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Abstract— Wireless sensor networks with mobile access points
are effective tools to collect data in a variety of environments.
Low-cost and low-power sensors in the reachback operation
contend for the channel to transmit their own data packets to
the mobile agent. This data communication should be designed
to ensure energy efficiency and low latency. In this paper, we
propose a clustering scheme for wireless sensor networks with
reachback mobile agents (C-SENMA) toward that goal. C-SENMA
groups sensors into clusters such that nodes communicate only
with the nearest clusterhead (CH) and the CH takes the task
of data aggregation and communication with the mobile agent.
In our scheme, CHs use a low-overhead medium access control
(MAC) mechanism very similar to the conventional ALOHA to
contend for the channel. Using results from random geometry
theory, we analyze the clustering performance under the realistic
MAC algorithm. Our analysis enables us to obtain the optimal
average cluster size which minimizes energy consumption. We
justify our analysis results by extensive simulations according to
various clustering parameters. Furthermore, we study the effect of
underlying physical layer characteristics on the amount of energy
reduction achievable by the proposed clustering architecture.

I. I NTRODUCTION

There has been extensive research in wireless sensor net-
works with flat and clustered ad hoc architectures [1][2].
Traditionally in such networks, sensors are limited in terms
of energy supply, processing power, storage, and are aimed to
be low-cost and low-power devices [3][2]. Because ordinary
sensors are typically battery operated, energy efficient protocol
design is one of the challenging issues in wireless sensor
networks [2].

Recently, sensor networks with mobile agents, SENMA,
have been proposed in [3][4]. In contrast to ordinary sensors,
mobile agents are powerful hardware units with sophisticated
transceivers. They have much less constraint on their com-
munication capabilities as well as their processing power.
Mobile agents visit the network either periodically or when the
application requires them to gather data or perform network
maintenance. Manned/unmanned aerial vehicles are examples
of such agents [3]. It has been shown that the simple topology
of SENMA reduces energy consumption and improves the
scalability of sensor networks [3].

The availability of a mobile agent makes direct communica-
tion between ordinary sensors and the mobile agent possible.
This opens up many interesting problems in medium access
control [4][5]. However, there has not been any detailed study
to analyze the effect of clustering in SENMA. In this work, we
propose and analyze a novel clustering scheme for SENMA

Fig. 1. Architecture of a typical network in C-SENMA

(C-SENMA) where stationary nodes form clusters and only
the clusterhead (CH) has the task of communicating with the
mobile agent. C-SENMA generates clusters periodically in a
random manner using any general clustering algorithm, for ex-
ample the one used in [1]. CHs receive data packets from their
cluster-members and perform data fusion. Then, they transmit
the compressed data directly back to the mobile agent as shown
in Fig.1. Thanks to the simple topology of C-SENMA, CHs
can use a simple MAC protocol to contend for the reachback
channel. We show that data aggregation along with clustering in
C-SENMA reduces energy consumption up to90% in typical
scenarios. Furthermore, we obtain the optimal probability of
being a CH (or equivalently the optimal average cluster size) to
minimize energy consumption while maintaining an acceptable
level of (data collection) latency. In contrast to previous works
on clustering algorithms which assume a contention and error
free MAC [6], our cross-layer approach takes into account the
effects of MAC on the clustering performance. To the best of
out knowledge, this is the first work in the area of mobile agents
which analytically investigates the performance of clustering
under realistic MAC assumptions.

The rest of this paper is organized as follows. In Section II,
we describe the related work in detail. In Section III, we explain
the underlying reachback channel model. Details about our
protocol are provided in Section IV. In Section V, we evaluate
the performance of the proposed protocol. Then, we present
our numerical and simulation results in Section VI. Finally, we
conclude the paper in Section VII.

II. RELATED WORK

Recently, various issues have been investigated in SENMA
including QoS information retrieval [5] and source reconstruc-



tion [7]. While these problems may seem rather different, all of
them are highly coupled with medium access control. Although
many MAC protocols have been proposed for conventional flat
and clustered ad hoc sensor networks [8], they may not be suit-
able for the mobile agent scenario. In traditional communication
networks, packet arrival is random while this may not be true
in SENMA. In fact, if a sensor is functioning properly, it has
a packet to send when the mobile agent visits the network [5].
This fact along with the energy efficiency motivates designing
new MAC protocols for SENMA.

