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Abstract—We consider online wireless network virtualization
in a multi-cell multiple-input multiple output system with delayed
feedback of channel state information (CSI). Multiple service
providers (SPs) simultaneously share the base station resources
of an infrastructure provider (InP). We aim at minimizing the
accumulated precoding deviation of the InP’s actual precoder
from the SPs’ virtualization demands via managing both inter-
SP and inter-cell interference, subject to both long-term and
short-term per-cell transmit power constraints. We develop an
online coordinated precoding solution and show that it pro-
vides provable performance bounds. Our precoding solution
is fully distributed at each cell, based only on delayed local
CSI. Furthermore, it has a closed-form expression with low
computational complexity. Simulation results demonstrate the
substantial performance gain of our precoding solution over the
current best alternative.

Index Terms—Network virtualization, delayed CSI, coordi-
nated precoding, online optimization, distributed algorithm.

I. INTRODUCTION

Multiple-input and multiple-output (MIMO) and wireless
network virtualization (WNV) are widely recognized as two
key technologies to meet the ever-increasing service demand
in cellular networks. MIMO precoding enables a base station
(BS) to serve multiple users simultaneously. Meanwhile, WNV
allows multiple service providers (SPs) to share the BS re-
sources of an infrastructure provider (InP), independent of the
underlying physical infrastructure. In WNV, the InP virtualizes
the physical resources into virtual slices, while each SP leases
some of these virtual slices to provide services to its own
end users. Different from wired network virtualization, it is
challenging to guarantee service isolation among these SPs,
due to the broadcast and fading nature of wireless channels [1].

Early works on MIMO WNV promote the allocation of or-
thogonal subchannels or exclusive subsets of antennas among
the SPs for service isolation [2]-[4]. Such physical separation
is directly inherited from wired network virtualization and
does not fully utilize MIMO antennas for spatial multiplexing.
In contrast, the spatial virtualization approach in [5] isolates
the SPs via MIMO precoding at the InP, allowing simultaneous
sharing of all spectrum and antennas among the SPs.

In practical wireless systems, long-term transmit power is
an important measure of energy efficiency [6]. Under a time-
averaged transmit power limit, MIMO precoding design for
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WNV becomes an online optimization problem, dependent on
the underlying time-varying channels. Therefore, recent works
have extended [5] to the online setting with instantaneous and
one-slot delayed channel state information (CSI) in [7] and
[8], respectively. However, in a MIMO system with many
transmit antennas, the CSI can be severely delayed for multiple
transmission frames, due to the need for channel estimation,
quantization, and feedback. Furthermore, the above mentioned
works on WNV all focus on single-cell MIMO systems.

In non-virtualized networks, multi-cell coordinated trans-
mission is known to substantially outperform non-coordinated
transmission, as a result of efficient inter-cell interference
mitigation [9]. Compared with multi-cell cooperative trans-
mission [10], coordinated precoding does not require data
sharing or stringent symbol-level synchronization among BSs.
Most works on multi-cell coordinated precoding consider the
problem as deterministic per-slot optimization [9], [11]. Only a
few works adopt online approaches for stochastic coordinated
precoding design [12], [13]. For virtualized networks, a per-
slot coordinated precoding design for multi-cell MIMO WNV
with perfect CSI has been proposed in [14] under short-term
transmit power constraints. Other design approaches, such as
resource allocation or pricing, have also been considered for
multi-cell WNV [15], [16]. These works focus on per-slot
design and do not consider MIMO in WNV.

In this work, we consider an online coordinated precoding
design for WNV in a multi-cell MIMO system, with CSI
feedbacks that are possibly delayed for multiple time slots.
In each cell, each SP designs its virtual precoder for its own
users, without the knowledge of either inter-SP or inter-cell
interference. The InP designs the actual coordinated precoder
to meet the SPs’ virtual precoding demands over time while
managing the interference among the SPs and cells, subject to
both long-term and short-term transmit power constraints at
each cell. We note that due to the long-term transmit power
constraints, the coordinated precoders are correlated over time,
and the resulting online problem is particularly challenging to
solve due to CSI feedback delays.

