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Abstract—We consider online coordinated precoding design for
downlink wireless network virtualization (WNV) in a multi-cell
multiple-input multiple-output (MIMO) network with imperfect
channel state information (CSI). In our WNV framework, an
infrastructure provider (InP) owns each base station that is
shared by several service providers (SPs) oblivious of each
other. The SPs design their precoders as virtualization demands
for user services, while the InP designs the actual precoding
solution to meet the service demands from the SPs. Our aim
is to minimize the long-term time-averaged expected precoding
deviation over MIMO fading channels, subject to both per-cell
long-term and short-term transmit power limits. We propose an
online coordinated precoding algorithm for virtualization, which
provides a fully distributed semi-closed-form precoding solution
at each cell, based only on the current imperfect CSI without
any CSI exchange across cells. Taking into account the two-
fold impact of imperfect CSI on both the InP and the SPs,
we show that our proposed algorithm is within an O(δ) gap
from the optimum over any time horizon, where δ is a CSI
inaccuracy indicator. Simulation results validate the performance
of our proposed algorithm under two commonly used precoding
techniques in a typical urban micro-cell network environment.

Index Terms—Wireless network virtualization, massive MIMO,
imperfect CSI, coordinated precoding, Lyapunov optimization,
distributed algorithm.

I. INTRODUCTION

Wireless network virtualization (WNV) aims at sharing
a common network infrastructure among multiple virtual
networks to reduce the capital and operational expenses of
wireless networks [2]. In WNV, the infrastructure provider
(InP) virtualizes the physical wireless infrastructure and ra-
dio resource into virtual slices, while the service providers
(SPs) lease these virtual slices and serve their subscribing
users under their respective management and requirements [3].
Different from wired network virtualization, WNV concerns
the sharing of both the wireless hardware and the radio spec-
trum. The random nature of the wireless medium brings new
challenges to guarantee the isolation of virtual networks [4].

Juncheng Wang and Ben Liang are with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
(e-mail: jcwang@ece.utoronto.ca; liang@ece.utoronto.ca).

Min Dong is with the Department of Electrical, Computer and Software
Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada (e-
mail: min.dong@ontariotechu.ca).

Gary Boudreau is with Ericsson Canada, Ottawa, ON K2K 2V6, Canada
(e-mail: gary.boudreau@ericsson.com).

This work was supported in part by Ericsson Canada and by the Natural
Sciences and Engineering Research Council of Canada under Discovery
Grants.

A preliminary version of this work was presented in IEEE Interna-
tional Conference on Computer Communications (INFOCOM), 2020 [1]
(DOI: 10.1109/INFOCOM41043.2020.9155347).

In this work, we focus on downlink WNV in a multi-
cell multiple-input multiple-output (MIMO) system, where
multiple InP-owned base stations (BSs), each with multiple
antennas, are shared by multiple SPs to serve their subscribing
users. Most prior studies on MIMO WNV considered strict
physical isolation, where the InP allocates exclusive subsets of
antennas or orthogonal sub-channels to each SP [5]-[12]. This
physical isolation approach is inherited from wired network
virtualization [13]. It does not take full advantage of spatial
spectrum sharing enabled by MIMO precoding. In contrast, in
[14], a spatial isolation approach was proposed for a single-cell
MIMO system, where the SPs share all antennas and spectrum
resource simultaneously. The SPs design their respective vir-
tual precoding matrices as virtualization demands, based on
their users’ local channel states and service needs. Since the
SPs are oblivious of each other, direct implementation of their
requested precoding matrices would induce an unacceptable
amount of interference to each other. Instead, the InP designs
the actual downlink precoding to mitigate the inter-SP interfer-
ence while satisfying the SPs’ virtualization demands. It has
been demonstrated in [14] that, with an optimally designed InP
precoding matrix, such a spatial isolation approach substan-
tially outperforms the physical isolation approach. Adopting
the same virtualization approach, in this work, we consider
WNV in a multi-cell MIMO system.

All of the above works on MIMO WNV have focused on
per-slot design optimization problems, subject to a per-slot
transmit power constraint. Besides this short-term power limit,
the long-term average transmit power is an important indica-
tor of energy usage [15]. Under the long-term power limit,
the virtualization design becomes a stochastic optimization
problem, depending on the underlying channel state variation
over time. In this work, we consider the online optimization
of MIMO WNV under both short-term and long-term power
constraints. Our objective is to design optimal global downlink
precoding at the InP to serve all users simultaneously, given
the set of local virtualization demands from SPs based on
their users’ service needs. Note that although the SPs are
oblivious of each other when providing their virtualization
demands, the InP needs to handle both inter-SP and inter-
cell interference while trying to meet each SP’s virtualization
demand. Thus, the optimization criterion is the long-term time-
averaged deviation between the SPs’ virtualization demands
and the actual received signals at their users.

In a traditional non-virtualized multi-cell network, coor-
dinated precoding across the BSs has been widely adopted
as a key technique to mitigate inter-cell interference [16]-
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[24]. It provides significant performance improvement over
non-coordinated networks. Furthermore, coordinated precod-
ing only requires precoding coordination without the need to
share transmit data across cells or stringent synchronization
among cells. In this work, we use coordinated precoding at the
InP to mitigate inter-cell interference. Multi-cell coordinated
precoding has been extensively studied in the literature for
non-virtualized networks and has been mainly considered as a
deterministic problem for per-slot optimization with short-term
constraints. New challenges arise for online multi-cell coordi-
nated MIMO WNV. Specifically, since the SPs are oblivious of
each other, it is not effective for each SP to manage inter-cell
interference on its own. Therefore, we consider the scenario
where each SP only has the channel state information (CSI) of
its subscribing users in each cell (i.e., those users in a virtual
cell), without access to the CSI of other SPs’ users within
the cell or users in the other cells. As a result, their virtual
precoding demands sent to the InP do not consider either inter-
SP or inter-cell interference. Thus, the InP must intelligently
design the online precoder to manage the interference among
different SPs and cells while trying to meet the SPs’ virtual
precoding demands in the long run. This online virtualized
coordinated precoding design problem is more challenging
than the traditional one in the non-virtualized scenario.

Besides the challenges mentioned above, in practical wire-
less systems, there are unavoidable CSI errors introduced
by channel estimation, quantization, and imperfect feedback,
especially for MIMO fading channels. These errors may
cause significant precoding performance degradation. Thus,
it is important to account for such CSI errors in our online
virtualization design and analyze the impact of CSI errors on
the virtualization performance. Some existing MIMO WNV
solutions can accommodate imperfect CSI [6], [8], [9], [14].
However, these works do not allow the SPs to provide their
virtualization demands based on the available CSI adaptively.
Therefore, the impact of imperfect CSI is only on the InP’s
virtualization strategy. In contrast, in our problem, as both the
InP and the SPs rely on the CSI to design their respective
actual precoder and virtual demands, the CSI error affects the
design accuracy at both sides, resulting in a two-fold impact
on the final virtualization design performance.

In this paper, we present an online design of downlink
MIMO WNV over MIMO fading channels in the presence
of imperfect CSI. To facilitate the modeling, formulation, and
analysis, we first focus on the single-cell case and then extend
our study to the multi-cell scenario. The main contributions
of this paper are summarized below:

• We use the spatial isolation approach to formulate the
downlink multi-cell MIMO WNV as an online coordi-
nated precoding problem for efficient spatial and spec-
trum resource sharing, subject to both short-term and
long-term transmit power constraints at each cell. Each
SP locally designs its precoder in a cell based on the
imperfect local CSI without the knowledge of other SPs’
users in this cell or users in other cells. The InP designs
the global precoder based on the imperfect global CSI.
The objective is to minimize the long-term time-averaged
expected deviation between the received signals from the

InP’s actual precoder and the SPs’ virtualization demands,
which implicitly mitigates both inter-SP and inter-cell
interference.

• Assuming MIMO fading channel with a bounded CSI
error, we propose an online multi-cell coordinated MIMO
WNV algorithm, where we develop new techniques to ex-
tend the standard Lyapunov optimization to handle imper-
fect CSI. Our proposed algorithm provides downlink pre-
coding based only on the current imperfect CSI. Further-
more, our online precoding solution is fully distributed
and in semi-closed form, which can be implemented at
each cell without any CSI exchange across cells.

• We provide in-depth performance analysis of our pro-
posed algorithm. We show that, over any given time
horizon, our proposed algorithm using only the current
imperfect CSI can achieve a performance arbitrarily close
to an O(δ) gap to the optimal performance under perfect
CSI, where δ is a normalized measure of CSI error.
Our performance analysis takes into account the effect of
imperfect CSI on both the InP and the SPs. To the best of
our knowledge, this is the first work to analyze such two-
fold impact of imperfect CSI on the design performance.

• Our simulation study under typical urban micro-cell
Long-Term Evolution (LTE) network settings demon-
strates that the proposed algorithm has a fast convergence
rate and is robust to imperfect CSI. We further demon-
strate the performance advantage of our proposed spatial
virtualization approach over the traditional physical iso-
lation approach.

The rest of the paper is organized as follows. In Section II,
we present the related work. Section III describes the single-
cell system model and problem formulation. In Section IV, we
present our online algorithm and precoding solution for the
single-cell case. Performance bounds are provided in Section
V. In Section VI, we extend the virtualization model and
problem to the multi-cell case, present the proposed online al-
gorithm, and provide performance analysis. Simulation results
are presented in Section VII, followed by concluding remarks
in Section VIII.

Notations: The transpose, complex conjugate, Hermitian
transpose, inverse, Euclidean norm, Frobenius norm, trace, and
the (i, j) element of a matrix A are denoted by AT , A∗,
AH , A−1, ‖A‖2, ‖A‖F , Tr{A}, and [A]i,j , respectively. A
positive definite matrix is denoted as A � 0. The notation
blkdiag{A1, . . . ,An} denotes a block diagonal matrix with
diagonal elements being matrices A1, . . .An, I denotes an
identity matrix, E{∙} denotes expectation, and <{∙} denotes
the real part of the enclosed parameter. For g being an n× 1
vector, g ∼ CN (0, σ2I) means that g is a circular complex
Gaussian random vector with mean 0 and variance σ2I.

