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Abstract—We propose a first-order fast algorithm for the
weighted max-min fair (MMF) multi-group multicast beamform-
ing problem in large-scale systems. Utilizing the optimal multi-
cast beamforming structure obtained recently, we convert the
nonconvex MMF problem into a min-max weight minimization
problem and show that it is a weakly convex problem. We
propose using the projected subgradient algorithm (PSA) to
solve the problem directly, instead of the conventional method
that requires iteratively solving its inverse problem. We show
that PSA for our problem has closed-form updates and thus is
computationally cheap. Furthermore, PSA converges to a near-
stationary point of our problem within finite time. Simulation
results show that our PSA-based algorithm offers near-optimal
performance with considerably lower computational complexity
than existing methods for large-scale systems.

Index Terms—Multicast beamforming, optimal beamforming
structure, large scale, projected subgradient, weakly convex
optimization.

I. INTRODUCTION

Content distribution through wireless multicasting has be-
come increasingly popular among wireless applications. Effi-
cient transmission techniques via multicast beamforming have
become crucial to support high-speed content distribution.
With massive multiple-input multiple-output (MIMO) becom-
ing the essential technology for future networks, it is critical
to develop effective and computationally efficient multicast
beamforming solutions suitable for large-scale systems.

Early works studied the multicast beamforming design
for traditional multi-antenna systems in various scenarios,
including a single user group or multiple user groups [1],
[2], multi-cell networks [3], and relay networks [4]. Since
the family of multicast beamforming problems are nonconvex
and NP-hard, the existing works have focused on developing
numerical algorithms or signal processing techniques for good
suboptimal solutions. Semi-definite relaxation (SDR) has been
a widely adopted common approach [1]–[3]. However, as wire-
less systems are becoming large-scale, the successive convex
approximation (SCA) method [5] becomes more popular for
its computational and performance advantages over SDR as the
size of the problem grows [6]–[8]. Despite the improvement,
SCA relies on second-order interior-point methods (IPMs) to
solve each convex approximation, where the computational
complexity is still too high for massive MIMO systems. Sev-
eral algorithms were proposed to improve the computational
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efficiency at each SCA iteration, such as zero-forcing pre-
processing [9] and alternating direction method of multipliers
(ADMM) [10] for multi-group scenarios, and first-order meth-
ods [11] for single-group scenarios. The optimal multicast
beamforming structure has been obtained recently in [12],
which is shown to be a weighted minimum mean square error
(MMSE) filter with an inherent low-dimensional structure.
This structure helps convert the beamforming problem into
a weight optimization problem of a much lower dimension
[12], allowing design opportunities for efficient algorithms for
massive MIMO systems.

The multi-group multicast beamforming design can be cast
into either a quality-of-service (QoS) problem for power min-
imization with signal-to-interference-and-noise (SINR) guar-
antees, or a max-min fair (MMF) problem for maximizing
the minimum SINR subject to some transmit power budget.
They are inverse problems [2]. Although both problems are
nonconvex, the MMF problem is a max-min problem that is
much more complicated to solve than the QoS problem [1],
[2]. Typically, the solution to the MMF problem is obtained
via iteratively solving its inverse QoS problem along with a
bi-section search [2], [8], [10], [12]. The QoS problem at
each iteration can then be solved by either SDR or SCA.
This additional layer of iteration leads to high computational
complexity, especially for large-scale systems.

To address the above issue, in this letter, we propose
a fast first-order algorithm for the weighted MMF multi-
group multicasting problem. We focus on the min-max weight
optimization problem, which is transformed from the original
MMF problem by using the optimal beamforming structure
[12]. We show that this converted problem is weakly convex,
and the projected subgradient algorithm (PSA) [13] can be
efficiently used to solve it directly. In particular, we show
that for our problem, PSA provides closed-form subgradient
update and projection and thus, is computationally cheap. Fur-
thermore, based on the recent convergence result for weakly
convex problems, we show that PSA converges to a near-
stationary point of our problem within finite time. We further
propose an initialization method for faster convergence. Our
simulation results show that our PSA-based algorithm offers
near-optimal performance with substantially lower computa-
tional complexity than the existing state-of-the-art algorithms
for large-scale systems.