The main contributions of this letter are summarized below:
• We formulate the coordinated multi-cell MIMO WNV
problem as a constrained online convex optimization (OCO)
problem with multi-slot feedback delay. At each time slot,
the InP designs a coordinated precoder to meet the SPs’
virtualization demands, under both instantaneous and time-
averaged transmit power limits.
• We develop an online coordinated precoding solution for
this problem, which is inspired by our recent work on general
delay-tolerant OCO [17]. We show that it has provable per-
formance bounds. Unlike the solution in [17], the proposed
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Fig. 1. An illustration of downlink coordinated multi-cell MIMO WNV.

precoding solution is fully distributed without any CSI ex-
change among BSs. Moreover, the precoder solution at each
time slot is given in a closed-form expression, which implies
low computational complexity for implementation.
• Simulation results of our precoding solution under typical
urban micro-cell network settings demonstrate substantial per-
formance advantage over the current best alternative.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an InP that performs downlink WNV in a
MIMO network consisting of C cells. In each cell c, the InP
owns a BS equipped with Nc antennas. Thus, there is a total
of N =

∑C
c=1 Nc antennas in the network. The InP serves M

SPs. Each SP m has Km
c subscribing users in cell c. There is

a total of Kc =
∑M

m=1 Km
c users in cell c and K =

∑C
c=1 Kc

users in the network. We consider a time-slotted system with
time slot indexed by t. Let Hlc,m

t ∈ CKm
l ×Nc be the channel

state between the Km
l users of SP m in cell l and the BS c

at time t.
1) Multi-cell WNV: We first illustrate our multi-cell MIMO

WNV framework with coordinated precoding in the idealized
scenario without CSI feedback delay, as shown in Fig. 1.

At each time t, in each cell c, the InP shares the correspond-
ing CSI Hcc,m

t ∈ CKm
c ×Nc with each SP m, and allocates

virtual transmit power Pm
c to the SP. Then, each SP m designs

its own virtual precoder Wc,m
t ∈ CNc×Km

c , under the virtual
transmit power limit ‖Wc,m

t ‖2
F ≤ Pm

c , where ‖ ∙ ‖F denotes
the Frobenius norm. Note that each SP m designs Wc,m

t based
on the service needs of its own users, without the knowledge
of the other SP’s users in the cell or the users in other cells.
Each SP m then sends Wc,m

t to the InP as its service demand
in cell c.

With the virtual precoders {Wc,m
t } demanded by the SPs,

the virtual received (noiseless) signal vector at the Km
c users

of SP m in cell c is given by

ỹc,m
t = Hcc,m

t Wc,m
t xc,m

t , ∀m, ∀c

where xc,m
t is the transmitted signal vector. Let ỹc

t =

[ỹc,1
t

H
, . . . , ỹc,M

t

H
]H be the virtual received signal vec-

tor at the Kc users in cell c. We have ỹc
t = Dc

tx
c
t ,

where Dc
t , blkdiag{Hcc,1

t Wc,1
t , . . . ,Hcc,M

t Wc,M
t } ∈

CKc×Kc is the virtualization demand from cell c and xc
t =

[xc,1
t

H
, . . . ,xc,M

t

H
]H . Denote ỹt = [ỹ1

t
H

, . . . , ỹC
t

H
]H as the

virtual received signal vector at all K users in the network.
We have ỹt = Dtxt, where Dt , blkdiag{D1

t , . . . ,D
C
t } ∈

CK×K and xt = [x1
t
H

, . . . ,xC
t

H
]H . The transmitted signals

are assumed to be independent of each other with unit power,
i.e., E{xtxH

t } = I, ∀t.

