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Abstract—We introduce a stochastic analytical framework to
compare the performance of open and closed access modes in
a two-tier femtocell network, with regard to uplink interference
and outage at both the macrocell and femtocell levels. A stochastic
geometric approach is employed as the basis for our analysis.
We present numerical methods to characterize the distributions
of uplink interference and the outage probabilities. We further
derive sufficient conditions for open and closed access modes
to outperform each other in terms of the outage probability at
either the macrocell or femtocell level. This leads to closed-form
expressions to upper and lower bound the difference in the tar-
geted received power between the two access modes. Simulations
are conducted to validate the accuracy of the analytical model
and the correctness of the bounds.

Index Terms—Femtocell, uplink interference, stochastic geom-
etry, open access

I. INTRODUCTION

In the deployment of wireless cellular networks, some of
the most important objectives are to provide higher capacity,
better service quality, lower power usage, and ubiquitous
coverage. To achieve these goals, one effective approach is to
install a second tier of smaller cells, referred to as femtocells,
overlapping the original macrocell network [1]. Each femtocell
is equipped with a short-range and low-cost base station (BS).

In the presence of femtocells, whenever some User E-
quipment (UE) is near a femtocell BS, two different access
mechanisms may be applied: closed access and open access.
Under closed access, a femtocell BS only provides service
to its local users, without further admitting nearby macrocell
users. In contrast, under open access, all nearby macrocell
users are allowed to access the femtocell BS. The open access
mode increases the interference level from within a femtocell,
but it also allows macrocell UEs that might otherwise transmit
at high power toward their faraway macrocell BS to potentially
switch to lower-power transmission toward the femtocell BS,
therefore reducing the overall interference in the system.
However, the relative merits between open access and closed
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access remain unresolved within the research community, as
they may concern diverse factors in communication efficiency,
control overhead, system security, and regulatory policies.

In this work, we contribute to the current debate by provid-
ing new technical insights on how the two access modes may
affect both macrocell users and local femtocell users, in terms
of the uplink interference and outage probabilities. We seek
to quantify the conditions to guarantee that one access mode
improves the performance of macrocell or femtocell users. It
is a challenging task, as we need to account for the diverse
spatial patterns of different network components. Macrocell
BSs are usually deployed regularly by the network operator,
while femtocell BSs are spread irregularly, sometimes in an
anywhere plug-and-play manner, leading to a high level of s-
patial randomness. Furthermore, macrocell users are randomly
distributed throughout the system, while femtocell users show
strong spatial locality and correlation, since they aggregate
around femtocell BSs. Whenever open access is applied, we
also need to consider the effects of handoffs made by open
access users, which brings even more complication to the
analytical model.

We present a stochastic geometric analysis framework to
derive numerical expressions for the uplink interference and
outage probabilities of open access and closed access by
modeling macrocell BSs as a regular grid, macrocell UEs as a
Poisson point process (PPP), and femtocell UEs as a two-level
clustered Poisson point process, which captures the spatial
patterns of different network components. Uplink interference
analysis is more challenging compared with the downlink case
because (1) the spatial patterns of interfering UEs are more
complicated, and (2) uplink power control further burdens
the analysis by introducing a coupling effect between UEs
and BSs. As a result, our analysis yields non-closed forms
requiring numerical integrations. This motivates us to further
develop closed-form sufficient conditions for open access and
closed access to outperform each other, at both the macrocell
and femtocell levels.

Based on the above analysis, we are able to extract a key
factor that influences the performance difference between open
access and closed access: the power enhancement factor ρ,
which is defined as the ratio, of the uplink targeted received
power of an open access user in the femtocell, to its original
targeted received power in the macrocell. We investigate the
threshold value ρ∗ (resp. ρ∗∗) such that macrocell (resp. fem-
tocell) users may benefit through open access if ρ < ρ∗

(resp. ρ < ρ∗∗) as we apply open access to replace closed



access. Upper and lower bounds of ρ∗ are derived in closed
forms, and the bounds of ρ∗∗ can be found by numerically
searching through closed-form equations, providing system
design guidelines with low computational complexity.

The rest of the paper is organized as follows. In Section II,
we discuss the relation between our work and prior works. In
Section III, we present the system model. In Sections IV and
V, we analyze the performance at the macrocell and femtocell
levels, respectively. In Section VI, we validate our analysis
with simulation results. Finally, concluding remarks are given
in Section VII.

II. RELATED WORKS

The downlink interference and outage performance in cel-
lular networks have been extensively studied using the s-
tochastic geometric approach. Dhillon et al. [2], [3] analyzed
the downlink performance of heterogeneous networks with
multiple tiers by assuming the signal-to-interference plus noise
ratio (SINR) threshold is greater than 1. Keeler et al. [4]
extended the work by allowing the SINR threshold to be
less than 1. Kim et al. [5] studied the maximum tier-1 user
and tier-2 cell densities under downlink outage constraints.
Dhillon et al. [6] studied the downlink interference considering
load balance. Singh et al. [7] studied the downlink user
achievable rate in a heterogeneous network considering both
SINR and spatial user distributions. Jo et al. [8] studied open
access versus closed access in femtocell networks in terms of
downlink performance. In the downlink scenario, base station
cooperation was studied in [9], [10], where users could access
multiple base stations simultaneously.

The analysis of uplink interference in multi-tier networks is
more challenging compared with the downlink case. For uplink
analysis, the interference generators are the set of UEs, which
are clustered and less regularly distributed compared with the
interference generators (i.e., BSs) in downlink analysis. Under
closed access, without considering random spatial patterns,
Kishore et al. [11] studied the uplink performance of a single
tier-1 cell and a single femtocell, while the same authors
[12] extended it to the case of multiple tier-1 cells and
multiple femtocells. An and Pianese [13] studied the co-
channel uplink interference in LTE-based multi-tier cellular
networks, considering a constant number of femtocells in a
macrocell. However, none of [11]–[13] considered the random
spatial patterns of users or femtocells.

By considering random spatial patterns, Novlan et al. [14]
analyzed the uplink performance of cellular networks, but it
was limited to the one-tier case. The work was extended in
[15] where frequency reuse among edge users and inner users
were accommodated. Chakchouk and Hamdaoui [16] studied
the two-tier case with one macrocell and randomly spatially
distributed femtocells and femtocell users. Chandrasekhar and
Andrews [17] evaluated the uplink performance of two-tier
networks considering multiple macrocells, femtocells, macro-
cell users, and femtocell users. However, several interference
components were analyzed based on approximations, such
as BSs see a femtocell as a point interference source, and
femtocell UEs transmit at the maximum power at the edge

of cells. Cheung et al. [18] studied both uplink and downlink
interference of femtocell networks based on a Neyman-Scott
Process. However, it assumed that each UE transmits at the
same power and femtocell UEs are uniformly distributed in an
infinitesimally thin ring around the femtocell BS. With a more
general system model, Bao and Liang [19] derived the uplink
interference in a two-tier network with multiple types of users
and small cell BSs, but no closed-form result was obtained.
Moreover, the authors of [17]–[19] considered only the closed
access case.

The analysis of open access in femtocell networks is even
more complicated. This is because the model for open access
needs to capture the impact of the users disconnecting from
the original macrocell BS and connecting to a femtocell BS. In
order to achieve mathematical tractability, the previous analy-
sis of open access used simplified assumptions. Xia et al. [20]
compared the performance of open access and closed access
based on a model with one macrocell, one femtocell, and a
given number of macrocell users, and Tarasak et al. [21] used
a model with one macrocell, a constant number of macrocell
users, and randomly distributed femtocells. Although [20] and
[21] provide useful insights into the performance comparison
between open access and closed access, their limited system
models cannot account for the challenging issues brought by
the diverse spatial patterns of BSs and UEs. Zeinalpour-Yazdi
et al. [22] studied a model with one macrocell and randomly
spatially distributed macrocell users and femtocells. The model
in [22] is still limited to a single-macrocell scenario where the
spatial patterns of macrocell BSs and inter-macrocell inter-
ference cannot be accommodated. ElSawy and Hossain [23]
studied the uplink outage performance of multi-tier cellular
networks with truncated channel inversion power control.
Open access was considered in [23], but approximations had
to be used for mathematical tractability, e.g, the correlation
of the locations of interfering UEs and their transmit power
levels were ignored. Focusing on a different scope from our
work, [23] did not compare the performance of open access
and closed access.