II. RELATED WORK

Among existing works on MIMO WNV that enforce strict
physical isolation, [5] and [6] studied the problems of through-
put maximization and energy minimization, respectively. Both
considered the orthogonal frequency division multiple access
system with massive MIMO. A two-level hierarchical auction
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architecture was proposed in [7] to allocate exclusive sub-
carriers among the SPs. The uplink resource allocation prob-
lems were investigated in [8] and [9], combining MIMO WNV
with the cloud radio networks and non-orthogonal multiple
access techniques, respectively. Antenna allocation through
pricing was studied in [10] for virtualized massive MIMO
systems. Learning based auction mechanism was proposed
in [11] to allocate subchannels among users for revenue
maximization at the InP. The allocation of orthogonal re-
source blocks to SPs was proposed through a cross-layer
optimization approach [12]. The spatial isolation approach
was first proposed in [14], where virtualization is achieved by
MIMO precoding design. It has been demonstrated that this
approach substantially outperforms the strict physical isolation
approach. All the above works on MIMO WNV focus on per-
slot problems in single-cell systems. For multi-cell systems, a
per-slot coordinated precoding design for MIMO WNV with
perfect CSI was proposed in [25] under a short-term transmit
power constraint. Other design objectives for multi-cell WNV
were also considered, such as resource allocation, pricing, or
auction [26]-[30]. However, these works do not utilize MIMO
antennas in WNV and therefore are not directly comparable
with our work.

Various online transmission and resource allocation prob-
lems in non-virtualized wireless systems have been studied
in [31]-[35]. The general Lyapunov optimization technique
[36] was applied to develop the online schemes in [31]-[33].
Online power control for wireless transmission with energy
harvesting and storage was studied for point-to-point trans-
mission [31] and two-hop relaying [32]. Dynamic precoding
design for point-to-point MIMO systems was studied in [33],
by extending standard Lyapunov optimization to deal with
imperfect CSI. Online convex optimization technique [37] was
applied for MIMO uplink precoding design in [34] and [35].
Recently, the Lyapunov optimization technique and online
convex optimization technique were used to design online
downlink precoding for MIMO WNV with perfect CSI [38]
and delayed CSI [39], respectively. Neither of their CSI models
apply to the present work, and furthermore they are still limited
to single-cell systems.

In this work, we study online coordinated multi-cell WNV
over MIMO fading channels with imperfect CSI. The work
in [33] is the most related to our problem. However, our
MIMO virtualization problem is more challenging with several
key differences: 1) we design MIMO precoding for virtual-
ization, which features a virtualization demand and response
mechanism between the InP and the SPs; 2) the SPs are
oblivious of each other but share antennas and spectrum
resource provided by the InP; 3) both the InP and the SPs
design either actual precoding or virtual demands based on
imperfect CSI; 4) our online coordinated precoding is for
virtualization in multi-cell systems, where we need to consider
inter-cell interference and per-cell transmit power limit. These
unique features for virtualization bring new challenges to
the design of online algorithm and the performance analysis,
which were not considered in [33]. In particular, imperfect
CSI has a two-fold impact on both the InP and the SPs for
their respective precoding designs. New techniques need to be

developed to bound the virtualization performance measured
by the difference between the SPs’ virtualization demands and
the InP’s actual precoding outcome. Furthermore, the online
algorithm and performance analysis in [33] are confined to
point-to-point MIMO systems, while we consider a general
multi-cell network.

In traditional non-virtualized cellular networks, multi-cell
coordinated precoding has been widely considered to mitigate
inter-cell interference for significant performance improve-
ment for traditional multi-antenna systems [16]-[21] and for
massive MIMO systems [22]-[24]. All of these existing works
study coordinated precoding design as deterministic optimiza-
tion problems with given CSI in the current time slot and per-
slot maximum transmit power limit. Coordinated precoding
problems were studied for various design objectives, such as
weighted sum transmit power minimization [16] and weighted
sum-rate maximization [17]. Multi-cell coordinated precoding
was also investigated for energy harvesting systems [18] and
heterogeneous networks [19]. Practical imperfection for multi-
cell coordinated precoding, such as imperfect or partial CSI,
were investigated in [20], [21]. However, all these works focus
on per-slot coordinated precoding design using deterministic
optimization approaches for non-virtualized networks and are
not directly comparable to our work. For further summary of
recent works on multi-cell coordinated precoding, we refer
interested readers to [42]. To the best of our knowledge, our
work is the first to study online coordinated precoding design
for virtualization over fading channels with both per-slot and
long-term transmit power constraints, while accommodating
imperfect CSI.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a virtualized MIMO cellular network formed
by one InP and M SPs. In each cell, the InP owns the
BS and performs virtualization for data transmission. The
SPs are oblivious of each other and serve their subscribing
users. Other functional structures of the network, including
the core network and computational resource, are assumed to
be already virtualized.

We first consider the network virtualization design in a
single-cell MIMO system. The virtualization model and prob-
lem formulation will be extended to the multi-cell case in
Section VI. Consider downlink transmissions in a virtualized
cell, where the InP-owned BS is equipped with N antennas.
The M SPs share the antennas at the BS and the spectrum
resource provided by the InP. Each SP m serves Km users.
The total number of users in the cell is K =

∑
m∈M Km.

We denote the following set of indexes N = {1, . . . , N},
M = {1, . . . ,M}, Km = {1, . . . ,Km}, and K = {1, . . . ,K}.

We consider a time-slotted system with each time slot in-
dexed by t ∈ {0, 1, . . . , T − 1}. Let Hm(t) ∈ CKm×N denote
the channel state between the BS and Km users served by
SP m at time t. Let H(t) = [HH

1 (t), . . . ,HH
M (t)]H ∈ CK×N

denote the channel state between the BS and all K users at
time t. We assume a block fading channel model, where the
sequence of channel state {H(t)} over time t is independent
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Fig. 1. An illustration of MIMO virtualization in a cell with one InP and two
SPs each serving its users in a virtual cell.

and identically distributed (i.i.d.). The distribution of H(t) can
be arbitrary and is unknown at the BS. We assume that the
channel gain is bounded by constant B ≥ 0 at any time t, i.e.,

‖H(t)‖F ≤ B, ∀t. (1)

We adopt the spatial virtualization approach first proposed
in [14], which is illustrated in Fig. 1. In the idealized case
when the perfect CSI is available at each time t, the InP shares
with SP m the channel state Hm(t) between the BS and its
Km users and allocates virtual transmission power Pm to the
SP. Based on Hm(t), each SP m designs its precoding matrix
Wm(t) ∈ CN×Km , subject to the transmission power limit
‖Wm(t)‖2

F ≤ Pm. The design of Wm(t) is solely based on
the service needs of SP m’s users, without considering the
existence of the other SPs sharing the same BS antennas and
spectrum resource. Each SP m then sends Wm(t) as its virtual
precoding demand to the InP. For SP m, the desired received
signal vector (noiseless) ỹm (at Km users) is given by

ỹm(t) = Hm(t)Wm(t)xm(t)

where xm(t) is the symbol vector to Km users. Define the
desired received signal vector at all K users in the network
as ỹ(t) , [ỹH

1 (t), . . . , ỹH
M (t)]H , we have ỹ(t) = D(t)x(t),

where D(t) , blkdiag{H1(t)W1(t), . . . ,HM (t)WM (t)} ∈
CK×K is the virtualization demand from all SPs, and x(t) ,
[xH

1 (t), . . . ,xH
M (t)]H contains the symbols to all K users,

which are assumed to have unit power and be independent
to each other, i.e., E{x(t)xH(t)} = I, ∀t.

At each time t, the InP designs the actual precoding matrix
V(t) , [V1(t), . . . ,VM (t)] ∈ CN×K , where Vm(t) ∈
CN×Km is the actual precoding matrix for SP m. The actual
received signal vector (noiseless) ym(t) at SP m’s Km users
is given by

ym(t) = Hm(t)Vm(t)xm(t) +
∑

i∈M,i 6=m

HmVi(t)xi(t),

where the second term is the inter-SP interference from the
other SPs to SP m’s users. The actual received signal vector
at all K users is given by y(t) = [yH

1 (t), . . . ,yH
M (t)]H =

H(t)V(t)x(t).

B. Problem Formulation

For downlink MIMO WNV, the InP designs precoding
matrix V(t) to perform MIMO virtualization. Note that while
each SP m designs its virtual precoding matrix Wm(t)
without considering the inter-SP interference, the InP designs
the actual precoding matrix V(t) to mitigate the inter-SP
interference, in order to meet the virtualization demand D(t)
of all SPs.

With the InP’s actual precoding matrix V(t) and each SP
m’s virtual precoding matrix Wm(t), the expected deviation
of the actual received signal vector at all K users from the
desired one is E{‖y(t)−ỹ(t)‖2

2} = E{‖H(t)V(t)−D(t)‖2
F }.

Note that using the expected deviation between y(t) and ỹ(t)
as a performance metric is a natural way to measure how
well the SPs’ service demands are fulfilled by the InP via its
precoding design to achieve service isolation. It reflects the
unique demand-response virtualization mechanism between
the SPs and InP.

The goal at the InP is to optimize MIMO precoding to
minimize the long-term time-averaged expected precoding
deviation from the virtualization demands, subject to both
long-term and short-term transmit power constraints. The
optimization problem is formulated as follows:

P1 : min
{V(t)}

lim
T→∞

1
T

T−1∑

t=0

E{‖H(t)V(t) − D(t)‖2
F }

s.t. lim
T→∞

1
T

T−1∑

t=0

E{‖V(t)‖2
F } ≤ P̄ , (2)

‖V(t)‖2
F ≤ Pmax (3)

where P̄ is the long-term average transmit power limit, and
Pmax is the per-slot maximum transmit power limit at the BS.
Both power limits are set by the InP, and we assume P̄ ≤Pmax.1

Since channel state H(t) is random, P1 is a stochastic
optimization problem. The problem is challenging to solve,
especially when the distribution of H(t) is unknown, espe-
cially in massive MIMO systems with a large number of
antennas and users. In addition, the instantaneous channel state
cannot be obtained accurately in practical systems. Typically,
the InP only has an inaccurate estimate of the channel state
Ĥ(t) at each time t. With a given channel estimation quality,
we assume the normalized CSI inaccuracy is bounded by a
constant δ ≥ 0 at any time t, given by

‖H̃m(t)‖F

‖Hm(t)‖F
≤ δ, ∀m ∈ M, ∀t (4)

where H̃m(t) , Hm(t) − Ĥm(t) is the channel estimation
error, with Ĥm(t) being the estimated channel state of SP m’s
users. By (1) and (4), the estimated channel gain is bounded by

‖Ĥ(t)‖F ≤ ‖H(t)‖F + ‖H̃(t)‖F ≤ B(1 + δ), ∀t. (5)

Using the estimated channel state Ĥm(t) shared by the InP
at time t, each SP m designs its virtual precoding matrix,

1Note that the sum of virtual transmit power that the InP allocates to each
SP
∑

m∈M Pm is not necessarily equal to the maximum power limit Pmax
at the BS for the actual transmissions. For the optimization of the virtual
transmit power allocation at the InP, we refer interested readers to [25].
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denoted by Ŵm(t). As a result, the InP receives virtualization
demand D̂(t) , blkdiag{Ĥ1(t)Ŵ1(t), . . . , ĤM (t)ŴM (t)}
from the SPs based on the imperfect CSI. Using Ĥ(t) and
D̂(t), the InP then designs the actual precoding matrix,
denoted by V̂(t).

