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Abstract—Based on the Gauss-Markov channel model, we
investigate the stochastic feedback control for transmit beam-
forming in multiple-input-single-output (MISO) systems, and
design practical implementation algorithms leveraging techniques
in dynamic programming and reinforcement learning. We first
validate the Markov Decision Process (MDP) formulation of the
underlying feedback control problem with a 4R-variable (4R-V)
state, where R is the number of the transmit antennas. Due to the
high complexity of finding an optimal feedback policy under the
4R-V state, we consider a reduced 2-V state. As opposed to a pre-
vious study that assumes the feedback problem under such a 2-V
state remaining an MDP formulation, our analysis indicates that
the underlying problem is no longer an MDP. Nonetheless, the
approximation as an MDP is shown to be justifiable and efficient.
Based on the quantized 2-V state and the MDP approximation,
we propose practical implementation algorithms for feedback
control with unknown state transition probabilities. In particular,
we provide model-based off-line and on-line learning algorithms,
as well as a model-free learning algorithm. We investigate and
compare these algorithms through extensive simulations, and
provide their efficiency analysis. According to these results, the
application rule of these algorithms is established under both
statistically stable and unstable channels.

Index Terms—beamforming, stochastic feedback control, im-
plementation algorithms, reinforcement learning.

I. INTRODUCTION

Multi-antenna transmit beamforming is an effective

physical-layer technique that can improve transmission rate

and reliability over a wireless link in a slow fading environ-

ment [1]. The actual beamforming gain achieved depends on

feedback quality, which controls the accuracy of the beam-

forming vector used at the transmitter. Thus, to maximally

realize the beamforming potential, one key problem of a

practical system is to design an efficient feedback strategy to

obtain the beamforming vector information at the transmitter.

As feedback incurs overhead and thus rate loss to the system,

the net gain in terms of the system throughput is the result

of both rate gain due to beamforming and rate loss due to

feedback.

Channel temporal correlation introduces an additional time

dimension for the feedback strategy design. In the literature,

beamforming feedback design typically focuses on the quan-

tization techniques of the channel or beamforming vector, i.e.,
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codebook design [2], [3]. The temporal dimension is addressed

either assuming block fading channel model with independent

fade changing from block to block, or through simple periodic

feedback without actively exploring the channel temporal

correlation. Recently, a stochastic feedback control approach is

proposed for the beamforming feedback design by formulating

the problem as a Markov Decision Process (MDP) problem

[4]. In this approach, the feedback decision takes into account

both the channel temporal correlation and the feedback cost,

with the goal of maximizing the system net throughput.

Stochastic feedback control is attractive as the feedback deci-

sion is dynamic, which potentially could improve the feedback

efficiency. Gains of the stochastic feedback over the periodic

one are demonstrated in [4] through extensive simulations.

In this paper, we focus on analyzing the stochastic feedback

control of beamforming vector for transmit beamforming.

Specifically, we investigate the feedback problem from the per-

spectives of channel temporal correlation modeling, problem

space reduction and its optimality, as well as low-complexity

algorithms for feedback control.

A. Our Contribution

We consider a multi-input single-output (MISO) transmit

beamforming system with R transmit antennas and a single

receive antenna. The temporal evolution of the channel gain is

modeled by a first-order Gauss-Markov process. By modeling

the feedback of the beamforming vector as an on-off decision

process, we aim to design a feedback policy to maximize the

system net throughput under a given average feedback cost.

Our contributions are summarized as follows.

• Using the channel gain vector and available beamforming

vector at the transmitter, we construct a 4R-variable (4R-

V) system state. Based on this system state, we prove

that the underlying feedback control problem is an MDP

problem, and for the quantized 4R-V state, there exits

an optimal stationary feedback policy that is Markovian

(only depends on the current system state) and determin-

istic. However, due to the “curse of dimensionality,” the

complexity of obtaining an optimal policy is prohibitive.

• To make the problem tractable for a practical feedback

design, we investigate a reduced 2-V state that consists of

the channel power and the achieved beamforming gain.

In [4], such a reduced state is claimed to incur no loss of

optimality in the sense that, the feedback control problem

under this 2-V state remains an MDP problem. However,



2

through a detailed analysis, we demonstrate that such

a reduction is in fact suboptimal, i.e., the underlying

feedback control problem is no longer an MDP problem.

Nonetheless, the approximation as an MDP is shown to

be justifiable and efficient.

• Based on the quantized 2-V state and the MDP approxi-

mation, we propose practical feedback control algorithms

without requiring the state transition probabilities. In

particular, we provide off-line and on-line model-based

learning algorithms that can learn the transition probabil-

ities first and then obtain the feedback policy by dynamic

programming (DP) methods. We also provide a model-

free reinforcement learning algorithm that can directly

learn the feedback policy without obtaining the transition

probabilities. To the best of our knowledge, this is the first

paper that employs reinforcement learning techniques in

the stochastic feedback control for transmit beamforming.

In addition, we study and compare these algorithms

through extensive simulation, and provide their efficiency

analysis. Based on these results, the application rule of

these algorithms is suggested for both statistically stable

and unstable channels.

B. Related Works

There is a large body of literature on beamforming feedback

design [2]. Most previous works focus on codebook design for

beamforming vector under limited feedback, with emphasis

on the quantization performance of a given channel [2], [3],

[5], [6]. Approaches such as Grassmannian line packing [3],

vector quantization [6], [7], and random vector quantization

[5] are proposed and studied. To further improve the feedback

efficiency and reduce feedback overhead, opportunistic feed-

back approach is considered in multiuser transmission systems

[8]–[10], where the threshold-type feedback is assumed and

derived for various design metrics. However, these results

are derived by assuming a block fading channel model with

independent fade from block to block. Thus, channel temporal

correlation is not actively explored for improving the feed-

back efficiency. To explore the temporal correlation of fading

channels, the channel dynamics are commonly modeled either

by continuous Gauss-Markov models [11]–[14], or finite-

state Markov models [15]–[17]. With the channel temporal

correlation, feedback compression methods for channel state

or beamforming vector are investigated in [18]–[20], and

differential quantization strategies are proposed in [13], [14],

[21], [22]. Among these results, the periodic feedback strategy

is assumed, and the effect of feedback cost on the system

throughput is not incorporated in the design. The cost due

to feedback is studied in the form of resource allocation (e.g.,

bandwidth and power) between feedback and data transmission

in [23], [24].

A stochastic feedback control approach is first considered

in [4]. With the objective of maximizing the system net

throughput, [4] aims to find an optimal policy for determining

when to feed the beamforming vector back to the transmitter.

By modeling the channel temporal evolution through a first-

order Gauss-Markov process and viewing the feedback control

problem as an MDP problem, the authors show that the feed-

back policy is of the threshold-type. This work is most relevant

to our work. The main differences between our work and [4]

are as follows: 1) We rigorously examine the validity of MDP

formulation for the feedback control of beamforming vector,

while in [4], the MDP formulation is directly assumed; 2)

we explore and compare various feedback control algorithms

for practical use, while in [4], the focus is on proving the

threshold-type property of the optimal policy. Although the

existence of a threshold is shown, no practical algorithm is

provided to determine the threshold for the feedback control.

Under the MDP formulation, feedback control of beam-

forming vector is essentially a problem of sequential on-off

decision making. When the system state transition probabilities

are known, the traditional DP methods, such as policy iteration

and value iteration, can be employed to find an optimal

policy [25]. In reality, however, the transition probabilities

are unavailable. Reinforcement learning machinery provides

model-free algorithms, by which an optimal policy can be

learned directly without the requirement of the transition

probabilities. Excellent tutorials on this subject can be found

in [26]–[28].

C. Organization and Notation

The remainder of this paper is organized as follows. In Sec-

tion II, we present the system model and problem formulation.

In Section III, we demonstrate the MDP formulation of the

feedback control problem based on a 4R-V state. In Section

IV, we investigate the validity of the MDP formulation based

on a reduced 2-V state. In Section V, using the quantized

2-V state, we provide four practical learning algorithms for

feedback control. Performance of these algorithms is studied

and compared in Section VI followed by a discussion on

practical feedback implementation in Section VII. Finally, we

conclude in Section VIII.

