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Abstract—We study joint downlink-uplink beamforming de-
sign for wireless federated learning (FL) with a multi-antenna
base station. Considering analog transmission over noisy channels
and uplink over-the-air aggregation, we derive the global model
update expression over communication rounds. We then obtain
an upper bound on the expected global loss function, capturing
the downlink and uplink beamforming and receiver noise effect.
We propose a low-complexity joint beamforming algorithm to
minimize this upper bound, which employs alternating opti-
mization to breakdown the problem into three subproblems,
each solved via closed-form gradient updates. Simulation under
practical wireless system setup shows that our proposed joint
beamforming design solution substantially outperforms the con-
ventional separate-link design approach and nearly attains the
performance of ideal FL with error-free communication links.

I. INTRODUCTION

Federated learning (FL) [1] is a widely recognized machine
learning method to process training data locally at multiple
worker nodes. In FL, a parameter server organizes the worker
nodes to train a machine learning (ML) model collaboratively
using their local datasets. In the wireless environment, the
parameter server can be taken up by a base station (BS),
which exchanges model parameters with participating devices
through wireless communication [2]. However, the fluctuation
of the wireless link and noisy reception bring distortion,
leading to degraded FL performance. Furthermore, practical
wireless systems are limited in transmission power and band-
width. This necessitates efficient communication design to
effectively support FL, which requires frequent exchange of
a massive number of parameters.

Many existing works have considered improving the com-
munication efficiency of FL over wireless channels [3]–[10].
Various digital transmission-then-aggregation schemes were
proposed for uplink acquisition of local parameters from
devices to the BS [3]. Such schemes use conventional dig-
ital transmission via orthogonal channels and can consume
a large bandwidth and incur high latency as the number
of devices becomes large. Later, analog transmission-and-
aggregation schemes were proposed for the uplink [4]–[8].
These schemes use analog modulation and superposition for
over-the-air aggregation of local parameters via the multiple
access channel, substantially saving radio resources over the
digital schemes. However, these works only focused on the
uplink, while assuming an error-free downlink. Subsequently,
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noisy downlink transmission for FL was studied in [9] with
error-free uplink, where it was shown that since gradient
descent in FL is noise resilient, analog transmission can be
more efficient than digital transmission, even for the downlink.

In reality, downlink and uplink transmissions are intertwined
for parameter exchange in FL. The quality of one link direc-
tion affects the other. Furthermore, the noise and distortion
in one communication round propagate to all subsequent
communication rounds, which brings challenges to tractable
design and analysis. The literature on joint downlink-uplink
communication design for FL is scarce. The convergence of FL
with non-i.i.d. local datasets over noisy downlink and uplink
channels was recently studied in [10], where a simple generic
signal-in-noise receiver model was used to facilitate analysis
without involving actual transmission modeling or design.
Analog design was proposed for noisy downlink and uplink in
single-cell [11] or multi-cell [12] cases. However, both works
considered only single-antenna BSs, and their solutions and
convergence analysis are not applicable to the more practical
scenario with a multi-antenna BS. For multi-antenna commu-
nication, transmit and receive beamforming are key techniques
to enhance the communication quality. While beamforming
was considered in [9] for FL downlink analog transmission and
in [4] for uplink over-the-air aggregation, there is no existing
work on joint downlink-uplink beamforming design.

In this paper, we study joint downlink-uplink beamforming
design to improve the performance of wireless FL with a
multi-antenna BS. We consider noisy analog transmission in
both directions and uplink over-the-air aggregation for band-
width efficiency. We obtain the overall FL global model update
over each communication round, capturing the impact of noisy
downlink-uplink transmission and local model updates on FL
model training. Aiming to maximize the training convergence
rate, we then derive an upper bound on the expected global
loss function after T rounds, and propose a low-complexity
joint downlink-uplink beamforming (JDU-BF) algorithm to
minimize the upper bound under transmit power constraints
at the BS and devices. JDU-BF employs the alternating opti-
mization (AO) technique to decompose the joint optimization
problem into three subproblems and solve each via projected
gradient descent (PGD) [13] with fast closed-form updates.
Our simulation results under typical wireless network settings
show that JDU-BF outperforms the conventional separate-link
design and provides learning performance close to ideal FL
with error-free communication links.



