ(w)
1 2 3 4

C
os

t S
av

in
g

O
ve

r
Pu

re
ly

O

n-
D

em
an

d,
 %

20

40

60

80

100

(a) Group: 1

φ(w)
1 2 3 4

C
os

t S
av

in
g

O
ve

r
Pu

re
ly

O

n-
D

em
an

d,
 %

20

40

60

80

100

(b) Group: 2

φ(w)
1 2 3 4

C
os

t S
av

in
g

O
ve

r
Pu

re
ly

O

n-
D

em
an

d,
 %

0

20

40

60

80

100

OfflineRPAA
OnlineRPAA
E+Od
Wang
E+Wang

(c) Group: 3

Fig. 4. The impact of the edge node’s capacities on the cost saving percentage of algorithms over purely assigning requests to on-demand instances.

Algorithms
OnlineRPA Wang E+Wang

T
ot

al
 C

os
t,

[m
il

li
o
n
 $

]

0

1

2

3

4

Reservation Cost
Edge Process. Cost
On-Demand Cost

Fig. 5. The cost distribution of the three algorithms with τ = 1 week at
Group 2.

We consider different edge node capacities, for five different
values of φ ∈ [0.5 1 2 3 4]. We first compare the performance
of the two proposed algorithms with the optimal solution found
by the Branch-and-Bound algorithm. Then, we study the cost
saving of the proposed algorithms over assigning on-demand
VMs, in comparison with that of the baselines.

Fig. 3 shows that the proposed offline algorithm has near
optimal performance, while the online algorithm also performs
well. Moreover, we observe the importance of edge computing
capacity. Fig. 3 suggests that the faster the demands fluctuate,
the faster the total cost decays. Thus, the local VMs at the
edge node serves to smooth out the fluctuation of the demands,
since their usage cost is in between that of on-demand VMs
and reserved VMs..

We observe in Fig. 4 that, firstly, “OfflineRPAA” and
“OnlineRPAA” outperform all alternatives. Moreover, the com-
parison between “OnlineRPAA” and “E+Wang” suggests that
an effective resource allocation algorithm should consider the
edge node’s parameters instead of a trivial solution such as
“E+Wang”. Finally, the cost savings of “OfflineRPAA” and
“OnlineRPAA” over the pure on-demand strategy increase as
the edge’s capacity increases, especial for users in Group 1,
which demonstrates the benefit of effective utilization of edge
computing.

Fig. 5 explains why “OnlineRPAA” performs significantly
better than “Wang” and “E+Wang”, using as an example users
in Group 2. As in Fig. 5, “Wang” not only reserves more
than “OnlineRPAA” but also has much higher on-demand
cost. It implies that many of reserved VMs in “Wang” are

under utilized, while “OnlineRPAA” takes advantage of edge
VMs to reduce its cost. On the other hand, in “E+Wang”,
VM requests are allocated to the edge VMs first and then the
excess ones followed “Wang”. It is observed that the cost of
reservation of “E+Wang” is slightly less than that of “Onlin-
eRPAA”. However, the on-demand cost and edge processing
cost of “E+Wang” are higher than those of “OnlineRPAA”.
Thus, we conclude that “OnlineRPAA” utilizes resources more
efficiently than “E+Wang”.

D. Impact of Reservation Period

In this section, we investigate the impact of the reservation
period on algorithm performance. We further assume that
the reservation cost γ increases proportionally with respect
to the reservation period. We observe from Fig. 6 that the
algorithms’ performance decrease when the reservation period
increases. This phenomenon is explained in Fig. 7, where
we investigate the resource allocation of “OnlineRPAA” in
different reservation periods, with users in Group 2 as an
example. We observe that, as the reservation period increases,
the number of VM requests assigned to remote reserved VMs
decreases, while the number of requests allocated to the other
two options increases. This implies that the number of reser-
vations is reduced. This is reasonable since the upfront cost γ
increases as τ increases. Since the edge node reserves less, the
performance gain of the proposed algorithms over the pure on-
demand strategy decreases. Furthermore, as shown in Fig. 6(c),
the degradation of “Wang” is faster than “OnlineRPAA’ and
“E+Wang”. This again confirms the importance of considering
the edge’s capacity.