Our goal is to develop an online MIMO WNV algorithm
based on Ĥ(t) and D̂(t) to find a precoding solution {V̂(t)}
to P1 under the unknown channel distribution of H(t).

IV. ONLINE SINGLE-CELL MIMO WNV ALGORITHM

In this section, we present a new online precoding algorithm
for MIMO WNV that is developed based on the Lyapunov
optimization technique. Note that the standard Lyapunov op-
timization relies on accurate system state [36], which is not
applicable to our problem. Instead, we develop new techniques
to accommodate imperfect CSI in designing the online algo-
rithm at both the InP and the SPs.

A. Online Optimization Formulation

To design an online algorithm for solving P1, we introduce
a virtual queue Z(t) for the long-term average transmit power
constraint (2) with the updating rule given by

Z(t + 1) = max{Z(t) + ‖V̂(t)‖2
F − P̄ , 0}. (6)

Note that Z(t) represents the time-averaged transmit power up
to time t that exceeds P̄ . This virtual queue is used to control
the average power to meet the long-term power constraint (2).
Define L(t) , 1

2Z2(t) as the quadratic Lyapunov function and
Δ(t) , L(t+1)−L(t) as the corresponding one-slot Lyapunov
drift at time t. By the theory of Lyapunov optimization, P1 can
be converted to minimizing the objective function while stabi-
lizing the virtual queue in (6), which can be further converted
to minimizing a drift-plus-penalty (DPP) metric [36]. The DPP
metric is defined as E{Δ(t)|Z(t)} + UE{ρ̂(t)|Z(t)}, where
ρ̂(t) , ‖Ĥ(t)V̂(t) − D̂(t)‖2

F is the penalty cost representing
the precoding deviation from the virtualization demands based
on imperfect CSI, and U > 0 is the relative weight. The DPP
metric is a weighted sum of the expected Lyapunov drift Δ(t)
and the precoding deviation ρ̂(t) under the current estimated
channel state Ĥ(t), conditioned on the current virtual queue
Z(t). Minimizing the DPP metric directly is still difficult due
to the dynamics involved in the Lyapunov drift Δ(t). Instead,
we first provide an upper bound for the DPP metric in the
following lemma.

Lemma 1. At each time t, for any precoding design of V̂(t),
the DPP metric has the following upper bound for all Z(t)
and U > 0

E{Δ(t)|Z(t)} + UE{ρ̂(t)|Z(t)}

≤ S + UE {ρ̂(t)|Z(t)} + Z(t)E{‖V̂(t)‖2
F − P̄ |Z(t)} (7)

where S , 1
2 max

{
(Pmax − P̄ )2, P̄ 2

}
.

Proof: From the virtual queue dynamics in (6), we have

Δ(t) =
1
2

(
(max{Z(t) + ‖V̂(t)‖2

F − P̄ , 0})2 − Z2(t)
)

≤
1
2

(
(Z(t) + ‖V̂(t)‖2

F − P̄ )2 − Z2(t)
)

Algorithm 1 Outline of Online MIMO WNV Algorithm
1: Set U > 0 and Z(0) = 0.
2: At each time t, obtain Ĥ(t) and Z(t).
3: Solve P2 for V̂?(t) (see Section IV-B).
4: Update Z(t + 1) = max{Z(t) + ‖V̂?(t)‖2

F − P̄ , 0}.

=
1
2
(‖V̂(t)‖2

F − P̄ )2 + Z(t)(‖V̂(t)‖2
F − P̄ ). (8)

By the short-term transmit power constraint in (3), we have

(‖V̂(t)‖2
F − P̄ )2 ≤ max{(Pmax − P̄ )2, P̄ 2}. (9)

Taking the conditional expectation at both sides of (8) for
given Z(t) and considering (9), we have the upper bound of
the per-slot conditional expected Lyapunov drift Δ(t) given
by

E{Δ(t)|Z(t)} ≤ S + E
{

Z(t)(‖V̂(t)‖2
F − P̄ )|Z(t)

}
. (10)

Adding UE{ρ̂(t)|Z(t)} on both sides of (10), we have (7).
Using Lemma 1, instead of directly minimizing the DPP

metric, we minimize its upper bound in (7), which is no
longer a function of Δ(t). Specifically, given Ĥ(t) at time
t, we consider the per-slot version of the upper bound in
(7) as the optimization objective by removing the conditional
expectation. By removing the constant terms, the resulting per-
slot optimization problem is given by

P2 : min
V̂(t)

U‖Ĥ(t)V̂(t) − D̂(t)‖2
F + Z(t)‖V̂(t)‖2

F

s.t. ‖V̂(t)‖2
F ≤ Pmax. (11)

Note that P2 is a per-slot precoding optimization problem
under the current estimated channel state Ĥ(t) and the virtual
queue Z(t), subject to the per-slot maximum transmit power
constraint (11). Compared with the original P1, we change
the long-term time-averaged expected objective to the per-slot
version of DPP metric in P2, where the long-term average
transmit power constraint (2) is converted into maintaining
the queue stability in Z(t) as part of the DPP metric. Next,
we solve P2 to obtain the optimal precoding matrix V̂?(t) for
P2 at each time t, and then update the virtual queue Z(t)
according to its queue dynamics in (6). An outline of the
proposed online algorithm is given in Algorithm 1.

B. Online Precoding Solution to P2

Now we present a semi-closed-form solution to P2. Without
causing any ambiguity, for notation simplicity, we omit the
time index t in solving P2. Note that P2 is essentially a
constrained regularized least square problem. Since P2 is a
convex optimization problem satisfying Slater’s condition, the
strong duality holds. We solve P2 using the Karush-Kuhn-
Tucker (KKT) conditions [43]. The Lagrangian for P2 is given
by

L(V̂, λ) = U‖ĤV̂ − D̂‖2
F + Z‖V̂‖2

F + λ(‖V̂‖2
F − Pmax)

= U(tr{ĤHĤV̂V̂H} + tr{D̂D̂H} − tr{ĤHD̂V̂H}

− tr{ĤV̂D̂H}) + (Z + λ) tr{V̂V̂H} − λPmax
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where λ is the Lagrange multiplier associated with the max-
imum power constraint (11). The gradient of L(V̂, λ) w.r.t.
V̂∗ is given by

∇V̂∗L(V̂, λ) = U(ĤHĤV̂ − ĤHD̂) + (Z + λ)V̂ (12)

where the following fact is used: ∇B∗ tr{ABH} = A and
∇B∗ tr{AB} = 0 [44]. The optimal solution to P2 can be
obtained by solving the KKT conditions, given by

(

ĤHĤ +
Z + λ?

U
I

)

V̂? = ĤHD̂, (13)

‖V̂?‖2
F − Pmax ≤ 0, (14)

λ? ≥ 0, (15)

λ?(‖V̂?‖2
F − Pmax) = 0 (16)

where (13) is obtained by setting ∇V̂∗L(V̂, λ) in (12) to 0.
Note that, by (6), the virtual queue is nonnegative, i.e., Z ≥ 0.
Thus, we derive the optimal solution in the following two
cases.

1) Z + λ? > 0: From (13) and ĤHĤ + Z+λ?

U I � 0, we
have

V̂? =

(

ĤHĤ +
Z + λ?

U
I

)−1

ĤHD̂. (17)

Depending on Z, we determine λ? in (17) in two subcases: 1.i)
If Z > 0: By (14) and (16), we conclude that if ‖(ĤHĤ +
Z
U I)−1ĤHD̂‖2

F ≤ Pmax, then λ? = 0; Otherwise, we have
λ? > 0 such that ‖(ĤHĤ + Z+λ?

U I)−1ĤHD̂‖2
F = Pmax. 1.ii)

If Z = 0: In this case, λ? > 0. By (16), the value of λ?

satisfies ‖(ĤHĤ + λ?

U I)−1ĤHD̂‖2
F = Pmax.

2) Z = λ? = 0: From (13), the optimal solution must
satisfy

ĤHĤV̂? = ĤHD̂. (18)

We analyze (18) in two subcases: 2.i) If K < N : ĤHĤ ∈
CN×N is a rank-deficient matrix, and thus there are infinitely
many solutions to V̂?. We choose V̂? that minimizes ‖V̂?‖2

F

subject to (18). This problem is an under-determined least
square problem with a closed-form solution:

V̂? = ĤH
(
ĤĤH

)−1

D̂. (19)

Substitute the above expression of V̂? into the power con-
straint in (14). If ‖ĤH(ĤĤH)−1D̂‖2

F ≤ Pmax, then V̂? in
(19) is the optimal solution. Otherwise, see the discussion in
the next paragraph. 2.ii) If K ≥ N : ĤHĤ ∈ CN×N is full
rank2, and we have a unique solution:

V̂? =
(
ĤHĤ

)−1

ĤHD̂. (20)

Again, substituting V̂? in (20) into (14), if
‖(ĤHĤ)−1ĤHD̂‖2

F ≤ Pmax, then V̂? in (20) is the
optimal solution.

Note that, for both subcases 2.i) and 2.ii), if V̂? in (19) or
(20) cannot satisfy the power constraint in (14), it means that

2Since the channels from BS to users are assumed independent, H(t) ∈
CK×N is of full rank at each time t. The independent channel assumption
is typically satisfied in practice for users at different locations.

the condition in Case 2) does not hold at optimality, and we
have λ? > 0, i.e., the optimal solution is given by (17).

From the above discussion, if λ? = 0 at the optimality, we
have a closed-form solution for V̂? in (19) or (20). Otherwise,
we have a semi-closed-form solution for V̂? in (17), where
λ? > 0 can be obtained through the bi-section search to ensure
the transmit power meets Pmax in (14). The computational
complexity for calculating V̂? is dominated by the matrix
inversion, and thus is in the order of O(min(N,K)3).