II. SYSTEM MODEL

A. FL System

We consider FL in a wireless network consisting of a server
and K worker devices. Let K = {1, . . . ,K} denote the set of
devices. Each device k ∈ K holds a local training dataset of
size Sk, denoted by Sk = {(sk,i, vk,i) : 1 ≤ i ≤ Sk}, where
sk,i ∈ Rb is the i-th data feature vector and vk,i is the label for
this data sample. Using their respective local training datasets,
the devices collaboratively train a global model at the server,
represented by the parameter vector θ ∈ RD, which predicts
the true labels of data feature vectors, while keeping their local
datasets private. The local training loss function that represents
the training error at device k is defined as

Fk(θ) =
1

Sk

Sk∑
i=1

L(θ; sk,i, vk,i) (1)

where L(·) is the sample-wise training loss associated with
each data sample. The global training loss function is given
by the weighted sum of the local loss functions over all K
devices:

F (θ) =

K∑
k=1

Sk
S
Fk(θ) (2)

where S =
∑K
k=1 Sk is the total number of training samples

of all devices. The learning objective is to find the optimal
global model θ? that minimizes F (θ).

The devices communicate with the server via noisy down-
link and uplink wireless channels to exchange the model
update information iteratively for model training. The iterative
FL model training procedure in each downlink-uplink commu-
nication round t is given as follows:
• Downlink broadcast: The server broadcasts the current

global model parameter vector θt to all K devices via
the downlink channels;

• Local model update: Each device k performs local train-
ing independently using its dataset Sk, based on the
received global model θt. In particular, the device uses
the mini-batch approach to divide Sk into mini-batches
for its local model update, where it performs J iterative
local updates and generates the updated local model θJk,t;

• Uplink aggregation: The devices send their updated local
models {θJk,t}k∈K to the server via the uplink channels.
The server aggregates θJk,t’s to generate an updated global
model θt+1 for the next communication round t+ 1.

B. Wireless Communication Model

We consider a practical wireless communication system
where the server is hosted by a BS equipped with N antennas,
and each device has a single antenna. The system operates in
the time-division duplex (TDD) mode, which is typical for
5G wireless systems. With multiple antennas, the BS uses
downlink beamforming to broadcast the global model update
θt and applies uplink receiver beamforming to process the
received signal from K devices for the global model update.

For the model updating between the BS and devices in
the FL system, we consider analog communication for trans-
mitting the updated global/local models. Specifically, the BS
and devices send the respective values of θt and {θJk,t}k∈K
directly under their transmit power budgets. Furthermore, for
the uplink aggregation of the local models, to efficiently
use the communication bandwidth, we consider over-the-air
computation via analog aggregation over the multiple access
channel. Specifically, the devices send their local model θJk,t’s
to the BS simultaneously over the same frequency resources,
and θJk,t’s are aggregated over the air and received at the BS.
Note that the control and signaling channels of the system
are still communicated using digital transmissions and are
assumed to be perfect.

Due to the noisy communication channels, the received
model updates over downlink and uplink are the distorted
noisy versions of θt and {θJk,t}k∈K, respectively. The errors in
the model updates further propagate over subsequent commu-
nication rounds for FL model training, degrading the learning
performance. In this paper, we focus on the communication
aspect of FL model training. Specifically, our goal is to jointly
design downlink and uplink beamforming to maximize the
learning performance of FL over wireless transmissions.

III. DOWNLINK-UPLINK TRANSMISSIONS FOR FL

We now formulate the transmission and reception process
with downlink and uplink beamforming for the FL model up-
date in one communication round. As mentioned in Section II,
each communication round involves three steps. We present
each step in detail below.

A. Downlink Broadcast

At the start of round t, the BS has the current global
model, denoted by θt = [θ1,t, . . . , θD,t]

T . For efficient trans-
mission, we convert θt into a complex signal vector, whose
real and imaginary parts contain half of the elements in θt.
Specifically, we can re-express θt = [(θ̃re

t )T , (θ̃im
t )T ]T , where

θ̃re
t , [θ1,t, . . . , θD

2 ,t
]T , and θ̃im

t , [θD
2 +1,t, . . . , θD,t]