II. PROBLEM FORMULATION

We consider a downlink multi-group multicast beamform-
ing scenario, where the base station (BS) equipped with N
antennas transmits messages to G multicast groups. Each
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group receives a common message that is independent of the
messages to other groups. Denote the set of group indices by
G , {1, ∙ ∙ ∙ , G}. Assume that there are Ki single-antenna
users in group i, with the set of user indices denoted by
Ki , {1, ∙ ∙ ∙ ,Ki}, i ∈ G. The total number of users in all
groups is denoted by Ktot ,

∑G
i=1 Ki. Let wi ∈ CN be the

multicast beamforming vector for group i, and let hik ∈ CN

be the channel vector from the BS to user k in group i, for
k ∈ Ki, i ∈ G. The received signal at user k in group i is
given by

yik = wH
i hiksi +

∑

j 6=i

wH
j hiksj + nik

where si is the symbol transmitted to group i with E[|si|2] =
1, and nik is the receiver additive white Gaussian noise with
zero mean and variance σ2. The received SINR at this user is

SINRik =
|wH

i hik|2∑
j 6=i |w

H
j hik|2 + σ2

. (1)

The BS transmit power is given by
∑G

i=1 ‖wi‖2.
This letter focuses on the weighted MMF multicast beam-

forming problem, i.e., maximizing the minimum weighted
SINR among all users, subject to the BS transmit power
constraint. We assume that all hik’s are perfectly known at
the BS. Define w , [wH

1 , ∙ ∙ ∙ ,wH
G ]H . The weighted MMF

problem is given by

So : max
w

min
i,k

SINRik

γik
s.t.

G∑

i=1

‖wi‖
2 ≤ P

where P is the maximum power budget at the BS, and {γik}
are the weights to control the grade of service or fairness
among users.

Problem So is a nonconvex max-min optimization problem
and is known to be NP-hard. Existing methods in the literature
are through iteratively solving the dual problem of So – the
QoS problem, i.e., minimizing the transmit power subject
to minimum SINR targets [2], [8]. Specifically, consider the
following equivalent problem to So:

S1 : max
w,t

t

s.t. SINRik ≥ tγik, k ∈ Ki, i ∈ G,

G∑

i=1

‖wi‖
2 ≤ P.

The dual QoS problem to S1 is given as follows:

Po :min
w

G∑

i=1

‖wi‖
2 s.t. SINRik ≥ tγik, k ∈ Ki, i ∈ G.

The solution to So is computed by solving Po along with a
bi-section search over t until the transmit power is equal to
P . The popular methods in the literature to solve the non-
convex problem Po are SDR and, recently, SCA. SCA has an
advantage in both performance and computational efficiency
for large-scale problems. It convexifies the problem first and
relies on the second-order IPM to solve the corresponding
convex approximation problem [2], [8], [12]. However, the
computational complexity of the IPM is still high for large-
scale problems. As a result, the iterative method to solve So via
Po incurs high computational complexity for wireless systems
with large-scale antenna arrays or a large number of users.

In this letter, we propose a fast first-order algorithm to solve
So directly with low computational complexity.