In [4], nodes use opportunistic ALOHA (O-ALOHA) to
access the channel in SENMA without clustering. In our work,
we assume a much simpler MAC to show how clustering
enhances the network performance. In [5], a different scheme
is proposed where the mobile agent in each time slot notifies a
group of nodes to transmit in the next timeslot. Although this
scheme achieves high throughput, it requires that most nodes
listen to the channel most of the time. In addition, [5] does
not consider the effect of clustering. In our scheme, each node
contends for the channel independently of the other nodes and
without direct scheduling by the mobile agent.

On the other hand, many clustering protocols have been
proposed for wireless sensor networks [1][6][9]. All of these
protocols assume that data sinks are stationary. Specifically
in [6], hierarchical clustering is proposed, and optimal clus-
tering parameters are obtained to minimize the total energy
consumption. However, they assume that the underlying MAC
is contention and error free. In addition, they do not consider
a mobile data sink.

In this work, using the same algorithm as in [6] to generate
clusters, we consider a cross-layer approach by which we are
able to consider the effect of the MAC protocol on clustering
performance in the mobile agent scenario.

III. R EACHBACK CHANNEL MODEL

We assume that the mobile agent has multi-packet reception
(MPR) capability and assume that time is slotted. In [10], a
general model for channels with MPR capability is developed
which is also used in our model. The channel is characterized
by rnk, the probability ofk successful receptions when a total
of n packets are transmitted in a timeslot. We can summarize
the MPR property of the channel by the following stochastic
matrix, R, whose elements are all possible values forrnk.

R =




r10 r11 0 0 0 . . .
r20 r21 r22 0 0 . . .
r30 r31 r32 r33 0 . . .
...

...
...

...
...

.. .


 . (1)

Using the above model, we can obtain the expected number of
correctly received packets whenn packets are transmitted as

Cn =
n∑

k=1

krnk.

To determine the entries ofR, we need to consider the physical
layer specifications. We use the same method taken in [11]

to obtain rnk and assume that CDMA is used to access the
channel. For the sake of completeness, we briefly describe
how to obtainrnk. Let S, σ2, andn + 1 denote the spreading
gain, the power of additive white Gaussian noise, and the total
number of users respectively. Under the assumption that the
multiaccess interference from other users is Gaussian, the bit-
error-rate (BER) is

pe(n) = Q
(√

3S

n + 3Sσ2

)
,

whereQ(.) denotes the complementary error function [12]. If
we assume that errors occur independently in a packet with
Nb bits and up tot errors in a packet can be corrected by a
block error control code, then the probability of successfully
demodulating a packet is

ps(n) =
t∑

j=0

B(j, Nb, pe(n)).

whereB(j, Nb, pe(n)) denotes the probability mass at the value
j of a Binomial random variable with totalNb trials and the
success probabilitype(n). Consequently, whenn nodes are
transmitting the probability ofk successful receptions is

rnk = B(k, n, ps(n− 1)). (2)

IV. PROTOCOLDESCRIPTION

We assume thatNt sensors are randomly deployed over a
remote areaA (e.g., a desert or a forest) and sensors period-
ically sense the environmental parameters (e.g., temperature)
and record these information. For the sake of analysis, we
assume that the areaA is a circle with radiusR. To gather
the sensed data, a mobile agent, e.g., an airplane, periodically
visits the network and initiates a round of data collection. In this
operation, both the amount of time and energy needed to collect
data are of our main concern. When the mobile agent visits the
network, it broadcasts a beacon which initiates communication,
network maintenance, and (if required) cluster formation. In
this paper, we assume that sensors directly communicate with
the CHs in one hop.

In C-SENMA, cluster formation is triggered by the mobile
agent. To ensure that the load of being a CH is rotated among all
nodes, the cluster formation is performed every multiple rounds
of data collection. To construct clusters, each node selects itself
as a CH with fixed probabilitypc. Later, we show how this
probability affects the protocol performance. If a node becomes
a CH, it broadcasts an advertisement packet (ADV) to announce
its status as well as the PN code that should be used by its
cluster-members for data communication. Based on the received
signal strength of ADV packets, each node approximates its
distance to the nearby CHs and joins the cluster of the nearest
CH.

After reception of the beacon from the mobile agent, com-
munication in the clusters starts. We assume that nodes within
a cluster use TDMA to access the channel using the same PN
code broadcasted by the their CH. To become synchronized,
nodes use the beacon broadcasted by the mobile agent.



When all data is received by a CH, it performs data aggre-
gation and contends for the reachback channel to forward the
data up to the mobile agent. In this work, we assume that ideal
aggregation is possible, i.e., an arbitrary number of packets
can be compressed down into one packet [1][6][13]. Examples
of such aggregation include finding maximum, minimum, or
average of the collected information. In C-SENMA, CHs use
CDMA to communicate with the mobile agent via the MPR
physical interface (of the mobile agent).