VII. CONCLUSION

In this work, a hybrid edge-cloud system is investigated.
We consider an edge node that has finite computing capacity
and a cloud node that offers remote computing instances
under both on-demand and reservation options. The edge
node decides how to acquire computing resource from the
cloud node and allocate its local and acquired resources to
reduce its cost of serving users demands. An offline resource
procurement and allocation solution is proposed with the prior
knowledge of future demand. We then propose an online
resource procurement and allocation algorithm, which makes

12 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XXXX

Reservation Period (weeks)
1 2 3 4

C
os

t S
av

in
g

O
ve

r
Pu

re
ly

O

n-
D

em
an

d,
 %

0

20

40

60

80

100

(a) Group: 1

Reservation Period (weeks)
1 2 3 4

C
os

t S
av

in
g

O
ve

r
Pu

re
ly

O

n-
D

em
an

d,
 %

0

20

40

60

80

100

(b) Group: 2

Reservation Period (weeks)
1 2 3 4

C
os

t S
av

in
g

O
ve

r
Pu

re
ly

O

n-
D

em
an

d,
 %

0

20

40

60

80

100 OfflineRPAA
OnlineRPAA
E+Od
Wang
E+Wang

(c) Group: 3

Fig. 6. The impact of reservation periods on the cost saving percentage of algorithms over purely assigning requests to on-demand instances.

Remote Reserved VM Edge's VM Remote On-demand VM

V

M
 r

eq
ue

st
s,

 [m
il

li
o
n

 r
eq

u
es

ts
]

0

20

40

60

80

100
τ = 0.5 week
τ = 1 week
τ = 2 weeks
τ = 4 weeks

Fig. 7. VM requests allocation of OnlineRPAA with different reservation
periods at Group 2.

irrevocable decision without knowledge of future demand. For
both algorithms, the worst-case performance with respect to
the offline optimum is provided. Numerical results show the
importance of considering the edge node’s computing capac-
ity. Firstly, the existence of computing capacity at the edge
can significantly reduce its cost. Secondly, we observe that
under typical cloud and edge pricing structure, the proposed
online algorithm, which considers the edge’s cost and capacity,
significantly outperforms alternative solutions, including one
that always processes user requests first at the edge. Finally,
when the reservation period and the upfront cost are increased
proportionally, the performance of the algorithms decreases.
However, the degradation of the algorithms’ performance
lessens if the local capacity of the edge node is increased.

REFERENCES

[1] N. C. Luong, P. Wang, D. Niyato, Y. Wen, and Z. Han, “Resource
management in cloud networking using economic analysis and pricing
models: A survey,” IEEE Commun. Surveys Tuts, vol. 19, no. 2, pp.
954–1001, Second Quarter 2017.

[2] Amazon. (2018) AWS simple monthly calculator. [Online]. Available:
https://calculator.s3.amazonaws.com/index.html

[3] Microsoft. (2018) Azure pricing. [Online]. Available: https://azure.
microsoft.com/en-us/pricing/

[4] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in Proc. Int. Conf. High
Perform. Comput., Netw. Storage Anal.,, Nov. 2011, pp. 49:1–49:12.

[5] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost- and
deadline-constrained provisioning for scientific workflow ensembles in
IaaS clouds,” in Proc. Int. Conf. High Perform. Comput., Netw. Storage
Anal.,, Nov. 2012, pp. 22:1–22:11.

[6] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,”
Future Gener. Comput. Syst., vol. 29, no. 1, pp. 158–169, Jan. 2013.

[7] W. Wang, D. Niu, B. Liang, and B. Li, “Dynamic cloud instance
acquisition via IaaS cloud brokerage,” IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 6, pp. 1580–1593, Jun. 2015.

[8] X. Hu, A. Ludwig, A. Richa, and S. Schmid, “Competitive strategies for
online cloud resource allocation with discounts,” in Proc. IEEE ICDCS,
Jun. 2015, pp. 93–102.

[9] Y.-J. Hong, J. Xue, and M. Thottethodi, “Dynamic server provisioning
to minimize cost in an IaaS cloud,” in Proc. ACM SIGMETRICS, Jun.
2011, pp. 147–148.

[10] T. Q. Dinh, Q. D. La, T. Q. S. Quek, and H. Shin, “Learning for
Computation Offloading in Mobile Edge Computing,” IEEE Trans.
Commun., vol. 66, no. 12, pp. 6353–6367, Dec. 2018.

[11] R. Hsu, J. Lee, T. Q. S. Quek, and J. Chen, “Reconfigurable Security:
Edge-Computing-Based Framework for IoT,” IEEE Netw., vol. 32, no. 5,
pp. 92–99, Sep. 2018.

[12] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in
Mobile Edge Computing: Task Allocation and Computational Frequency
Scaling,” IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Aug.
2017.

[13] M. Satyanarayanan, “The emergence of edge computing,” Comput.,
vol. 50, no. 1, pp. 30–39, Jan. 2017.

[14] B. Liang, “Mobile edge computing,” in Key Technologies for 5G Wireless
Systems, V. W. S. Wong, R. Schober, D. W. K. Ng, and L.-C. Wang,
Eds. Cambridge: Cambridge University Press, 2017.

[15] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Fourthquarter
2017.