Let H̄lc
t = [Hlc,1

t

H
, . . . ,Hlc,M

t

H
]H ∈ CKl×Nc be

the channel state between the Kl users in cell l and
the BS c. In each cell c, based on local CSI H̃c

t =
[H̄1c

t
H

, . . . , H̄Cc
t

H
]H ∈ CK×Nc , the InP designs the actual

precoder Ṽc
t = [Vc,1

t , . . . ,Vc,M
t ] ∈ CNc×Kc to serve the Kc

users, where Vc,m
t ∈ CNc×Km

c is the precoder designed for
SP m. The actual received (noiseless) signal vector at the Km

c

users of SP m in cell c is given by

yc,m
t = Hcc,m

t Vc,m
t xc,m

t +
M∑

i=1,i 6=m

Hcc,m
t Vc,i

t xc,i
t

+
C∑

l=1,l 6=c

M∑

j=1

Hcl,j
t Vl,j

t xl,j
t , ∀m, ∀c

where the second term is the inter-SP interference caused by
the other SP’s users in cell c, and the third term is the inter-
cell interference caused by the users in other cells. Let yt =
[y1

t
H

, . . . ,yC
t

H
]H be the actual received signal vector at all

K users in the network, where yc
t = [yc,1

t

H
, . . . ,yc,M

t

H
]H .

We have yt = HtVtxt, where Ht = [H̃1
t , . . . , H̃

C
t ] ∈ CK×N

is the global channel state and Vt = blkdiag{Ṽ1
t , . . . , Ṽ

C
t } ∈

CN×K is the actual global precoder.
2) Delayed CSI: In practical multi-cell MIMO networks,

instantaneous CSI is usually unavailable to the InP. Typically,
at each time t, the InP only has the τ -slot delayed CSI H̃c

t−τ at
each cell c, where τ ≥ 1 is the CSI feedback delay. Thus, each
SP m only has the delayed CSI Hcc,m

t−τ to design its own virtual
precoder Wc,m

t−τ at each cell c. As a result, the InP receives a
delayed virtualization demand Dc

t−τ from each cell c. Using
H̃c

t−τ and Dc
t−τ , the InP designs the actual precoder Ṽc

t for
each cell c.

B. Problem Formulation

The InP coordinates the cells to design the actual global
precoder to meet the virtualization demand gathered from the
SPs, while implicitly eliminating both inter-SP and inter-cell
interference. The expected deviation of received signals at
all K users in the network, for the InP’s precoder Vt and
the SPs’ virtualization demand Dt is Ext

{‖yt − ỹt‖2} =
‖HtVt − Dt‖2

F =
∑C

c=1 ‖H̃
c
tṼ

c
t − D̃c

t‖
2
F , where D̃c

t ,
[0, . . . ,Dc

t
H , . . . , 0]H ∈ CK×Kc

and ‖ ∙ ‖ is the Euclidean
norm. We define the deviation of InP’s precoder from the SPs’
virtualization demand as

ft(Vt) , ‖HtVt − Dt‖
2
F , ∀t (1)

which is a convex loss function.
For a total of T time slots, we assume the following long-

term transmit power constraint at each BS c:

1
T

T∑

t=1

‖Ṽc
t‖

2
F ≤ P̄c, ∀c (2)
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where P̄c is the average transmit power limit. We also consider
short-term transmit power constraints, collectively represented
by a convex feasible set V , {Vt : ‖Ṽc

t‖
2
F ≤ P max

c , ∀c},
where P max

c is the maximum transmit power limit at BS c.
The goal at the InP is to optimize the MIMO precoders

to minimize the accumulated precoding deviation over time
in the presence of delayed CSI, subject to both long-term
and short-term transmit power constraints at each cell. The
optimization problem is formulated as a constrained OCO
problem as follows:

P1 : min
{Vt∈V}

T∑

t=1

ft(Vt)

s.t.
T∑

t=1

g(Vt) � 0 (3)

where g(Vt) = [g1(Ṽ1
t ), . . . , g

C(ṼC
t )]T with gc(Ṽc

t ) ,
‖Ṽc

t‖
2
F − P̄c. Note that constraints (2) and (3) are equivalent.