Our MAC scheme is slightly different from other conven-
tional models, e.g., ALOHA. While in conventional models,
traffic arrival is a continuous random process, in our scenario
every CH has a packet to send, and after this packet is received
correctly, the CH does not have any other packets to send until
the next round of data collection.

In C-SENMA, after a CH finishes data collection, it transmits
the aggregated data with probabilitypt

N to the mobile agent,
where N represents the number of contending CHs in the
current timeslot. If this packet is not received correctly, then
the CH retransmits the packet with a new probability in the
next timeslot (depending on the updated number of contending
CHs). To utilize the MPR channel capability and maximize
the throughput, we need to find the optimal probability of
transmission,pt

N . Therefore, we have

pt
N = arg max

p

N∑
n=1

B(n,N, p)Cn. (3)

We mentioned earlier that the cluster formation is triggered
by the mobile agent. Therefore, the mobile agent has the status
of all CHs (by receiving ADV packets broadcasted by each
CH). This mechanism gives the necessary information about the
number of clusters. On the other hand, based on the correctly
demodulated data, the mobile agent can update the number of
remaining clusters. This updated number should be fed back to
the CHs and is used asN by CHs to find the corresponding
pt

N . As well as the updated information, the feedback contains
acknowledgements of correctly received packets.

V. PROTOCOLANALYSIS

If clusters are of equal size, then they ideally finish their
TDMA schedule at the same time and try to contend for
the channel at the same next timeslot. This means that the
number of remaining CHs, whose packets are not received by
the mobile agent, is equal to the number of contending CHs.
In reality, because clusters are formed randomly, they have
different sizes. Consequently, their corresponding CHs finish
their TDMA schedule and start to contend for the channel
at different timeslots. As a result, the number of remaining
clusters (which is the available information based on which
CHs choose thept

N ) is not necessarily equal to the number
of contending CHs in a given time slot. We base our analysis
on equal size clusters. Later in Section VI, we show that our
analysis predicts the total energy consumption very well when
clusters are formed randomly according to our protocol.

A. Markov Chain Analysis

It can be easily seen that the number of contending CHs
forms a finite discrete Markov chain. Consider the transition
from the state(m) to the state(n) and let tmn denote the
probability of that transition. Conditioned oni CHs transmitting
in the next timeslot,m− n packets should be received (by the
mobile agent) correctly to produce such a transition. Therefore,
considering all possibilities we have

tmn =





∑m
i=m−n B(i,m, pt

m) ri,m−n n ≤ m,m 6= 0
0 n > m
1 n,m = 0

.

Clearly, there is one absorbing state,(0), in the Markov
chain. Given that the current state is(m), we can calculate
the mean time to absorbtion,am, and mean number of trans-
missions,um, until absorbtion. Let

a , [a1, . . . , aNt ],
u , [u1, . . . , uNt

].

Defining W as the transition matrix of all transient states, we
have [14]

a = (I−W)−11, (4)

whereI is the identity matrix and1 represents a vector with
all entries equal to1. To computeu, we assume that the
current state of the chain isN . In this case,n packets are
transmitted with probabilityB(n,N, pt

N ), and the current state
will transit to the stateN − i with probability rni. Considering
all possibilities forn, we have

uN =
N∑

n=0

B(n,N, pt
N )n

+
N∑

n=0

n∑

i=0,i 6=N

B(n,N, pt
N )rniuN−i

= Npt
N +

N∑

K=1

tNKuK .

Summarizing the above equation for all values ofN (all states)
in a vector format, we get

u = v + Wu,

u = (I−W)−1v, (5)

where,v = [1pt
1, . . . , ip

t
i, . . . , Ntp

t
Nt

] is a vector representative
of the average number of transmissions given that the current
state isi.

Assuming that each node selects itself as a CH independently
of other nodes, the actual number of CHs in the network has
a Binomial distribution and so does the initial condition of the
Markov chain:

P (N0 = n) = B(n,Nt, pc). (6)



We can obtain the expected number of transmissionsE(Tr)
and timeslotsE(Ts) until absorbtion by

E[Tr] = B(0, Nt, pc)u(Nt) +
Nt∑

n=1

B(n, Nt, pc)u(n),(7)

E[Ts] = B(0, Nt, pc)a(Nt) +
Nt∑

n=1

B(n,Nt, pc)a(n). (8)

The first terms in the above formulas come form the fact that
if there is no CH in the network, then all nodes send directly
to the mobile agent.

B. Energy Consumption Analysis

Our goal here is to obtain the expected value of the total en-
ergy consumption,E[U ], needed to gather data within clusters
and transmit data to the mobile agent.