Recently, the downlink interference analysis in [7] has been
extended to the uplink in [24]. However, there are several
differences between our work and [24]. First, in [24], each
BS tier (including the macrocell BS tier) is assumed to be
Poisson, while in our work, macrocell BSs are assumed to
form a deterministic hexagonal point process. Second, in
[24], UEs are assumed to be homogeneously distributed,
while we generally consider their potential inhomogeneity by
assuming that local femtocell UEs aggregate around femtocell
BSs. Third, the offloading method considered in [24] is in a
different scope compared with our work. In [24], the biased
user association scheme is adopted, where each tier of BSs
is assigned an association bias value, and UEs are associated
with the BS providing the highest biased received power. UEs
are offloaded from macrocells to small cells by assigning large
association bias values to small cells. In contrast, in our work,
we focus on the comparison of the open access and closed
access modes. In the open access mode, the macrocell UEs are
offloaded to femtocells if they are located inside femtocells.
Due to the above differences in system modeling, the resultant
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Fig. 1. Two-tier network with macrocells and femtocells.

analysis in our work is substantially different from [24].
Finally, several other works studied the performance of

femtocells based on experiments [25], [26], which provide
important practical knowledge in designing a real system.
Compared with these works, our theoretical approach is an
essential alternative that allows more rigorous reasoning to
understand the performance benefits of open access compared
with closed access, by considering more general system mod-
els and behaviors instead of specific experimental scenarios.

A preliminary version of this work was presented in [27].
The current version contains substantial further analytical
details, simulation results, and discussion.

III. SYSTEM MODEL

A. Two-Tier Network

We consider a two-tier network with macrocells and fem-
tocells as shown in Fig. 1. Following a convention in the
reserach literature, we assume that the macrocells form an
infinite hexagonal grid in the two-dimensional Euclidean space
R2. Macrocell BSs are located at the centers of the hexagons
B = {( 32aRc,

√
3
2 aRc +

√
3bRc)|a, b ∈ Z}, where Rc is the

radius of the hexagon. Macrocell UEs are randomly distributed
in the system, which are modeled as a homogeneous Poisson
point process (PPP) Φ with intensity λ. We focus on inter-
ference analysis in a single shared radio frequency sub-band
(which is referred to as the reference sub-band) [16], [17],
[22], [28], [29]. The UEs (macrocell UEs and femtocell UEs)
considered in this work are those using the reference sub-band.

Because femtocell BSs are operated in a plug-and-play fash-
ion, inducing a high level of spatial randomness, we assume
femtocell BSs form a homogeneous PPP Θ with intensity µ.
Each femtocell BS is connected to the core network by high-
capacity wired links that have no influence on our wireless
performance analysis.

Each femtocell BS communicates with local femtocell UEs
surrounding it, constituting a femtocell. We assume R as the
maximum communication radius of each femtocell BS. Given
the location of a femtocell BS at x0, we assume that its

femtocell UEs, denoted by Ψ(x0), are distributed as a non-
homogenous PPP in the disk centered at x0 with radius R.
Its intensity at x is described by ν(x − x0), a non-negative
function of the vector x − x0. Note that the UE intensity
ν(x − x0) = 0 if |x − x0| > R. The femtocell UEs in
one femtocell are independent of femtocell UEs in other
femtocells, as well as the macrocell UEs. We assume the scale
of femtocells is much smaller than the scale of macrocells [1],
R ≪ Rc.

To better understand the spatial distribution of femtocell
BSs and femtocell UEs, the femtocell BSs Θ can be regarded
as a parent point process in R2, while femtocell UEs Ψ is a
daughter process associated with a point in the parent point
process, forming a two-level random pattern (see Section 5.3
of [30]). Note that the aggregating of femtocell UEs around a
femtocell BS implicitly defines the location correlation among
femtocell UEs.

Let H(x) denote the hexagon region centered at x with
radius Rc; let B(x, R) denote the disk region centered at x
with radius R; let BS(x) denote the hexagon center nearest
to x (i.e., BS(x) = x0 ⇔ x ∈ H(x0)).

B. Open Access versus Closed Access

If a macrocell UE is covered by a femtocell BS (i.e., within
a distance of R from a femtocell BS), under closed access, the
UE still connects to the macrocell BS. Under open access, the
UE is handed off to the femtocell BS and disconnects from
the original macrocell BS; the UE is then referred to as an
open access UE.

Given a femtocell BS located at x0, let Ω(x0) denote the
point process corresponding to the open access UEs connect-
ing to it. We assume that the probability of two femtocells
overlapping can be ignored [17].1 Thus, Ω(x0) corresponds to
points of Φ inside the range of the femtocell BS at x0, which
is a PPP with intensity λ inside B(x0, R).

Let ν =
∫
B(0,R)

ν(x)dx be the average number of local
femtocell UEs inside a femtocell (using the reference radio
frequency sub-band). In the open access case, λ = πR2λ is
the average number of open access UEs inside a femtocell
(using the reference radio frequency sub-band).

C. Pathloss and Power Control

Let Pt(x) denote the transmission power at x and Pr(y)
denote the received power at y. We assume that Pr(y) =
Pt(x)hx,y

|x−y|α , where |x − y|α is the propagation loss function
with predetermined constant α > 2, and hx,y is the fast fading
term.2 Note that we focus on the scenario where different tiers
in the system use the same radio spectrum under a similar

1Given a femtocell, the probability that it does not overlap with another
femtocell (i.e., no other femtocell BSs are located 2R from it) is Pnonover =
exp(−4πR2µ). We assume that R and µ are small enough such that Pnonover
can be approximated by 1.

2In this work, we follow the convention of stochastic geometric analysis
(e.g, [3], [7], [14], [22], [23], [31]) where shadowing is ignored. As stated in
[31], the main reasons for not considering shadowing in stochastic geometric
analysis are (1) shadowing will significantly degrade mathematical tractability
in the analysis, and (2) shadowing does not change the main trends of the
analytical results.



radio environment, and thus the pathloss exponent values of
different tiers are identical [22]–[24]. Also, following a com-
mon assumption of stochastic geometric modeling of cellular
networks, we assume that hx,y is independently exponentially
distributed with unit mean (i.e., Rayleigh fading) [3], [7],
[14], [22], [23], [31]. Let H(·) be the cumulative distribution
function of hx,y.

We also assume that uplink power control adjusts for
propagation losses [17], [28], [32], [33]. The targeted received
power level of macrocell UEs, femtocell UEs, and open access
UEs are P , Q, and P ′, respectively3. Given the targeted
received power PT (where PT = P , Q, or P ′), receiver at
y, and transmitter at x, the transmission power is PT |x−y|α.
Then, the resultant interference at y′ is PT |x−y|αhx,y′

|x−y′|α .
We define ρ , P ′/P , which is the targeted received power

enhancement if a macrocell UE becomes an open access UE.
In this paper, we study the performance variation when open
access is applied to replace closed access. Therefore, as a
parameter corresponding to open access UEs, ρ is regarded as
an important designed parameter. The other parameters, such
as P, Q, T , and α are considered as predetermined system-
level constants.

D. Outage Performance

In this paper, the performance of macrocell UEs and fem-
tocell UEs (under open access or closed access) is examined
through the outage probability, which is defined as the proba-
bility that the signal to interference ratio (SIR) is smaller than
a given threshold value T . Because we focus on interference
analysis, the thermal noise is assumed to be negligible.

A partial list of nomenclature is given in Table I.

IV. OPEN ACCESS VS. CLOSED ACCESS AT THE
MACROCELL LEVEL

In this section, we analyze the uplink interference and
outage performance of macrocell UEs. Consider a reference
macrocell UE, termed the typical UE, communicating with its
macrocell BS, termed the typical BS. We aim to investigate
the performance of the typical UE.

Due to the stationarity of point processes corresponding to
macrocell UEs, femtocell BSs, and femtocell UEs, throughout
this section we will re-define the coordinates so that the
typical BS is located at 0. Correspondingly, the typical UE
is located at some xU that is uniformly distributed in H(0),
since macrocell BSs form a deterministic hexagonal grid (see
page 60 of [34]).

Let Φ′ be the point process of all other macrocell UEs
conditioned on the typical UE, which is a reduced Palm point
process [34] with respect to (w.r.t.) Φ. Because the reduced
Palm point process of a PPP has the same distribution as its
original PPP, Φ′ is still a PPP with intensity λ [34]. Therefore,
for presentation convenience, we still use Φ to denote this
reduced Palm point process.