T . Let
θ̃t denote the equivalent complex vector representation of θt,
which is given by θ̃t = θ̃re

t + jθ̃im
t ∈ CD

2 .
For a TDD system, channel reciprocity holds for downlink

and uplink channels. Thus, let hk,t ∈ CN denote the channel
vector between the BS and device k ∈ K for both downlink
and uplink transmissions in round t. We assume {hk,t}k∈K
remain unchanged during round t and are known perfectly
at the BS and the respective devices. The BS sends the
complex global model parameter vector θ̃t to the K devices
via multicast beamforming. At round t, the received signal
vector at device k is given by

uk,t = (wdl
t )Hhk,tθ̃t + ndl

k,t

where wdl
t ∈ CN is the downlink multicast beamforming

vector at round t, ndl
k,t ∈ CD

2 is the receiver additive white
Gaussian noise (AWGN) vector with i.i.d. elements that are
zero mean with variance σ2

d . The beamforming vector is
subject to the BS transmit power budget. Let DP dl be the



transmit power budget at the BS for sending the global model
θ̃t in D channel uses, where P dl denotes the average transmit
power limit per channel use. Then, for transmitting θ̃t, wdl

t is
subject to the transmit power constraint ‖wdl

t ‖2‖θ̃t‖2 ≤ DP dl.
The BS also sends the scaling factor

hHk,tw
dl
t

|hHk,tw
dl
t |2

to device k

via the downlink signaling channel to facilitate the receiver
processing. Device k post-processes the received signal uk,t
using the received scaling factor and obtains

ˆ̃
θk,t =

hHk,tw
dl
t

|hHk,twdl
t |2

uk,t = θ̃t + ñdl
k,t (3)

where ñdl
k,t ,

hHk,tw
dl
t

|hHk,tw
dl
t |2

ndl
k,t is the post-processed noise vector

at device k. By the equivalence of real and complex signal
representations between θt and θ̃t, device k obtains the
estimate of the global model θt, denoted by θ̂k,t, given by

θ̂k,t =
[
Re
{ˆ̃
θk,t

}T
, Im

{ˆ̃
θk,t

}T ]T
= θt + n̂dl

k,t (4)

where n̂dl
k,t , [Re{ñdl

k,t}T , Im{ñdl
k,t}T ]T .

B. Local Model Update

Based on θ̂k,t in (4), device k performs local model training.
We assume each device adopts the mini-batch stochastic gra-
dient descent (SGD) algorithm to minimize the local training
loss function Fk(θ) [14]. The mini-batch SGD is a widely
adopted training method for ML tasks. It uses a subset of the
training dataset to compute the gradient update at each itera-
tion and achieves a favorable tradeoff between computational
efficiency and convergence rate. In particular, assume that each
device applies J mini-batch SGD iterations for its local model
update in each communication round. Let θτk,t be the local
model update by device k at iteration τ ∈ {0, . . . , J − 1},
with θ0

k,t = θ̂k,t, and let Bτk,t denote the mini-batch, i.e., a
subset of Sk, at iteration τ + 1. Then, the local model update
is given by

θτ+1
k,t = θτk,t − ηt∇Fk(θτk,t;Bτk,t)

= θτk,t −
ηt
|Bτk,t|

∑
(s,v)∈Bτk,t

∇L(θτk,t; s, v) (5)

where ηt is the learning rate at communication round t, and
∇Fk and ∇L are the gradient functions w.r.t. θτk,t. After J
iterations, device k obtains the updated local model θJk,t.

C. Uplink Aggregation

The devices send their updated local models {θJk,t}k∈K to
the BS over their uplink channels and perform over-the-air
aggregation. For efficient transmission similar to the downlink,
we represent θJk,t using a complex vector, with the real
and imaginary parts of the vector containing the first and
second half of the elements in θJk,t, respectively. Specifically,
we re-write θJk,t = [(θ̃J,rek,t )T , (θ̃J,imk,t )T ]T , where θ̃J,rek,t ,

[θJk1,t, . . . , θ
J
kD2 ,t

]T and θ̃J,imk,t , [θJ
k(D2 +1),t

, . . . , θJkD,t]
T .Then,

we have the equivalent complex vector representation of θJk,t,
defined by θ̃Jk,t = θ̃J,rek,t + jθ̃J,imk,t ∈ CD

2 .