V. PERFORMANCE BOUNDS FOR SINGLE-CELL CASE

Different from existing MIMO precoding designs for non-
virtualized networks such as in [27], for the MIMO WNV
design, the impact of imperfect CSI on the system is two-
fold at both the InP and the SPs. This brings some unique
challenges in analyzing the performance of the proposed
online algorithm. In this section, we develop new techniques
to derive the performance bounds for our online algorithm.

First, recall that the virtual queue Z(t) indicates the time-
averaged transmit power up to time t that exceeds P̄ . We
show in the following lemma that by Algorithm 1, Z(t) is
upper bounded at each time t. This upper bound will be used
later to derive the accumulated violation of the transmit power
in constraint (2) for our online algorithm in Theorem 6.

Lemma 2. By Algorithm 1, Z(t) satisfies

Z(t) ≤ UB2(1 + δ)2ξ + Pmax − P̄ , ∀t (21)

where ξ ,
√

N
P̄

∑
m∈M Pm.

Proof: We first omit time index t for simplicity. Let
ĤHĤ = ÛΣ̂ÛH , where Û is an unitary matrix, and Σ̂ =
diag(σ̂1, . . . , σ̂N ). It follows that ĤHĤ+ Z+λ?

U I = ÛΦ̂ÛH ,
where Φ̂ = diag(φ̂1, . . . , φ̂N ) and φ̂n = σ̂n + Z+λ?

U , ∀n ∈ N .
If Z > 0, V̂? is given in (17), and we have

‖V̂?‖F ≤
∥
∥
∥ÛΦ̂

−1
ÛH

∥
∥
∥

F
‖Ĥ‖F ‖D̂‖F

(a)

≤
U

Z

√
N‖Ĥ‖F ‖D̂‖F

(b)

≤
U

Z
B2(1 + δ)2

√
N
∑

m∈M

Pm. (22)

Inequality (a) follows from ‖ÛΦ̂
−1

ÛH‖2
F = tr{Φ̂

−2
} =∑

n∈N φ̂−2
n . Since σ̂n ≥ 0, ∀n ∈ N , λ? ≥ 0, and

Z > 0, it follows that φ̂−2
n ≤ U2

Z2 , ∀n ∈ N , and therefore

‖ÛΦ̂
−1

ÛH‖2
F ≤ N U2

Z2 . Inequality (b) follows from (5) and
by the definition of D̂

‖D̂‖2
F ≤

∑

m∈M

‖Ĥm‖2
F ‖Ŵm‖2

F ≤ B2(1 + δ)2
∑

m∈M

Pm. (23)

From (22), a sufficient condition to ensure ‖V̂?‖2
F ≤ P̄

is that the RHS of (22) is less than
√

P̄ , which means
Z ≥ UB2(1 + δ)2

√
N
P̄

∑
m∈M Pm. Consider time index t.

If the condition holds, ‖V̂?(t)‖2
F ≤ P̄ , the virtual queue

in (6) decreases, i.e., Z(t + 1) ≤ Z(t). Otherwise, the
maximum increment of the virtual queue is Pmax − P̄ , i.e.,
Z(t + 1) ≤ Z(t) + Pmax − P̄ . Thus, we have the upper bound
of Z(t) in (21) at any time t ≥ 0.
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Note that Algorithm 1 and the upper bound on the virtual
queue in Lemma 2 are applicable to any precoding schemes
adopted by the SPs. In the following, we consider two common
precoding schemes: maximum ratio transmission (MRT) and
zero forcing (ZF). We assume MMRT SPs adopt MRT precoding
and the rest of SPs adopt ZF precoding. We point out that
although the following analysis focuses on the two precoding
schemes, the similar analysis can be extended to other precod-
ing schemes as well.

Let MMRT = {1, . . . ,MMRT} be the set of SPs that adopt
MRT precoding, with the MRT precoding matrix given by

ŴMRT
m (t) =

√
Pm

ĤH
m(t)

‖Ĥm(t)‖F

. (24)

Each SP m ∈ M\MMRT adopts ZF precoding to null the intra-
SP interference. We assume Km ≤ N to use ZF precoding.
The ZF precoding matrix is given by

ŴZF
m(t) =

√
Pm

ĤH
m(t)[Ĥm(t)ĤH

m(t)]−1

√
tr{[Ĥm(t)ĤH

m(t)]−1}
. (25)

With the two precoding matrices in (24) and (25), we first
quantify the impact of inaccurate CSI on the SPs’ virtualiza-
tion demands by providing an upper bound on the deviation
between the accurate and inaccurate virtualization demands
‖D(t)−D̂(t)‖F , for given CSI inaccuracy δ in (4). This effect
of δ on the precoding performance is unique to the MIMO
WNV system and has not been studied before.

Let ωm,1(t), . . . , ωm,Km(t) be the eigenvalues of ĤmĤH
m,

and similarly, ω̂m,1(t), . . . , ω̂m,Km(t) the eigenvalues of
Ĥm(t)ĤH

m(t). Define B̂min
m , min{‖Ĥm(t)‖F : ∀t}, ω̂min

m ,
min{ω̂m,i(t) : ∀i ∈ Km, ∀t}, and ωmin

m , min{ωm,i(t) : ∀i ∈
Km, ∀t}, which respectively represent the minimum channel
gain of Ĥm(t), the minimum energy in the eigen-directions
of Ĥm(t), and that of Hm(t). We have the following lemma.

Lemma 3. At each time t, the following hold:

‖D(t)‖F ≤ ζB, (26)

‖D̂(t)‖F ≤ ζB(1 + δ), (27)

‖D(t) − D̂(t)‖F ≤ ηBδ, (28)

where

η,

√√
√
√

∑

m∈MMRT

(

1+
(2+δ)B

B̂min
m

)2

Pm+
∑

m∈M\MMRT

(
B4(1+δ)2

Kmω̂min
m ωmin

m

)2

Pm,

and ζ ,
√∑

m∈M Pm.

Proof: The proofs of (26) and (27) follow from (23). To
prove (28), we omit time index t for notation simplicity. By
the definition of D and D̂, we have

‖D − D̂‖2
F =

∑

m∈M

‖HmWm − ĤmŴm‖2
F . (29)

Using the MRT precoding in (24) for m ∈ MMRT we have

‖HmWMRT
m − ĤmŴMRT

m ‖F

=
√

Pm

∥
∥
∥
∥
∥
HmHH

m

‖Hm‖F
−

ĤmĤH
m

‖Ĥm‖F

∥
∥
∥
∥
∥

F

=
√

Pm

∥
∥
∥
∥
∥
HmHH

m

‖Hm‖F
−

(Hm − H̃m)(HH
m − H̃H

m)

‖Hm − H̃m‖F

∥
∥
∥
∥
∥

F

=
√

Pm

∥
∥
∥
∥

(
HmHH

m

‖Hm‖F
−

HmHH
m

‖Hm − H̃m‖F

)

−
H̃mH̃H

m − 2<{H̃mHH
m}

‖Hm − H̃m‖F

∥
∥
∥
∥
∥

F

≤
√

Pm

[
‖HmHH

m‖F

‖Hm‖F

(

1 −
‖Hm‖F

‖Hm − H̃m‖F

)

+
‖H̃mH̃H

m − 2<{H̃mHH
m}‖F

‖Hm − H̃m‖F

]

(a)

≤
√

Pm

(

Bδ +
‖H̃mH̃H

m − 2<{H̃mHH
m}‖F

‖Hm − H̃m‖F

)

(b)

≤
√

PmBδ

(

1+
(2+δ)B

‖Ĥm‖F

)

≤
√

PmBδ

(

1+
(2+δ)B

B̂min
m

)

(30)

where (a) is because

‖HmHH
m‖F

‖Hm‖F

(

1−
‖Hm‖F

‖Hm−H̃m‖F

)

≤
‖Hm‖2

F

‖Hm‖F

(

1 −
‖Hm‖F

‖H̃m‖F +‖Hm‖F

)

≤B

(

1−
1

1+δ

)

≤Bδ,

in which we use ‖Hm‖F ≤B and ‖H̃m‖F ≤Bδ from (1) and
(4), respectively; and (b) is because

‖H̃mH̃H
m − 2<{H̃mHH

m}‖F ≤ ‖H̃mH̃H
m‖F + 2‖H̃mHH

m‖F

≤‖H̃m‖2
F +2‖H̃m‖F ‖Hm‖F ≤B2δ2+2B2δ ≤(2+δ)B2δ.

With ZF precoding in (25) for m ∈ M\MMRT, we have

‖HmWZF
m − ĤmŴZF

m‖F

=
√

Pm

∥
∥
∥
∥
∥
∥

I
√

tr{(HmHH
m)−1}

−
I

√
tr{(ĤmĤH

m)−1}

∥
∥
∥
∥
∥
∥

F

(a)

≤
√

PmKm

∣
∣
∣
√∑

i∈Km
ω̂−1

m,i −
√∑

i∈Km
ω−1

m,i

∣
∣
∣

Km

B2(1+δ)

=

√
Pm

Km
B2(1+δ)

∣
∣∑

i∈Km

(
ω̂−1

m,i − ω−1
m,i

)∣∣
√∑

i∈Km
ω̂−1

m,i +
√∑

i∈Km
ω−1

m,i

(b)

≤

√
Pm

Km
B2(1 + δ)

B2(2 + δ)δ

ω̂min
m ωmin

m
(2+δ)

√
Km

B(1+δ)

≤

√
PmB5(1 + δ)2δ
Kmω̂min

m ωmin
m

(31)

where (a) follows from ω̂m,i ≤ ‖Ĥm‖2
F , ∀i ∈ Km, and

‖Ĥ‖F ≤ B(1 + δ) in (5), such that tr{(ĤmĤH
m)−1} =∑

i∈Km
ω̂−1

m,i ≥ Km

B2(1+δ)2 , and similarly tr{(HmHH
m)−1} =

∑
i∈Km

ω−1
m,i ≥

Km

B2 for accurate CSI; (b) is because

√∑

i∈Km

ω̂−1
m,i +

√∑

i∈Km

ω−1
m,i ≥

√
Km

‖Ĥm‖2
F

+

√
Km

‖Hm‖2
F

≥

√
Km

B2(1 + δ)2
+

√
Km

B2
=

(2 + δ)
√

Km

B(1 + δ)
,
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∣
∣
∣
∣
∣

∑

i∈Km

(
ω̂−1

m,i − ω−1
m,i

)
∣
∣
∣
∣
∣

≤

∣
∣∑

i∈Km
(ωm,i − ω̂m,i)

∣
∣

ω̂min
m ωmin

m

=

∣
∣
∣‖Hm‖2

F − ‖Ĥm‖2
F

∣
∣
∣

ω̂min
m ωmin

m

=
(‖Hm‖F + ‖Ĥm‖F )

∣
∣
∣‖Hm‖F − ‖Ĥm‖F

∣
∣
∣

ω̂min
m ωmin

m

≤
B2(2 + δ)δ

ω̂min
m ωmin

m

where we apply ‖Hm‖F ≤ B, ‖Ĥm‖F ≤ B(1 + δ), and
|‖Hm‖F − ‖Ĥm‖F | ≤ ‖Hm − Ĥm‖F ≤ Bδ resulting from
(1) and (4) to the last step.