Notation: Denote the conjugate, transpose, and Hermitian

of a matrix A by A, AT , and AH , respectively; denote 0m,n

as an m × n matrix with all entries zero; denote In as an

identity matrix with the dimension n × n; denote log(·) as

the log function with base 2; denote ℜ(·) and ℑ(·) as the

real part and the imaginary part of the enclosed parameter

respectively; denote R as the set of all real numbers and

R+ as the set of all non-negative real numbers; denote 1(·)
as the indicator function, which equals 1 (resp. 0) when the

enclosed statement is true (resp. false); denote E [·] as the

expectation. Let g be an n × 1 vector. Then ‖g‖ represents

the Euclidean norm of g, and g ∼ CN (0n,1, σ
2In) means

that g is a circular complex Gaussian random vector with

mean zero and covariance σ2In. For a process {nt}, if all

its elements nt are with mean zero and variance σ2, and the

element nt is uncorrelated with the element nt′ for all t 6= t′,
then we call {nt} a white noise process and denote it by

{nt} ∼WN(0, σ2).

II. CHANNEL MODEL AND PROBLEM STATEMENT

A. Channel Model

Consider a MISO system in which the transmitter is

equipped with R (≥ 2) antennas and the receiver is equipped
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with a single antenna. Assume a discrete-time slow fading

channel model. At time slot t, denote gi,t as the channel

gain from the i-th transmit antenna to the receiver and

gt , [g1,t, · · · , gR,t]
T as the channel gain vector. Assume that

all channel gains are spatially independent but are temporally

correlated. The temporal correlation of the channel vector gt

is captured by the following first-order Gauss-Markov model:

gt+1 = ρgt +wt+1, t = 0, 1, · · · . (1)

In (1), the initial channel gain g0 ∼ CN (0R,1, IR). The noise

process {wt} is independent of g0, and we assume that {wt}
is i.i.d. with wt ∼ CN

(

0R,1, (1− ρ2)IR
)

. ρ is the correlation

coefficient defined as ρ , J0(2πfDTs), where J0(·) is the

zero-order Bessel function of the first kind, and fDTs is the

normalized Doppler frequency with fD being the maximum

Doppler frequency shift and Ts the transmitted symbol period.

Obviously, a larger value of ρ indicates a higher temporal

correlation of the channel gains1. Being simple and effective,

the channel model (1) is widely used in the literature to

characterize the temporal channel correlation, e.g., [11]–[14].

Using Fact 1 below, we have that {gt} follows a block

Markovian model. Furthermore, we can show that the station-

ary distribution of gt is CN (0R,1, IR).

Fact 1 ( [29]): Let ǫ0, ǫ1, ǫ2, · · · be independent random

variables, X0 = ǫ0, and Xt+1 = ρXt + ǫt+1, t = 0, 1, · · · ,
where ρ is a real constant. Then {Xt} forms a Markov chain.

B. Problem Statement

At time slot t, denote an R × 1 unite complex vector

bu,t, ‖bu,t‖ = 1, as the available beamforming vector at the

transmitter. Then, the received signal at the receiver can be

expressed as

yt = xtb
H
u,tgt + vt (2)

where xt is the transmitted signal with the power constraint

E [|xt|2] = P and vt is the noise at the receiver. We assume

that {vt} is i.i.d. with vt ∼ CN (0, 1), and {vt} is independent

of {gt} and {xt}. From (2), we can derive that the signal-to-

noise ratio (SNR) is P |bH
u,tgt|2 and the data rate is log(1 +

P |bH
u,tgt|2).

In practical systems the beamforming vector at the trans-

mitter is obtained through feedback. Hence, the obtained

beamforming gain is affected by the quality of the beamformer.

Assume that each feedback incurs a fixed cost, denoted by

c. Then, there is a trade-off between the feedback cost and

the data rate provided by beamforming gain. Combining the

feedback cost and beamforming gain, we define the reward

at time slot t, rt, to be the net throughput obtained through

beamforming, expressed by

rt =

{

log(1 + P‖gt‖2)− c, if feedback

log(1 + P |bH
u,tgt|2), if no feedback.

(3)

1For example, when fDTs = 0.01, i.e., when the channel coherence time
is approximately 100 times the symbol period, we have ρ = 0.999013, which
indicates that the successive channel gains are highly correlated.

The expected total discounted reward is given by

V = E

[ ∞
∑

t=0

λtrt

]

(4)

where λ ∈ (0, 1) is the discount factor and the expectation

is taken over the randomness of the channel gain. With the

discount factor λ, the future net throughput is considered to

be less valuable than the current one, reflecting the time value

in practice.

Our objective is to design a feedback control policy to

maximize the expected total discounted reward in (4). To

simplify the analysis, throughout the paper, we assume that

the receiver knows the channel information perfectly, and the

feedback is delay-free and error-free. In other words, upon the

feedback, the available beamforming vector at the transmitter

is given by

bu,t = gu,t , gt/‖gt‖.

III. OPTIMAL FEEDBACK CONTROL: AN MDP

FORMULATION

To maximize the expected total discounted reward, the op-

timal feedback policy may be a randomized one that depends

on all previous system states and feedback actions. In this

section, we will show that, by introducing a 4R-V state the

underlying feedback control problem can be formulated as an

MDP problem. With the quantized 4R-V state, the formulated

MDP problem admits an optimal stationary policy that is

Markovian (only depends on the current system state) and

deterministic. Unfortunately, finding such an optimal policy

can be prohibitive.

A. MDP Formulation

We first give the definition of an MDP problem.

Definition 1 ( [25]): Define a collection of objects

{T ,S,A,P(·|st, at), rt(st, at)} as an MDP, where T ,S, and

A are the spaces of decision epoch t, state st, and action

at, respectively, P(·|st, at) is the transition probability of the

next state given the current state and action, and rt(st, at) is

the corresponding reward function.

Define

zt , (s0, a0, s1, a1, · · · , st)
to be the history of the decision process up to time slot

t. The key requirement of an MDP problem is that, the

transition probabilities and the reward function should depend

on the history zt only through the current state st. We now

demonstrate that the underlying feedback control problem can

be formulated as an MDP problem.

Let the space of decision epochs be T = {0, 1, · · · }, and

the space of actions be A = {0, 1}, where 0 represents no

feedback and 1 represents feedback. The system state at time

slot t is constructed as st = (gt,bt−1), where the second

element bt−1 is the unnormalized version (i.e., including the

channel power) of the available beamforming vector at the

transmitter at time slot t − 1. Note that in st, bt−1 is the

information available at time slot t before the feedback control

decision at is made. Thus, the state at time slot t contains
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bt−1, rather than bt, which is yet unknown. At each time

slot t, based on the system state st, the receiver decides

whether to feed gu,t back to the transmitter by choosing

at ∈ A. To facilitate later analysis, we also introduce a

variable qt ∈ {1, · · · , t + 1} at time slot t. It denotes that

the most recent feedback happens qt time slot(s) ago from

time slot t before the feedback decision at is made. Then, we

have bt−1 = gt−qt , with g−1 being the initial unnormalized

beamforming vector used at the transmitter at time slot 0. Upon

the receiver’s decision, the available beamforming vector at the

transmitter, the reward, and the state at the next time slot are

as follows:

at = 1⇒











bu,t = gu,t , gt/‖gt‖
rt = log(1 + P‖gt‖2)− c

st+1 = (gt+1,gt),

at = 0⇒











bu,t = bu,t−1 = gt−qt/‖gt−qt‖
rt = log(1 + P |bH

u,tgt|2)
st+1 = (gt+1,gt−qt).

(5)

Note that if at = 0, the beamforming vector at the transmitter

is unchanged, i.e., bu,t = bu,t−1. Since bu,t is the normalized

version of bt, we have bt = bt−1 = gt−qt .

In st, gt and bt−1 are complex vectors. Rewrite st =
(ℜ(gt),ℑ(gt),ℜ(bt−1),ℑ(bt−1)) by decomposing each com-

plex variable into the real part and the imaginary part. Then,

we have 4R real scalar variables in st, and we call st the

4R-V state. The state space is denoted by S = R× · · · × R,

which is the Cartesian product of 4R real spaces.

