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Abstract— Wireless sensor networks with mobile access points
are effective tools to collect data in a variety of environments.
Low-cost and low-power sensors in the reachback operation
contend for the channel to transmit their own data packets to
the mobile agent. This data communication should be designed
to ensure energy efficiency and low latency. In this paper, we
propose a clustering scheme for wireless sensor networks with
reachback mobile agents (C-SENMA) toward that goal. C-SENMA
groups sensors into clusters such that nodes communicate only
with the nearest clusterhead (CH) and the CH takes the task

o Cluster member node
of data aggregation and communication with the mobile agent. . Clusterhead node
In our scheme, CHs use a low-overhead medium access control Mobile Agent
(MAC) mechanism very similar to the conventional ALOHA to = .
contend for the channel. Using results from random geometry
theory, we analyze the clustering performance under the realistic Fig. 1. Architecture of a typical network in C-SENMA

MAC algorithm. Our analysis enables us to obtain the optimal (C-SENMA) where stationary nodes form clusters and only

average cluster size which minimizes energy consumption. We w0 o sterhead (CH) has the task of communicating with the
justify our analysis results by extensive simulations according to

various clustering parameters. Furthermore, we study the effect of Mobile agent. C-SENMA generates clusters periodically in a
underlying physical layer characteristics on the amount of energy random manner using any general clustering algorithm, for ex-

reduction achievable by the proposed clustering architecture. ample the one used in [1]. CHs receive data packets from their
cluster-members and perform data fusion. Then, they transmit
|. INTRODUCTION the compressed data directly back to the mobile agent as shown

There has been extensive research in wireless sensor HetEig.1. Thanks to the simple topology of C-SENMA, CHs
works with flat and clustered ad hoc architectures [1][2fan use a simple MAC protocol to contend for the reachback
Traditionally in such networks, sensors are limited in ternf1annel. We show that data aggregation along with clustering in
of energy supply, processing power, storage, and are aimedt$ENMA reduces energy consumption up9s in typical
be low-cost and low-power devices [3][2]. Because ordinagfenarios. Furthermore, we obtain the optimal probability of
sensors are typically battery operated, energy efficient proto®§ing & CH (or equivalently the optimal average cluster size) to
design is one of the challenging issues in wireless sendBinimize energy consumption while maintaining an acceptable
networks [2]. level of (data collection) latency. In contrast to previous works

Recently, sensor networks with mobile agents, SENMAN clustering algorithms which assume a contention and error
have been proposed in [3][4]. In contrast to ordinary sensofé® MAC [6], our cross-layer approach takes into account the
mobile agents are powerful hardware units with sophisticatéf€cts of MAC on the clustering performance. To the best of
transceivers. They have much less constraint on their cofit Knowledge, this is the first work in the area of mobile agents
munication capabilities as well as their processing pOWEW_hICh anallyt_|cally investigates the performance of clustering
Mobile agents visit the network either periodically or when thgnder realistic MAC assumptions.
application requires them to gather data or perform network The rest of this paper is organized as follows. In Section I,
maintenance. Manned/unmanned aerial vehicles are exampisdescribe the related work in detail. In Section IlI, we explain
of such agents [3]. It has been shown that the simple topolofj underlying reachback channel model. Details about our
of SENMA reduces energy consumption and improves tfpsotocol are provided in Section IV. In Section V, we evaluate
scalability of sensor networks [3]. the performance of the proposed protocol. Then, we present

The availability of a mobile agent makes direct communic&@4r numerical and si_mulatiqn results in Section VI. Finally, we
tion between ordinary sensors and the mobile agent possi9ghclude the paper in Section VII.

This opens up many interesting problems in medium access
control [4][5]. However, there has not been any detailed study
to analyze the effect of clustering in SENMA. In this work, we Recently, various issues have been investigated in SENMA
propose and analyze a novel clustering scheme for SENM#Acluding QoS information retrieval [5] and source reconstruc-

Il. RELATED WORK



tion [7]. While these problems may seem rather different, all &6 obtainr,; and assume that CDMA is used to access the
them are highly coupled with medium access control. Althougthannel. For the sake of completeness, we briefly describe
many MAC protocols have been proposed for conventional flabw to obtainr,,,. Let S, o2, andn + 1 denote the spreading
and clustered ad hoc sensor networks [8], they may not be sgi&in, the power of additive white Gaussian noise, and the total
able for the mobile agent scenario. In traditional communicatiorumber of users respectively. Under the assumption that the
networks, packet arrival is random while this may not be truaultiaccess interference from other users is Gaussian, the bit-
in SENMA. In fact, if a sensor is functioning properly, it haserror-rate (BER) is
a packet to send when the mobile agent visits the network [5].