Applying inequalities (30) and (31) to the respective terms
in the RHS of (29) yields (28).

For channel state H(t) being i.i.d. over time, there
exists a stationary randomized optimal precoding solu-
tion Vopt(t) to P1, which depends only on the (un-
known) distribution of H(t) and achieves the minimum
objective value of P1, defined in Theorem 6 [36]. De-
fine φ(H(t),V(t),D(t)) , U‖H(t)V(t) − D(t)‖2

F +
Z(t)‖V(t)‖2

F . Note that φ(Ĥ(t), V̂(t), D̂(t)) is the objec-
tive function in P2. Using Lemma 3, for a given CSI in-
accuracy δ in (4), we now bound φ(H(t), V̂?(t),D(t)) −
φ(H(t),Vopt(t),D(t)), where the first term is the objective
value of P2 under the optimal solution V̂?(t) to P2 obtained
based on the inaccurate channel state Ĥ(t), and the second
term is the objective value of P2 by using the optimal solution
Vopt(t) to P1 obtained based on the accurate channel state
H(t).

Lemma 4. At each time t, the following holds

φ(H(t), V̂?(t),D(t)) − φ(H(t),Vopt(t),D(t)) ≤ Uϕ (32)

where

ϕ , 2
[
(2+δ)(Pmax+ζη)+2(ζ(1+δ)+η)

√
Pmax

]
B2δ=O(δ).

Proof: We omit time index t in the proof. The proof of (32)
consists of five steps as follows.

Step 1: Note that φ(H, V̂?,D) is convex with respect to
(w.r.t.) D. By the first-order condition for a convex func-
tion [45], we have

φ(H, V̂?,D) − φ(H, V̂?, D̂)

≤ −2<{tr{∇D∗φ(H, V̂?,D)H(D̂ − D)}}
(a)
= 2U<{tr{(HV̂? − D)H(D̂ − D)}}

≤ 2U | tr{(HV̂? − D)H(D̂ − D)}|

≤ 2U(‖H‖F ‖V̂
?‖F + ‖D‖F )‖D̂ − D‖F

(b)

≤ 2U(
√

Pmax + ζ)ηB2δ

where (a) follows from ∇D∗φ(H, V̂?,D) = −U(HV̂?−D),
and (b) follow from (1), (11), (26), and (28).

Step 2: By the first-order condition for the convex function
φ(H, V̂?, D̂) w.r.t. H, we have

φ(H, V̂?, D̂) − φ(Ĥ, V̂?, D̂)

≤ −2<{tr{∇H∗φ(H, V̂?, D̂)H(Ĥ − H)}}

(a)
= 2U<{tr{(HV̂?V̂?H − D̂V̂?H)H(H − Ĥ)}}

≤ 2U | tr{(HV̂?V̂?H − D̂V̂?H)H(H − Ĥ)}|

≤ 2U(‖H‖F ‖V̂
?‖F + ‖D̂‖F )‖V̂?‖F ‖H − Ĥ‖F

(b)

≤ 2U
[
Pmax + ζ(1 + δ)

√
Pmax

]
B2δ

where (a) follows from ∇H∗φ(H, V̂?, D̂) = U(HV̂?V̂?H −
D̂V̂?H), and (b) follows from (1), (4), (11), and (27).

Step 3: In Algorithm 1, V̂? is the optimal precoder that
minimizes the objective φ(Ĥ, V̂, D̂) of P2 over all precoding
policies including Vopt. It follows that

φ(Ĥ, V̂?, D̂) − φ(Ĥ,Vopt, D̂) ≤ 0.

Step 4: Similarly to Step 2, we have

φ(Ĥ,Vopt, D̂) − φ(H,Vopt, D̂)

≤ 2U(Pmax + ζ
√

Pmax)(1 + δ)B2δ.

Step 5: Similarly to Step 1, we have

φ(H,Vopt, D̂) − φ(H,Vopt,D)

≤ 2U
[√

Pmax + ζ(1 + δ)
]
ηB2δ.

Summing over Steps 1-5, yields (32).

Remark 1. In our virtualization problem, both the InP’s pre-
coder V̂?(t) and the SPs’ virtualization demands D̂(t) depend
on imperfect CSI Ĥ(t). As a result, the precoding deviation
is affected by the impact of CSI errors on both sides. Thus,
different from [33], our proof in Lemma 4 explicitly considers
the two-fold impact of CSI inaccuracy on both InP and SPs
under MIMO WNV. In particular, we first bound the impact of
imperfect CSI Ĥ(t) on the SPs’ virtualization demands D̂(t)
as in Lemma 3. Then, we analyze the impact of imperfect
CSI Ĥ(t) on the objective value of P2 φ(H(t),V(t),D(t)) by
the SP’s virtualization demands D̂(t) and the InP’s precoding
V̂?(t) in Lemma 4.

Based on Lemma 4, we next show that with the optimal
V̂(t) to P2, the expected DPP metric averaged over the virtual
queue Z(t) under the accurate channel state H(t) is upper
bounded.

Lemma 5. At each time t, we have

E{Δ(t)} + UE{‖H(t)V̂?(t) − D(t)‖2
F }

≤ UE{‖H(t)Vopt(t) − D(t)‖2
F } + Uϕ + S (33)

where ϕ is given in Lemma 4 and S is defined below (7).

Proof: From (8) in the proof of Lemma 1, at each time
t, the Lyapunov drift Δ(t) is upper bounded as Δ(t) ≤
Z(t)(‖V̂?(t)‖2

F − P̄ ) + S. Adding U‖H(t)V̂?(t) − D(t)‖2
F

at both sides of the above inequality yields

Δ(t) + U‖H(t)V̂?(t) − D(t)‖2
F

≤ U‖H(t)V̂?(t) − D(t)‖2
F + Z(t)(‖V̂?(t)‖2

F − P̄ ) + S

(a)

≤ U‖H(t)Vopt(t) − D(t)‖2
F + Z(t)(‖V̂opt(t)‖2

F − P̄ )

+ Uϕ + S (34)
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where (a) follows from (32) in Lemma 4. Taking expectations
at both sides of (34), we have

E {Δ(t)} + UE{‖H(t)V̂?(t) − D(t)‖2
F }

≤ UE
{
‖H(t)Vopt(t) − D(t)‖2

F

}
+E

{
Z(t)(‖Vopt(t)‖2

F − P̄ )
}

+ Uϕ + S

= UE{‖H(t)Vopt(t) − D(t)‖2
F }

+ E
{
E
{
Z(t)(‖Vopt(t)‖2

F − P̄ )|Z(t)
}}

+ Uϕ + S

(a)

≤ UE
{
‖H(t)Vopt(t) − D(t)‖2

F

}
+ Uϕ + S

where (a) is because the optimal Vopt(t) to P1 depends only
on H(t) and is independent of Z(t). Since Z(t) ≥ 0, it follows
that E

{
Z(t)(‖Vopt(t)‖2

F −P̄ )|Z(t)
}

= Z(t)E{‖Vopt(t)‖2
F −

P̄}≤0.

Remark 2. Note that the standard Lyapunov optimization
relies on an upper bound analysis of the DPP metric under
the accurate system state [36], which is the accurate channel
state H(t) in our MIMO WNV problem. Our results in
Lemma 5 extends that analysis to inaccurate channel state
Ĥ(t). Different from the accurate CSI, the inaccurate CSI
causes a two-fold impact on both the InP and SPs in our
MIMO WNV problem, which complicates the analysis.

Based on Lemmas 2 and 5 and by Lyapunov optimization
techniques [36], we provide the performance bounds for
Algorithm 1 with imperfect CSI in the following theorem.

Theorem 6. For any ε > 0, set U = S
ε in Algorithm 1.

Consider V̂?(t) produced by Algorithm 1 based on Ĥ(t). For
any T > 0, the following hold regardless of the distribution
of H(t):

1
T

T−1∑

t=0

E
{
‖H(t)V̂?(t) − D(t)‖2

F

}
≤ ρopt + ϕ + ε, (35)

1
T

T−1∑

t=0

‖V̂?(t)‖2
F ≤ P̄ +

SB2(1 + δ)2ξ + ε(Pmax − P̄ )
εT

(36)

where ρopt is the minimum objective value of P1 with H(t),
ϕ = O(δ) is defined below (32), and ξ is defined below (21).

Proof: We first prove (35). The long-term time-averaged
expected precoding deviation in the LHS of (35) is upper
bounded as

1
T

T−1∑

t=0

E{‖H(t)V̂?(t) − D(t)‖2
F }

(a)

≤
1
T

T−1∑

t=0

E{‖H(t)Vopt(t) − D(t)‖2
F } −

1
UT

T−1∑

t=0

E{Δ(t)}

+ ϕ +
S

U
(b)

≤ ρopt −
1

2TU
(E{Z2(T )} − E{Z2(0)}) + ϕ +

S

U
(c)

≤ ρopt + ϕ +
S

U
(37)

where (a) is obtained by summing the terms in (33) over time
t from 0 to T − 1, dividing them by UT , and rearranging

them; (b) follows from
∑T−1

t=0 E{Δ(t)} =
∑T−1

t=0
1
2E{Z

2(t +
1) − Z2(t)} = 1

2E{Z
2(T )} − E{Z2(0)}; (c) is because

Z(t) ≥ 0, ∀t, and we set the initial value Z(0) = 0. Finally,
substituting U = S

ε into (37) yields (35).
We now prove (36). From the virtual queue dynamics in (6),

we have Z(t + 1) ≥ Z(t) + ‖V̂?(t)‖2
F − P̄ , ∀t. Rearranging

terms of the above inequality, we have ‖V̂?(t)‖2
F ≤ P̄ +Z(t+

1) − Z(t), ∀t. Summing both sides of the above inequality
over t from 0 to T − 1 and then dividing by T yields

1
T

T−1∑

t=0

‖V̂?(t)‖2
F ≤ P̄ +

Z(T ) − Z(0)
T

= P̄ +
Z(T )

T
.