Transmitting θ̃Jk,t from device k to the BS over its uplink
channel requires D

2 channel uses, one for each element in
θ̃Jk,t. At channel use l, the received signal vector at the BS,
denoted by vl,t, is given by

vl,t =

K∑
k=1

hk,tak,tθ̃
J
kl,t + uul

l,t

where ak,t ∈ C is the transmit beamforming weight at
device k, and uul

l,t ∈ CN is the receiver AWGN vector with
i.i.d. elements that are zero mean with variance σ2

u . The BS
applies receive beamforming to the received signal vl,t over
N antennas, for l = 1, . . . , D2 , to obtain a weighted sum of
θ̃Jk,t’s from all k ∈ K. Let wul

t ∈ CN be the unit-norm receive
beamforming vector at the BS at round t, with ‖wul

t ‖2 = 1.
The post-processed received signal vector over all D

2 channel
uses is given by

zt =

K∑
k=1

(wul
t )Hhk,tak,tθ̃

J
k,t + nul

t (6)

where nul
t ∈ CD

2 is the post-processed receiver noise with
the l-th element being (wul

t )Huul
l,t, for l = 1, . . . , D2 . Define

αul
k,t , (wul

t )Hhk,tak,t, which represents the effective channel
from device k to the BS after applying transmit and receive
beamforming. Following this, we re-write (6) as

zt =

K∑
k=1

αul
k,tθ̃

J
k,t + nul

t . (7)

We consider uplink joint transmit and receive beamforming,
where {ak,t}k∈K and wul

t are designed jointly. For over-the-
air aggregation, the local models θ̃Jk,t’s need to be added up
coherently. Thus, the transmit and receive beamforming design
should ensure that the resulting effective channels, αul

k,t’s, are
phase aligned. For this purpose, the transmit beamforming
weight at device k is set to ak,t =

√
pk,t

hHk,tw
ul
t

|hHk,tw
ul
t |

, where pk,t
is the transmit power scaling factor for device k at round t.
Following this, the effective channels of all devices are phase
aligned to 0 after receive beamforming, i.e., αul

k,t is real-valued:

αul
k,t = (wul

t )Hhk,tak,t =
√
pk,t|hHk,twul

t |, k ∈ K.

Furthermore, each device is subject to transmit power budget.
Let DP ul

k be the transmit power budget at device k for sending
each local model in D channel uses, where P ul

k denotes
the average transmit power budget per channel use. Then,
for transmitting θ̃Jk,t, we have the transmit power constraint
pk,t‖θ̃Jk,t‖2 ≤ DP ul

k .
At the BS receiver, after receive beamforming, the BS

further scales zt in (7) to obtain the complex equivalent
global model update for the next round t+ 1:

θ̃t+1 =
zt∑K

k=1 α
ul
k,t

=

K∑
k=1

ρk,tθ̃
J
k,t + ñul

t (8)

where ρk,t,
αul
k,t∑K

j=1 α
ul
j,t

,
∑K
k=1ρk,t=1, and ñul

t ,
nul
t∑K

k=1 α
ul
k,t

.

From the local model update in Section III-B, let ∆θ̃k,t =
θ̃Jk,t − θ̃0

k,t denote the equivalent complex representation of



the local model change after the local training at device k
in round t. Based on this and (3), we can express the global
model θ̃t+1 in (8) in terms of θ̃t in round t as

θ̃t+1 = θ̃t +

K∑
k=1

ρk,t∆θ̃k,t +

K∑
k=1

ρk,tñ
dl
k,t + ñul

t . (9)

Finally, the real-valued global model update θt+1 for
round t + 1 is recovered from θ̃t+1 as θt+1 =
[Re{θ̃t+1}T , Im{θ̃t+1}T ]T .

Remark 1. The global model updating equation in (9) is
derived from the entire round-trip FL procedure, including
downlink-uplink transmission and the local model update at
devices. The second term represents the aggregated update
from the local training at K devices obtained via uplink
transmission. The third and fourth noise terms reflect how
the noisy downlink and uplink transmissions affect the global
model update. Overall, the updating equation (9) shows how
local model updates contribute to the global model update
under the noisy communication channel and transmitter and
receiver processing.

IV. JOINT DOWNLINK-UPLINK BEAMFORMING DESIGN

In this paper, we consider the design of the communication
aspect of the FL system, aiming to maximize the training
convergence rate. In particular, we jointly design the downlink
and uplink beamforming to minimize the expected global
loss function after T rounds. Let T = {0, . . . , T − 1}. The
optimization problem is formulated as

Po : min
{wdl

t ,w
ul
t ,pt}t∈T

E[F (θT )] (10)

s.t. ‖wdl
t ‖2‖θt‖2 ≤ DP dl, t ∈ T , (11)

pk,t‖θJk,t‖2 ≤ DP ul
k , k ∈ K, t ∈ T , (12)

‖wul
t ‖2 = 1, t ∈ T (13)

where E[·] is the expectation taken w.r.t. receiver noise and
mini-batch sampling in local training at each device, and
pt , [p1,t, . . . , pK,t]

T contains the uplink transmit power
scaling factors of all K devices at round t. Constraints in
(11) and (12) are the transmit power constraints at the BS and
each device k, respectively, and constraint in (13) specifies the
receive beamforming vector at the BS to be unit-norm.