3We assume a single fixed level of targeted received power at the macrocell
or femtocell level for mathematical tractability. We show that our model is
still valid when the targeted received power is randomly distributed through
simulations in Section VI.

TABLE I
DEFINITION OF SELECTED VARIABLES

Name Definition
B Locations of macrocell BSs
Rc Radius of macrocells
Φ, λ Point process and intensity of macrocell UEs
Θ, µ Point process and intensity of femtocell BSs
Ψ(x0) Point process of femtocell UEs associating

with a femtocell BS located at x0

Intensity of femtocell UEs associating
ν(x) with a femtocell BS. x is the relative

coordinate with respect to the femtocell BS
Φ0 Points of Φ not inside any femtocell
Φ1 Points of Φ inside some femtocell

Ω(x0) Points of open access UEs
connected to a femtocell BS located at x0

R Radius of femtocells
P,Q, Targeted received powers of macrocell UEs,
P ′ femtocell UEs, and open access UEs
ρ P ′/P

α Pathloss exponent
T SIR threshold

Average number of local femtocell UEs
ν inside a femtocell using the reference

radio frequency sub-band
Average number of open access UEs

λ inside a femtocell using the reference
radio frequency sub-band

A. Open Access Case

1) Interference Components: The overall interference in the
uplink has three parts: from macrocell UEs not inside any
femtocell (denoted by I1), from open access UEs (denoted by
I2), and from femtocell UEs (denoted by I3).

I1 can be computed as the sum of interference from each
macrocell UE:

I1 =
∑
x∈Φ0

P |x− BS(x)|αhx,0

|x|α
, (1)

where Φ0 denotes the points of Φ not inside any femtocell.
I2 can be computed as the sum of interference from all open

access UEs of all femtocells:

I2 =
∑
x0∈Θ

∑
x∈Ω(x0)

P ′|x− x0|αhx,0

|x|α
. (2)

I3 can be computed as the sum of interference from all
femtocell UEs of all femtocells:

I3 =
∑
x0∈Θ

∑
x∈Ψ(x0)

Q|x− x0|αhx,0

|x|α
. (3)

The overall interference of open access is I = I1+ I2+ I3.



2) Laplace Transform of I: In this subsection, we study
the Laplace transform of I , denoted by LI(s), which leads to
the following theorem:

Theorem 1. Under the open access mode, the Laplace trans-
form of uplink interference at a typical macrocell BS is given
by

LI(s) =E

( ∏
x∈Φ

u(x, s)

)
·E

[ ∏
x0∈Θ

E
(∏

x∈Ω(x0)
v(x,x0, s)

)
E
(∏

x∈Ω(x0)
u(x, s)

)
E
( ∏

x∈Ψ(x0)

w(x,x0, s)
))]

, (4)

where u(x, s) , exp
(
− sP |x−BS(x)|αhx,0

|x|α

)
,

v(x,x0, s) , exp
(
− sρP |x−x0|αhx,0

|x|α

)
, and w(x,x0, s) ,

exp
(
− sQ|x−x0|αhx,0

|x|α

)
.

Proof: See Appendix-A for the proof.
3) Numeric Computation of LI(s): In this subsection, we

present a numeric approach to compute LI(s) derived in (4),
which will facilitate later comparison between open access
and closed access. Let L0(s) = E

(∏
x∈Φ u(x, s)

)
, which is

a generating functional corresponding to Φ [30], [34]. It can
be re-written in a standard integral form as follows:

L0(s) = exp

(
− λ

∫
R2

(
1−

∫
R+

e−
sP |x−BS(x)|αh

|x|α H(dh)

)
dx

)

=exp

(
− λ

∫
R2

sP |x−BS(x)|α
|x|α

sP |x−BS(x)|α
|x|α + 1

dx

)
. (5)

Given the location of a femtocell BS at x0, let W(x0, s) =

E

( ∏
x∈Ψ(x0)

w(x,x0, s)

)
, which is a generating functional

corresponding to Ψ(x0). It can be expressed in a standard
form through the Laplace functional of PPP Ψ(x0):

W(x0, s) = exp

(
−

∫
B(0,R)

sQ|x|α
|x+x0|α

sQ|x|α
|x+x0|α + 1

ν(x)dx

)
. (6)

Similarly, let V(x0, s) = E
(∏

x∈Ω(x0)
v(x,x0, s)

)
, and

U(x0, s) = E
(∏

x∈Ω(x0)
u(x, s)

)
, we have

V(x0, s) = exp

(
− λ

∫
B(0,R)

sρP |x|α
|x+x0|α

sρP |x|α
|x+x0|α + 1

dx

)
, (7)

U(x0, s) = exp

(
− λ

∫
B(x0,R)

sP |x−BS(x)|α
|x|α

sP |x−BS(x)|α
|x|α + 1

dx

)
. (8)

Let J (x0, s) = V(x0,s)
U(x0,s)

W(x0, s), which is numerically
computable through (6)-(8). Finally, we note that

E

[ ∏
x0∈Θ

E
(∏

x∈Ω(x0)
v(x,x0, s)

)
E
(∏

x∈Ω(x0)
u(x, s)

) E
( ∏

x∈Ψ(x0)

w(x,x0, s)
))]

=E

[ ∏
x0∈Θ

(
V(x0, s)

U(x0, s)
W(x0, s)

)]
= E

( ∏
x0∈Θ

J (x0, s)

)

=exp

(
−µ

∫
R2

(1− J (x0, s)) dx0

)
, (9)

where (9) is derived from the generating functional with
respect to PPP Θ. Substituting (5) and (9) into (4), we can
numerically compute LI(s):

LI(s) = L0(s) · exp
(
−µ

∫
R2

(1− J (x0, s)) dx0

)
. (10)

An intuitive explanation to the above is as follows. First,
in terms of the Laplace transform, additive interference is in
the product form, and interference reduction is in the division
form. Suppose that there are no femtocells at the beginning,
and L0(s) corresponds to the interference from macrocell UEs.
Then, we add femtocells to the system. Given a femtocell BS
at x0, W(x0, s) corresponds to the interference from local
femtocell UEs inside the femtocell, V(x0, s) corresponds to
interference from open access UEs inside the femtocell, and
U(x0, s) corresponds to interference reduction due to open
access UEs as they disconnect from their original macro-
cell BS. Thus, J (x0, s) = V(x0,s)

U(x0,s)
W(x0, s) represents the

overall interference variation when a femtocell centered at
x0 is added. Finally, exp

(
−µ
∫
R2(1− J (x0, s))dx0

)
is the

overall interference variation after adding all femtocells. As
a consequence, the overall interference can be computed in
formula (10).

4) Outage Probability: Given the SIR threshold T , the
outage probability of the typical UE can be computed as the
probability that the signal strength PhxU ,0 over the interfer-
ence I is less than T :

P o
out = P(PhxU ,0 < TI) = 1− LI(s)|s= T

P
. (11)

The last equality above is due to hxU ,0 being exponentially
distributed with unit mean. As a result, P o

out can be derived
directly from LI(s) (see Section 16.2.2.1 of [34]).

B. Closed Access Case

Different from the open access case, the overall interference
has only two parts: from macrocell UEs (denoted by Î1) and
from femtocell UEs (denoted by Î3).

Î1 can be computed as the sum of interference from each
macrocell UE:

Î1 =
∑
x∈Φ

P |x− BS(x)|αhx,0

|x|α
. (12)

Î3 is exactly the same as I3 in (3).
Then, the total interference can be computed as Î = Î1+ Î3.

Similar to Section IV-A3, the Laplace transform of Î is

LÎ(s) =E

[ ∏
x∈Φ

u(x, s)
∏

x0∈Θ

∏
x∈Ψ(x0)

w(x,x0, s)

]

=L0(s) ·E

[ ∏
x0∈Θ

(
W(x0, s)

)]



=L0(s) · exp
(
−µ

∫
R2

(1−W(x0, s))dx0

)
, (13)

where L0(s) is the same as (5), and W(x0, s) is the same as
(6).

An intuitive explanation to the above is as follows. First,
L0(s) corresponds to the interference of all macrocell UEs.
Given a femtocell BS at x0, W(x0, s) corresponds to inter-
ference from local femtocell UEs inside the femtocell. Then,
exp

(
−µ
∫
R2(1−W(x0, s))dx0

)
is the overall interference

from all femtocells. As a consequence, the overall interference
can be computed as formula (13).