Substituting the upper bound of Z(t) in (21), and U = S
ε into

the above inequality, we have (36).
Theorem 6 provides an upper bound on the objective

value of P1 in (35) achieved by Algorithm 1, i.e., the time-
averaged expected precoding deviation using V̂(t) from the
virtualization demand D̂(t) under inaccurate CSI. It indicates
that, for any given T , the performance of Algorithm 1 using
inaccurate channel state Ĥ(t) can be arbitrarily close to the
minimum deviation ρopt achieved using accurate channel state
H(t) plus a constant term as a function of CSI inaccuracy
O(δ). The performance gap ε is a controllable parameter
by our design and can be set arbitrarily small. Note that
this analysis is different from the standard (ε, 1

ε ) trade-off in
Lyapunov optimization with accurate system state information
[36]. Furthermore, (36) provides a bound on the average
transmit power over T time slots. It indicates that for any
T ≥ 1

ε2 , Algorithm 1 guarantees that the deviation of the
average power from the long-term average transmit power
limit P̄ is within O(ε). In particular, as T → ∞, (36) becomes
the long-term average transmit power constraint (2), and it
implies Algorithm 1 satisfies (2) asymptotically.

Remark 3. A C-additive approximation of the DPP algorithm
is also considered in [36], assuming the decision at each time
yields a conditional expected value on the DPP upper bound
that is within a constant C gap from that of the optimal
decision. In general, this C-additive approximation algorithm
can be applied to solve stochastic optimization problem with
inaccurate system state information. However, in our MIMO
virtualization problem, we need to develop new techniques
to bound the two-fold impact of impact CSI on the algorithm
performance. Furthermore, the C-additive Lyapunov optimiza-
tion algorithm only provides an asymptotic constraint violation
guarantee as T approaches infinity. In contrast, we provide a
much stronger finite-T constraint violation guarantee similar
to the one established in [33]. As mentioned in Section II, the
MIMO virtualization problem and corresponding performance
analysis in this paper are substantially different from those
in [33].

VI. ONLINE COORDINATED MULTI-CELL MIMO WNV

In this section, we extend the online MIMO WNV solution
of the single-cell case to the multi-cell scenario. With multiple
cells, the level of coordination and how to perform distributed
implementation are two critical issues. Existing works focus
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on per-slot coordinated precoding designs for non-virtualized
networks [16]-[24]. In contrast, we propose an online multi-
cell coordinated precoding scheme for network virtualization.
The proposed scheme naturally leads to a fully distributed
implementation at each cell.

A. Multi-Cell Spatial Virtualization

Consider a virtualized multi-cell MIMO network where an
InP performs virtualization at each cell for multiple SPs. The
subscribing-user sets of different SPs are disjoint, and each
user is only served by its serving cell. For interference miti-
gation, multiple cells are coordinated via transmit precoding,
with no CSI exchange across cells.

Specifically, consider an InP that performs virtualization
among C cells. Let C = {1, . . . , C}. The BS c ∈ C has
N c antennas. The total number of antennas in the network
is N =

∑
c∈C N c. Each SP m ∈ M has Kc

m users in cell c.
The total number of users in cell c is Kc =

∑
m∈M Kc

m, and
that in the network is K =

∑
c∈C Kc. Let Kc

m = {1, . . . ,Kc
m}

and Kc = {1, . . . ,Kc}.
Let Hcl

m(t) ∈ CKc
m×N l

denote the channel state between
SP m’s subscribing users in cell c and BS l. For ease
of exposition, we first illustrate idealized multi-cell spatial
virtualization where the CSI estimation if perfect. At each
time t, at each BS c, the InP shares the local channel state
Hcc

m(t) with SP m and allocates a transmission power P c
m

to the SP. Using Hcc
m(t), SP m designs its precoding matrix

Wc
m(t) ∈ CNc×Kc

m , subject to the transmission power limit
‖Wc

m(t)‖2
F ≤ P c

m. SP m then sends Wc
m(t) to the InP as its

virtual precoding matrix. For SP m, with Wc
m(t), the desired

received signal vector (noiseless) ỹc
m (at Kc

m users) is given by

ỹc
m(t) = Hcc

m(t)Wc
m(t)xc

m(t)

where xc
m(t) is the symbol vector to SP m’s users. Define

ỹc(t) , [ỹcH
1 (t), . . . , ỹcH

M (t)]H as the desired received signal
vector at all Kc users in cell c, we have

ỹc(t) = Dc(t)xc(t)

where Dc(t) , blkdiag{Hcc
1 (t)Wc

1(t), . . . ,H
cc
M (t)Wc

M (t)} ∈
CKc×Kc

is the virtualization demand from all SPs in cell
c and xc(t) , [xcH

1 (t), . . . ,xcH
M (t)]H . Let the desired

received signal vector at all K users in the network be
ỹ′(t) , [ỹ1H(t), . . . , ỹCH(t)]H . We have ỹ′(t) = D′(t)x′(t),
where D′(t) , blkdiag{D1(t), . . . ,DC(t)} is the global
virtualization demand and x′(t) , [x1H(t), . . . ,xCH(t)]H .

The InP virtualizes the BSs to meet the SPs’ virtualization
service demands. Let Hcl(t) , [HclH

1 (t), . . . ,HclH
M (t)]H ∈

CKc×N l

denote the channel state between the users in cell
c and the BS l. In cell c, based only on the local channel
state Hc(t) , [H1cH(t), . . . ,HCcH(t)]H ∈ CK×Nc

from all
users to BS c, the InP designs the actual downlink precoding
matrix Vc(t) , [Vc

1(t), . . . ,V
c
M (t)] ∈ CNc×Kc

to serve the
Kc users in cell c, where Vc

m(t) ∈ CNc×Kc
m is the precoding

matrix designed for SP m. The actual received signal vector
(noiseless) yc

m(t) at the Kc
m users is given by

yc
m(t) = Hcc

m(t)Vc
m(t)xc

m(t) +
∑

i∈M,i 6=m

Hcc
mVc

i (t)x
c
i (t)

+
∑

l∈C,l 6=c

∑

j∈M

Hcl
m(t)Vl

j(t)x
l
j(t)

where the second term is the inter-SP interference from the
other SPs’ users in the same cell, and the third term is the
inter-cell interference from users in other cells. The actual
received signal vector yc(t) , [ycH

1 (t), . . . ,ycH
M (t)]H at all

Kc users in cell c is given by

yc(t) = Hcc(t)Vc(t)xc(t) +
∑

l∈C,l 6=c

Hcl(t)Vl(t)xl(t).

Let y′(t) , [y1H(t), . . . ,yCH(t)]H be the actual received
signal vector at all K users. We have y′(t) = H′(t)V′(t)x′(t),
where H′(t) , [H1, . . . ,HC ] is the global channel state
and V′(t) , blkdiag{V1(t), . . . ,VC(t)} is the InP’s actual
global precoding matrix.

Remark 4. Note that each SP m designs Wc
m(t) based only

on the local CSI Hcc
m(t), instead of using the global CSI

{Hcl
m(t)}C

l=1 to manage inter-cell interference. There are a few
reasons to consider this. First, for a SP, without considering
the intra-SP inter-cell interference is equivalent to demanding
zero interference to its inter-cell users. Second, due to the
isolation among SPs, the InP already has to manage the inter-
SP interference. It is more effective for the InP to manage
the intra-SP inter-cell interference as well. Third, if an SP
is to minimize the inter-cell interference itself, the amount
of information exchange on the CSIs ({Hcl

m(t)}) and precod-
ing demands ({Wl

m(t)}) will increase significantly, leading
to large communication overhead, especially for large-scale
systems.

B. Coordinated Precoding Virtualization Formulation

Since each SP m in each cell c designs its virtual precoding
matrix Wc

m(t) without considering either inter-SP or inter-cell
interference, the InP needs to intelligently design the actual
global precoding matrix V′(t) to mitigate both inter-SP and
inter-cell interference, to meet the virtualization demand D′(t)
from the SPs. The expected deviation of the actual received
signal vector at all K users from the desired one is given by

E{‖y′(t) − ỹ′(t)‖2
F } = E{‖H′(t)V′(t) − D′(t)‖2

F }

= E

{
∑

c∈C

‖Hc(t)Vc(t) − Gc(t)‖2
F

}

(38)

where Gc(t) , [0, . . . ,DcH(t), . . . , 0]H ∈ CK×Kc

.
Similar to the single-cell MIMO virtualization problem

P1, the online multi-cell coordinated precoding virtualization
problem is formulated as follows:

P3 : min
{V′(t)}

lim
T→∞

1
T

T−1∑

t=0

E{‖H′(t)V′(t) − D′(t)‖2
F }

s.t. lim
T→∞

1
T

T−1∑

t=0

E{‖Vc(t)‖2
F } ≤ P̄ c, ∀c ∈ C, (39)

‖Vc(t)‖2
F ≤ P c

max, ∀c ∈ C (40)
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where P̄ c and P c
max are the average and the maximum transmit

power limits at the BS in cell c, respectively. We assume P̄ c ≤
P c

max, ∀c ∈ C.
With the global CSI estimate Ĥ′(t) available at each

time t, each SP m only has the imperfect local CSI
Ĥcc

m(t) provided by the InP to design its virtual precod-
ing matrix, denoted by Ŵc

m(t). As a result, the InP re-
ceives an inaccurate virtualization demand from C cells
D̂′(t) , blkdiag{D̂1(t), . . . , D̂C(t)}, where D̂c(t) ,
blkdiag{Ĥcc

1 (t)Ŵc
1(t), . . . , Ĥ

cc
M (t)Ŵc

M (t)} is the inaccurate
virtualization demand from cell c. Based on Ĥ′(t) and D̂′(t),
the InP designs the actual global precoding matrix, defined by
V̂′(t) , blkdiag{V̂1(t), . . . , V̂C(t)}. In the next subsection,
we develop an online multi-cell coordinated MIMO WNV al-
gorithm based on Ĥ′(t) and D̂′(t) for a coordinated precoding
solution {V̂′(t)} to P3.

C. Online Multi-Cell Coordinated MIMO WNV Algorithm

We extend the online approach developed in the single-cell
case to design an online algorithm to solve P3. We introduce
a virtual queue vector Z(t) , [Z1(t), . . . , ZC(t)]T . Similar
to (6), Zc(t) is for the per-cell long-term average power
constraint (39) with the updating rule given by

Zc(t + 1) = max{Zc(t) + ‖V̂c(t)‖2
F − P̄ c, 0}, ∀c ∈ C. (41)

The quadratic Lyapunov function is given by L(t) = 1
2‖Z(t)‖2

2

and the corresponding Lyapunov drift at time t is given by
Δ(t) = L(t + 1) − L(t). Similar to the single-cell case in
Section IV-A, solving P3 can be converted to minimizing a
DPP metric defined as E{Δ(t)|Z(t)}+UE{ρ̂′(t)|Z(t)}, where
ρ̂′(t) , ‖Ĥ′(t)V̂′(t) − D̂′(t)‖2

F and U > 0 provides the
weight between the two terms. We provide an upper bound
for the DPP metric in the following lemma.