: . L . S /38
This fact along with the energy efficiency motivates designing pe(n) = Q( 72),
new MAC protocols for SENMA. n+ 350

In [4], nodes use opportunistic ALOHA (O-ALOHA) to WhereQ(.) denotes the complementary error function [12]. If
access the channel in SENMA without clustering. In our workye assume that errors occur independently in a packet with
we assume a much simpler MAC to show how clusterindys bits and up tot errors in a packet can be corrected by a
enhances the network performance. In [5], a different schefl@ck error control code, then the probability of successfully
is proposed where the mobile agent in each time slot notifiegl@modulating a packet is

group of nodes to transmit in the next timeslot. Although this t
scheme achieves high throughput, it requires that most nodes ps(n) = ZB(ijmpe(n)),
listen to the channel most of the time. In addition, [5] does =0

not consider the effect of clustering. In our scheme, each nc\gﬁereB(j, Na, pe(n)) denotes the probability mass at the value

cc?r;]tendz-for thehch;r}p el rdeﬁendegtlly of the other nodes ajngf a Binomial random variable with totaV, trials and the
without direct scheduling by the mobile agent. success probability.(n). Consequently, whem nodes are

On the other hand, many clustering protocols have beﬁﬁnsmittin the probability ok successful receptions is
proposed for wireless sensor networks [1][6][9]. All of these g P y P

protocols assume that data sinks are stationary. Specifically Tnk = B(k,n, ps(n —1)). (2)
in [6], hierarchical clustering is proposed, and optimal clus-
tering parameters are obtained to minimize the total energy
consumption. However, they assume that the underlying MACWe assume thalV; sensors are randomly deployed over a
is contention and error free. In addition, they do not considE§mote aread (e.g., a desert or a forest) and sensors period-
a mobile data sink. ically sense the environmental parameters (e.g., temperature)
In this work, using the same algorithm as in [6] to generaﬁ‘-:nd record these infor.matior_‘l. For _the sa}ke of analysis, we
clusters, we consider a cross-layer approach by which we 4gSUme that the area is a circle with radiusk. To gather
able to consider the effect of the MAC protocol on clusterinf!® Sensed data, a mobile agent, e.g., an airplane, periodically

IV. PROTOCOLDESCRIPTION

performance in the mobile agent scenario. visits the network and initiates a round of data collection. In this
operation, both the amount of time and energy needed to collect
I1l. REACHBACK CHANNEL MODEL data are of our main concern. When the mobile agent visits the

We assume that the mobile agent has multi-packet receptitgfwork, it broadcasts a beacon which initiates communication,
(MPR) capability and assume that time is slotted. In [10], Betwork maintenance, and (if required) cluster formation. In
general model for channels with MPR capability is developdhis paper, we assume that sensors directly communicate with
which is also used in our model. The channel is characterizé® CHs in one hop.
by r.x, the probability ofk successful receptions when a total In C-SENMA, cluster formation is triggered by the mobile
of n packets are transmitted in a timeslot. We can summari@gent. To ensure that the load of being a CH is rotated among all
the MPR property of the channel by the following stochasti@odes, the cluster formation is performed every multiple rounds
matrix, R, whose elements are all possible valuesfgy. of data collection. To construct clusters, each node selects itself

as a CH with fixed probability.. Later, we show how this
probability affects the protocol performance. If a node becomes
. ) a CH, it broadcasts an advertisement packet (ADV) to announce
rso Tsi Tsz rsz 0 .. its status as well as the PN code that should be used by its
: : : Lo cluster-members for data communication. Based on the received
ignal strength of ADV packets, each node approximates its

. _ si
Using the above model, we can obtain the expected numberd?%tance to the nearby CHs and joins the cluster of the nearest

correctly received packets whenpackets are transmitted as CH

rio i1 0 0 O

9o T21 T22 0 0
R:

n After reception of the beacon from the mobile agent, com-
Cn = Z k. munication in the clusters starts. We assume that nodes within
k=1 a cluster use TDMA to access the channel using the same PN
To determine the entries &, we need to consider the physicacode broadcasted by the their CH. To become synchronized,
layer specifications. We use the same method taken in [Tiddes use the beacon broadcasted by the mobile agent.