III. PRELIMINARY: OPTIMAL MULTICAST BEAMFORMING

STRUCTURE

The structure of the optimal multicast beamforming solution
to So has recently been obtained in [12], which is shown to be
a weighted MMSE filter. Under this solution structure, So is
transformed into an equivalent weight optimization problem
of a much smaller size that is independent of the number
of antennas N . This structure can be utilized for substantial
computational saving for a solution in large-scale systems.
The optimal multicast beamforming solution is given by [12,
Theorem 2]

wo
i = R−1Hia

o
i , i ∈ G (2)

where Hi , [hi1, ∙ ∙ ∙ ,hiKi
] is the channel matrix for group i,

ao
i ∈ CKi is the optimal weight vector for group i, and R is the

(normalized) noise plus weighted channel covariance (of all
users) matrix given in a semi-closed form. To further simplify
the required computation, the approximate expression of R is
obtained in [12]. Express each channel as hik =

√
βikgik,

where βik is the channel variance, and gik is the normalized
channel vector representing the small-scale fading whose
elements are i.i.d. zero mean. The approximate expression of
R, for large N , is given by

R̃ = I +
P

σ2

G∑

i=1

Ki∑

k=1

ηik
∑G

i′=1

∑Ki′

k′=1
ηi′k′

βi′k′

gikg
H
ik (3)

where ηik ,
γik

(N−
∑∑

jl 6=ik

γjl)
. In particular, for γik = γ, ∀i, k, R̃

in (3) is further simplified to

R̃ = I +
P β̄

σ2Ktot

G∑

i=1

Ki∑

k=1

gikg
H
ik (4)

where β̄ , Ktot∑G
i=1

∑Ki
k=1

1
βik

is the harmonic mean of the channel

variances of all users. With the solution wo
i in (2) and R̃ to

approximate R, the original problem So can be transformed
into the following weight optimization problem

S2 : max
a

min
i,k

1
γik

aH
i Ãiikai

∑
j 6=i a

H
j Ãjikaj + σ2

s.t.
G∑

i=1

‖C̃iai‖
2 ≤ P

where a , [aH
1 , ∙ ∙ ∙ , aH

G ]H , C̃i , R̃−1Hi, and Ãjik ,
C̃H

j hikhH
ikC̃j , k ∈ Ki, i, j ∈ G. Note that the dimension

of weight vector a (Ktot) is much lower than that of the
beamforming vector w (GN ) in massive MIMO systems
with Ki � N . Hence, the complexity in computing the
beamforming solution is substantially reduced by optimizing
a in S2, instead of w in So.

Note that [12] focuses on obtaining the optimal beam-
forming structure, while it still adopts the commonly used
numerical algorithms, such as SDR or SCA, when solving
the optimization problems. Different from [12], in this letter,
we utilize the optimal structure and focus on proposing a
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fast numerical algorithm for solving the max-min optimiza-
tion problem, which provides a more efficient computational
method to obtain a solution to the MMF problem.

IV. FIRST-ORDER FAST ALGORITHM

Using the optimal beamforming structure, in this section,
we propose a fast first-order algorithm to solve S2. Problem
S2 is a nonconvex max-min problem. Based on the structure
of S2, we show that PSA can be applied to compute a near-
stationary solution to S2 efficiently.

A. Problem Reformulation

For the purpose of computation, we express all complex
quantities in S2 using their real and imaginary parts. Define

xi , [Re{ai}
T
, Im{ai}

T ]T , Ci ,

[
Re{C̃i} −Im{C̃i}
Im{C̃i} Re{C̃i}

]

,

Ajik ,

[
Re{Ãjik} −Im{Ãjik}
Im{Ãjik} Re{Ãjik}

]

, for k ∈ Ki, i, j ∈ G.

It follows that ‖C̃iai‖2 = ‖Cixi‖2 and aT
j Ãjikaj =

xT
j Ajikxj . Using the above, we can express problem S2

equivalently in the real domain as

S3 : max
x∈X

min
i,k

1
γik

xT
i Aiikxi∑

j 6=i x
T
j Ajikxj + σ2

where x , [xT
1 , . . . ,xT

G]T , and X , {x :
∑G

i=1 ‖Cixi‖2 ≤
P} is the compact convex feasible set of S3. Define φik(x) ,

−xT
i Aiikxi

γik(
∑

j 6=i xT
j Ajikxj+σ2)