It is easy to see that the reward function depends on zt only

through st. In the lemma below, we show that this is the case

for the transition probabilities as well.

Lemma 1: Based on the 4R-V state st = (gt,bt−1), we

have

P(st+1|zt, at) = P(st+1|st, at). (6)

Proof: First assume that at = 1. Then, at time slot t+1,

the receiver will observe st+1 = (gt+1,gt) by (5). The left

hand side (LHS) of (6) is given by

P(st+1|zt, at = 1)

= P
(

gt+1,bt

∣

∣g0,b−1, a0,g1,b0, a1, · · · ,gt,bt−1, at = 1
)

(7)

= 1 (bt = gt)P
(

gt+1

∣

∣g0,g−1,g1,g1−q1 , · · · ,gt,gt−qt

)

(8)

= 1 (bt = gt)P
(

gt+1

∣

∣gt

)

(9)

where (7) is based on the definitions of st and zt, (8) follows

because once the actions {aτ}tτ=0 are given, we can specify

bτ−1 as gτ−qτ , ∀τ ∈ {1, · · · , t + 1}, and (9) follows due to

the Markovian property of {gt}.
The right hand side (RHS) of (6) is given by

P(st+1|st, at = 1) = P
(

gt+1,bt

∣

∣gt,bt−1, at = 1
)

= 1 (bt = gt)P
(

gt+1

∣

∣gt,bt−1

)

= 1 (bt = gt)P
(

gt+1

∣

∣gt

)

.

Therefore, P(st+1|zt, at = 1) = P(st+1|st, at = 1).

Next assume that at = 0. Then, at time slot t + 1, the

receiver will observe st+1 = (gt+1,gt−qt). The LHS of (6) is

given by

P(st+1|zt, at = 0)

= 1 (bt = gt−qt)P
(

gt+1

∣

∣g0,g−1,g1,g1−q1 , · · · ,gt,gt−qt

)

= 1 (bt = gt−qt)P
(

gt+1

∣

∣gt

)

,

and the RHS of (6) is given by

P(st+1|st, at = 0) = 1
(

bt = gt−qt

)

P
(

gt+1

∣

∣gt,gt−qt

)

= 1 (bt = gt−qt)P
(

gt+1

∣

∣gt

)

.

Therefore, P(st+1|zt, at = 0) = P(st+1|st, at = 0).
Using Lemma 1, the underlying feedback control problem

is an MDP problem based on the 4R-V state.

Since the state space S is continuous and thus difficult to

work with, we take a common approach to quantize S into

a finite state space2. Since the state and action spaces are

now finite, the feedback control problem admits an optimal

stationary policy that is Markovian and deterministic [25].

Formally, we can represent the optimal stationary policy as

π∗ = {d∗ : S → A}∞, where d∗ denotes the optimal decision

rule and the superscript ∞ indicates that the decision rule d∗

is stationary.

B. Challenge of Finding Optimal Policy

Although with the quantized 4R-V state there exists an

optimal policy π∗, finding π∗ is challenging because it is

difficult to efficiently quantize the state space S. One method

is to quantize the 4R real spaces individually. Suppose that the

quantization level of each real space is L. Then, the total quan-

tization level is L4R, which is large even for moderate values

of L and R (e.g., when L = 4 and R = 4, L4R ≈ 4 × 109).

Thus, we would quickly face the “curse of dimensionality” as

L and R increase. Another method is to directly quantize the

state space S by vector quantization technique [30], such as

random codebook. For example, a random codebook3 C can

be designed to include i.i.d. vectors each with the size 4R× 1
and the same distribution as st. However, to achieve a good

performance, the size of C should be large, which on the other

hand would slow down the decision-making procedure.

The above discussion indicates that, perform beamforming

feedback control based on the 4R-V state may be impractical

especially when R is large and that the state space reduction

is necessary.

IV. STATE SPACE REDUCTION: ANALYSIS ON 2-V STATE

Our focus now is on finding a suitable reduced state for

the beamforming feedback control, while trying to maintain

the validity of the MDP formulation as much as possible. An

attempt of the state space reduction is made in [4]. A 2-V state

st = (‖gt‖2,mt) is proposed, where mt , |bH
u,t−1gu,t|2 ∈

[0, 1]. The state st consists of the current channel power as

2For the slow fading channel model, we can approximately treat the
quantized version of the problem as an MDP problem.

3Note that the codebook here is designed for the state space, and is not for
the feedback beamforming vectors.
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well as the beamforming gain before the receiver makes the

decision. The state space is S = R+ × [0, 1]. Based on such

a state, upon the receiver’s decision, the reward and the state

at the next time slot are now as follows:

at = 1⇒
{

rt = log(1 + P‖gt‖2)− c

st+1 = (‖gt+1‖2, |gH
u,tgu,t+1|2),

at = 0⇒
{

rt = log(1 + P‖gt‖2mt)

st+1 = (‖gt+1‖2, |gH
u,t−qt

gu,t+1|2)
(10)

where qt is defined in Section III-A. Compared with the 4R-V

state, the size of the 2-V state is largely reduced. However, for

the feedback control problem under the 2-V state to be a valid

MDP problem, as pointed out in Section III-A, the associated

reward function and the transition probabilities should depend

on the history only through the current state.

It is claimed in [4] that, the 2-V state is an optimal reduced

state4, and the processes of {‖gt‖2} and {mt} both form

Markov chains and are independent of each other. However,

verifying these statements is non-trivial. In this section, we

take a detailed look at the validity of the MDP formulation

under the 2-V state. In particular, our analysis indicates that

the 2-V state is in fact a suboptimal reduction and thus the un-

derlying problem is an approximate MDP. On the other hand,

we reveal that the 2-V state provides a good approximation

and is efficient.

A. Analysis on {‖gt‖2}
Based on the channel dynamics in (1), we can show that

for finite R, {‖gt‖2} is non-Markovian (see Appendix A

for a detailed discussion). In this subsection, we demonstrate

that, when R is large {‖gt‖2} asymptotically forms a Markov

chain.

Define dt , 1√
R
(‖gt‖2 − R), which can be treated as a

normalized version of ‖gt‖2. In the following lemma, we give

an evolution equation of dt which will be used later.

Lemma 2: Under the first-order Gauss-Markov channel

model (1), {dt} forms a first-order autoregressive process.

Formally, we have

dt+1 = ρ2dt + w̃d,t+1, t = 0, 1, · · ·
where w̃d,t ,

1√
R

[

2ρℜ(gH
t−1wt) + ‖wt‖2 − (1− ρ2)R

]

and

{w̃d,t} ∼ WN(0, 1 − ρ4). Furthermore, d0 is uncorrelated

with {w̃d,t}, i.e., E [d0w̃d,t] = 0 for all t ≥ 1.

Proof: See Appendix B.

Fact 2 below indicates that the Markovian property is

transferable for any one-to-one mapping.

Fact 2 ( [29]): If {xt} is Markovian and yt = g(xt) where

g(·) is a one-to-one mapping, then {yt} is also Markovian.

Combining Fact 1, Fact 2, and Lemma 2, we show that

{‖gt‖2} is asymptotically Markovian in the following propo-

sition.

Proposition 1: Under the first-order Gauss-Markov channel

model (1), {‖gt‖2} asymptotically forms a Markov chain as

R→∞.

4The optimality is in the sense that the reduced 2-V state does not
compromise the controller’s optimality [4].

Proof: Due to the one-to-one correspondence between

‖gt‖2 and dt, showing that {‖gt‖2} is Markovian is equivalent

to showing that {dt} is Markovian by Fact 2. By Fact 1,

to prove that {dt} is Markovian, it suffices to prove that

{w̃d,t} is i.i.d. and is independent of d0. To this end, by

Lemma 2, it suffices to show that (d0, {w̃d,t}) is jointly Gaus-

sian. This is because if (d0, {w̃d,t}) were jointly Gaussian,

then {w̃d,t} would be an i.i.d. Gaussian sequence because

{w̃d,t} ∼ WN(0, 1 − ρ4), and d0 would be independent of

{w̃d,t} because E [d0w̃d,t] = 0 for all t ≥ 1.