In this work, without assuming knowledge on the channel
distribution, we aim at developing an online coordinated
precoding solution {Vt} to P1, based on the τ -slot delayed
CSI Ht−τ and virtualization demand Dt−τ .

III. ONLINE COORDINATED MULTI-CELL MIMO WNV

In this section, we present an online coordinated multi-cell
MIMO WNV algorithm that is inspired by our general delay-
tolerant OCO algorithm in [17]. Note that the online algorithm
in [17] is centralized. In contrast, our online algorithm for
solving P1 is fully distributed at each cell without any CSI
exchange among cells, and we further provide a closed-form
solution to each per-slot coordinated precoding optimization
problem.

A. Fully Distributed Online Solution Framework

We first introduce a virtual queue vector Qt =
[Q1

t , . . . , Q
C
t ]T for the long-term transmit power constraints

in (3), with the following dynamics:

Qc
t = max{−γgc(Ṽc

t ), Q
c
t−1 + γgc(Ṽc

t )}, ∀c (4)

where γ > 0 is a weighting factor on the constraint violation
that affects how much the virtual queue changes over time.
The virtual queue works like a Lagrangian multiplier vector
for P1 or a backlog queue for the constraint violation. We then
convert P1 to a per-slot problem at each slot t > τ , subject to
the short-term transmit power constraints only, given by

P2 : min
V∈V

2<{tr{[∇V∗
t−τ

ft−τ (Vt−τ )]H(V − Vt−τ )}}

+ [Qt−1 + γg(Vt−1)]
T [γg(V)]

+ α‖V − Vt−τ‖
2
F + η‖V − Vt−1‖

2
F

where α, η > 0 are two step-size parameters that control the
weights on the two regularization terms, <{∙} denotes the real
part of the enclosed parameter, tr{A} denotes the trace of ma-
trix A, and ∇V∗

t−τ
ft−τ (Vt−τ ) = HH

t−τ (Ht−τVt−τ −Dt−τ )
is the partial derivative of ft−τ (Vt−τ ) with respect to (w.r.t.)
the complex conjugate of Vt−τ .

Compared with the original P1, the long-term transmit
power constraint (3) has been moved into the objective func-
tion in P2 as a penalization term. Note that P2 uses double
regularization α‖V − Vt−τ‖2

F and η‖V − Vt−1‖2
F , which

was first proposed in [17]. The intuition behind the double
regularization is that both Vt−τ and Vt−1 help minimize the
accumulated precoding deviation and the violation of long-
term transmit power. Therefore, it is desirable to keep the new
precoder Vt at time t close to both Vt−τ and Vt−1.

Note that V and ∇V∗
t−τ

ft−τ (Vt−τ ) in P2 are block diago-
nal matrices, with the c-th block associated with the precoder
for cell c. In addition, g(V) and V are separable among cells.
Thus, P2 can be equivalently decomposed into C subproblems
{P3c}, each corresponding to the local precoder optimization
problem for Ṽc

t at cell c, given by

P3c : min
Ṽc

2<{tr{[∇Ṽc∗
t−τ

ft−τ (Vt−τ )]H(Ṽc − Ṽc
t−τ )}}

+ [Qc
t−1 + γgc(Ṽc

t−1)]γgc(Ṽc)

+ α‖Ṽc − Ṽc
t−τ‖

2
F + η‖Ṽc − Ṽc

t−1‖
2
F

s.t. ‖Ṽc‖2
F ≤ P max

c (5)

where ∇Ṽc∗
t−τ

ft−τ (Vt−τ ) = H̃cH
t−τ (H̃c

t−τ Ṽ
c
t−τ − D̃c

t−τ ). At

each time t > τ , based on the delayed local CSI H̃c
t−τ and

virtualization demand D̃c
t−τ , the InP obtains the current local

precoder Ṽc
t by solving P3c for each cell c. Therefore, the

per-slot coordinated precoder optimization problem P2 leads
to a fully-distributed implementation at each cell, without any
CSI exchange among cells.