Finally, the outage probability of the typical UE can be
computed as

P c
out = P(PhxU ,0 < T Î) = 1− LÎ(s)|s= T

P
. (14)

C. Parameter Normalization

From the above performance analysis of both open access
and closed access, we see that one can normalize the radius of
macrocells Rc to 1, so that R is equivalent to the ratio of the
radius of femtocells to that of macrocells (R ≪ 1). Also, we
can normalize the target received power of macrocell UEs P
to 1, so that Q is equivalent to the ratio of the target received
power of femtocell UEs to that of macrocell UEs, and P ′ = ρ.
Therefore, in the rest of this section, without loss of generality,
we set Rc = 1 and P = 1.

D. Open Access vs. Closed Access

We compare the outage performance of open access and
closed access at the macrocell level. Due to the integral
form of the Laplace transform, the expressions of outage
probabilities for both the open and closed access cases are
in non-closed forms, requiring multiple levels of integration.
As a consequence, we are motivated to derive closed-form
bounds to compare open access and closed access.

Let Vmax , 4π2R4(Tρ)
2
α

(
1
8 + 1

4(α+2) + 1
(α+2)(α−2)

)
,

Vmin , 2π2R4(Tρ)
2
α

(
1
8 + 1

4(α+2) + 1
(α+2)(α−2)

)
, and

Cu ,
∫
R2

(
T |x−BS(x)|α

|x|α
T |x−BS(x)|α

|x|α +1

)
dx be a system-level constant

determined by T and α. We have the following theorem:

Theorem 2. A sufficient condition for P o
out < P c

out is

−Vmax + πR2Cue
−ν > 0, (15)

and a sufficient condition for P o
out > P c

out is

−πR2Cue
λ +Vmine

−λ−ν > 0. (16)

Proof: See Appendix-B for the proof.
Through Theorem 2, closed-form expressions can be used

to compare the outage probabilities between open access and
closed access without the computational complexity intro-
duced by numeric integrations in (10) and (13).

In the following, we focus on the performance variation
if open access is applied to replace closed access. The pa-
rameter corresponding to open access UEs, ρ, is regarded as a
designed parameter. If we fix all the other network parameters,

increasing ρ implies better performance for open access UEs,
but it will also increase the interference from open access
UEs to macrocell BSs. As a consequence, we aim to derive
the threshold ρ∗ such that P o

out = P c
out. At the macrocell

level, macrocell UEs experience less outage iff ρ < ρ∗.
Thus, ρ∗ is referred to as the maximum power enhancement
tolerated at the macrocell level. Thus, in the deployment of
open access femtocells, the network operator is motivated
to limit ρ below ρ∗ to guarantee that the performance of
macrocell UEs under open access is no worse than that under
closed access. One way to derive ρ∗ is through numerical
computation of (10) and (13) and numerical search, which
introduces high computational complexity due to the multiple
levels of integration. A more efficient alternative is to find the
bounds of ρ∗ through Theorem 2. Simple algebra manipulation
leads to

ρ∗min =
1

T

 Cue
−ν

4πR2
(

1
8 + 1

4(α+2) +
1

(α+2)(α−2)

)
α

2

, (17)

ρ∗max =
1

T

 Cue
ν+2λ

2πR2
(

1
8 + 1

4(α+2) +
1

(α+2)(α−2)

)
α

2

, (18)

where ρ∗min and ρ∗max are the lower bound and upper bound
of ρ∗, respectively. If the network operator limits ρ < ρ∗min,
the performance of macrocell UEs under open access can
be guaranteed no worse than their performance under closed
access.

Furthermore, through (17) and (18), we observe that ρ∗min =
Θ( 1

Rα ) and ρ∗max = Θ( 1
Rα ), leading to the following corollary:

Corollary 1.

ρ∗ = Θ(
1

Rα
). (19)

Note that, in (19), Rc is normalized to 1 and R represents
the ratio of the radius of femtocells to that of macrocells.
If Rc is not normalized, (19) should be re-written as ρ∗ =

Θ
((

Rc

R

)α)
.

Intuitively, as a rough estimation, open access UEs have
their distance to the BS reduced approximately by a factor
of R, leading to the capability to increase their received
power by the corresponding gain in the propagation loss
function, as their average interference level is maintained.
However, Corollary 1 cannot be trivially obtained from the
above intuition. This is because the outage probability does not
only depend on the average interference, but also depends on
the distribution of the interference (i.e., the Laplace transform
of the interference). Comparing (10) with (13), we note that if
we switch from closed access to open access, the distribution
of the interference will change drastically. Corollary 1 can
be derived only after rigorously comparing and bounding the
Laplace transforms of interference under open access and
closed access.

From (17) and (18), the gap between the upper and lower
bounds can be expressed as ρ∗

max

ρ∗
min

= 2
α
2 eα(ν+λ). We emphasize

that in this work, interference analysis is conducted for a single
shared radio frequency sub-band (i.e., the reference sub-band).



The average number of UEs in a macrocell or femtocell using
the reference sub-band is usually no greater than one. Note
that ν + λ is the average number of UEs in a femtocell
using the reference sub-band and is expected to typically
be a small value. For example, as indicated in the 3GPP
guidelines in Annex A of [35], the number of femtocell UEs
per femtocell is much smaller than the number of macrocell
UEs per macrocell. Therefore, ρ∗

max

ρ∗
min

is expected to be small in
practical systems.

V. OPEN ACCESS VS. CLOSED ACCESS AT THE
FEMTOCELL LEVEL

In this section, we analyze the uplink interference and
outage performance of femtocell UEs. Given a reference
femtocell UE, termed the typical femtocell UE, communicating
with its femtocell BS, termed the typical femtocell BS, we aim
to study the interference at the typical femtocell BS. We also
define the femtocell corresponding to the typical femtocell BS
as the typical femtocell, and the macrocell BS nearest to the
typical femtocell BS as the typical macrocell BS.

Similarly to Section IV, we re-define the coordinate of the
typical macrocell BS as 0. Correspondingly, the typical femto-
cell BS is located at some xB that is uniformly distributed in
H(0) [34]. Given the typical femtocell centered at xB , let Θ′

denote the point process of other femtocell BSs conditioned on
the typical femtocell BS, i.e., the reduced Palm point process
w.r.t. Θ. Then, Θ′ is still a PPP with intensity µ [34]. For
presentation convenience, we still use Θ to denote this reduced
Palm point process. Let Ψ̃(xB) denote the other femtocell
UEs inside the typical femtocell conditioned on the typical
femtocell UE. Similarly, Ψ̃(xB) has the same distribution as
Ψ(xB). Let Ω̃(xB) denote open access UEs connecting to the
typical femtocell BS.

A. Open Access Case

1) Interference Components: The overall interference in
the uplink of the typical femtocell UE has five parts: from
macrocell UEs not inside any femtocell (I ′1(xB)), from open
access UEs outside the typical femtocell (I ′2(xB)), from fem-
tocell UEs outside the typical femtocell (I ′3(xB)), from local
femtocell UEs inside the typical femtocell (I ′4(xB)), and from
open access UEs inside the typical femtocell (I ′5(xB)). We
have

I ′1(xB) =
∑
x∈Φ0

P |x− BS(x)|αhx,xB

|x− xB |α
, (20)

I ′2(xB) =
∑
x0∈Θ

∑
x∈Ω(x0)

ρP |x− x0|αhx,xB

|x− xB|α
, (21)

I ′3(xB) =
∑
x0∈Θ

∑
x∈Ψ(x0)

Q|x− x0|αhx,xB

|x− xB|α
, (22)

I ′4(xB) =
∑

x∈Ψ̃(xB)

Qhx,xB
, (23)

I ′5(xB) =
∑

x∈Ω̃(xB)

ρPhx,xB
. (24)

The overall interference is I ′(xB) =
∑5

i=1 I
′
i(xB).

2) Laplace Transform of I ′(xB): In this subsection, we
study the Laplace transform of I ′(xB), denoted by LI′(xB , s).
We have the following theorem:

Theorem 3. Under the open access mode, the Laplace trans-
form of uplink interference at a typical femtocell BS located
at xB is given by

LI′(xB , s) = E

( ∏
x∈Φ

u′(x,xB , s)

)

E

[ ∏
x0∈Θ

(E
( ∏

x∈Ω(x0)

v′(x,x0,xB , s)
)

E
( ∏

x∈Ω(x0)

u′(x,xB , s)
) E

( ∏
x∈Ψ(x0)

w′(x,x0,xB , s)
))]

E

( ∏
x∈Ψ̃(xB)

w′(x,xB ,xB , s)

)E

(∏
x∈Ω̃(xB) v

′(x,xB ,xB , s)

)
E

(∏
x∈Ω̃(xB) u

′(x,xB , s)

) .