When all data is received by a CH, it performs data aggré- Markov Chain Analysis
gation and contends for the reachback channel to forward th t can be easily seen that the number of contending CHs
data up tp thg mobﬂg agerlt. In this wprk, we assume that id ms a finite discrete Markov chain. Consider the transition
aggregation is possible, i.e., an arbitrary number of pack Sm the state(m) to the state(n) and lett,,, denote the
can be compress_ed d_own Into one packet_ [1][6][13.]' .Examp(lﬁ?obability of that transition. Conditioned @rCHs transmitting
of such aggregation include finding maximum, minimum,

ih the next timeslot;m — n packets should be received (by the

g‘gﬁgi of the collgctted |ntl‘r(])rtr1r:atlon.b!lr1 C'SE’t\IMA’tEHiﬂgiﬁobile agent) correctly to produce such a transition. Therefore,
0 communicate wi € mobrie agent via the onsidering all possibilities we have

physical interface (of the mobile agent).

Our MAC scheme is slightly different from other conven- S Bli,m,ph) Tim—n n<m,m#0
tional models, e.g., ALOHA. While in conventional modelst,,,, =< 0 n>m
traffic arrival is a continuous random process, in our scenario 1 n,m =0

every CH has a packet to send, and after this packet is received

correctly, the CH does not have any other packets to send untiClearly, there is one absorbing stat@), in the Markov

the next round of data collection. chain. Given that the current state (is:), we can calculate
In C-SENMA, after a CH finishes data collection, it transmit§1® mean time to absorbtion,,, and mean number of trans-

the aggregated data with probabilip, to the mobile agent, MiSSioNs,u,,, until absorbtion. Let

where N represents the number of contending CHs in the

current timesilot. If this packet is not received correctly, then a

the CH retransmits the packet with a new probability in the u

next timeslot (depending on the updated number of contendin% . . i ,

CHs). To utilize the MPR channel capability and maximiz fining W as the transition matrix of all transient states, we

the throughput, we need to find the optimal probability d?ave [14]

[ala . .,(IN,‘],

[ug,...,un,]

> >

ieai t
transmissionp’, . Therefore, we have a=(I-W) 1, (4)
N - . . . -
phy = arg maxz B(n, N, p)Cy. ©) whereI. is the identity matrix andl represents a vector with
P = all entries equal tol. To computeu, we assume that the

_ _ S current state of the chain i8/. In this case,n packets are
We mentioned earlier that the cluster formation is triggergghnsmitted with probability3(n, N, p'y), and the current state

by the mobile agent. Therefore, the mobile agent has the stajyg transit to the stateV — i with probability r,,;. Considering
of all CHs (by receiving ADV packets broadcasted by eadd)| possibilities forn, we have

CH). This mechanism gives the necessary information about the

number of clusters. On the other hand, based on the correctly N .
demodulated data, the mobile agent can update the number of un = Z B(n, N, py)n
remaining clusters. This updated number should be fed back to ";0
the CHs and is used a¥ by CHs to find the corresponding " + _ _
pl. As well as the updated information, the feedback contains + ZO ‘_OZ N B(n, N, py ) rmitin—i
acknowledgements of correctly received packets. e ’”éN
_ i
V. PROTOCOLANALYSIS = Npy+ Kz_:l INKUK-

If clusters are of equal size, then they ideally finish the,;mmarizing the above equation for all values\ofall states)
TDMA schedule at the same time and try to contend fQf 5 vector format. we get

the channel at the same next timeslot. This means that the

number of remaining CHs, whose packets are not received by u = v+ Wu,

the mobile agent, is equal to the number of contending CHs. u = I-W)ly (5)
In reality, because clusters are formed randomly, they have ’

different sizes. Consequently, their corresponding CHs finighhere,v = [1p%, ..., ip!, .. ., Nyply,] is a vector representative

their TDMA schedule and start to contend for the channgf the average number of transmissions given that the current
at different timeslots. As a result, the number of remainingate is;.

clusters (Wh|Ch is the available info_l’mation based on which Assuming that each node Se|ects |tse|f as aCH independenﬂy
CHs choose the) is not necessarily equal to the numbepf other nodes, the actual number of CHs in the network has

of contending CHs in a given time slot. We base our analysisginomial distribution and so does the initial condition of the
on equal size clusters. Later in Section VI, we show that oNfarkov chain:

analysis predicts the total energy consumption very well when
clusters are formed randomly according to our protocol. P(No =n) = B(n, N¢,pe). (6)