Lemma 7. At each time t, for any precoding design of V̂′(t),
the DPP metric has the following upper bound for all Z(t) and
U > 0

E{Δ(t)|Z(t)} + UE{ρ̂′(t)|Z(t)}

≤S′+UE {ρ̂′(t)|Z(t)}+E

{
∑

c∈C

Zc(t)(‖V̂c(t)‖2
F −P̄ c)|Z(t)

}

where S′ , 1
2

∑
c∈C max{(P c

max − P̄ c)2, P̄ c2}.

Proof: The proof follows the same steps as the proof of
Lemma 1 and is omitted for brevity. For the complete proof,
please see our technical report [46].

Using the upper bound in Lemma 7, with the similar
arguments leading to P2, we have the following per-slot
coordinated precoding design optimization problem:

P4 : min
V̂(t)

U‖Ĥ′(t)V̂′(t) − D̂′(t)‖2
F +

∑

c∈C

Zc(t)‖V̂c(t)‖2
F

s.t. ‖V̂c(t)‖2
F ≤ P c

max, ∀c ∈ C. (42)

P4 can be decomposed into C subproblems, each corresponds
to a local precoding design optimization problem for cell c,

Algorithm 2 Outline of Online Multi-Cell Coordinated MIMO
WNV Algorithm

1: Set U > 0 and Z(0) = 0.
2: At each time t, obtain Ĥc(t) and Zc(t) in each cell c.
3: Solve P5 for V̂c?(t), ∀c ∈ C (see Section IV-B).
4: Update Zc(t+1) = max{Zc(t)+‖V̂c?(t)‖2

F − P̄ c, 0}, ∀c ∈ C.

given by

P5 : min
V̂c(t)

U‖Ĥc(t)V̂c(t) − Ĝc(t)‖2
F + Zc‖V̂c(t)‖2

F

s.t. ‖V̂c(t)‖2
F ≤ P c

max (43)

where Ĝc(t) , [0, . . . , D̂cH(t), . . . , 0]H .
Note that P5 is identical to P2, which is a constrained

regularized least square problem. Thus, P5 has the same
semi-closed-form solution as provided in Section IV-B with
complexity O(min(N c,K)3) to compute the solution. At each
time t, for each cell c, based on the inaccurate local CSI
Ĥc(t) and virtualization demand D̂c(t), the InP obtains an
optimal local precoding matrix V̂c?(t) by solving P5, and then
update the virtual queue Zc(t) according to its queue dynamics
in (41). As such, the online per-slot coordinated precoding
problem P4 leads to a fully-distributed implementation at each
cell, without any CSI exchange across cells. An outline of
the proposed multi-cell coordinated MIMO WNV algorithm
is given in Algorithm 2.

D. Performance Bounds

Similar to the single-cell case, for performance analysis, we
assume that the global channel gain ‖H′(t)‖F is bounded by
a constant B > 0 for any t as in (1). With given channel
estimation quality as in (4), we assume that the normalized
CSI inaccuracy is bounded by a constant δ ≥ 0 at any t as

‖H̃cl
m(t)‖F

‖Hcl
m(t)‖F

≤ δ, ∀m ∈ M, ∀c, l ∈ C, ∀t (44)

where H̃cl
m(t) , Hcl

m(t) − Ĥcl
m(t) is the channel estimation

error and Ĥcl
m(t) is the estimated channel state between SP

m’s users in cell c and the BS l. It follows that the estimated
channel gain ‖Ĥ′(t)‖F is bounded by B(1 + δ) as in (5), for
any t.

Similar to Lemma 2, we show below that the virtual queue
Zc(t) produced by Algorithm 2 is upper bounded at any t.

Lemma 8. By Algorithm 2, Zc(t) satisfies

Zc(t) ≤ UB2(1 + δ)2ξc + P c
max − P̄ c, ∀c ∈ C, ∀t (45)

where ξc ,
√

Nc

P̄ c

∑
m∈M P c

m, ∀c ∈ C.

Proof: The proof is similar to the proof of Lemma 2 and is
omitted. For the complete proof, see our technical report [46]
for details.

Let Mc
MRT = {1, . . . ,M c

MRT} be the set of SPs that adopt
MRT precoding in cell c. Similar to (24) and (25), each SP
m ∈ Mc

MRT and m ∈ M\Mc
MRT uses the following MRT and
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ZF precoding, respectively:

ŴMRT,cc
m (t) =

√
P c

m

ĤccH
m (t)

‖Ĥcc
m(t)‖F

,

ŴZF,cc
m (t) =

√
P c

m

ĤccH
m (t)(Ĥcc

m(t)ĤccH
m (t))−1

√
tr{(Ĥcc

m(t)ĤccH
m (t))−1}

where we assume Kc
m ≤ N c. Similar to Lemma 3, based on

each SP’s precoding scheme, we show below that given the
CSI inaccuracy δ in (44), the deviation between the accurate
and inaccurate virtualization demands ‖D′(t) − D̂′(t)‖F is
upper bounded by O(δ), for any time t.

Specifically, define B̂c,min
m , min{‖Ĥcc

m(t)‖F : ∀t}. Let
ω̂c,min

m and ωc,min
m be the minimum eigenvalues of Ĥcc

mĤccH
m and

Hcc
m(t)HccH

m (t), respectively, over all t’s. They indicate the
minimum channel gain of Ĥcc

m(t), and the minimum energy
in the eigen-directions for both Ĥcc

m(t) and Hcc
m(t). We have

the following lemma.

Lemma 9. At each time t, the following hold:

‖D′(t)‖F ≤ ζ ′B,

‖D̂′(t)‖F ≤ ζ ′B(1 + δ),

‖D′(t) − D̂′(t)‖F ≤ η′Bδ (46)

where η′ ,

√
∑

c ∈ C

(∑
m∈Mc

MRT
αc

m +
∑

m∈M\Mc
MRT

βc
m

)
,

αc
m ,

(
1 + (2+δ)B

B̂c,min
m

)2

P c
m, βc

m ,
(

B4(1+δ)2

Kc
mω̂c,min

m ωc,min
m

)2

P c
m, and

ζ ′ ,
√∑

c∈C

∑
m∈M P c

m.

Proof: The proof follows the proof of Lemma 3 for each
cell and then aggregates the results of all cells. Details are
omitted for brevity (see our technical report [46]).

Define φ′(H′(t),V′(t),D′(t)),U‖H′(t)V′(t)−D′(t)‖2
F+∑

c∈C Zc(t)‖Vc(t)‖2
F , and note that φ′(Ĥ′(t), V̂′(t), D̂′(t))

is the objective function in P4. Based on Lemma 9, we show in
the following lemma that the performance gap between using
the optimal solution V̂′?(t) to P4 under the inaccurate channel
state Ĥ′(t) and using the optimal solution V′opt(t) to P3 under
the accurate channel state H′(t) is upper bounded by O(δ).

Lemma 10. At each time t, the following holds:

φ′(H′(t),V̂′?(t),D′(t))−φ′(H′(t),V′opt(t),D′(t))≤Uϕ′ (47)

where

ϕ′,2
[
(2 + δ)(γ′2 + ζ ′η′) + 2(ζ ′(1 + δ) + η′)γ′

]
B2δ=O(δ)

with γ′ ,
√∑

c∈C P c
max.

Proof: The proof is similar to the proof of Lemma 3 by
applying (46) in Lemma 9, and hence is omitted.

Following Lemma 10, we have the following upper bound
on the expected DPP metric using the optimal precoding
solution V̂′?(t) to P4.

Lemma 11. At each time t, we have

E{Δ(t)} + UE{‖H′(t)V̂′?(t) − D′(t)‖2
F }

≤ UE{‖H′(t)V′?(t) − D′(t)‖2
F } + Uϕ′ + S′ (48)

where S′ and ϕ′ are given in Lemma 7 and 10, respectively.

Proof: The proof is similar to that of Lemma 5 for the
single-cell case, with some care of technical details to handle
multiple cells. Thus, the proof is omitted to avoid repetition.
See our technical report [46] for the complete proof.

Finally, with Lemmas 8 and 11, we have the following
performance bounds for Algorithm 2 in the multi-cell scenario
with imperfect CSI over any given time horizon T .

Theorem 12. Given any ε > 0, set U = S′

ε in Algorithm 2.
For any T > 0, for V̂′?(t) produced by Algorithm 2 with
Ĥ′(t), the following hold regardless of the distribution of
H′(t):

1
T

T−1∑

t=0

E
{
‖H′(t)V̂′?(t) − D′(t)‖2

F

}
≤ ρ′opt + ϕ′ + ε, (49)

1
T

T−1∑

t=0

‖V̂c?(t)‖2
F ≤ P̄ c +

S′B2(1+δ)2ξc+ε(P c
max−P̄ c)

εT
(50)

where ρ′opt is the minimum objective value of P3 under H′(t),
ϕ′ is defined below (47), and ξc is defined below (45).

Proof: The proof follows the same steps in the proof of
Theorem 6 for the single-cell case and thus is omitted. For
the complete proof, see our technical report [46].

The upper bound in (49) on the objective value of P3
indicates that, similar to Algorithm 1 for the single-cell case,
for any given T , the performance of Algorithm 2 using Ĥ′(t)
for the multi-cell case can still be arbitrarily close to the
optimum achieved with true channel state H′(t) plus a gap
of O(δ). Furthermore, (50) provides a bound on the per-cell
time-averaged transmit power for any given T . The bound
indicates that for all T ≥ 1

ε2 , Algorithm 2 guarantees that the
deviation from the long-term transmit power limit P̄ c at each
cell c is within O(ε).

VII. SIMULATION RESULTS

In this section, we present our simulation studies under the
typical urban micro-cell LTE network settings. We study the
values of the design parameters in the proposed algorithm
as well as the effect of various system parameters on the
performance.