, k ∈ Ki, i ∈ G. Then, we can rewrite

S3 in an equivalent min-max form as minx∈X maxi,k φik(x),
which is further equivalent to

S4 : min
x∈X

max
y∈Y

f(x,y)

where f(x,y) , φT (x)y, with φ(x) ∈ RKtot containing all
φik(x)’s, and Y , {y : y < 0,1T y = 1} is a probability
simplex, which is a compact convex set.1 An optimal solution
to the inner maximization of S4 is y = [0, . . . , 0, 1, 0, . . . , 0]T ,
with 1 at some ith position. Note that f(x,y) is concave in y
and nonconvex in x. Thus, S4 is a nonconvex-concave min-
max problem and is NP-hard. Let g(x) , maxy∈Y f(x,y).
Then, we express S4 as

S5 : min
x∈X

g(x).

Note that g(x) is nonconvex. If g(x) is differentiable, one can
use the projected gradient descent [14] to solve S5. However,
in our problem, g(x) may not be differentiable, and its gradient
∇g(x) may not exist. In what follows, by examining the
structure of the problem, we propose to use PSA [13] to find
a solution at the vicinity of a stationary point for S5.

B. The Projected Subgradient Algorithm

We first show the structure of our problem. We assume
the channel gain is finite for each user: ‖hik‖ < ∞, ∀k, i.
Thus, all elements in Ajik are finite, ∀k ∈ Ki, i, j ∈ G.
Also, note that γik > 0, σ2 > 0. It follows that, since X

1Note that by introducing y, we transform S3 into S4. The structure in S4

will benefit our exposition in Section IV-B for the proposed algorithm and
convergence analysis.

and Y are compact, the gradient ∇xf(x,y) is finite for any
x ∈ X ,y ∈ Y . Thus, there exists a constant L > 0, such
that ‖∇xf(x1,y) − ∇xf(x2,y)‖ ≤ L‖x1 − x2‖, for any
x1,x2 ∈ X , y ∈ Y . This means that, f(x,y) is an L-smooth
function of x ∈ X , which satisfies the following [15]

f(x2,y) ≥f(x1,y) + ∇xf(x1,y)T (x2 − x1)

−
L

2
‖x2 − x1‖

2, ∀x1,x2 ∈ X , ∀y ∈ Y . (5)

Next, we show that ∇xf(x,y) is a subgradient of g(x).
The Fréchet subdifferential of g(x) is the set of sub-
gradients of g(x) defined by ∂g(x) , {v | lim infx′→x
g(x′)−g(x)−vT (x′−x)

‖x′−x‖ ≥ 0} [16]. By the definition of g(x) and
from (5), for any x′ ∈ X , we have

g(x′) ≥ f(x,y) + ∇xf(x,y)T (x′ − x) −
L

2
‖x′ − x‖2

= g(x)+∇xf(x,y)T (x′ − x)−
L

2
‖x′ − x‖2. (6)

After rearranging the terms at both sides of the inequality in (6)
and taking lim inf for x′ → x, we conclude that ∇xf(x,y) ∈
∂g(x).

Following the above result, we propose to solve S5 by PSA
with the following updating procedure:

At iteration j:

y(j) ∈ arg max
y∈Y

f(x(j),y), (7)

x(j+1) = ΠX
(
x(j) − α∇xf(x(j),y(j))

)
(8)

where α > 0 is the step size, and ΠX (x) denotes the
projection of point x onto set X , given by

ΠX (x) =

{√
P
Px

x x /∈ X

x x ∈ X
(9)

where Px ,
∑G

i=1 ‖Cixi‖2.
Note that the inherent structure of our problem makes PSA

particularly suitable for solving S5. First, y(j) in (7) can be
directly obtained by taking the maximum among φik(x(j))’s.
Second, the projection ΠX (x) is a simple closed-form function
in (9), and ∇xf(x,y) has a closed-form expression. Thus, the
computation of x(j+1) in (8) is inexpensive. Below, we discuss
the convergence result for the proposed PSA.