(25)

where u′(x,xB, s) , exp
(
− sP |x−BS(x)|αhx,xB

|x−xB |α

)
,

v′(x,x0,xB , s) , exp
(
− sρP |x−x0|αhx,xB

|x−xB |α

)
, and

w′(x,x0,xB , s) , exp
(
− sQ|x−x0|αhx,xB

|x−xB |α

)
.

Proof: See Appendix-C for the proof.
3) Numeric Computation of LI′(xB , s): First, similar to

the derivations of (5)-(8) in Section IV-A3, we have

L′
0(xB, s) = E

( ∏
x∈Φ

u′(x,xB , s)

)
(26)

=exp

(
− λ

∫
R2

sP |x−BS(x)|α
|x−xB |α

sP |x−BS(x)|α
|x−xB |α + 1

dx

)
,

W ′(x0,xB , s) = E
( ∏

x∈Ψ(x0)

w′(x,x0,xB , s)
)

(27)

=exp

(
−

∫
B(x0,R)

sQ|x−x0|α
|x−xB |α

sQ|x−x0|α
|x−xB |α + 1

ν(x− x0)dx

)
,

V ′(x0,xB , s) = E
( ∏

x∈Ω(x0)

v′(x,x0,xB , s)
)

(28)

=exp

(
− λ

∫
B(x0,R)

sρP |x−x0|α
|x−xB |α

sρP |x−x0|α
|x−xB |α + 1

dx

)
,

U ′(x0,xB , s) = E
( ∏

x∈Ω(x0)

u′(x,xB, s)
)

(29)

=exp

(
− λ

∫
B(x0,R)

sP |x−BS(x)|α
|x−xB |α

sP |x−BS(x)|α
|x−xB |α + 1

dx

)
,

In addition, we can derive

W ′′(xB , s) = E

( ∏
x∈Ψ̃(xB)

w′(x,xB,xB, s)

)
(30)

=exp

(
− sQν

sQ+ 1

)
,

V ′′(xB , s) = E

( ∏
x∈Ω̃(xB)

v′(x,xB,xB , s)

)
(31)



=exp

(
− sρPλ

sρP + 1

)
,

U ′′(xB , s) = E

( ∏
x∈Ω̃(xB)

u′(x,xB , s)

)
(32)

=exp

(
− λ

∫
B(xB ,R)

sP |x−BS(x)|α
|x−xB |α

sP |x−BS(x)|α
|x−xB |α + 1

dx

)
.

Then, following the same steps as (9), LI′(xB , s) is derived
as

LI′(xB , s) = L′
0(xB , s) exp

(
− µ

∫
R2

(
1−

V ′(x0,xB, s)W ′(x0,xB, s)

U ′(x0,xB , s)

)
dx0

)
W ′′(xB , s)V ′′(xB , s)

U ′′(xB , s)
.

(33)

An intuitive explanation to the above is as follows. First,
L′
0(xB , s) corresponds to the interference of all macrocell

UEs. Second, similar to the discussions in Section IV-A3,
V′(x0,xB ,s)W′(x0,xB ,s)

U ′(x0,xB ,s) represents the overall interference vari-
ation when a femtocell centered at x0 is added. Third,
exp

(
−µ
∫
R2

(
1− V′(x0,xB ,s)W′(x0,xB ,s)

U ′(x0,xB ,s)

)
dx0

)
is the overall

interference variation after adding all femtocells other than
the typical femtocell. Fourth, W′′(xB ,s)V′′(xB ,s)

U ′′(xB ,s) represents the
overall interference variation after adding the typical femtocell.
As a consequence, the overall interference can be computed
as formula (33).

4) Outage Probability: Similar to (11), the outage proba-
bility (given xB) is

P̂ o
out(xB) = P(QhxU ,xB < TI ′(xB)) = 1− LI′(xB , s)|s=T ′ ,

(34)

where xU is the coordinate of the typical femtocell UE (irrel-
evant to the result), T ′ = T

Q , and T is the SIR threshold. Be-
cause xB is uniformly distributed in H(0), the average outage
probability can be computed as

∫
H(0)

P̂ o
out(xB)dxB/|H(0)|,

where |H(0)| = 3
√
3R2

c

2 is the area of a macrocell.

B. Closed Access Case

The overall interference has three parts: from macrocell UEs
(Î ′1(xB)), from femtocell UEs outside the typical femtocell
(Î ′3(xB)), and from femtocell UEs inside the typical femtocell
(Î ′4(xB)). Î ′1(xB) can be computed as

Î ′1(xB) =
∑
x∈Φ

P |x− BS(x)|αhx,xB

|x− xB |α
, (35)

and Î ′3(xB) and Î ′4(xB) are exactly the same as I ′3(xB) in
(22) and I ′4(xB) in (23), respectively.

The overall interference is Î ′(xB) = Î ′1(xB) + Î ′3(xB) +
Î ′4(xB). Then, the Laplace transform of Î ′(xB) is

LÎ′(xB , s) = L′
0(xB, s)· (36)

exp

(
−µ

∫
R2

(1−W ′(x0,xB)) dx0

)
· W ′′(xB, s).

The outage probability (given xB) is

P̂ c
out(xB) = 1− LÎ′(xB, s)|s=T ′ . (37)

The average outage probability is∫
H(0)

P̂ c
out(xB)dxB/|H(0)|. Similar to the discussion

in Section IV-C, we still can normalize Rc and P . Hence,
in the rest of this section, without loss of generality, we set
Rc = 1 and P = 1.

C. Open Access vs. Closed Access

In this subsection, we compare the outage performance of
open access and closed access at the femtocell level.

Let V′
max , 4π2R4(T ′ρ)

2
α

(
1
8 + 1

4(α+2) +
1

(α+2)(α−2)

)
,

V′
min , 2π2R4(T ′ρ)

2
α

(
1
8 + 1

4(α+2) +
1

(α+2)(α−2)

)
, C ′

u be a
system-level constant shown in (74), Rmin and Rmax be as
shown in (75) and (76) in the proof of Theorem 4, which are
in closed forms if α is a rational number4. Then we have the
following theorem:

Theorem 4. Given xB , a sufficient condition for P̂ o
out(xB) <

P̂ c
out(xB) is

K1 , −µV′
max + µπR2C ′

ue
−ν − πR2T ′ρ

T ′ρ+ 1
+Rmin > 0,

(38)

and a sufficient condition for P̂ o
out(xB) > P̂ c

out(xB) is

K2 , −µπR2C ′
ue

λ + µV′
mine

−ν−λ +
πR2T ′ρ

T ′ρ+ 1
−Rmax > 0.

(39)

Proof: See Appendix-D for the proof.
Through Theorem 4, the closed-form expressions can be

used to compare the outage probabilities between open ac-
cess and closed access without the computational complexity
introduced by numeric integrations in (34) and (37).

Similar to the discussion in Section IV-D, let ρ∗∗ denote
the threshold value of ρ such that P̂ o

out(xB) = P̂ c
out(xB). At

the femtocell level, given that a femtocell BS is located at xB

(the relative coordinate w.r.t. the nearest macrocell), its local
femtocell UEs experience less outage iff ρ < ρ∗∗. Thus, ρ∗∗

is referred to as the maximum power enhancement tolerated
by the femtocell.

Instead of deriving ρ∗∗ through (34) and (37), which intro-
duces high computational complexity due to multiple levels
of integration, we can find the lower bound ρ∗∗min and upper
bound ρ∗∗max of ρ∗∗ through Theorem 4. Accordingly, ρ∗∗min is
the value satisfying K1 = 0 and ρ∗∗max is the value satisfying
K2 = 0. Thus, ρ∗∗min and ρ∗∗max can be found by a numerical
search approach w.r.t. the closed-form expressions.

4It is acceptable to assume α as a rational number in reality, because
each real number can be approximated by a rational number with arbitrary
precision.
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Fig. 2. Macrocell outage probability under different λ, with µ = 4
units/km2/sub-band and T = 0.1.
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Fig. 3. Femtocell outage probability under different λ, with µ = 4
units/km2/sub-band and T = 0.1.

VI. NUMERICAL STUDY

We present simulation and numerical studies on the outage
performance in the two-tier network with femtocells. First,
we study the performance of open access and closed access
under different user densities, femtocell densities, and SIR
thresholds. Second, we present the numerical results of ρ∗ and
ρ∗∗. Unless otherwise stated, Rc = 500 m, R = 50 m, α = 3;
and fast fading is Rayleigh with unit mean. Each simulation
data point is averaged over 50000 trials.