Problem Po is a finite-horizon stochastic optimization prob-
lem, which is challenging to solve. To tackle this problem,
we develop a more tractable upper bound on E[F (θT )] by
analyzing the convergence rate of the global loss function,
and then we develop a joint downlink-uplink beamforming
algorithm to minimize this upper bound.

A. Convergence Analysis on Global Training Loss

Let F ? denote the minimum global loss under the optimal
model θ?. To examine the expected global loss function
E[F (θT )] in the FL system described in Section II, we can
equivalently analyze E[F (θT )]−F ?, i.e., the expected gap of
the global loss function at round T to the minimum global

loss, based on the global model updates {θt} obtained in
Section III. We first make the following three assumptions on
the local loss functions, the SGD, and the difference between
the global and weighted average of the local loss functions.
These assumptions are commonly adopted for the convergence
analysis of the FL model training [9], [11], [12].
Assumption 1. The local loss functions Fk(·)’s are differen-
tiable and are L-smooth: Fk(y) ≤ Fk(x)+(y−x)T∇Fk(x)+
L
2 ‖y − x‖2, ∀ k ∈ K, ∀ x,y ∈ RD. Also, Fk(·)’s are λ-
strongly convex: Fk(y) ≥ Fk(x)+(y−x)T∇Fk(x)+ λ

2 ‖y−
x‖2, ∀ k ∈ K, ∀ x,y ∈ RD.
Assumption 2. The mini-batch SGD is unbiased:
EB[∇Fk(θτk,t;Bτk,t)] = ∇Fk(θτk,t), ∀ k ∈ K, ∀ τ, t. The
variance of the mini-batch stochastic gradient is bounded by µ:
For ∀ k ∈ K, ∀ τ, t, E[‖∇Fk(θτk,t;Bτk,t)−∇Fk(θτk,t)‖2] ≤ µ.
Assumption 3. The gradient divergence is bounded by δ: For
∀ k ∈ K, ∀ τ, t, E[‖∇F (θt) −

∑K
k=1 φk∇Fk(θt)‖2] ≤ δ,

where φk ∈ R, φk ≥ 0, and
∑K
k=1 φk = 1.

We now evaluate the expected gap E[F (θT )]−F ? through
the training loss convergence rate analysis. We point out that
although different bounds on this expected gap have been
derived in the literature, they are based on either idealized or
simplified communication link models without multi-antenna
processing effects. Based on the global model update obtained
in (9), we first bound the expected change of the global loss
function in two consecutive rounds as

E[F (θt+1)− F (θt)] =

K∑
k=1

Sk
S

E[Fk(θt+1)− Fk(θt)]

(a)

≤ E[(θt+1 − θt)
T∇F (θt)] +

L

2
E[‖θt+1 − θt‖2] (14)

(b)
= Re{E[(θ̃t+1 − θ̃t)

H∇F̃ (θt)]}+
L

2
E[‖θ̃t+1 − θ̃t‖2]

(c)
= Re

{
E
[( K∑

k=1

ρk,t∆θ̃k,t+

K∑
k=1

ρk,tñ
dl
k,t+ñul

t

)H
∇F̃ (θt)

]}
︸ ︷︷ ︸

,A1,t

+
L

2
E
[∥∥∥∥ K∑

k=1

ρk,t∆θ̃k,t+

K∑
k=1

ρk,tñ
dl
k,t+ñul

t

∥∥∥∥2]︸ ︷︷ ︸
,A2,t

. (15)

where (a) follows the L-smoothness of Fk(·)’s in Assump-
tion 1 and the fact that ∇F (θ) =

∑K
k=1

Sk
S ∇Fk(θ) following

(2), (b) is the equivalent expression of (14) by using the
equivalent complex representation θ̃t of θt, where ∇F̃ (θt)
denotes the equivalent complex representation of the global
loss gradient ∇F (θt) in round t, and (c) is obtained following
the global model update in (9). The upper bound in (15)
clearly shows the effects of noisy channels and multi-antenna
transmit/receive beamforming processing at both downlink and
uplink on the loss function. Note that A1,t and A2,t defined
in (15) are functions of the aggregated local model change,
the downlink-uplink transmission processing, and the receiver
noise at round t. Next, we bound A1,t and A2,t separately.