1) Convergence Analysis: Based on the recent results on
weakly convex problems [17]–[19], we show that PSA con-
verges within finite time to a near-stationary point of S5.
Recall that f(x,y) is L-smooth over X , and Y is compact. It
follows that g(x) = maxy∈Y f(x,y) is L-weakly convex over
X , i.e., g(x) + L

2 ‖x‖
2 is convex for x ∈ X [20, Lemma 1].

Consider the extension of g(x) to R2Ktot : g̃(x) = g(x)+IX (x),
where IX (x) is an indicator function, taking 0 if x ∈ X and
∞ otherwise. Define the Moreau envelope [21] of g̃(x) as

g̃λ(x) , min
x′∈R2Ktot

{g̃(x′) +
1
2λ

‖x′ − x‖2} (10)

where λ < 1/L. The Moreau envelope g̃λ(x) is a smooth
approximation to the non-smooth but L-weakly convex func-
tion g(x) over X . Note from the earlier discussion that the
objective function of the minimization problem in (10) is
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strictly convex. Let x̂ , arg minx′{g̃(x′) + 1
2λ‖x

′ − x‖2}.
Then, we have x̂ ∈ X and

‖x̂ − x‖ = λ‖∇g̃λ(x)‖. (11)

Thus, ‖∇g̃λ(x)‖ ≤ ε implies that [21]
‖x̂ − x‖ ≤ λε, and min

u∈∂g̃(x̂)
‖u‖ ≤ ε. (12)

The above means that a small gradient ‖∇g̃λ(x)‖ ≤ ε implies
that x is close to a point x̂ that is a near-stationary (i.e., ε-
stationary) point of S5. Hence, ‖∇g̃λ(x)‖ provides a near-
stationarity measure of x to a stationary point of S5. Based
on this, we have the convergence result of PSA for S5 below.

Theorem 1. Assume the continuous function f(x,y) is C-
Lipschitz over X × Y . Define D , maxx1,x2∈X ‖x1 − x2‖,
M , maxx∈X ,y∈Y ‖∇xf(x,y)‖, and Δ , min {LD2, CD}.
Starting from x(0) ∈ X , let J be the total number of iterations
in PSA. Let step size α =

√
Δ

LM2(J+1) . Let the output of PSA

be x̄ = x(j), where j ∼ Uniform[0, J ]. Then, x̄ satisfies

E‖∇g̃ 1
2L

(x̄)‖2 ≤
4
√

ΔLM2

√
J + 1

. (13)

Proof: See Appendix A.
Theorem 1 indicates that if we take a random sample

in {x(j)}J
j=0 as the output of PSA x̄, then E‖∇g̃ 1

2L
(x̄)‖2

decreases in the order of (at most) O( 1√
J
). A more direct way

to interpret this result is that, to obtain the output x̄ satisfying
E‖∇g̃ 1

2L
(x̄)‖ ≤ ε, the required number of iterations J for

PSA is at most O(ε−4). Thus, for weakly convex problem S5,
Theorem 1 shows that PSA converges within finite time, upper
bounded by O(ε−4), to an ε-accuracy point of S5.

By Theorem 1, we can also set the stopping criterion for
PSA. The convergence analysis in Theorem 1 is based on a
random sample in {x(j)}J

j=0. Thus, to implement PSA, we
can set a random stopping point Jo < J for PSA and use
x(Jo) as the algorithm output.

2) Initialization: An easy-to-compute good initial point is
essential to accelerate the convergence of PSA. Using (2)
to transfer Po into optimizing a (denoted by P ′

o) instead
of w, we propose to use SDR with Gaussian randomization
(GR) [12] to solve P ′

o along with one bi-section search over
t to generate the initial point. The one-step bi-section is
inexpensive and is intended to find x(0) that is closer to the
optimal solution. Note that this initial point may not be feasible
in X . Nonetheless, after one iteration via the projection step
in (8), the subsequent points are feasible. This initialization
method has low computational complexity and generates an
initial point very close to a stationary point when S5 is of a
small to moderate size.