First, we study the performance under different µ, λ, and
T . The network parameters are as follows: ν(x) = 80
units/km2/sub-band if |x| < R, and ν(x) = 0 otherwise;
P = −60 dBm, and Q = P ′ = −54 dBm (ρ = 6 dB). Figs.
2 and 3 show the uplink outage probabilities of macrocell
and femtocell UEs under different λ; Figs. 4 and 5 show
the same under different µ; and Figs. 6 and 7 show the
same under different T . The analytical results are derived
from the exact expressions in Sections IV-A, IV-B, V-A, and
V-B, without applying any bounds. The error bars show the
95% confidence intervals for simulation results. For easier
inspection, in Figs. 2-7, the plot points are slightly shifted
horizontally to avoid overlapping error bars. The figures il-
lustrate the accuracy of our analytical results. In addition, the
figures show that the macrocell UE density strongly influences
the outage probability of both macrocell and femtocell UEs,
while the femtocell density only has a slight influence. At the
macrocell level, increasing the density of femtocell leads to
more proportion of macrocell UEs becoming open access UEs,
which gives higher performance gap between open access
and closed access. At the femtocell level, the interference
is observed at femtocell BSs, and the average number of
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Fig. 4. Macrocell outage probability under different µ, with λ = 4
units/km2/sub-band and T = 0.1.
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Fig. 5. Femtocell outage probability under different µ, with λ = 4
units/km2/sub-band and T = 0.1.

macrocell UEs in a femtocell becomes a more important factor
influencing the performance gap.

Next, we present the numerical results of ρ∗ and ρ∗∗. The
network parameters are as follows: λ = 4 units/km2/sub-band;
µ = 4 units/km2/sub-band; ν(x) = 20 units/km2/sub-band
if |x| < R, and ν(x) = 0 otherwise; P = −60 dBm, and
Q = −54 dBm.

Fig. 8 presents the value of ρ∗ at the macrocell level. We
compute the actual value of ρ∗ by numerically searching for
the value such that (11) is equal to (14). Through the closed-
form expressions in Theorem 2, we are able to derive the
upper and lower bounds of ρ∗. Through simulation, we can
also search for the value of ρ∗ such that the simulated outage
probability of open access is equal to that of closed access.
Furthermore, we also simulate a more general scenario, where
the received power is randomly distributed, rather than per-
fectly fixed to a single level. We study the scenario where the
received power level of macrocell UEs is randomly distributed
among 0.5P , P , 1.5P , and 2P with equal probability. If a
macrocell UE is handed off to a femtocell, then its targeted
received power is multiplied by ρ. The figure shows that ρ∗

is indeed within the upper bound and the lower bound, and
the simulated ρ∗ agrees with the analytical ρ∗, validating the
correctness of our analysis. Furthermore, this remains the case
when the targeted received power is random, indicating the
usefulness of our analysis in more practical scenarios.

Figs. 9, 10, and 11 present the value of ρ∗∗ at the femtocell
level. Fig. 9 shows ρ∗∗ under different R as we fixed xB =
(0, 100m); Figs. 10 and 11 show ρ∗∗ under different xB as
we fixed R = 50 m. The y-coordinates of xB , yB , are fixed
to 0 in Fig. 10, and the x-coordinates of xB , xB , are fixed
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Fig. 6. Macrocell outage probability under different T , with λ = 8
units/km2/sub-band and µ = 8 units/km2/sub-band.
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Fig. 7. Femtocell outage probability under different T , with λ = 8
units/km2/sub-band and µ = 8 units/km2/sub-band.

to 0 in Fig. 11. The results show that ρ∗∗ is indeed within
the upper and lower bounds, and the simulated values of ρ∗∗

agree with their analytical values, validating the correctness
of our analysis. Furthermore, ρ∗∗ decreases in R at a rate
slightly faster than that of ρ∗, while it increases in xB and yB ,
until saturating when the femtocell BS is near the macrocell
edge. This quantifies when femtocells are more beneficial as
they decrease in size and increase in distance away from the
macrocell BS.

VII. CONCLUSIONS

We have presented a theoretical framework to analyze
the performance difference between open access and closed
access in a two-tier femtocell network. Through establishing
a stochastic geometric model, we capture the spatial patterns
of different network components. We derive the numerical
outage probabilities of open access and closed access at the
macrocell and femtocell levels. As in most uplink interference
analysis, the outage probability expressions are in non-closed
forms. Hence, we further derive closed-form bounds for the
maximum tolerated received power enhancement, to compare
the two access modes. Simulations and numerical studies are
conducted, validating the correctness of the analytical model
as well as the usefulness of the bounds even when the received
power is random.

In evaluating the performance difference between open
access and closed access modes, so far we have used only the
outage probability. In general, other performance metrics, such
as data rate and handoff rate [36]–[38], may be of important
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Fig. 8. ρ∗ under different R at the macrocell level.
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Fig. 9. ρ∗∗ under different R at the femtocell level.

consideration. Other factors such as control overhead, system
security, and regulatory policies further complicate the system
design. A holistic comparison between the two access modes
remains an open problem for future research.

APPENDIX

A. Proof of Theorem 1

Proof: The steps to derive Theorem 1 is shown in (40)-
(44) at the top of next page, where Φ0 is the point process
corresponding to macrocell UEs not inside any femtocell, Φ1

is the point process corresponding to macrocell UEs inside
some femtocell, and Φ is the aggregation of Φ0 and Φ1.

By the law of total expectation, we derive (41) from
(40). Φ1 can be rewritten as the union of all the open

access UEs in each femtocell, so E

(∏
x∈Φ1 u(x, s)

∣∣∣∣Θ) is

equal to E

(∏
x0∈Θ

∏
x∈Ω(x0)

u(x, s)

∣∣∣∣Θ). In addition, be-

cause Φ is the aggregation of Φ0 and Φ1, E
( ∏

x∈Φ0

u(x, s)

∣∣∣∣Θ)
E

( ∏
x∈Φ1

u(x, s)

∣∣∣∣Θ) is equal to E

(∏
x∈Φ u(x, s)

∣∣∣∣Θ). By

considering the two equalities, we derive (43) from (42).
Finally, we obtain (44) from the law of total expectation.

B. Proof of Theorem 2

Proof: We use the fact that P and Rc can be normalized
and set P = Rc = 1. Furthermore, we substitute s = T into



LI(s) = E (exp(−sI)) = E

[ ∏
x∈Φ0

u(x, s)
∏

x0∈Θ

∏
x∈Ω(x0)

v(x,x0, s)
∏

x0∈Θ

∏
x∈Ψ(x0)

w(x,x0, s)

]
(40)

=E

[
E

( ∏
x∈Φ0

u(x, s)

∣∣∣∣Θ)E( ∏
x0∈Θ

∏
x∈Ω(x0)

v(x,x0, s)

∣∣∣∣Θ)E( ∏
x0∈Θ

∏
x∈Ψ(x0)

w(x,x0, s)

∣∣∣∣Θ)
]

(41)

=E

[
E

( ∏
x∈Φ0

u(x, s)

∣∣∣∣Θ)E

( ∏
x∈Φ1

u(x, s)

∣∣∣∣Θ)
E

( ∏
x∈Φ1

u(x, s)

∣∣∣∣Θ)E

( ∏
x0∈Θ

∏
x∈Ω(x0)

v(x,x0, s)

∣∣∣∣Θ)E( ∏
x0∈Θ

∏
x∈Ψ(x0)

w(x,x0, s)

∣∣∣∣Θ)
]

(42)

=E

[
E

( ∏
x∈Φ

u(x, s)

∣∣∣∣Θ)E

(∏
x0∈Θ

∏
x∈Ω(x0)

v(x,x0, s)

∣∣∣∣Θ)
E

(∏
x0∈Θ

∏
x∈Ω(x0)

u(x, s)

∣∣∣∣Θ) E

( ∏
x0∈Θ

∏
x∈Ψ(x0)

w(x,x0, s)

∣∣∣∣Θ)
]

(43)

=E

( ∏
x∈Φ

u(x, s)

)
E

[ ∏
x0∈Θ

(E
(∏

x∈Ω(x0)
v(x,x0, s)

)
E
(∏

x∈Ω(x0)
u(x, s)

) E
( ∏

x∈Ψ(x0)

w(x,x0, s)
))]

. (44)
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Fig. 10. ρ∗∗ under different xB , xB = (xB , 0), at the femtocell level.
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Fig. 11. ρ∗∗ under different xB , xB = (0, yB), at the femtocell level.