For A1,t, since the receiver noise at the devices and the BS
are zero mean and independent of ∇F̃ (θt), we have

A1,t = Re

{
E
[( K∑

k=1

ρk,t∆θ̃k,t

)H
∇F̃ (θt)

]}
(16)

= E
[( K∑

k=1

ρk,t∆θk,t

)T
∇F (θt)

]
(17)

where ∆θk,t , θJk,t − θ0
k,t is the real-valued local model

change after the local training at device k in round t, and
(17) is the equivalent expression of (16) by using the real-
value parameters. Based on the mini-batch SGD from (5), we
have ∆θk,t = −ηt

∑J−1
τ=0 ∇Fk(θτk,t;Bτk,t).

Based on Assumptions 1–3, we provide an upper bound on
A1,t, which is stated in the following lemma. Detailed proof
is omitted. Part of our proof has used some techniques in [11,
Th. 1] (similarly for the proof of Lemma 2).
Lemma 1. Consider the FL system described in Section III
and Assumptions 1–3. Let Qt , 1 − 4η2t J

2L2 and assume
ηtJ <

1
2L , ∀ t ∈ T . Then, A1,t is upper bounded as

A1,t ≤ ηtJ
(

2

Qt
− 5

2

)
E
[
‖∇F (θt)‖2

]
+
D(1−Qt)

4ηtJQt

K∑
k=1

ρk,tσ
2
d

|hHk,twdl
t |2

+
ηtJ

2

(
δ + µ

Qt
+
δ − µ

2

)
. (18)

Note that for the bound in (18), ηt and J are parameters
set in the SGD for the local model update at each device, and
L, µ, δ are parameters specified in Assumptions 1–3.

For A2,t, since the receiver noise at the BS is zero mean
and independent of

∑K
k=1 ρk,t(∆θ̃k,t + ñdl

k,t), we have

A2,t = E
[∥∥∥∥ K∑

k=1

ρk,t(∆θ̃k,t+ñdl
k,t)

∥∥∥∥2]+E[‖ñul
t ‖2]

= E
[∥∥∥∥ K∑

k=1

ρk,t(∆θ̃k,t+ñdl
k,t)

∥∥∥∥2]+
Dσ2

u

2(
∑K
k=1 α

ul
k,t)

2
. (19)

Based on Assumptions 1–3, we can upper bound A2,t as
shown in the following lemma. Detailed proof is omitted.

Lemma 2. Consider the FL system described in Section III
and Assumptions 1–3 and assume ηtJ < 1

2L , ∀ t ∈ T . Then,
A2,t is upper bounded as

A2,t≤
2

L2

(
1−Qt
Qt

)
E[‖∇F (θt)‖2]

+D

(
1−Qt
Qt

K∑
k=1

ρk,tσ
2
d

|hHk,twdl
t |2

+

K∑
k=1

ρ2k,tσ
2
d

|hHk,twdl
t |2

)
+

Dσ2
u

2(
∑K
k=1α

ul
k,t)

2
+

1−Qt
2L2Qt

((
1−Qt +

Qt
J

)
µ+ 4δ

)
. (20)

We now analyze the expected gap E[F (θT )]−F ? at round
T . From (15), the expected gap at round t+ 1 is bounded as

E[F (θt+1)]− F ? ≤ E[F (θt)]− F ? +A1,t +
L

2
A2,t. (21)

Using Lemmas 1 and 2, we can further bound the right hand
side (RHS) of (21). Summing up both sides over t ∈ T
and rearranging the terms, we can obtain the upper bound
on E[F (θT )]− F ?, which is stated in Proposition 1 below.