Let EDP be the energy required to process a bit for data
aggregation purposes andE(N0) = Ntpc represent the average
number of clusters. We assume that if a node wants to transmit
a packet to another node at a distanced, then it should
consumec0 + c1d

α units of energy. Based on this energy
model, let E(Sc0+c1|xi|α) denote the expected value of the
total energy consumed by all cluster-members (within a cluster)
to communicate with their CH. InE(Sc0+c1|xi|α), |xi| is the
distance between theith cluster-member and its CH. Based on
these definitions, we have

E[U ] = Nb

{
E[Tr](c0 + c1H

β)

+E(N0)E(Sc0+c1|xi|α) + NtEDP

}
, (9)

where H is the height at which the mobile agent flies over
the network and,α andβ show the roll-off factors for the two
types of data communication, i.e., within clusters and from CHs
to the mobile agent. We assume thatH is large enough so
that the distance between all nodes and the mobile agent can
be approximated byH. In (9), the first term in braces shows
the energy required to communicate with the mobile agent.
The second term represents within cluster energy consumption
and the last one shows the processing energy expenditure.
To calculate (9), we need to computeE(Sc0+c1|xi|α). This
expectation is computed using random geometry theory [15]
which is also used in [6].

Based on our assumptions, nodes are uniformly distributed
over the areaA. This point process can be approximated by
a Poisson point random process whose density isλ = Nt

A . If
every node is going to be a CH with probabilitypc, then it can
be shown that the CH point process is also a Poisson process
with density λ1 = pcλ and the remaining points constitute
another Poisson process with densityλ0 = (1− pc)λ [14].

Furthermore, in our cluster formation we have assumed that
every node joins the cluster of the nearest CH. Therefore, the
areaA is tessellated to a set of Voronoi cells. LetC0 represent a
typical Voronoi cell whose nucleus is located at the origin,Π0

denote the Poisson point process associated with the non-CH
nodes, andxi be a member ofΠ0. We define a functionf(xi)

as a property ofxi, e.g., its distance to the CH, andSf as the
summation of that property over all cluster-members, i.e.,

Sf =
∑

xi∈
∏

0

f(xi)1{xi ∈ C0},

where1{.} is the indicator function. From [15] we can compute
the expected value ofSf , E(Sf ), as follows

E(Sf ) = λ0

∫
f(x) exp(−λ1π|x|2)dx. (10)

In our case,f(xi) is given by our energy consumption model,
which isc0+c1|xi|α. Whenα is 4, plugging this form off(xi)
into (10) leads to

E(Sc0+c1|xi|α) = λ0

∫
f(x) exp(−λ1π|x|2)dx

' −2πλ0c0

2a0
exp−a0r2

∣∣∣
R

0

+ 2πλ0c1

(−r4

2a0
− r2

a2
0

− 1
a3
0

)
exp−a0r2

∣∣∣
R

0
.

(11)

wherea0 = λ1π. The approximation in (11) is due to the fact
that the areaA is finite.

C. Latency Analysis

In this work, we obtain an approximate upper bound for
the total latency of the data collection. It is clear that the
total latency has two components. The first one is the latency
introduced by the TDMA schedules within clusters. The second
component is the latency introduced by the contention in the
reachback channel (to the mobile agent). TDMA latency is
bounded by the largest cluster size in the network. We assume
a maximum cluster size that is three standard deviations above
the mean. Letnc be the number of nodes in a cluster. For mean
and variance ofnc we have [15]

E(nc) = p−1
c , (12)

σ2
nc

=
λ0

λ1
+ 0.28

λ0

λ1

2

. (13)

On the other hand, the latency of the reachback channel is
maximized when all clusters have equal sizes, i.e., when all CHs
contend for the channel at the same time. Therefore,E(Ts) is
the upper bound of the reachback latency. LetLu denote our
approximate upper bound of latency. Considering the TDMA
and the reachback latency bounds, we get

Lu = E(nc) + 3σnc + E(Ts), (14)

whereE(Ts), E(nc), andσnc are derived in (8), (12), and (13)
respectively.

VI. N UMERICAL RESULTS AND SIMULATION

In this section we provide our numerical results based
on (9) and (14). We justify our analysis by simulating C-
SENMA in a wide range of parameters. Each simulation data
point is obtained by averaging over200 random realizations.
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Fig. 2. Energy consumption vs. CH probability. Hereβ = 2.
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Fig. 3. The effect of roll-off factor on clustering performance. HereH = 5000
m.