1) Simulation Setup: We consider an InP that owns a
virtualized network consisting of C = 7 urban hexagon micro
cells, each with radius R = 500 m. The InP-owned BS
at the center of cell c ∈ C is equipped with N c = 32
antennas as default. The InP serves M = 4 SPs. Each
SP m has Kc

m = 2 subscribing users uniformly distributed
in cell c as default. Following the typical LTE specifica-
tions [47], we focus on the channel over bandwidth BW = 60
kHz, which is the sum bandwidth of M subcarriers. We set
the maximum transmit power limit over the channel to be
P c

max = 39 dBm, ∀c ∈ C. Unless it is specified, we set the
default average transmit power P̄ c = 37 dBm. The receiver
noise spectral density is N0 = −174 dBm/Hz, and the noise
figure is set to NF = 10 dB. At each time t, the channel
from user k of SP m in cell c to BS l is modeled as



13

0 20 40 60 80 100
0

1

2

3

0 20 40 60 80 100
37

38

39

(a) All SPs adopt MRT precoding.
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(b) All SPs adopt ZF precoding.

Fig. 2. ρ̄(T ) and P̄ (T ) vs. T under different precoding schemes adopted by
SPs.

hcl
mk(t) =

√
βcl

mkg
cl
mk(t), where gcl

mk(t) ∼ CN (0, I), and

βcl
mk represents the large-scale variation. We model βcl

mk as
[47] βcl

mk[dB] = −31.54 − 33 log10(d
cl
mk) + ψcl

mk, where dcl
mk

is the distance from BS l to user k of SP m in cell c, and
ψcl

mk ∼ CN (0, σ2
φ) is the shadowing with σφ = 8 dB. For a

given channel hcln
mk from antenna n of BS l to user k of SP

m in cell c, we denote eH as the standard deviation of the
normalized CSI error, i.e., h̃cln

mk

|hcln
mk|

∼ CN (0, e2
H). Finally, we

assume each channel is i.i.d. over time.
To study the performance of Algorithm 2, we consider

the following two metrics: First, we define the T -slot nor-
malized time-averaged precoding deviation from virtualization
demand as ρ̄(T ) , 1

T

∑T−1
t=0

‖H′(t)V̂′?(t)−D′(t)‖2
F

‖D′(t)‖2
F

; Second,
we consider the T -slot time-averaged per-cell transmit power
as P̄ (T ) , 1

TC

∑T−1
t=0 ‖V̂′?(t)‖2

F . We assume that the InP
allocates the transmit power P c

m = P c
max
M to each SP m, ∀c ∈ C.

2) Effect of Weight U : Recall that weight U is a design pa-
rameter in Algorithm 2. We first study the effect of weight U =
S′

ε on the performance of the proposed algorithm by varying
ε. Note that ρ̄(T ) is normalized to the network-wide demand
‖D′(t)‖2

F . We use the upper bound for ‖D′(t)‖2
F in Lemma 9

to set ε as ε = θζ ′
2
B2, where θ is used as a controllable pa-

rameter. From (1), we set B = 1.645
√∑

c∈C N c
∑

k∈Kc βc
k,

which ensures that P{‖H′(t)‖F > B} < 4.9 × 10−12 based
on the Chernoff bound.

Figs. 2(a) and 2(b) show the time trajectory of ρ̄(T ) and
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Fig. 3. ρ̄(T ) and P̄ (T ) vs. T under different values of P̄ c.

P̄ (T ) under different values of θ, when all SPs adopt MRT
and ZF precoding, respectively. The value of ρ̄(T ) is shown in
percentage. Both accurate and inaccurate CSI are considered.
We see that the ρ̄(T ) under inaccurate CSI closely follows that
under perfect CSI. Since the power constraint does not depend
on the channels, as expected, P̄ (T ) under inaccurate CSI is
almost identical to that under perfect CSI. These performance
in Fig. 2 demonstrate that our proposed algorithm is robust
to inaccurate CSI under different precoding schemes adopted
by SPs. Furthermore, we observe that our proposed algorithm
converges fast (within 100 time slots) for various values of θ.
As θ decreases, U becomes larger, which puts more emphasis
on the precoding deviation ρ̂′(t) than on the Lyapunov drift
Δ(t) in the DPP metric. As a result, it takes a longer time for
the virtual queue Z(t) to stabilize and for the performance
to reach the steady state. In addition, for a smaller value
of θ, the steady state value of ρ̄(T ) is smaller, and that of
P̄ (T ) converges to P̄ c. These behaviors are consistent with
the bound analysis in (49) and (50) in Theorem 12. As we
see, for θ = 10−4, the average deviation ρ̄(T ) is under 2% for
both the MRT and ZF precoding cases. Based on this result,
we set θ = 10−4 as the default value for the rest of simulation.

3) Effect of Long-Term Transmit Power Limit P̄ c: To study
the effect of long-term average transmit power limit P̄ c in (39),
we show in Fig. 3 the time trajectory of ρ̄(T ) and P̄ (T ) under
different values of P̄ c, when all SPs adopt either MRT or ZF
precoding. When P̄ c = ∞, the precoding design in P3 is only



14

0 20 40 60 80 100
0.5

1

1.5

2

0 20 40 60 80 100
37

38

39

(a) All SPs adopt MRT precoding.

0 20 40 60 80 100

1

1.5

2

0 20 40 60 80 100
37

38

39

(b) All SPs adopt ZF precoding.

Fig. 4. ρ̄(T ) and P̄ (T ) vs. T under different values of eH.

subject to the short-term transmit power constraint (40). With
inaccurate CSI, the steady-state value of ρ̄(T ) is only around
0.7% for MRT precoding and 1% for ZF precoding. When
P̄ c decreases, although ρ̄(T ) increases for both MRT and ZF
precoding schemes, their values remain small. For example,
when P̄ c = 37 dBm, with inaccurate CSI, the steady-state
value of ρ̄(T ) is around 2% for both MRT and ZF precoding
schemes. As we observe, there is a trade-off between the
steady-state value of ρ̄(T ) and P̄ c. The InP can use this
trade-off to balance the transmit power consumption and the
deviation of actual precoding from the virtualization demand.

4) Impact of Inaccurate CSI: In Fig. 4, we study the
impact of CSI inaccuracy on the performance of the proposed
algorithm by varying eH. As eH increases from 5% to 15%,
the steady-state values of ρ̄(T ) are still under 2% for both
MRT and ZF precoding schemes. Comparing the two precod-
ing schemes, we observe that ρ̄(T ) is more sensitive to eH

under ZF precoding than under MRT precoding. The reason
is that ZF precoding requires accurate CSI to null the inter-
user interference, and thus its performance is more sensitive
to CSI accuracy [48]. In contrast, MRT precoding generates
power gain at the general signal direction and is less sensitive
to the CSI accuracy. Finally, we observe that the steady-state
value of P̄ (T ) is similar for different values of eH, showing
that it is not sensitive to CSI accuracy.

5) Benefit of Spatial Virtualization for Service Isolation:
Most existing works on MIMO WNV adopt the physical
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Fig. 5. Comparison of R̄(T ) between the proposed approach and FD
approach.

isolation approach to separate the SPs [5]-[12]. To the best
of our knowledge, there is no existing online method for
virtualization in multi-cell MIMO systems.3 Therefore, for
performance comparison, we implement a physical isolation
scheme for online multi-cell MIMO WNV. Specifically, we
consider a frequency division (FD) scheme that allocates equal
bandwidth BW

M to each SP m. We then use the proposed
proposed online coordinated precoding solution to serve each
SP. For each SP, this can be considered as a special case of
Algorithm 2 with a single SP, maximum power limit P max

c

M , and
long-term power limit P̄c

M .
Fig. 5 shows the averaged user rate R̄(T ) ,

1
TK

∑T−1
t=0

∑
k∈K log2

(

1+ |[H′(t)V̂′(t)]k,k|
2

∑
j 6=k|[H

′(t)V̂′(t)]k,j |2+σ2
n

)

achieved

by the proposed approach and the FD approach for both
inaccurate CSI and accurate CSI. Note that all rates are
normalized by the total bandwidth BW . For both the MRT
and ZF precoding cases, R̄(T ) under both approaches quickly
converges to its steady state. The average rate achieved by the
proposed spatial isolation approach is 2∼3 times higher that
of the FD approach. This indicates substantial performance
advantage of the proposed spatial isolation approach over

3For traditional non-virtualized multi-cell systems, existing coordinated
precoding schemes focus on per-slot optimization problems with per-slot
maximum transmit power limit only. These per-slot precoding solutions are
not comparable with the proposed online solution with the long-term transmit
power constraint.
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Fig. 6. R̄(T ) and P̄ (T ) vs. T under different values of Kc with Nc = 64.

the physical isolation approach for online virtualization in a
multi-cell MIMO network.

6) Impact of Number of Users and Antennas: We further
study the impact of the numbers of users Kc and antennas
N c on the performance of the proposed algorithm. We set the
numbers of users per SP in each cell to be Kc

m = Kc

M , ∀m ∈
M, ∀c ∈ C. In Fig. 6, we show the time trajectory of R̄(T ) and
P̄ (T ) under different values of Kc, with N c = 64, for both
MRT and ZF precoding schemes. As Kc increases, the steady-
state value of R̄(T ) decreases for both precoding schemes,
due to the increase of inter-user interference. We observe that
increasing the total number of users does not significantly
affect the convergence rate of our algorithm. Fig. 7 shows
that the steady-state per-user rate increases as the number
of antennas N c increases. This is because the InP has more
degrees of freedom in the coordinated precoding design. We
also observe that the proposed algorithm converges fast, even
with a large number of antennas.

VIII. CONCLUSIONS

In this paper, we have considered designing online downlink
MIMO WNV in a multi-cell network with imperfect CSI,
where the InP provides a precoding solution based on the SPs’
independent service demands. Assuming fading channels and
bounded CSI estimation error, we propose an online multi-cell
coordinated precoding algorithm aiming to minimize the long-
term time-averaged precoding deviation of the InP’s actual
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Fig. 7. R̄(T ) and P̄ (T ) vs. T under different values of Nc with Kc = 16.

precoding solution from the virtualization demands by the SPs.
Our proposed algorithm only depends on the imperfect CSI
estimates currently available at the SPs and the InP, without the
knowledge of the channel distribution. Our online coordinated
precoding solution is fully distributed and in semi-closed form,
which can be implemented at each cell without any CSI
exchange across cells. Our analysis on the performance of
the proposed online algorithm takes into account the two-fold
impact of imperfect CSI on both the InP and the SPs, and
we observe an optimality gap of O(δ) over any time horizon
due to CSI inaccuracy δ. Simulation results demonstrate the
effectiveness of the proposed algorithm in both convergence
rate and performance robustness to imperfect CSI, as well as
superior performance over the physical isolation approach.
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