Proposition 1. For the FL system described in Section III,
under Assumptions 1–3 and for 1

10L ≤ ηtJ <
1
2L , ∀ t ∈ T , the

expected gap E[F (θT )] − F ? after T communication rounds
is upper bounded by

E[F (θT )]− F ?≤ Γ

T−1∏
t=0

Gt+ Λ +

T−2∑
t=0

H(wdl
t ,w

ul
t ,pt)

T−1∏
s=t+1

Gs

+H(wdl
T−1,w

ul
T−1,pT−1) (22)

where Γ , E[F (θ0)] − F ?, Λ ,
∑T−2
t=0 Ct

(∏T−1
s=t+1Gs

)
+

CT−1 with

Gt ,
1−Qt

4ηtJλQt

(
5(1−Qt) + 4

√
1−Qt − 1

)
+ 1,

Ct ,
ηtJ

2

(δ + µ

Qt
+
δ−µ

2

)
+

1−Qt
2L2Qt

((
1−Qt+

Qt
J

)
µ+4δ

)
,

and H(wdl
t ,w

ul
t ,pt) is defined in (23).

Proof: See Appendix A.
Note that the upper bound for E[F (θT )] − F ? in (22)

reflects how the downlink-uplink transmission and the local
training affect the convergence of the global model update.
In particular, the first term shows the impact of the initial
starting point θ0. The second term Λ is a weighted sum of
Ct’s, each accounting for the gradient divergence of the local
loss function from the global loss function using the mini-
batch SGD during the local model updates among K devices in
round t.1 The third term is a weighted sum of H(wdl

t ,w
ul
t ,pt),

where H(wdl
t ,w

ul
t ,pt) in (23) is in the form of a weighted sum

of the inverse of SNRs (i.e., noise-to-signal ratio). Two types of
SNRs are shown: the terms with σ2

d reflect the post-processing
SNR at the BS receiver due to the downlink device receiver
noise (after downlink and uplink beamforming and receiver
processing), and the term with σ2

u shows the post-processing
SNR at the BS receiver due to the BS receiver noise in the
uplink after receiver beamforming and processing.

The upper bound given in Proposition 1 is in a more
tractable form for the expected gap E[F (θT )]−F ? that we can
use for the optimization design. In the following, we directly
minimize this upper bound to obtain a joint downlink and
uplink beamforming solution.

B. Joint Downlink-Uplink Beamforming Algorithm

We now replace the objective function in Po with the upper
bound in (22). Define

Ψ({wdl
t ,w

ul
t ,pt})

,
T−2∑
t=0

H(wdl
t ,w

ul
t ,pt)

T−1∏
s=t+1

Gs +H(wdl
T−1,w

ul
T−1,pT−1).

1Recall that λ in the expression of Gt is specified in Assumption 1.



H(wdl
t ,w

ul
t ,pt) ,

LD

2

(
1−Qt+

√
1−Qt

Qt

)σ2
d

(
K∑

k=1

√
pk,t|hH

k,tw
ul
t |

|hH
k,tw

dl
t |2

)
K∑

k=1

√
pk,t|hH

k,tw
ul
t |

+
LD

2

σ2
d

(
K∑

k=1

pk,t|hH
k,tw

ul
t |2

|hH
k,tw

dl
t |2

)
+
σ2

u

2( K∑
k=1

√
pk,t|hH

k,tw
ul
t |
)2

(23)

Omitting the constant terms Γ
∏T−1
t=0 Gt + Λ in (22), we

can equivalently minimize Ψ({wdl
t ,w

ul
t ,pt}). Thus, instead

of Po, we consider the following joint downlink and uplink
beamforming optimization problem

P1 : min
{wdl

t ,w
ul
t ,pt}

T−1
t=0

Ψ({wdl
t ,w

ul
t ,pt}) s.t. (11)(12)(13).

Problem P1 is a T -horizon joint optimization problem that
includes T communication rounds of the model update. Note
that in Proposition 1, for 1

10L ≤ ηtJ <
1
2L , we have Gt > 0,

∀ t ∈ T , and thus,
∏T−1
s=t+1Gs > 0 in Ψ({wdl

t ,w
ul
t ,pt}).

Thus, P1 can be decomposed into T subproblems, one for
each round t given by

Pt2 : min
wdl
t ,w

ul
t ,pt

H(wdl
t ,w

ul
t ,pt)

s.t. ‖wdl
t ‖2‖θt‖2 ≤ DP dl, (24)

pk,t‖θJk,t‖2 ≤ DP ul
k , k ∈ K, (25)

‖wul
t ‖2 = 1. (26)

Note that H(wdl
t ,w

ul
t ,pt) in (22) is an involved non-convex

function of (wdl
t ,w

ul
t ,pt). It is difficult to find the optimal

solution to Pt2 directly. Instead, we propose to use the AO
approach to solve Pt2 w.r.t. the downlink beamforming wdl

t ,
and uplink beamforming (wul

t ,pt) alternatingly. Furthermore,
we propose to solve each AO subproblem via PGD [13].