[16] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, Dec.
2016.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct. 2009.

[18] Y. Lin and H. Shen, “Cloudfog: Leveraging fog to extend cloud gaming
for thin-client MMOG with high quality of service,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 2, pp. 431–445, Feb. 2017.

[19] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost efficient re-
source management in fog computing supported medical cyber-physical
system,” IEEE Trans. Emerg. Topics Comput, vol. 5, no. 1, pp. 108–119,
Jan. 2017.

[20] M. H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in Proc. IEEE INFOCOM, May 2017.

[21] M.-H. Chen, M. Dong, and B. Liang, “Resource sharing of a com-
puting access point for multi-user mobile cloud offloading with delay
constraints,” IEEE Trans. Mobile Comput., vol. 17, no. 2, pp. 2868–
2881, Dec. 2018.

[22] L. Jiao, A. M. Tulino, J. Llorca, Y. Jin, and A. Sala, “Smoothed online
resource allocation in multi-tier distributed cloud networks,” IEEE/ACM
Trans. Netw., vol. 25, no. 4, pp. 2556–2570, Aug. 2017.

[23] J. P. Champati and B. Liang, “One-restart algorithm for scheduling and

https://calculator.s3.amazonaws.com/index.html
https://azure.microsoft.com/en-us/pricing/
https://azure.microsoft.com/en-us/pricing/

DINH et al.: ONLINE RESOURCE PROCUREMENT AND ALLOCATION IN A HYBRID EDGE-CLOUD COMPUTING SYSTEM 13

offloading in a hybrid cloud,” in Proc. IEEE IWQoS, Portland, OR, USA,
Jun. 2015.

[24] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema,” Google Inc., Mountain View, CA, USA, Technical
Report, Nov. 2011, revised 2014-11-17 for version 2.1. Posted at https:
//github.com/google/cluster-data.

[25] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. New York, NY, USA: Cambridge University Press, 1998.

[26] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki, “Compet-
itive randomized algorithms for non-uniform problems,” Algorithmica,
vol. 11, no. 6, pp. 542–571, Jun. 1994.

[27] R. Fleischer, “On the Bahncard problem,” Theor. Comput. Sci., vol. 268,
no. 1, pp. 161–174, Oct. 2001.

[28] A. R. Karlin, C. Kenyon, and D. Randall, “Dynamic TCP acknowledg-
ment and other stories about e/(e - 1),” Algorithmica, vol. 36, no. 3, pp.
209–224, Jul. 2003.

[29] A. Mishra, Amazon Web Services for Mobile Developers: Building Apps
with AWS. New York, NY, USA: John Wiley & Sons, 2017.

[30] Y. Q. Chi, J. Summers, P. Hopton, K. Deakin, A. Real, N. Kapur, and
H. Thompson, “Case study of a data centre using enclosed, immersed,
direct liquid-cooled servers,” in Proc. SEMI-THERM, Mar. 2014, pp.
164–173.

[31] S. Jarp, A. Lazzaro, J. Leduc, and A. Nowak, “Evaluation of
the Intel Sandy Bridge-EP server processor,” CERN, Geneva,
Tech. Rep. CERN-IT-Note-2012-005, Mar 2012. [Online]. Available:
http://cds.cern.ch/record/1434748

[32] U.S. Energy Information Administration. (2017, Oct.) Electric power
monthly. [Online]. Available: https://www.eia.gov/electricity/monthly/
epm table grapher.php?t=epmt 5 6 a

Thinh Quang Dinh (S’17) received the B.Eng.
degree (with first-class honours) in Electrical and
Electronic Engineering (specializing in Telecommu-
nications) from Ho Chi Minh City University of
Technology (HCMUT), Vietnam in 2013, and the
Ph.D. degree from Singapore University of Technol-
ogy and Design (SUTD) in 2019 under the SUTD
President’s Graduate Fellowship. Currently, he is
now a Data Scientist at Trusting Social. His main
research interests are the mathematical application
of optimization, machine learning and game theory

to communication, networking and resource allocation problems in Mobile
Edge Computing.

Ben Liang (S’94-M’01-SM’06-F’18) received
honors-simultaneous B.Sc. (valedictorian) and M.Sc.
degrees in Electrical Engineering from Polytechnic
University in Brooklyn, New York, in 1997 and
the Ph.D. degree in Electrical Engineering with a
minor in Computer Science from Cornell University
in Ithaca, New York, in 2001. In the 2001 - 2002
academic year, he was a visiting lecturer and post-
doctoral research associate at Cornell University. He
joined the Department of Electrical and Computer
Engineering at the University of Toronto in 2002,

where he is now a Professor. His current research interests are in networked
systems and mobile communications. He has served on the editorial boards
of the IEEE Transactions on Mobile Computing since 2017 and the IEEE
Transactions on Communications since 2014, and he was an editor for the
IEEE Transactions on Wireless Communications from 2008 to 2013 and an
associate editor for Wiley Security and Communication Networks from 2007
to 2016. He regularly serves on the organizational and technical committees
of a number of conferences. He is a Fellow of IEEE and a member of ACM
and Tau Beta Pi.