V. SIMULATION RESULTS

We set G = 3, Ki = K, and SINR target γik = γ = 10 dB,
∀k, i. The channels are generated i.i.d. as hik ∼ CN (0, I),
and the receiver noise variance is σ2 = 1. We set P/σ2 =
10 dB. The approximate expression R̃ in (4) is used in the
simulation. For PSA, we set the step size α = 0.01 and set
the stopping criterion as |g(x(j+1))− g(x(j))| ≤ 10−5. Based
on various simulation experiments, PSA generally converges
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Fig. 1. Left: Average minimum SINR vs. N . Right: Average minimum SINR
vs. K (G = 3, N = 100).

TABLE I
AVERAGE COMPUTATION TIME OVER N (SEC.) (G = 3, K = 10)

N 100 200 300 400 500

PSA (proposed) 1.830 2.031 2.524 2.753 2.821
SCA [12] 87.12 81.17 81.71 86.63 90.54
SDR [12] 11.47 12.36 13.07 14.41 14.90

TABLE II
AVERAGE COMPUTATION TIME OVER K (SEC.) (G = 3, N = 100)

K 5 7 10 15

PSA (proposed) 0.814 1.128 1.851 3.676
SCA [12] 24.54 47.20 87.53 174.1
SDR [12] 6.063 8.342 11.33 21.60

within 30 ∼ 5000 iterations.2 Besides our proposed PSA with
the initialization method, we consider the following methods
for comparison: 1) The upper bound for So: It is obtained by
solving Po using SDR along with the bi-section search over
t; 2) SDR: It uses the optimal structure in (2) with R̃ in (4)
and solves So by solving Po using SDR plus GR along with
the bi-section search over t [12]; 3) SCA: It uses the optimal
structure in (2) with R̃ in (4) and solves So by solving Po via
SCA and the bi-section search over t. CVX is used in each
SCA iteration [12]. The proposed initialization method is used
in all methods.

Fig. 1-Left shows the average minimum SINR vs. N for
K = 10. Both PSA and SCA nearly attain the upper bound for
all values of N . SDR is about 2dB worse, as the approximation
by SDR deteriorates when the number of constraints (GK)
becomes large. Compared with other methods, our proposed
PSA is much more computationally efficient in obtaining
the solution. Table I shows the corresponding computation
time, which includes computing the initial point. The average
computation time of PSA is only about 3% of that of SCA
and about 20% of that of SDR.

Fig. 1-Right shows the average minimum SINR vs. K for
N = 100. Again, both PSA and SCA nearly attain the upper
bound for all values of K, while SDR deteriorates substantially
as K becomes large. The corresponding average computation
times (including the initial point) are shown in Table II, which
again show that our proposed PSA is a fast algorithm with
much lower computational complexity than SCA and SDR.

VI. CONCLUSION

In this letter, we have proposed a fast algorithm for
multi-group multicast MMF beamforming using the optimal

2We have studied different values of α and found α = 0.01 generally
provides suitable trade-off between performance and convergence speed.
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beamforming structure. We have shown that the nonconvex
MMF problem can be transformed into an L-weakly convex
optimization problem, which we have proposed using PSA
to solve directly. Under our problem structure, PSA yields
a closed-form updating procedure that is highly computa-
tionally inexpensive. We provide the convergence result to
the proposed PSA. Simulation results demonstrate that PSA
provides a near-optimal performance with a substantially lower
computational complexity than the existing algorithms for
large-scale systems.