We now proceed to show that (d0, {w̃d,t}) is asymptotically

jointly Gaussian as R → ∞ by showing that any linear

combination of d0, w̃d,t1 , w̃d,t2 , · · · , w̃d,tn is Gaussian ∀n > 0
and 0 < t1 < t2 < · · · < tn.

Rewrite

w̃d,t =
1√
R

R
∑

i=1

[

2ρℜ(gi,t−1wi,t) + |wi,t|2 − (1− ρ2)
]

=
1√
R

R
∑

i=1

yi,t

where gi,t and wi,t are the i-th elements of gt and wt,

respectively, and we have defined yi,t , 2ρℜ(gi,t−1wi,t) +

|wi,t|2 − (1 − ρ2). Rewrite d0 = 1√
R

∑R

i=1(|gi,0|2 − 1). Let

c0, c1, · · · , cn be the coefficients of the linear combination.

Then, we have

c0d0 +
n
∑

l=1

clw̃d,tl =
1√
R

(

R
∑

i=1

c0(|gi,0|2 − 1) +
n
∑

l=1

clyi,tl

)

=
1√
R

R
∑

i=1

ỹi (11)

where ỹi , c0(|gi,0|2 − 1) +
∑n

l=1 clyi,tl .
By straightforward calculation, we can show that {ỹi} is

i.i.d. with mean zero and variance c20 + (1 − ρ4)
∑n

i=1 c
2
i .

Applying the Central Limit Theorem, when R → ∞, the

distribution of 1√
R

∑R

i=1 ỹi converges to the Gaussian distri-

bution with the same mean and the same variance as those of

ỹi. Hence, (d0, {w̃d,t}) is asymptotically jointly Gaussian.

Therefore, we have {‖gt‖2} asymptotically form a Markov

chain in the sense that

lim
R→∞

∣

∣P
(

‖gt+1‖2
∣

∣‖g0‖2, · · · , ‖gt‖2
)

− P
(

‖gt+1‖2
∣

∣‖gt‖2
) ∣

∣

= 0.

Using Proposition 1, when R is large, we can approximate

P
(

‖gt+1‖2
∣

∣‖g0‖2, · · · , ‖gt‖2
)

by P
(

‖gt+1‖2
∣

∣‖‖gt‖2
)

.

B. Analysis on {mt} and Validity of MDP Formulation under

2-V State

In this subsection, we investigate whether the feedback

control problem under the 2-V state is an MDP problem.

From (10), the reward function is only a function of the

current state, hence satisfying the requirement of an MDP

problem. For the transition probabilities, to verify that they

depend on the history only through the current state, i.e., (6)
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holds, we make the following two assumptions:

A1) The processes {‖gt‖2} and {mt} are independent.

A2) R is large.

Under Assumption A1, it is clear that the feedback control

problem is not a strict MDP problem since {‖gt‖2} is non-

Markovian for finite R. This assumption will be discussed

later in Section IV-C. Assumption A2 is adopted based on

our conclusion in Section IV-A that {‖gt‖2} is asymptotically

Markovian. Equipped with these two assumptions, we are

ready to verify whether (6) holds under the 2-V state.

First assume that at = 1. Then, mt+1 = |gH
u,tgu,t+1|2 by

(10), and the LHS of (6) is given by

P(st+1|zt, at = 1)

= P

(

‖gt+1‖2,mt+1

∣

∣

∣
‖g0‖2,m0, a0, · · · , ‖gt‖2,mt, at = 1

)

≈ P

(

mt+1

∣

∣

∣
m0, a0, · · · ,mt, at = 1

)

P
(

‖gt+1‖2
∣

∣‖gt‖2
)

(12)

= P(|gH
u,tgu,t+1|2)P

(

‖gt+1‖2
∣

∣‖gt‖2
)

. (13)

Note that (12) is derived by Assumptions A1 and A2 along

with Proposition 1. From (12), upon at = 1, the actual

beamforming gain at time slot t reaches the full gain. Hence,

the distribution of the successive beamforming gain mt+1

is independent of all previous beamforming gains {mτ}tτ=0.

Therefore, (13) holds.

For the RHS of (6),

P(st+1|st, at = 1) = P
(

‖gt+1‖2,mt+1

∣

∣‖gt‖2,mt, at = 1
)

= P(|gH
u,tgu,t+1|2)P

(

‖gt+1‖2|‖gt‖2
)

,

which is equal to (13). As a result, we have (6) approximately

hold when at = 1.

Next assume that at = 0. Then, mt+1 = |gH
u,t−qt

gu,t+1|2
by (10), and the LHS of (6) equals

P(st+1|zt, at = 0)

≈ P

(

mt+1

∣

∣

∣
m0, a0, · · · ,mt, at = 0

)

P
(

‖gt+1‖2
∣

∣‖gt‖2
)

= P
(

|gH
u,t−qt

gu,t+1|2
∣

∣

∣
|gH

u,−1gu,0|2, |gH
u,1−q1

gu,1|2,
· · · , |gH

u,t−qt
gu,t|2

)

P
(

‖gt+1‖2
∣

∣‖gt‖2
)

(14)

= P

(

|gH
u,t−qt

gu,t+1|2
∣

∣

∣
|gH

u,t−qt
gu,t+1−qt |2,

|gH
u,t−qt

gu,t+2−qt |2, · · · , |gH
u,t−qt

gu,t|2
)

P
(

‖gt+1‖2|‖gt‖2
)

.

(15)

To see why (15) holds, consider the transition probability of

mt+1 in (14). By a similar argument as for (13), upon aτ =
1, there is mτ+1 independent of {mt′}τt′=0. Hence, for the

conditioning part of the transition probability, it suffices to

only include those mτ in which the beamforming vector is

the most recent. Thus, (15) is true.

In (15), recall that qt ∈ {1, · · · , t + 1}. To proceed, we

consider the following two cases of qt.
i) qt = t + 1, i.e., no feedback since the beginning. Then

the transition probability of mt+1 in (15) is

P

(

|gH
u,−1gu,t+1|2

∣

∣

∣
|gH

u,−1gu,0|2, |gH
u,−1gu,1|2, · · · , |gH

u,−1gu,t|2
)

.

(16)

ii) qt ∈ {1, 2, · · · , t}. By the stationarity of the channel gain

process, the transition probability of mt+1 in (15) equals

p
(

|gH
u,0gu,qt+1|2

∣

∣

∣
|gH

u,0gu,1|2, |gH
u,0gu,2|2, · · · , |gH

u,0gu,qt |2
)

.

(17)

For the RHS of (6),

P(st+1|st, at = 0)

= P
(

‖gt+1‖2,mt+1

∣

∣‖gt‖2,mt, at = 0
)

= P

(

|gH
u,t−qt

gu,t+1|2
∣

∣

∣
|gH

u,t−qt
gu,t|2

)

P
(

‖gt+1‖2
∣

∣‖gt‖2
)

(18)

where in (18) the value of qt is unknown because at−1 is

unknown.

To make (6) approximately hold when at = 0, we need to

show that (15) and (18) are equal. In other words, we need

to demonstrate that the transition probability of mt+1 in (18)

equals (16) or (17), or equivalently, to demonstrate that {mt}
forms a Markov chain when the beamforming vector bu,t ≡
gu,−1 or gu,0.

Suppose that the beamforming vector bu,t ≡ gu,−1. By the

channel dynamics in (1), the first-order autoregressive model

of mt is given by

mt+1 =
ρ2‖gt‖2
‖gt+1‖2

mt + w̃m,t+1 (19)

where w̃m,t+1 ,
2ρ‖gt‖
‖gt+1‖2ℜ(gH

u,tgu,−1g
H
u,−1wt+1) +

1
‖gt+1‖2 |gH

u,−1wt+1|2. Based on [31, Lemma 2] and [31,

Lemma 4], it can be shown that the marginal distribution of

mt is given by

P(mt ≤ x) = 1− (1− x)R−1, (20)

which is non-Gaussian. Since the expression of w̃m,t+1 is

complicated and its distribution is non-Gaussian, it is very

challenging to rigorously show that {mt} is (asymptotically)

Markovian. When the beamforming vector bu,t ≡ gu,0,

similar difficulty arises. Hence, to rigorously establish the

Markovian property of {mt} is difficult.