(6), (7), and (8) such that

W(x0, T ) = exp

(
−

∫
B(0,R)

TQ|x|α
|x+x0|α

TQ|x|α
|x+x0|α + 1

ν(x)dx

)
, (45)

V(x0, T ) = exp

(
− λ

∫
B(0,R)

Tρ|x|α
|x+x0|α

Tρ|x|α
|x+x0|α + 1

dx

)
, (46)

U(x0, T ) = exp

(
− λ

∫
B(x0,R)

T |x−BS(x)|α
|x|α

T |x−BS(x)|α
|x|α + 1

dx

)
. (47)

(a) A sufficient condition for P o
out < P c

out

According to (10), (11), (13), and (14), P o
out < P c

out iff

exp

(
− µ

∫
R2

(
1− V(x0,T )

U(x0,T )W(x0, T )
)
dx0

)
exp

(
− µ

∫
R2

(
1−W(x0, T )

)
dx0

) > 1, (48)

which is equivalent to∫
R2

(
V(x0, T )

U(x0, T )
− 1

)
W(x0, T )dx0 > 0. (49)

Let

V (x0) =

∫
B(x0,R)

Tρ|x−x0|α
|x|α

Tρ|x−x0|α
|x|α + 1

dx =

∫
B(0,R)

Tρ|x|α
|x+x0|α

Tρ|x|α
|x+x0|α + 1

dx,

(50)

U(x0) =

∫
B(x0,R)

T |x−BS(x)|α
|x|α

T |x−BS(x)|α
|x|α + 1

dx. (51)

Then, (49) becomes∫
R2

(
exp(−λV (x0))

exp(−λU(x0))
− 1

)
W(x0, T )dx0 > 0. (52)

Because exp(A)− 1 ≥ A for arbitrary A, and W(x0, T ) > 0,
we have

∫
R2

(
exp(−λV (x0))
exp(−λU(x0))

− 1
)
W(x0, T )dx0 >∫

R2 (−λV (x0) + λU(x0))W(x0, T )dx0. Therefore, the
following inequality is a sufficient condition for (52):∫

R2

(−λV (x0) + λU(x0))W(x0, T )dx0 > 0. (53)

Let Wmin and Wmax be the lower bound and upper bound
of W(x0, T ), respectively. According to (6), Wmax = 1 and



Wmin = e−ν . Thus, the following is a sufficient condition for
(53):

−Wmax

∫
R2

V (x0)dx0 +Wmin

∫
R2

U(x0)dx0 > 0. (54)

Let V =
∫
R2 V (x0)dx0, we have the following lemma

corresponding to the upper and lower bounds of V.

Lemma 1. Let

Vmax = 4π2R4(Tρ)
2
α

(
1

8
+

1

4(α+ 2)
+

1

(α+ 2)(α− 2)

)
,

(55)

Vmin = 2π2R4(Tρ)
2
α

(
1

8
+

1

4(α+ 2)
+

1

(α+ 2)(α− 2)

)
.

(56)

Then Vmin ≤ V ≤ Vmax.
Proof: See Appendix-E for the proof.

Hence, the following is a sufficient condition for (54):

−WmaxVmax +Wmin

∫
R2

U(x0)dx0 > 0. (57)

In addition, we have∫
R2

U(x0)dx0 =

∫
R2

∫
B(x0,R)

 T |x−BS(x)|α
|x|α

T |x−BS(x)|α
|x|α + 1

 dxdx0

= πR2

∫
R2

 T |x−BS(x)|α
|x|α

T |x−BS(x)|α
|x|α + 1

 dx = πR2Cu, (58)

where

Cu =

∫
R2

 T |x−BS(x)|α
|x|α

T |x−BS(x)|α
|x|α + 1

 dx (59)

is only related to predetermined system-level constants T and
α.

As a consequence, (57) becomes

−WmaxVmax +WminπR
2Cu > 0. (60)

(b) A sufficient condition for P o
out > P c

out

According to (10), (11), (13), and (14), P o
out > P c

out iff

exp

(
− µ

∫
R2

(
1−W(x0, T )

)
dx0

)
exp

(
− µ

∫
R2

(
1− V(x0,T )

U(x0,T )W(x0, T )
)
dx0

) > 1, (61)

Similar to the steps in (48)-(53), the following is a sufficient
condition for (61):∫
R2

(−λU(x0, T ) + λV (x0, T ))
V(x0, T )

U(x0, T )
W(x0, T )dx0 > 0.

(62)

Let W ′
min and W ′

max be the lower bound and upper bound
of V(x0,T )

U(x0,T )W(x0, T ), respectively. According to (6), (7), and
(8), W ′

max = exp
(
λ
)

and W ′
min = exp

(
−λ− ν

)
. Finally, the

following is a sufficient condition for (62):

−W ′
maxπR

2Cu +W ′
minVmin > 0. (63)

C. Proof of Theorem 3

Proof: The steps to derive Theorem 3 is shown in
(64)-(68) at the top of next page. Substituting (20)-(24)
into (64), we derive (65). According to the law of total
expectation, we derive (66) from (65). Φ1 can be rewritten as
the union of all open access UEs in each femtocell (including

the typical femtocell). Thus E

(∏
x∈Φ1 u′(x,xB , s)

∣∣∣∣Θ)
is equal to E

(∏
x0∈Θ

∏
x∈Ω(x0)

u′(x,xB , s)

∣∣∣∣Θ) ·

E

(∏
x∈Ω̃(xB) u

′(x,xB, s)

∣∣∣∣Θ). Also,

E

(∏
x∈Φ0 u′(x,xB , s)

∣∣∣∣Θ)· E

(∏
x∈Φ1 u′(x,xB , s)

∣∣∣∣Θ) is

equal to E

(∏
x∈Φ u′(x,xB , s)

∣∣∣∣Θ). By considering the two

equalities, we derive (67) from (66). Finally, we derive (68)
from the law of total expectation.

D. Proof of Theorem 4
Proof: We use the fact that P and Rc can be normalized

and set P = Rc = 1. Furthermore, we substitute s = T ′ into
(27)-(32) such that

W ′(x0,xB , T
′) = exp

(
−

∫
B(x0,R)

T ′Q|x−x0|α
|x−xB |α

T ′Q|x−x0|α
|x−xB |α + 1

ν(x− x0)dx

)
,

V ′(x0,xB , T
′) = exp

(
− λ

∫
B(x0,R)

T ′ρ|x−x0|α
|x−xB |α

T ′ρ|x−x0|α
|x−xB |α + 1

dx

)
,

U ′(x0,xB , T
′) = exp

(
− λ

∫
B(x0,R)

T ′|x−BS(x)|α
|x−xB |α

T ′|x−BS(x)|α
|x−xB |α + 1

dx

)
,

V ′′(xB , T
′) =e

− T ′ρλ
T ′ρ+1 ,

U ′′(xB , T
′) = exp

(
− λ

∫
B(xB ,R)

T ′|x−BS(x)|α
|x−xB |α

T ′|x−BS(x)|α
|x−xB |α + 1

dx

)
.

(69)

(a) A sufficient condition for P̂ o
out(xB) < P̂ c

out(xB)
According to (33), (34), (36), and (37), P̂ o

out(xB) <
P̂ c
out(xB) iff

exp

(
− µ

∫
R2

(
1 − V′(x0,xB,T ′)

U′(x0,xB,T ′)W
′(x0,xB , T ′)

)
dx0

)
exp

(
− µ

∫
R2

(
1 − W′(x0,xB , T ′)

)
dx0

) V′′(xB , T ′)

U ′′(xB , T ′)
> 1.