We can obtain the expected number of transmissiBEr) as a property of;, e.g., its distance to the CH, aitt} as the

and timeslotsE (T's) until absorbtion by summation of that property over all cluster-members, i.e.,
N.
L Sy = flx)1{x; € Co},
E[TT} = B(OaNtvpC)u(Nt) + ZB(nthapc)u(n)a(7) :CriEZHO
n=1
N wherel{.} is the indicator function. From [15] we can compute
E[Ts] = B(0,Ny,p.)a(N;) + Z B(n, N, pe)a(n). (8) the expected value o, E(Sy), as follows
n=1
The first terms in the above formulas come form the fact that E(Sy) = Ao / f(x) exp(—=Ai7|z|?)dz. (10)

if there is no CH in the network, then all nodes send directly . b . del
to the mobile agent. In our case,f(z;) is given by our energy consumption model,

which isco+c1|z;|*. Whene is 4, plugging this form off (z;)
B. Energy Consumption Analysis into (10) leads to

Our goal here is to obtain the expected value of the total e —( ) = A F(2) exp(—A\ 7r|:c|2)dx
ergy consumptionE[U], needed to gather data within clusters \~coteile:|*/ = 20 PimA

and transmit data to the mobile agent. . —2mXoco _agr?

Let Epp be the energy required to process a bit for data = Ty, P 0
aggregation purposes at{ Ny) = N;p. represent the average 2 . IR
number of clusters. We assume that if a node wants to transmit + 21y (2a0 - ;{g} - a(?;) exp” " o

a packet to another node at a distanéethen it should (11)
consumecy + c;d* units of energy. Based on this energy

model, let E(S. 4., |.,)~) denote the expected value of thevhereao = A\i7. The approximation in (11) is due to the fact
total energy consumed by all cluster-members (within a clustéhgat the area is finite.

to communicate with their CH. 1E(Sc, 1c, |x,|~), |2i| IS the

distance between thgh cluster-member and its CH. Based 0|9 Latency Analysis

these definitions, we have In this work, we obtain an approximate upper bound for
5 the total latency of the data collection. It is clear that the
ElU] = Nb{ E[Tr|(co 4+ c1H") total latency has two components. The first one is the latency

introduced by the TDMA schedules within clusters. The second
+E(No)E(Scoter o)) + NtEDP}’ ©) component is the latency introduced by the contention in the
where H is the height at which the mobile agent flies ovefeachback channel (to the mobile agent). TDMA latency is

the network anda and 3 show the roll-off factors for the two bounded by the largest cluster size in the network. We assume

types of data communication, i.e., within clusters and from CHsMaximum cluster size that is three standard deviations above
to the mobile agent. We assume thét is large enough so the mean. Leti. be the number of nodes in a cluster. For mean

that the distance between all nodes and the mobile agent 844 variance of.. we have [15]

be approximated by?. In (9), the first term in braces shows E(n.) = p;l, (12)

the energy required to communicate with the mobile agent. )\C 2\ 2

The second term represents within cluster energy consumption aic = )TU + 0'2870 . (13)
1 1

and the last one shows the processing energy expenditure.
To calculate (9), we need to compufé(S.,.,|.,~). This On the other hand, the latency of the reachback channel is
expectation is computed using random geometry theory [1Bximized when all clusters have equal sizes, i.e., when all CHs
which is also used in [6]. contend for the channel at the same time. TherefBi(d]s) is
Based on our assumptions, nodes are uniformly distributéte upper bound of the reachback latency. L&tdenote our
over the aread. This point process can be approximated bgpproximate upper bound of latency. Considering the TDMA
a Poisson point random process whose density is %. If and the reachback latency bounds, we get
every node is going to be a CH with probabiljty, then it can “
be s)r/mwn thatgthegCH point processpis also ay Poisson process L* = E(n¢) 4+ 30, + E(Ts), (14)
with density A\; = p.A and the remaining points constitutewhere E(T's), E(n.), anda,,, are derived in (8), (12), and (13)
another Poisson process with density= (1 — p.)\ [14]. respectively.
Furthermore, in our cluster formation we have assumed that
every node joins the cluster of the nearest CH. Therefore, the V|- NUMERICAL RESULTS AND SIMULATION
areaA is tessellated to a set of Voronoi cells. I(gtrepresenta  In this section we provide our numerical results based
typical Voronoi cell whose nucleus is located at the oridig, on (9) and (14). We justify our analysis by simulating C-
denote the Poisson point process associated with the non-SENMA in a wide range of parameters. Each simulation data
nodes, and;; be a member ofl,. We define a functiorf(x;) point is obtained by averaging ovef0 random realizations.
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Fig. 3. The effect of roll-off factor on clustering performance. Hefe= 5000  Fig. 5. The effect of network radius on optimal CH probabilities. Hére-
m. 2.5.