Summary of our online solution framework: 1) Initialize
α, η, γ > 0, Vt ∈ {V : g(V) = 0} and Qt = 0, for any
t ≤ τ ; 2) At each time t > τ , obtain H̃c

t−τ and D̃c
t−τ at

each cell c, and update Ṽc
t by solving P3c via (7) presented

in Section III-B; 3) Update the virtual queue Qc
t for each

cell c via (4). The choice of α, η, γ will be discussed in
Section III-C, when we derive the performance bounds for
our online precoding solution.

B. Online Precoding Solution to P3c

Now we solve P3c to obtain the precoder Ṽc
t in each cell

c. Note that P3c is a convex optimization problem with strong
duality. We solve it by using the Karush-Kuhn-Tucker (KKT)
conditions. The Lagrangian for P3c is

L(Ṽc, λc) = 2<{tr{[∇Ṽc∗
t−τ

ft−τ (Vt−τ )]H(Ṽc − Ṽc
t−τ )}}

+ [Qc
t−1+γgc(Ṽc

t−1)]γgc(Ṽc) + α‖Ṽc−Ṽc
t−τ‖

2
F

+ η‖Ṽc − Ṽc
t−1‖

2
F + λc(‖Ṽc‖2

F − P max
c )

where λc is the Lagrange multiplier associated with the short-
term transmit power constraint (5).

The KKT conditions for the globally optimal (Ṽc◦, λc◦) are
‖Ṽc◦‖2

F −P c
max ≤ 0, λc◦ ≥ 0, λc◦(‖Ṽc◦‖2

F −P max
c ) = 0, and

Ṽc◦ =
αṼc

t−τ + ηṼc
t−1 − H̃cH

t−τ (H̃c
t−τ Ṽ

c
t−τ − D̃c

t−τ )

γQc
t−1 + γ2gc(Ṽc

t−1) + α + η + λc◦
, (6)

which follows from setting the partial derivative
∇Ṽc∗L(Ṽc, λc) to 0. From the KKT conditions, and
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noting that λc◦ can be seen as a power scaling factor for Ṽc◦

in (6), we have a closed-form solution for Ṽc
t , given by

Ṽc
t =

{
Xc

t , if ‖Xc
t‖

2
F ≤ P max

c√
P max

c

‖Xc
t‖F

Xc
t , o.w.

(7)

where Xc
t =

αṼc
t−τ +ηṼc

t−1−H̃cH
t−τ (H̃c

t−τ Ṽc
t−τ−D̃c

t−τ )

γQc
t−1+γ2gc(Ṽc

t−1)+α+η
.

Note that the computational complexity of calculating Ṽc
t

is dominated by matrix multiplication, and thus is in the order
of O(KNcKc). Furthermore, per-antenna maximum transmit
power limits can be incorporated in the short-term transmit
power constraint (5). In this case, P3c can be equivalently
decomposed into Nc subproblems, each with a closed-form
solution similar to (7).