(70)

Let

V ′(x0,xB) =

∫
B(x0,R)

T ′ρ|x−x0|α
|x−xB |α

T ′ρ|x−x0|α
|x−xB |α + 1

dx,

U ′(x0,xB) =

∫
B(x0,R)

 T ′|x−BS(x)|α
|x−xB |α

T ′|x−BS(x)|α
|x−xB |α + 1

 dx,

R =

∫
B(xB ,R)

T ′|x−BS(x)|α
|x−xB |α

T ′|x−BS(x)|α
|x−xB |α + 1

dx. (71)



E
(
exp

(
−s(I ′(xB))

))
(64)

=E

[ ∏
x∈Φ0

u′(x,xB , s) ·
∏

x0∈Θ

∏
x∈Ω(x0)

v′(x,x0,xB , s) ·
∏

x0∈Θ

∏
x∈Ψ(x0)

w′(x,x0,xB , s) ·
∏

x∈Ω̃(xB)

v′(x,xB ,xB , s)
∏

x∈Ψ̃(xB)

w′(x,xB ,xB , s)

]
(65)

=E

[
E

( ∏
x∈Φ0

u′(x,xB , s)

∣∣∣∣Θ)
E

( ∏
x∈Φ1

u′(x,xB , s)

∣∣∣∣Θ)
E

( ∏
x∈Φ1

u′(x,xB , s)

∣∣∣∣Θ)E

( ∏
x0∈Θ

∏
x∈Ω(x0)

v′(x,x0,xB , s)

∣∣∣∣Θ) (66)

E

( ∏
x0∈Θ

∏
x∈Ψ(x0)

w′(x,x0,xB , s)

∣∣∣∣Θ)E( ∏
x∈Ω̃(xB)

v′(x,xB ,xB , s)

∣∣∣∣Θ)E( ∏
x∈Ψ̃(xB)

w′(x,xB ,xB , s)

∣∣∣∣Θ)
]

=E

[
E

( ∏
x∈Φ

u′(x,xB , s)

∣∣∣∣Θ)E

(∏
x0∈Θ

∏
x∈Ω(x0)

v′(x,x0,xB , s)

∣∣∣∣Θ)
E

(∏
x0∈Θ

∏
x∈Ω(x0)

u′(x,xB , s)

∣∣∣∣Θ)
E

(∏
x∈Ω̃(xB) v

′(x,xB ,xB , s)

∣∣∣∣Θ)
E

(∏
x∈Ω̃(xB) u

′(x,xB , s)

∣∣∣∣Θ) (67)

E

( ∏
x0∈Θ

∏
x∈Ψ(x0)

w′(x,x0,xB , s)

∣∣∣∣Θ)E( ∏
x∈Ψ̃(xB)

w′(x,xB ,xB , s)

∣∣∣∣Θ)
]

=E

( ∏
x∈Φ

u′(x,xB , s)

)
E

[ ∏
x0∈Θ

(
E
(∏

x∈Ω(x0)
v′(x,x0,xB , s)

)
E
(∏

x∈Ω(x0)
u′(x,xB , s)

) E
( ∏

x∈Ψ(x0)

w′(x,x0,xB , s)
))]

(68)

E

( ∏
x∈Ψ̃(xB)

w′(x,xB ,xB , s)

)E

(∏
x∈Ω̃(xB) v

′(x,xB ,xB , s)

)
E

(∏
x∈Ω̃(xB) u

′(x,xB , s)

) .

Similar to (53), the following is a sufficient condition for (70):

µ

∫
R2

(−λV ′(x0,xB) + λU ′(x0,xB))W ′(x0,xB, T
′)dx0

− λπR2T ′ρ

T ′ρ+ 1
+ λR > 0. (72)

Let W ′′
min and W ′′

max be the lower bound and upper bound of
W ′(x0,xB , T

′), respectively. According to (27), W ′′
max = 1

and W ′′
min = exp (−ν). Thus, the following is a sufficient

condition for (72):

µ

∫
R2

(−V ′(x0,xB)W
′′
max + U ′(x0,xB)W

′′
min) dx0

− πR2T ′ρ

T ′ρ+ 1
+R > 0, (73)

where
∫
R2 V

′(x0,xB)dx0 =
∫
R2

∫
B(x0,R)

T ′ρ|x−x0|α
|x|α

T ′ρ|x−x0|α
|x|α +1

dxdx0

is in the same form as (80). Thus, by applying Lemma 1,
we can derive its upper bound and lower bound as V′

max

and V′
min from (83) and (86), respectively. Similar to the

derivation of (58),
∫
R2 U

′(x0,xB)dx0 = πR2C ′
u where

C ′
u ,

∫
R2

 T ′|x−BS(x)|α
|x−xB |α

T ′|x−BS(x)|α
|x−xB |α + 1

 dx. (74)

In addition, the lower bound Rmin and the upper bound
Rmax of R can be derived as follows:

Rmin = (75)


π
∫ R

0

T ′(|xB |)α
rα r

T ′(|xB |)α
rα +1

dr if |xB | ≤ R,

π
∫ R

0

T ′(|xB |−R)α

rα r
T ′(|xB |−R)α

rα +1
dr + π

∫ R

0

T ′(|xB |)α
rα r

T ′(|xB |)α
rα +1

dr if |xB | > R,

and

Rmax =π

∫ R

0

T ′(|xB |+R)α

rα r
T ′(|xB |+R)α

rα + 1
dr+

π

∫ R

0

T ′(
√

|xB |2+R2)α

rα r

T ′(
√

|xB |2+R2)α

rα + 1
dr. (76)

Note that
∫

Br
rα+Bdr is in closed form when α is a rational

number. Therefore, both Rmin and Rmax are expressed in
closed forms.

Finally, the following is a sufficient condition for (73):

− µV′
max + µπR2C ′

uW
′′
min − πR2T ′ρ

T ′ρ+ 1
+Rmin > 0. (77)

(b) A sufficient condition for P̂ o
out(xB) > P̂ c

out(xB)
Similar to the derivations of (70) and (72), P̂ o

out(xB) >
P̂ c
out(xB) iff

µ

∫
R2

(
−λU

′
(x0,xB) + λV

′
(x0,xB)

) W′(x0,xB , T ′)V′(x0,xB , T ′)

U ′(x0,xB , T ′)
dx0

+
λπR2T ′ρ

T ′ρ + 1
− λR > 0. (78)

Let W ′′′
min and W ′′′

max be the lower bound and upper bound
value of W′(x0,xB ,T ′)V′(x0,xB ,T ′)

U ′(x0,xB ,T ′) , respectively. According to



(27)-(29), W ′′′
max = exp

(
λ
)

and W ′′′
min = exp

(
−λ− ν

)
. Then

similar to the derivation of (77), we see that the following is
a sufficient condition for (78):

− µπR2C ′
uW

′′′
max + µV′

minW
′′′
min +

πR2T ′ρ

T ′ρ+ 1
−Rmax > 0.

(79)

E. Proof of Lemma 1

Proof: Upper Bound of V

V =

∫
R2

∫
B(x0,R)

Tρ|x−x0|α
|x|α

Tρ|x−x0|α
|x|α + 1

dxdx0 (80)

=

∫
R2

∫
B(x,R)

Tρ|x−x0|α
|x|α

Tρ|x−x0|α
|x|α + 1

dx0dx

=

∫ ∞

0

2πr1

∫ R

0

Tρrα2
rα1

Tρrα2
rα1

+ 1
2πr2dr2dr1 (81)

≤
∫ ∞

0

2πr1

∫ R

0

1(Tρ
rα2
rα1

≥ 1)2πr2dr2dr1+∫ ∞

0

2πr1

∫ R

0

1(Tρ
rα2
rα1

< 1)
Tρrα2
rα1

2πr2dr2dr1 (82)

=4π2R4(Tρ)
2
α

(
1

8
+

1

4(α+ 2)
+

1

(α+ 2)(α− 2)

)
.

(83)

In (81), the integrated item is in the form of X
X+1 , where

X =
Tρrα2
rα1

≥ 0. The bound of the integrated item can be
found as follows: if X ≥ 1, 1

2 ≤ X
X+1 ≤ 1; otherwise, if

X < 1, X
2 ≤ X

X+1 ≤ X . Accordingly, we can separate the
integration region into the Tρrα2

rα1
≥ 1 region and the Tρrα2

rα1
< 1

region. As a consequence, the upper bound of (81) can be
derived as (82).

Lower Bound of V
Following a similar approach as above, we have

V =

∫ ∞

0

2πr1

∫ R

0

Tρrα2
rα1

Tρrα2
rα1

+ 1
2πr2dr2dr1 (84)

≥
∫ ∞

0

2πr1

∫ R

0

1(Tρ
rα2
rα1

≥ 1)πr2dr2dr1+∫ ∞

0

2πr1

∫ R

0

1(Tρ
rα2
rα1

< 1)
Tρrα2
rα1

πr2dr2dr1 (85)

=2π2R4(Tρ)
2
α

(
1

8
+

1

4(α+ 2)
+

1

(α+ 2)(α− 2)
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