On the other hand, note that when bu,t ≡ gu,−1 or gu,0, the

evolution of {mt} only depends on the evolution of {gu,t}.
Since {gt} is Markovian, heuristically, it is reasonable to

approximate {mt} as Markovian5.

Based on the above discussion, under Assumptions A1 and

A2, the underlying feedback control problem is an approxi-

mated MDP problem.

C. Discussion on Dependency between {gt} and {mt}
We now discuss the independence assumption A1. Accord-

ing to the definition, the processes {‖gt‖2} and {mt} are

independent if the random vectors g = [‖gt1‖2, · · · , ‖gtk‖2]
and m = [mt′

1
, · · · ,mt′j

] are independent for all k, j and all

distinct choices of t1, · · · , tk and t′1, · · · , t′j , or formally, if

Pg,m(‖gt1‖2, · · · , ‖gtk‖2,mt′
1
, · · · ,mt′j

)

5Quantifying the accuracy of such a Markovian model for {mt} is beyond
the scope of this paper.
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= Pg(‖gt1‖2, · · · , ‖gtk‖2)Pm(mt′
1
, · · · ,mt′j

). (21)

Note that the distribution of m is policy-dependent. For

example, if feedback is performed every time slot, all elements

in m are close to 1 with a high probability. In contrast, if

feedback is never performed, the marginal distribution of mt

is given by (20). Particularly, from (20), when R = 2, mt is

uniformly distributed. Therefore, a strict verification of (21)

would require the consideration of all feasible policies, which

is obviously intractable.

Instead, we give a heuristic explanation as to why {‖gt‖2}
and {mt} can be treated as independent. Note that these

two processes capture two intrinsically distinct aspects of

the beamformed system, and one provides little information

about the other. Specifically, {‖gt‖2} describes the channel

power process, with the element ‖gt‖2 exclusively depending

on the current channel; {mt} describes the beamforming

gain process and is policy-dependent. For the same channel

realization, under different feedback policies, we can have

different realizations of {mt} that tell little information about

the channel power. On the other hand, from the realization

of {‖gt‖2}, we can barely know the process {mt} either. In

the next section, where the feedback control algorithms are

proposed, we will revisit the independence assumption A1

and discuss how the feedback algorithms are designed with

or without this assumption.

In summary, the above study shows that the 2-V state is

not an optimal reduced state because the underlying problem

does not rigorously form an MDP problem. Nonetheless, this

reduced state is still attractive, since the reduction is efficient

and the resultant MDP approximation is justifiable.

D. Quantized 2-V State

Again, since the continuous state space is hard to work

with, we need to quantize the 2-V state space. We adopt

the quantization method in [4]6. Specifically, for ‖gt‖2,

we quantize its range R+ into M levels as Tg =
{[0, g′1), [g′1, g′2), · · · , [g′M−1,+∞)}, where each interval is of

probability 1/M . The representative point of the k-th interval

is given by the conditional expectation g̃k = E [‖gt‖2|‖gt‖2 ∈
[g′k−1, g

′
k)]. For mt, we quantize its range into N levels

as Tm = {[0, 1/N), [1/N, 2/N), · · · , [(N − 1)/N, 1]}. The

range of mt is quantized with equal length instead of equal

probability because the distribution of mt is policy-dependent,

and thus cannot be determined in advance. The representative

point of the i-th interval, denoted by m̃i, is set to be the mid-

point of the associated interval.

For the quantized 2-V state, by treating the underlying

feedback control problem as a finite-state MDP problem, there

exists an optimal stationary policy that is Markovian and

deterministic.

V. LEARNING ALGORITHMS UNDER THE QUANTIZED 2-V

STATE

Based on the quantized 2-V state, we consider practical

algorithms for feedback control by treating the underlying

6Note that, to get better performance the joint quantization scheme needs
to be considered. But this is beyond the scope of this paper.

problem as an MDP problem. Four learning algorithms, in-

cluding model-based off-line and on-line algorithms as well

as a model-free on-line algorithm, are provided.

A. Model-Based Off-Line PI Algorithms

In model-based learning, the receiver first derives the transi-

tion probabilities and then obtains an optimal feedback policy

employing policy iteration (PI) [25].

1) Learning of Transition Probabilities: We now discuss

how to estimate transition probabilities. Denote the state

transition probability as P(s′|s, a), where the time indexes are

suppressed for ease of notation. When learning the transition

probabilities, we consider the processes {‖gt‖2} and {mt}
to be either independent or correlated. In particular, we call

the algorithm under the independence assumption the “inde-

pendent” off-line PI algorithm, and call the other the “joint”

off-line PI algorithm.

Denote the sampling transition probabilities of ‖gt‖2, mt,

and (‖gt‖2,mt) by Pg(·),Pm(·), and Pgm(·), respectively,

which can be obtained by the maximum likelihood estimation.

For the “independent” off-line PI algorithm, P(s′|s, a) is

derived by the product of Pg(·) and Pm(·); for the “joint”

off-line PI algorithm, P(s′|s, a) is derived based on Pgm(·).
Note that for slow fading environment, we can assume that

upon feedback, mt+1 will achieve the highest beamforming

gain, i.e., jump to the highest quantized state N . Under this

assumption, we summarize the procedure of generating the

transition probabilities for both the “joint” and “independent”

off-line PI algorithms in Appendix C.

Since learning transition probabilities incurs data rate loss,

it is desirable to make the learning phase as short as possible.

In the “independent” off-line PI algorithm, we simultaneously

learn two transition probability matrices Pg(·) and Pm(·),
whose sizes are M × M and N × N , respectively. In the

“joint” off-line PI algorithm, we learn the transition probability

matrix Pgm(·), whose size is MN ×MN . This size is much

larger than that of Pg(·) or Pm(·). Therefore, a longer learning

phase is required for the “joint” algorithm to achieve a similar

learning accuracy as that of the “independent” one. In this

sense, the “joint” algorithm is less efficient.

2) PI: Given the transition probabilities, we can form the

expected total discounted reward (value function) under the

state s and policy π as

V π(s) = r(s, a) + λ
∑

s′

P
(

s′
∣

∣s, a
)

V π(s′) (22)

where the action in state s follows the policy π, and the time

indexes are suppressed for ease of notation. Denote π∗ as an

optimal policy. Then, the optimal value function should satisfy

the Bellman’s equation [25]

V π∗

(s) = max
a∈A

[

r(s, a) + λ
∑

s′

P
(

s′
∣

∣s, a
)

V π∗

(s′)

]

. (23)

Using PI to obtain a policy of (23) involves alternating

between policy evaluation and policy improvement iteratively

until the algorithm converges [25]. For finite state and action

spaces, it has been proven that PI is guaranteed to converge to
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an optimal solution within finite iterations. In our simulation,

with the quantization levels M = N = 4, typically 2 or 3 iter-

ations are needed for convergence, while with M = N = 32,

typically 7 or 8 iterations are needed. For PI, the computational

complexity mainly lies in policy evaluation and is of the order

O((MN)3). The required storage is largely determined by the

size of the transition probability matrix and is of the order

O((MN)2).

B. Model-Free On-Line EQ Algorithm

As opposed to model-based learning, in model-free learning,

the receiver tries to learn an optimal policy π∗ directly without

deriving P(s′|s, a) first. In this subsection, we adapt a model-

free algorithm, the Exploratory Q-learning (EQ) algorithm, for

feedback control.

1) Background of Q-Learning: Q-learning is a model-free

algorithm, by which the decisions are made through the

learning of the optimal Q-factors [32]. Denote Qπ(s, a) as

the Q-factor of the state-action pair (s, a) under a policy π. It

is given by

Qπ(s, a) = r(s, a) + λ
∑

s′

P(s′|s, a)V π(s′) (24)

where V π(s′) is the value function of the state s′ under the

policy π. From (24), Qπ(s, a) represents the expected total

discounted reward by taking the action a in the state s and

following the fixed policy π thereafter.