APPENDIX A
PROOF OF THEOREM 1

Proof: Our proof follows the proof techniques of Theo-
rem 3.1 in [18].3 Let x̂(j) , arg minx{g̃(x)+L‖x−x(j)‖2}.
Based on g̃λ(x) in (10), with λ = 1

2L , we have

g̃ 1
2L

(x(j+1)) ≤ g̃(x̂(j))+L‖x̂(j)−x(j+1)‖2

= g̃(x̂(j))+L‖ΠX
(
x̂(j)

)
−ΠX

(
x(j)−α∇xf(x(j),y(j))

)
‖2

(a)

≤ g̃(x̂(j))+L‖x̂(j)−x(j)+α∇xf(x(j),y(j))‖2

≤ g̃ 1
2L

(x(j))+2αL∇xf(x(j),y(j))T(x̂(j)−x(j))+α2LM2 (14)

where (a) is due to ‖ΠX (x1) − ΠX (x2)‖ ≤ ‖x1 − x2‖,
∀ x1,x2. From (6), the second term in (14) is given by

∇xf(x(j),y(j))T (x̂(j)−x(j))

≤ g̃(x̂(j))−g̃(x(j))+
L

2
‖x̂(j)−x(j)‖2

=
(
g̃(x̂(j))+L‖x̂(j)−x(j)‖2

)
−
(
g̃(x(j))+L‖x(j)−x(j)‖2

)

−
L

2
‖x̂(j)−x(j)‖2

(a)

≤ −L‖x̂(j)−x(j)‖2 (b)
= −

1
4L

‖∇g̃ 1
2L

(x(j))‖2 (15)

where (a) is because ϕ(x) , g̃(x) + L‖x − x(j)‖ is an L-
strongly convex function, which leads to
ϕ(x(j)) − ϕ(x̂(j)) = ϕ(x(j)) − min

x
ϕ(x)

≥∇ϕ(x̂(j))T(x(j)−x̂(j))+
L

2
‖x̂(j)−x(j)‖2 =

L

2
‖x̂(j)−x(j)‖2

where the last equality is because ∇ϕ(x̂(j)) = 0 as x̂(j) =
arg minx ϕ(x). Also, (b) in (15) is by (11). Applying (15) to
(14) yields

g̃ 1
2L

(x(j+1)) ≤ g̃ 1
2L

(x(j))−
α

2
‖∇g̃ 1

2L
(x(j))‖2+α2LM2. (16)

Summing both sides of (16) over j, rearranging the terms, and
noting from (10) that g̃ 1

2L
(x(J+1)) ≥ minx g̃(x), we have

1
J + 1

J∑

j=0

‖∇g̃ 1
2L

(x(j))‖2 ≤
2
(
g̃ 1

2L
(x(0)) −minx g̃(x)

)

α(J + 1)

+ 2αLM2. (17)

Note from (10) that g̃ 1
2L

(x(0)) ≤ minx g̃(x)+L‖xo − x(0)‖2,
where xo , arg minx g̃(x). Thus, g̃ 1

2L
(x(0)) − minx g̃(x) ≤

L‖xo − x(0)‖2 ≤LD2. Also, since g(x) = maxy∈Y f(x,y),
g(x) is also C-Lipschitz over X , i.e., |g(x1) − g(x2)| ≤

3The convergence analysis in [18] is for a proximal stochastic subgradient
method for stochastic optimization of weakly convex functions. Since PSA
is different from the stochastic method, that convergence result cannot be
directly used.

C‖x1 − x2‖, ∀x1,x2 ∈ X . It follows that g̃ 1
2L

(x(0)) −
minx g̃(x) ≤ g̃(x(0)) −minx g̃(x) ≤ CD. Combining the
above, let Δ , min {LD2, CD}. Then, (17) becomes

1
J + 1

J∑

j=0

‖∇g̃ 1
2L

(x(j))‖2 ≤
2Δ

α(J + 1)
+ 2αLM2. (18)

Minimizing RHS of (18) over α yields the optimal step size
α =

√
Δ

LM2(J+1) . Substituting this optimal α into (18) and

noting that LHS of (18) is E‖∇g̃ 1
2L

(x̄)‖2, we have (13).
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