Tony Q.S. Quek (S’98-M’08-SM’12-F’18) received
the B.E. and M.E. degrees in electrical and electron-
ics engineering from the Tokyo Institute of Tech-
nology, Tokyo, Japan, in 1998 and 2000, respec-
tively, and the Ph.D. degree in electrical engineer-
ing and computer science from the Massachusetts
Institute of Technology, Cambridge, MA, USA, in
2008. Currently, he is the Cheng Tsang Man Chair
Professor with Singapore University of Technology
and Design (SUTD). He also serves as the Acting
Head of ISTD Pillar, Sector Lead of the SUTD AI

Program, and the Deputy Director of the SUTD-ZJU IDEA. His current
research topics include wireless communications and networking, network
intelligence, internet-of-things, URLLC, and big data processing.

Dr. Quek has been actively involved in organizing and chairing sessions,
and has served as a member of the Technical Program Committee as
well as symposium chairs in a number of international conferences. He is
currently serving as an Editor for the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS, the Chair of IEEE VTS Technical Committee on Deep
Learning for Wireless Communications as well as an elected member of the
IEEE Signal Processing Society SPCOM Technical Committee. He was an
Executive Editorial Committee Member for the IEEE TRANSACTIONS ON
WIRELESS COMMUNICATIONS, an Editor for the IEEE TRANSACTIONS ON
COMMUNICATIONS, and an Editor for the IEEE WIRELESS COMMUNICA-
TIONS LETTERS.

Dr. Quek was honored with the 2008 Philip Yeo Prize for Outstanding
Achievement in Research, the 2012 IEEE William R. Bennett Prize, the 2015
SUTD Outstanding Education Awards – Excellence in Research, the 2016
IEEE Signal Processing Society Young Author Best Paper Award, the 2017
CTTC Early Achievement Award, the 2017 IEEE ComSoc AP Outstanding
Paper Award, and the 2016-2019 Clarivate Analytics Highly Cited Researcher.
He is a Distinguished Lecturer of the IEEE Communications Society and a
Fellow of IEEE.

Hyundong Shin (S’01-M’04-SM’11) received the
B.S. degree in electronics engineering from Kyung
Hee University (KHU), Yongin-si, Korea, in 1999,
and the M.S. and Ph.D. degrees in electrical engi-
neering from Seoul National University, Seoul, Ko-
rea, in 2001 and 2004, respectively. During his post-
doctoral research at the Massachusetts Institute of
Technology (MIT) from 2004 to 2006, he was with
the Wireless Communication and Network Sciences
Laboratory within the Laboratory for Information
Decision Systems (LIDS).

In 2006, Dr. Shin joined the KHU, where he is now a Professor at the
Department of Electronic Engineering. His research interests include quantum
information science, wireless communication, and nanonetworks.

Dr. Shin was honored with the Knowledge Creation Award in the field of
Computer Science from Korean Ministry of Education, Science and Tech-
nology (2010). He received the IEEE Communications Society’s Guglielmo
Marconi Prize Paper Award (2008) and William R. Bennett Prize Paper Award
(2012). He served as a Publicity co-chair for the IEEE PIMRC (2018) and a
Technical Program co-chair for the IEEE WCNC (PHY Track 2009) and the
IEEE Globecom (Communication Theory Symposium 2012, Cognitive Radio
and Networks Symposium 2016). He was an Editor for IEEE Transactions
on Wireless Communications (2007-2012) and IEEE Communications Letters
(2013-2015).

https://github.com/google/cluster-data
https://github.com/google/cluster-data
http://cds.cern.ch/record/1434748
https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a
https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a

	Introduction
	Related Work
	System Model and Problem Statement
	Computing System Model with Edge and Cloud
	Cloud's Resource
	Edge's Resource
	Problem Formulation
	Approximation and Competitive Ratios

	Offline Resource Procurement and Allocation Algorithm
	Algorithm Description
	Performance Guarantee

	Online Resource Procurement and Allocation Algorithm
	Algorithm Description
	Performance Guarantee

	Numerical Results
	Comparison Targets
	Google Cluster-Usage Traces
	Impact of Edge Node's Capacity
	Impact of Reservation Period

	Conclusion
	References
	Biographies
	Thinh Quang Dinh
	Ben Liang
	Tony Q.S. Quek
	Hyundong Shin