If π∗ is an optimal policy, we have V π∗(s) =
maxa∈A Qπ∗(s, a), which means that π∗ can be derived from

the optimal Q-factors Qπ∗(s, a). To learn the optimal Q-

factors, at each decision epoch t, the decision maker first

observes the current state s, then selects an action and observes

the next state s′. Denote Qt(s, a) as the Q-factor at decision

epoch t. The update of Qt(s, a) is given by

Qt(s, a)

=











(1 − αt(s, a))Qt−1(s, a) + αt(s, a) [rt(s, a) + λVt−1(s
′)] ,

if s = st and a = at

Qt−1(s, a), otherwise

(25)

where Vt−1(s
′) = maxa∈A Qt−1(s

′, a) and αt(s, a) is the

learning rate of the state-action pair (s, a) at time slot t. Note

that, by (25), only the Q-factor associated with the visited

state-action pair is updated. It is proven in [32] that, if all

state-action pairs are visited infinitely often and the learning

rate is appropriately designed, all Q-factors will eventually

converge to the optimal ones.

2) EQ Algorithm: The EQ algorithm is introduced in

[33]. It combines Q-learning with a counter-based directed

exploration strategy. Below, we briefly summarize how the

EQ algorithm chooses an action at each decision epoch.

Denote nt(s, a) as the number of times that the state-action

pair (s, a) is visited up to time slot t, and nt(s) as the number

of times that the state s is visited up to time slot t. Let

ct(s, a) reflect the number of times that the action a has not

been performed in the state s since the initial time. Initialize

c0(s, a) = 0, ∀s, a.

In the EQ algorithm, given the current state st, a greedy

action ât = argmaxa∈A Qt(st, a) is first determined, which

leads to the maximum Q-factor at time slot t. The final action

at is decided by the following maximization problem:

max
a∈A

gt(st, a) ,

{

ct(st,a)
nt(st,a)

+ 1, if a = ât
ct(st,a)
nt(st,a)

, otherwise
(26)

where the addition of 1 indicates the decision maker’s pref-

erence for the greedy action. It is possible that the decision

maker finally takes a non-greedy action a 6= ât at time slot

t. This could happen provided that the ratio
ct(st,a)
nt(st,a)

is large,

i.e., the action a has not been performed in st for a long time.

The update of ct(st, a) is as follows:

ct+1(st, a)

=

{

ct(st, a) + Θ(nt+1(st)− nt+1(st, a)), if a 6= at

ct(st, a), otherwise

(27)

where Θ(n) is a positive function satisfying the conditions

lim
n→∞

Θ(n) = 0, and

∞
∑

n=1

Θ(n) =∞. (28)

a) Complexity: At each decision epoch, given the current

state, the operation of the EQ algorithm is based on |A| state-

action pairs. Thus, the computational complexity is of the

order O(|A|). In our problem, since there are only two possible

actions, the computational complexity of the EQ algorithm is

low. The state-action based parameters, such as the Q-factors,

should be stored for each update. Thus the required storage

size of the EQ algorithm is of the order O(|A|MN).

b) Design parameters: For the updates in (25) and (27),

two parameters need to be carefully designed: the learning rate

αt(s, a) and the positive function Θ(n). In [27], the learning

rate is suggested as αt(s, a) = α0τ
τ+nt(s,a)

, where α0 is the

initial learning rate and τ is some positive parameter. The

positive function Θ(n) is set to be 1
n1/θ , θ ≥ 1. From (27), a

larger θ can result in a larger value of ct+1(st, a) for a 6= at
(usually a non-greedy action). Therefore, the value of θ affects

the trade-off between exploration (a non-greedy action) and

exploitation (the greedy action). In Section VI, we will study

how to choose θ and α0.

C. Model-Based On-Line PI Algorithm

For comparison, we also provide a model-based on-line PI

algorithm, which combines PI with a counter-based directed

exploration strategy similar to that in the EQ algorithm [33].

We briefly describe this algorithm below.

In this algorithm, at each decision epoch, first, the estimates

of the transition probabilities P(s′|s, a) are updated by the

observation history {‖gτ‖2,mτ , aτ}tτ=0 where the processes

{‖gt‖2} and {mt} are jointly considered; second, with the

updated P(s′|s, a), PI is employed to generate the greedy

action ât; and third, the final action at is determined by the

optimization problem (26).
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Fig. 1. Design of θ: 2-V EQ algorithm with R = 2, M = N = 4, c = 4
and 12, and θ = 1, 2 and 3.

Compared with the EQ algorithm in which the greedy

action ât is generated by Q-learning, in the model-based on-

line PI algorithm ât is produced by PI. Compared with the

model-based “joint” off-line PI algorithm which generates the

transition probabilities once, in the on-line PI algorithm, the

estimates of P(s′|s, a) are updated at every decision epoch

by incorporating newly obtained observation data. Thus, in

using these data, the algorithm seeks a certain balance between

exploration and exploitation. Furthermore, the computational

complexity of the on-line PI algorithm is high, since PI is

performed at every decision epoch.

VI. PERFORMANCE STUDY OF PROPOSED LEARNING

ALGORITHMS

In this section, we will study and compare all learning

algorithms proposed in the previous section.

In all simulation, we set the discount factor λ = 0.98, the

normalized Doppler frequency fDTs = 0.01, and the power

at the transmitter P = 10 dBW (except otherwise mentioned).

The expected total discounted reward in (4) is approximated by

the sample mean of the total discounted rewards over 400 inde-

pendently generated channel sequences. For the n-th generated

channel sequence, the total discounted reward beginning at

time slot t is approximated by V̂
(n)
t =

∑t+∆t

τ=t λτ−tr
(n)
τ , where

∆t = 350. The parameter τ in the learning rate αt(s, a) of

the EQ algorithm is set to be 300. The feedback cost is drawn

from the set {4, 8, 12, 20, 40, 60}. Note that these values are

simply chosen as examples in our simulation.

A. Model-Based vs. Model-Free Algorithms

We first provide the guideline on choosing the parameters

θ and α0 in the EQ algorithm. Then we compare the EQ

algorithm and the on-line PI algorithm.

1) EQ Algorithm – Design of θ and α0: Let R = 2 and

M = N = 4. The feedback cost is set to be c = 4 and 12. In

Fig. 1, we show the expected total discounted reward under the

EQ algorithm with θ = 1, 2, and 3 (recall that θ controls the

exploration-exploitation trade-off in the EQ algorithm). Each

curve in Fig. 1 displays the convergence behavior associated
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Fig. 2. Design of α0: 2-V EQ algorithm with R = 2 and 4, M = N = 4
and 8, and α0 = 0.5 and 0.05.

with a specified θ. We see that, when the feedback cost is

low and equals 4, θ = 2 (a balanced exploration-exploitation)

results in the best system performance, while θ = 1 (too much

exploitation) results in the lowest performance. When the

feedback cost is high and equals 12, θ = 1 results in the best

performance, and larger values of θ (more exploration) prolong

the convergence time of the EQ algorithm. In summary, the

choice of θ depends on the feedback cost. When the feedback

cost is low, the system benefits more from exploration of the

non-greedy action, and thus a larger θ is preferred. When the

feedback cost is high, such exploration becomes costly, and

thus a smaller θ is preferred.

In Fig. 2, for R = 2 and 4, we investigate the effect of

quantization levels on the design of the initial learning rate

α0. We display the expected total discounted reward under

two sets of quantization levels and various feedback costs.

The parameter θ is set appropriately. When M = N = 4,

α0 = 0.5 is found to produce the best performance. However,

when M = N = 8, α0 = 0.5 is shown to be inferior

to α0 = 0.05, especially at the high feedback cost region.

For example, when c = 60, the degradation of α0 = 0.5
regarding α0 = 0.05 is 3%(R = 2) and 5%(R = 4). Hence,

Fig. 2 indicates that, the initial learning rate α0 should be

adjusted to the quantization levels. Specifically, α0 should be

smaller when the quantization levels are high. This is because

higher quantization levels result in less observation samples for

each quantized level, and consequently, the learning process

needs to slow down. Furthermore, we observe that, if α0

is appropriately designed, the improvement by increasing

quantization levels is limited.