Throughout these results,Nt = 1000, c0 = 50 nJ/bit [1],
c1 = 0.0013 pJ/bit/m4 [1], EDP = 5 nJ/bit/signal [1], and
we setNb = 200 bits. We choose the network radius,R, and
the spreading gain, S, to be1000 meters and32 respectively,
unless otherwise stated.

Through Fig.2, Fig.3, and Fig.4, we have presented both the
analysis and simulation results according to various clustering
parameters. These figures suggest that for high values ofpc,
there is a perfect match between our analysis and the simu-
lation. Whenpc decreases, we expect to observe a mismatch
due to the finite size of the network. In fact, whenpc is less
than 0.01, there are only about10 clusters on the average.
Consequently, the likelihood of observing a typical cluster (with
respect to a network with infinite area) decreases. Therefore,
our analysis may not be accurate whenpc is very low. On the
other hand, as explained in Section V, unequal cluster sizes can
affect energy consumption of the network. This effect is more
pronounced at small values ofpc.

Fig.2 shows the energy consumption of the protocol vs CH
probability, pc, whenβ = 2. As can be seen, asH increases
the energy reduction of the clustering also increases (from
6% to more than65%) and the optimalpc decreases. This
means that larger clusters lead to a better performance in
terms of energy consumption. This figure also indicates that
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Fig. 4. The effect of network radius on clustering performance. Hereβ = 2.5
andH = 5R.
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Fig. 5. The effect of network radius on optimal CH probabilities. Hereβ =
2.5.

at a low pc, the performance is weakly coupled withH. In
fact, as CH probability decreases, larger clusters are formed
and the average distance to the CHs increases. Consequently,
the energy consumption within clusters (to communicate with
CHs) dominates the energy consumed to communicate with the
mobile agent.

In Fig.3, we have demonstrated the effect of roll-off factor on
the optimal clustering. As expected, increasing roll-off factor
translates to more energy expenditure needed to communicate
with the mobile agent. Therefore in such cases, larger clusters
are more efficient (lowerpc). On the other hand, it can be seen
that the performance is highly sensitive to the changes in the
roll-off factor and the total energy consumption is reduced more
than an order of magnitudes when roll-off factor takes values
equal or larger than3.

Fig.4 shows the effect of network radius on clustering
performance while the total number of nodes is kept constant
at 1000. We setβ = 2.5 to be more conservative in our results.
In addition, we chooseH = 5R. Since a smaller network
radius results in smaller distances between nodes, decreasing
network radius improves clustering performance and larger
clusters are optimal. Therefore, asR decreases, the optimal
pc decreases, too. Fig.5 shows the optimal probabilities as a
function of network radius with the same parameters as in
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Fig.4 except that we varyH from 3R to 11R. It can be
observed that the increases inR and H increase the optimal
pc. The corresponding amount of energy reductions for various
values ofR andH is depicted in Fig.6. It can be inferred that
clustering performs much better in moderately large networks.

Fig.7 shows the total latency of data collection andLu for
different values of spreading gainS. Based on our model,R and
H only can change the propagation delay which is negligible
compared to the queuing delay. Therefore, results of this figure
are approximately independent ofH, R, andβ. From this figure
it is clear thatLu is a tight bound for most values ofpc.
Furthermore, our results indicate that increasing spreading gain
directly influences the total delay. Specifically, for large values
of CH probability, doublingS halves the associated latency.
When CH probabilities are low, few clusters are formed. This
indicates that communication is mainly done within clusters.
Therefore, the MPR capability of the mobile agent can not
be fully utilized, and the delay to gather data within clusters
(TDMA delay) dominates the delay to communicate with the
mobile agent. Consequently, increasingS does not decrease the
system latency for small values ofpc.

Finally, combining the results from Fig.5 and Fig.7, we
can conclude that the optimal clustering based on energy
consumption also leads to near minimal total latency, which
is reduced significantly from the case where clustering is not
used, i.e., whenpc = 0 or pc = 1.

VII. C ONCLUSION

In this paper, we have proposed a new clustering scheme
in wireless sensor networks with mobile agents (C-SENMA).
Initiated by the mobile agent, clusters in C-SENMA are formed
in a distributed and random manner. We have proposed a simple
MAC protocol and optimized its parameters to maximize the
throughput. Based on this MAC scheme, we have obtained the
optimal parameter values to make the clustering algorithm en-
ergy efficient. It has been concluded that for moderate network
sizes and typical signal path loss, network energy expenditure
can be reduced more than80%. We have also studied the effect
of clustering on the data collection latency. We observed that
the optimal cluster size based on energy consumption also leads
to near minimal total latency.
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