C. Performance Bounds

Due to the lack of instantaneous CSI, it is impossible for the
InP to obtain an optimal precoding solution to the constrained
OCO problem P1. A widely adopted performance measure in
the OCO literature is the regret, given by

RE(T ) ,
T∑

t=1

(ft(Vt) − ft(V
?)) (8)

where V? , arg minV∈V{
∑T

t=1 ft(V)|g(V) � 0} is the
standard offline fixed solution to P1 assuming all the CSI
over all time {Ht} is known apriori. Furthermore, to measure
the accumulated violation of the long-term transmit power
constraints, we define the constraint violation as

VOc(T ) ,
T∑

t=1

gc(Ṽc
t ), ∀c. (9)

We now provide performance bounds for our online pre-
coding solution. For performance analysis, we assume the
channel gain at any time t is upper bounded by a constant
B > 0, given by ‖Ht‖F ≤ B, ∀t. The following lemma
shows that P1 satisfies several general assumptions in the
OCO literature: 1) The gradient of the convex loss function
∇V∗ft(V) is bounded; 2) The long-term constraint function
g(V) is Lipschitz continuous; 3) The impact of g(V) is
bounded; 4) The impact of the convex set V is bounded;
5) There exists an interior point V′ ∈ V for g(V) � 0. The
proof is omitted for brevity (see technical report [18]).

Lemma 1. With bounded channel gain B, we have

‖∇V∗ft(V)‖F ≤ D, ∀V ∈ V , ∀t, (10)

‖g(V) − g(V′)‖ ≤ β‖V − V′‖F , ∀V,V′ ∈ V , (11)

‖g(V)‖ ≤ G, ∀V ∈ V , (12)

‖V − V′‖F ≤ R, ∀V,V′ ∈ V , (13)

∃V′ ∈ V , g(V′) � −ε1 (14)

where D = B2R, β = 2
√

maxc∈{1,...,C}{P max
c }, G =√∑C

c=1 max{P̄ 2
c , (P max

c − P̄c)2}, R = 2
√∑C

c=1 P max
c , and

ε = minc∈{1,...,C}{P̄c}.

Using Lemma 1, we provide performance bounds for our
online coordinated precoder solution in the following theorem.

Theorem 1. Let α =
√

T
τ , γ2 =

√
T and η = 1

2β
√

T , then

the following statements hold for {Ṽc
t} in (7):

RE(T )≤
D2T

α
+

γ2G2

2
+(ατ +η)R2+2DRτ =O(

√
τT ), (15)

VOc(T )≤2G+
2γ2G2+2DR+(α+η)R2

γ2ε
=O(1), ∀c. (16)

Proof: The proof of (15) is similar to the proof of Theorem 5
in [17], except that the problem is in the complex domain,
and we need to apply some properties of complex matrix
operation. Using Lemma 6 in [17], we have VOc(T ) ≤
1
γ ‖QT ‖+

∑τ
t=1 gc(Ṽc

t ). By initializing g(Vt) = 0 for t ≤ τ
and adopting the proof of Theorem 7 in [17], we have (16).

Theorem 1 shows that, even with long-term constraints (3),
the T -slot regret in (8) grows in the order of O(

√
τT ), which

is the same as the current best regret for OCO with τ -slot delay
subject to the short-term constraints only in [19]. Furthermore,
even under τ -slot delay, the O(1) constraint violation in (16)
is the same as the current best constraint violation bound for
constrained OCO with one-slot delay in [20].

IV. SIMULATION RESULTS

We consider a virtualized MIMO network consisting of C =
3 urban hexagon micro cells, each with radius Rc = 500 m.
Each BS c is equipped with Nc = 32 antennas as default. The
InP serves M = 4 SPs, each has Km

c = 2 subscribing users
randomly located in each cell c. Following typical Long-Term
Evolution (LTE) settings, we focus on a channel with BW =
15 kHz bandwidth. We set the maximum transmit power limit
P max

c = 33 dBm. By default, the time-averaged transmit power
limit is P̄c = 30 dBm. The receiver thermal noise power
spectral density is set to N0 = −174 dBm/Hz and the noise
figure is NF = 10 dB. The fading channel between the k-th
user of SP m in cell l and the BS c is modeled as a first-order
Gauss-Markov process hlc,m,k

t+1 = αhh
lc,m,k
t + zlc,m,k

t , where
hlc,m,k

t ∼ CN (0, βlc,m,kI) with βlc,m,k representing path-loss
and shadowing, αh is the channel correlation coefficient, and
zlc,m,k

t ∼ CN (0, (1−α2
h)βlc,m,kI) is independent of hlc,m,k

t .
We set αh = 0.998, which corresponds to pedestrian user
speed 1 km/h.1 We set the time slot duration to 1