2) EQ Algorithm vs. On-Line PI Algorithm: In Fig. 3, for

R = 2 and 4, and M = N = 4, we compare the EQ

algorithm and the model-based on-line PI algorithm under

various feedback costs. Recall that the only difference between

these two algorithms is how to generate the greedy action.

We see that, the EQ algorithm outperforms the on-line PI

algorithm at the mediate-to-high cost region, showing an

advantage of the EQ algorithm. The advantage of the EQ

algorithm could be attributed to the reward-driven nature of
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Fig. 3. EQ algorithm vs. on-line PI algorithm: R = 2 and 4, M = N = 4.
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Fig. 4. “Joint” off-line PI algorithm vs. “independent” off-line PI algorithm:
R = 2, P = 10 dBW, and M = N = 4, 8, 16, and 32.

Q-learning.

B. “Independent” vs. “Joint” Off-Line PI Algorithms

In Section IV we have argued that determining whether the

processes {‖gt‖2} and {mt} are independent is challenging.

In the proposed two off-line PI algorithms, these two processes

are treated either jointly or independently. In this subsection,

we compare these two algorithms under two scenarios: a fixed

transmit power level with various feedback costs, and various

transmit power levels with a fixed feedback cost.

1) Effect of Feedback Cost: In Fig. 4, with the transmit

power being P = 10 dBW, we compare the expected total

discounted reward of the “joint” and “independent” off-line

PI algorithms under various feedback costs. We set R = 2
and the quantization levels M = N = 4, 8, 16, and 32.

We observe that, the “joint” algorithm outperforms the “in-

dependent” one in general, which indicates that {‖gt‖2} and

{mt} are correlated. Furthermore, as the quantization levels

increase, performance of both algorithms improves, and also

the performance gap between these two reduces. In particular,

when M = N = 32, the performance gap becomes negligible,

indicating that treating {‖gt‖2} and {mt} as independent is
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Fig. 5. “Joint” off-line PI algorithm vs. “independent” off-line PI algorithm:
R = 4, P = 10 dBW, and M = N = 4, 8, 16 and 32.
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Fig. 6. “Joint” off-line PI algorithm: R = 4, c = 20, and M = N = 4.

acceptable. For comparison, the EQ algorithm with M =
N = 4 is shown. Surprisingly, it yields the best performance

compared with all off-line PI algorithms, especially at the high

feedback cost region.

In Fig. 4, we additionally include the EQ algorithm designed

for the original 4R-V state. The average quantization level

per real variable is set to be L = 32, and a random code

book with the size 256 is used. Compared with the algorithms

designed for the 2-V state, the 4R-V state based EQ algorithm

is inferior to the “independent” off-line PI algorithm with M =
N = 16. This observation reveals that, although the 4R-V state

is optimal, there is a large performance loss associated with

quantization. Therefore, the 2-V state is more efficient.

The same experiments are conducted for R = 4 in Fig. 5.

From this figure, we can see similar observations as those in

Fig. 4. In particular, the performance gap between the “joint”

and “independent” off-line PI algorithms is small for M =
N = 16 and 32. This again indicates that assuming {‖gt‖2}
and {mt} to be independent is reasonable.

2) Effect of Transmit Power: In Fig. 6, with a fixed

feedback cost c = 20, we show performance of the model-

based “joint” off-line PI algorithm under various transmit

power levels. Using the quantization levels M = N = 4
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Fig. 7. Off-line PI algorithm vs. on-line PI algorithm: R = 2 and 4, and
M = N = 4 and 32.

as the base, we plot the performance improvement under

M = N = 8, 16, and 32. We see that, performance improves

with the quantization levels, and the improvement is significant

at the low transmit power region. For example, when P = −5
dBW, the advantages of M = N = 8, 16, and 32 over

the base are as high as 14%, 23%, and 28%, respectively.

In contrast, when P = 20 dBW, the advantages are only

0.8%, 1.5%, and 2%, respectively. The reason for such a

significant improvement at the low transmit power region

(corresponding to the low average SNR) is as follows. At the

lower power region, which is the linear region of the capacity,

the increased SNR directly translates to the capacity gain thus

the throughput gain. At the high power region, which is the

non-linear region of the capacity, the increased SNR translates

to a smaller throughput improvement. For comparison, we also

show performance of the EQ algorithm, which is observed

to have the highest improvement regarding the base. The

observations of the “independent” off-line PI algorithm are

similar and are omitted here.

C. Off-Line PI vs. On-Line PI Algorithms

In Fig. 7, for R = 2 and 4, and M = N = 4 and 32,

we compare the “joint” off-line PI algorithm with the on-line

PI algorithm under various feedback costs. We see that, with

low quantization levels, e.g., M = N = 4, the off-line PI

algorithm is inferior to the on-line PI algorithm. Specifically,

when c = 60, the degradation percentages regarding the on-

line algorithm are 7% (R = 2) and 9% (R = 4). In contrast,

with high quantization levels, e.g., M = N = 32, performance

of the off-line algorithm improves and becomes comparable

with respect to that of the on-line algorithm under M = N =
4. This indicates that the on-line PI algorithm can tolerate a

higher quantization error than the off-line PI algorithm.

D. Discussions

In Table I, we summarize the time efficiency, the (storage)

space efficiency, and the computational efficiency of all pro-

posed algorithms.

For the “joint” and “independent” off-line PI algorithms, the

time efficiency is considered based on the number of the time

slots spent on generating transition probabilities. As discussed

in Section V-A1, the “independent” algorithm is more efficient

than the “joint” one. For the on-line PI algorithm and the EQ

algorithm, since there is no extra learning phase incurred, the

time efficiency is considered based on the number of the time

slots required for achieving a stable performance. Simulation

shows that the latter two algorithms consume less number of

time slots than the former two algorithms and thus are more

efficient.

In Section VI-A, we compared two on-line algorithms and

observed that the EQ algorithm has an advantage over the on-

line PI algorithm. Also, from Table I, the EQ algorithm has a

higher space efficiency and computational efficiency than the

on-line PI algorithm. Therefore, as far as on-line algorithms

are concerned, the EQ algorithm is preferable.

In Section VI-B, we compared the “joint” and “indepen-

dent” off-line PI algorithms under various transmit power lev-

els and feedback costs. We observed that these two algorithms

have a similar performance under high quantization levels.

This observation indicates that the processes {‖gt‖2} and

{mt} can be approximately treated as independent. Therefore,

when off-line policy is considered, the “independent” off-line

algorithm is preferable due to its higher time efficiency.

In Section VI-C, we compared two PI-based algorithms (on-

line/off-line) and observed that the on-line PI algorithm is

superior to the “joint” off-line PI algorithm. This observation

shows that, considering the trade-off between exploration and

exploitation, the transition probabilities derived by leveraging

on-line data are more accurate.

To summarize, we suggest the following rule for choosing

an appropriate algorithm among all proposed ones. If the

channel is statistically stable, i.e., the statistics of g0 or wt

does not change, the “independent” off-line PI algorithm is

preferable. When used, the “independent” algorithm should

adopt high quantization levels especially at high feedback cost

region and low transmit power region. Also, to avoid repeated

generation, the derived policy can be stored for future use.

In contrast, if the channel is statistically unstable, or if the

time/space/computational efficiencies are the main concerns,

the EQ algorithm is the best candidate.

VII. FURTHER DISCUSSION ON STOCHASTIC FEEDBACK:

PRACTICAL IMPLEMENTATION AND PERFORMANCE

In this work, we focus on the timing of feedback while

assuming the feedback beamforming vectors to be perfect. In

practice, feedback beamforming vectors need to be quantized

using a codebook. The stochastic feedback control considered

in this work can be combined with different codebook-based

strategies, such as traditional codebook quantization [6], [7],

the compression method [18]–[20], and differential vector

quantization [13], [14], [21], [22], for practical feedback

implementation of beamforming vectors. The value of the

feedback cost c in (3) may depend on the size of the codebook.