Throughout these resultsy; = 1000, ¢ = 50 nJ/bit [1], at a low p., the performance is weakly coupled wif. In
c1 = 0.0013 pJd/bitin* [1], Epp = 5 nJd/bit/signal [1], and fact, as CH probability decreases, larger clusters are formed
we setN, = 200 bits. We choose the network radiu8, and and the average distance to the CHs increases. Consequently,
the spreading gain, S, to b®00 meters and2 respectively, the energy consumption within clusters (to communicate with
unless otherwise stated. CHs) dominates the energy consumed to communicate with the
Through Fig.2, Fig.3, and Fig.4, we have presented both thwbile agent.
analysis and simulation results according to various clusteringln Fig.3, we have demonstrated the effect of roll-off factor on
parameters. These figures suggest that for high valugs,of the optimal clustering. As expected, increasing roll-off factor
there is a perfect match between our analysis and the sinnanslates to more energy expenditure needed to communicate
lation. Whenp,. decreases, we expect to observe a mismatulith the mobile agent. Therefore in such cases, larger clusters
due to the finite size of the network. In fact, whenis less are more efficient (lowep.). On the other hand, it can be seen
than 0.01, there are only about0 clusters on the average.that the performance is highly sensitive to the changes in the
Consequently, the likelihood of observing a typical cluster (wittoll-off factor and the total energy consumption is reduced more
respect to a network with infinite area) decreases. Therefotlean an order of magnitudes when roll-off factor takes values
our analysis may not be accurate whenis very low. On the equal or larger thas.
other hand, as explained in Section V, unequal cluster sizes cafig.4 shows the effect of network radius on clustering
affect energy consumption of the network. This effect is moggerformance while the total number of nodes is kept constant
pronounced at small values pf. at 1000. We setG = 2.5 to be more conservative in our results.
Fig.2 shows the energy consumption of the protocol vs ClH addition, we choosed = 5R. Since a smaller network
probability, p., when s = 2. As can be seen, af increases radius results in smaller distances between nodes, decreasing
the energy reduction of the clustering also increases (frametwork radius improves clustering performance and larger
6% to more than65%) and the optimalp. decreases. This clusters are optimal. Therefore, @ decreases, the optimal
means that larger clusters lead to a better performancepindecreases, too. Fig.5 shows the optimal probabilities as a
terms of energy consumption. This figure also indicates thainction of network radius with the same parameters as in
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Fig.4 except that we vanyd from 3R to 11R. It can be
observed that the increases fhand H increase the optimal

pc. The corresponding amount of energy reductions for varioug;

values of R and H is depicted in Fig.6. It can be inferred that

clustering performs much better in moderately large networks.

Fig.7 shows the total latency of data collection aii¢ for
different values of spreading gath Based on our modeR and

H only can change the propagation delay which is negligibl
compared to the queuing delay. Therefore, results of this figu

are approximately independent &f, R, andj. From this figure
it is clear thatL" is a tight bound for most values af..

Furthermore, our results indicate that increasing spreading gain
directly influences the total delay. Specifically, for large value$s]
of CH probability, doublingS halves the associated latency.

When CH probabilities are low, few clusters are formed. Thisg)
indicates that communication is mainly done within clusters.
Therefore, the MPR capability of the mobile agent can no
be fully utilized, and the delay to gather data within cluster
(TDMA delay) dominates the delay to communicate with the
mobile agent. Consequently, increasisigloes not decrease the (8]

system latency for small values pf.

Finally, combining the results from Fig.5 and Fig.7, wel9]
can conclude that the optimal clustering based on energy
consumption also leads to near minimal total latency, whigiy,
is reduced significantly from the case where clustering is not

used, i.e., whem. =0 or p. = 1.

VIl. CONCLUSION

In this paper, we have proposed a new clustering scheid
in wireless sensor networks with mobile agents (C-SENMA).
Initiated by the mobile agent, clusters in C-SENMA are formed
in a distributed and random manner. We have proposed a simp#
MAC protocol and optimized its parameters to maximize the
throughput. Based on this MAC scheme, we have obtained the
optimal parameter values to make the clustering algorithm ef4]
ergy efficient. It has been concluded that for moderate netwark
sizes and typical signal path loss, network energy expenditure

can be reduced more th&1%. We have also studied the effect

of clustering on the data collection latency. We observed that
the optimal cluster size based on energy consumption also leads

to near minimal total latency.

(11]

The Effect of Spreading Gain on Latency
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