BW
, and the

total time horizon T = 1000 time slots.
We assume each SP m uses the zero forcing (ZF) pre-

coding scheme to design its virtual precoder Wc,m
t =

ωc,m
t Hcc,m

t (Hcc,m
t Hcc,m

t
H)−1, where ωc,m

t is a power scaling
factor such that ‖Wc,m

t ‖2
F = Pm

c = P max
c

M . For performance
evaluation, we define the time-averaged normalized precod-
ing deviation as f̄(T ) , 1

T

∑T
t=1

ft(Vt)
‖Dt‖2

F
, the time-averaged

transmit power as P̄ (T ) , 1
TC

∑T
t=1 ‖Vt‖2

F , and the time-
averaged per-user rate as R̄(T ) , 1

TK

∑T
t=1

∑K
k=1 log2(1 +

|[HtVt]k,k|
2

∑K
i=1,i 6=k |[HtVt]k,i|2+σ2

n

), where σ2
n = N0BW + NF , and

[A]i,j denotes the (i, j) element of matrix A. For perfor-
mance comparison, we consider 1) the online algorithm in
[21], which is currently the best constrained OCO algorithm
that accommodates multi-slot feedback delay; 2) the standard

1For different values of αh, our simulation results are similar and hence
are omitted for brevity.
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Fig. 2. f̄(T ) and R̄(T ) vs. T under different τ values.

offline benchmark V?; 3) a frequency division (FD) scheme
that allocates equal bandwidth BW

M to each SP m. This FD
approach is commonly adopted in the existing literature of
MIMO WNV [2]-[4]. At each cell c, each SP m adopts
ZF precoding to serve its Km

c users directly based on the
local CSI.

Fig. 2 shows f̄(T ) and P̄ (T ) versus T with different
values of CSI feedback delay τ . Our online precoding solution
outperforms the one in [21], which uses the gradient ∇g(V)
information to minimize g(V). In our solution, we directly
minimize the constraint function g(V) as one part of the
objective function in P2, which improves the control of the
transmit power. Furthermore, the regularization is imposed on
both Vt−τ and Vt−1 instead of the single regularization term
in [21]. The double regularization improves the efficiency of
gradient descent on minimizing the precoding deviation.

We further study the impacts of the long-term transmit
power limit P̄ c and Nc on the performance of our precoding
solution. We set τ = 4. Fig. 3 shows that the steady-state per-
user rate R̄ increases as P̄ c increases. This is because the InP
can use more transmit power to mitigate interference and meet
the virtualization demand. Furthermore, R̄ increases as Nc

increases, indicating the effectiveness of the precoding solution
in interference mitigation. When Nc is large, our proposed
online solution substantially outperforms the FD ZF scheme.
This demonstrates the effectiveness of the proposed spatial
isolation approach via simultaneously sharing all frequency
resources among SPs. We observe that in a wide range of P̄c

and Nc values, our proposed precoding solution substantially
outperforms the online solution from [21], the offline bench-
mark, and the FD ZF scheme.

V. CONCLUSIONS

In this letter, we have considered online coordinated pre-
coding design for multi-cell MIMO WNV with delayed CSI.
Our goal is to minimize the accumulated deviation of the
InP’s precoder from the SPs’ virtualization demands over time,
subject to both long-term and short-term per-cell transmit
power constraints. We have developed an online coordinated
precoding solution with provable performance bounds. Our
precoding solution is in closed-form and is fully distributed at
each cell. Simulation reveals substantial performance gain of
our precoding solution over the current best alternative.
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