Since the codebook design is not the focus of this work, the

determination of c is beyond the scope of this paper, and the
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TABLE I
EFFICIENCY ANALYSIS OF ALL PROPOSED ALGORITHMS

“Joint” off-line PI “Independent” off-line PI On-line PI EQ

Time efficiency Low Medium High High

Space efficiency Low (O((MN)2)) Low (O((MN)2)) Low (O((MN)2)) High (O(|A|MN))

Computational efficiency
(per run)

Low (O((MN)3)) Low (O((MN)3)) Low (O((MN)3)) High (O(|A|))

design of codebook-based stochastic feedback remains open

for future study.

The stochastic feedback control results in aperiodic feed-

back which needs appropriate signaling and reporting designs

for practical implementation. The current practical systems

such as LTE [34] have built-in aperiodic feedback reporting

modes, besides periodic ones. They can be used to provide

need-based reporting of CSI and/or beamforming vector index

for multi-antenna transmission whenever the channel condition

changes. Such aperiodic feedback in LTE is carried through

the uplink data channel. However, the signaling is initiated by

base stations, not users, while our stochastic control requires

user-triggered signaling. Some novel design can be made to

accomplish the signaling of the stochastic feedback scheme.

For example, we could design a 1-bit on-off signaling in the

uplink control channel with “on” signal indicating the instance

of feedback7.

Regarding the system performance, comparison between

stochastic feedback control and periodic feedback control has

been studied in [4]. Under a similar system model as ours,

the authors compare the stochastic feedback scheme with a

periodic feedback scheme of which the period is optimized.

Through extensive simulation, the stochastic feedback has

been shown to outperform the periodic one.

Furthermore, in this work, our design objective is maxi-

mizing the overall throughput, which directly factors in the

rate loss due to feedback. In contrast, traditional codebook-

based periodic feedback is a type of static scheme. The design

objective does not involve feedback cost, and thus does not

lead to optimizing the overall throughput. As such, stochas-

tic feedback control will outperform the periodic feedback

scheme (assuming the same quantization and codebook used),

due to its design goal of overall throughput maximization.

VIII. CONCLUSION

Based on a first-order Gauss-Markov channel model, we

have considered the stochastic feedback control of beam-

forming vector for MISO systems, and provided practical

algorithms for implementation. We have showed that, although

based on a 4R-V state the underlying feedback control prob-

lem can be formulated as an MDP problem, finding an optimal

policy is challenging. We have then considered a reduced 2-

V state and studied the validity of its MDP formulation. Our

investigation indicates that the reduced 2-V state is in fact

suboptimal but meanwhile is justifiable and efficient. Based on

the quantized 2-V state, we have provided and analyzed four

7Such signaling channel can be designed similarly as the ACK/NACK
channel in LTE.

learning algorithms. Through a detailed study of all proposed

algorithms, we have suggested an application rule for choosing

an appropriate algorithm under different channel conditions

and efficiency concerns.

APPENDIX A

NON-MARKOVIAN PROPERTY OF {‖gt‖2} FOR FINITE R

From the definition, showing that {||gt||2} (or {||gt||})
forms a Markov chain is equivalent to showing that

P(‖gt+1‖2
∣

∣ ‖g0‖2, · · · , ‖gt‖2) = P(‖gt+1‖2
∣

∣ ‖gt‖2). (29)

Based on ‖gt+1‖2 = ρ2‖gt‖2 + ‖wt+1‖2 +
2ρ‖gt‖ℜ(gH

u,twt+1) and gt = ‖gt‖gu,t, showing (29)

is equivalent to showing

P

(

ρ2‖gt‖2 + ‖wt+1‖2 + 2ρ‖gt‖ℜ(gH
u,twt+1)

∣

∣

∣
‖g0‖2, · · · , ‖gt‖2

)

= P

(

ρ2‖gt‖2 + ‖wt+1‖2 + 2ρ‖gt‖ℜ(gH
u,twt+1)

∣

∣

∣
‖gt‖2

)

.

(30)

Note that the conditional probability of gH
u,twt+1 in (30) is

given by

P

(

gH
u,twt+1

∣

∣

∣
‖g0‖2, · · · , ‖gt‖2

)

=

∫

P(gu,t

∣

∣

∣
‖g0‖2, · · · , ‖gt‖2)P(gH

u,twt+1

∣

∣

∣
gu,t) dgu,t.

(31)

Recall that gu,t = gt

‖gt‖ . Now we are left to check whether

P( gt

‖gt‖

∣

∣

∣
‖g0‖2, · · · , ‖gt‖2) = P( gt

‖gt‖

∣

∣

∣
‖gt‖2), or equivalently,

whether

P(gt

∣

∣

∣
‖g0‖2, · · · , ‖gt‖2) = P(gt

∣

∣

∣
‖gt‖2). (32)

Note that gt is a function of ‖gt−1‖ through gt =
ρ‖gt−1‖gu,t−1+wt; while ‖gt‖2 is related to ‖gt−1‖ through

a different function that ‖gt‖2 = ρ2‖gt−1‖2 + ‖wt‖2 +
2ρℜ{gH

t−1wt}. Thus, intuitively, ‖gt‖2 does not contain all

information needed to determine gt as compared to the con-

dition (‖g0‖2, · · · , ‖gt−1‖2, ‖gt‖2) given in the LHS of (32).

Therefore, {‖gt‖2} is not Markovian for finite R.

APPENDIX B

PROOF OF LEMMA 2

Based on (1), we have

‖gt+1‖2 = ‖ρgt +wt+1‖2

= ρ2‖gt‖2 + ρgH
t wt+1 + ρwH

t+1gt + ‖wt+1‖2.
(33)
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By the definitions of dt and w̃d,t, from (33), we have

dt+1 = ρ2dt + w̃d,t+1.

To show {w̃d,t} ∼ WN(0, 1− ρ4), we need to show that, in

{w̃d,t}, all distinct elements are uncorrelated and all elements

are with mean zero and variance 1 − ρ4. From (1), wt is

independent of gt′ whenever t > t′. Using this fact, there is

E [w̃d,t] = 0. Define

w′
d,t , w̃d,t +

√
R(1− ρ2)

=
1√
R

(

ρgH
t−1wt + ρwH

t gt−1 + ‖wt‖2
)

.

It can be calculated that E [w′
d,t] =

√
Rσ2, E [w′2

d,t] = 2ρ2σ2+
(R + 1)σ4, and E [w′

d,tw
′
d,t+q] = Rσ4 for q 6= 0. Using the

one-to-one correspondence between w′
d,t and w̃d,t, we have

var(w̃d,t) = E [w̃2
d,t] = 1−ρ4, and E [w̃d,tw̃d,t+q] = 0 for q 6=

0. Therefore, w̃d,t ∼WN(0, 1−ρ4). Also, by straightforward

calculation,

E [d0w̃d,t] =
1

R
E

[

(‖g0‖2 −R)
[

ρgH
t−1wt

+ ρwH
t gt−1 + ‖wt‖2 − (1− ρ2)R

]

]

= 0 (34)

for all t ≥ 1. Since d0 and all elements of {w̃d,t} are with

mean zero, from (34), d0 and {w̃d,t} are uncorrelated.

APPENDIX C

GENERATION OF TRANSITION PROBABILITIES FOR

“JOINT” AND “INDEPENDENT” OFF-LINE PI ALGORITHMS

Under the quantized 2-V state space, in Algorithm 1 we

summarize the procedure of generating the sampling transition

probabilities of ‖gt‖2, mt, and (‖gt‖2,mt) without feedback.

We denote s = (k, i) and s′ = (h, j) as shorthands of s =
(g̃k, m̃i) and s′ = (g̃h, m̃j), respectively, and denote Tg(k) as

the k-th set of Tg and Tm(i) as the i-th set of Tm.

Using Pg in (37) and Pm in (38) we derive the transition

probabilities for the “independent” off-line PI algorithm as

P
(

(h, j)
∣

∣(k, i), a
)

=

{

Pg(h|k)Pm(j|i), a = 0
1(j = N)Pg(h|k), a = 1

. (35)

Using Pgm in (39) we derive the transition probabilities for

the “joint” off-line PI algorithm as

P
(

(h, j)
∣

∣(k, i), a
)

=

{

Pgm((h, j)|(k, i)), a = 0

1(j = N)
[

∑N

q=1 Pgm((h, q)|(k, i))
]

, a = 1
.

(36)
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