To facilitate the computation in our algorithm, we express
all the complex quantities in Pt2 using their real and imag-
inary parts. Define xdl

t , [Re{wdl
t }

T
, Im{wdl

t }
T

]T , xul
t ,

[Re{wul
t }

T
, Im{wul

t }
T

]T , and

Hk,t ,

[
Re{hk,thHk,t} −Im{hk,thHk,t}
Im{hk,thHk,t} Re{hk,thHk,t}

]
, k ∈ K, t ∈ T .

Then, we have ‖wdl
t ‖2 = ‖xdl

t ‖2, ‖wul
t ‖2 = ‖xul

t ‖2,
|hHk,twdl

t |2 = (xdl
t )THk,tx

dl
t , and |hHk,twul

t |2 = (xul
t )THk,tx

ul
t .

Thus, we can express H(wdl
t ,w

ul
t ,pt) in (23) using the

corresponding real-valued vectors (xdl
t ,x

ul
t ,pt) by replacing

|hHk,twdl
t | and |hHk,twul

t | in (23) with ((xdl
t )THk,tx

dl
t )

1
2 and

((xul
t )THk,tx

ul
t )

1
2 , respectively. Let Φ(xdl

t ,x
ul
t ,pt) denote this

resulting equivalent converted function from H(wdl
t ,w

ul
t ,pt).

Then, Pt2 can be equivalently transformed into the following
problem with all real-valued optimization variables:

Pt3 : min
xdl
t ,x

ul
t ,pt

Φ(xdl
t ,x

ul
t ,pt)

s.t. xdl
t ∈ X dl

t ,x
ul
t ∈ X ul

t ,pt ∈ Yt

where X dl
t , {xdl

t : ‖xdl
t ‖2‖θt‖2 ≤ DP dl}, X ul

t , {xul
t :

‖xul
t ‖2 = 1}, and Yt , {pt : pk,t‖θJk,t‖2 ≤ DP ul

k , k ∈ K}.
We use the AO approach to compute a solution to Pt3 at

Algorithm 1 The JDU-BF Algorithm for P1

Initialization: Set t = 0.
repeat

Initialization: Set xdl(0)
t ,x

ul(0)
t ,p

(0)
t ; Set i = 0.

repeat
1) Update downlink transmit beamforming vector

x
dl(i+1)
t = arg min

xdl
t∈X dl

t

Φ(xdl
t ,x

ul(i)
t ,p

(i)
t ). (27)

2) Update uplink receive beamforming vector

x
ul(i+1)
t = arg min

xul
t∈X ul

t

Φ(x
dl(i+1)
t ,xul

t ,p
(i)
t ). (28)

3) Update uplink device transmit power

p
(i+1)
t = arg min

pt∈Yt
Φ(x

dl(i+1)
t ,x

ul(i+1)
t ,pt). (29)

4) Set i← i+ 1.
until convergence // solve Pt3
Set t← t+ 1.

until t = T

each round t ∈ T . Our proposed JDU-BF algorithm for P1

is summarized in Algorithm 1. Note that subproblem (27)
is a downlink beamforming problem, subproblem (28) is an
uplink receive beamforming problem, and subproblem (29) is
an uplink transmit power minimization problem. Thus, our
proposed algorithm solves downlink and uplink beamforming
problems alternatingly.

For each subproblem in (27)–(29), the objective function is a
complicated non-convex function of the optimization variable.
Thus, we adopt PGD to solve each subproblem. PGD [13]
is an iterative first-order algorithm that uses gradient updates
to solve a constrained minimization problem: minx∈X f(x),
where X is the convex feasible set for x. PGD has the
following updating procedure: At iteration j,

xj+1 = ΠX
(
xj − β∇xf(xj)

)
(30)

where β > 0 is the step size and ΠX (x) denotes the projection
of point x onto set X . Note that due to the inherent structure
of our problem, PGD is particularly suitable for solving
subproblems (27)–(29) at each AO iteration. In particular, the
projection ΠX (x) operation can be expressed in closed-form
for each of subproblems (27)–(29):
• For subproblem (27):

ΠX dl
t

(xdl
t ) =

{√
DP dl

‖xdl
t ‖2‖θt‖2

xdl
t xdl

t /∈ X dl
t ,

xdl
t xdl

t ∈ X dl
t .

• For subproblem (28): ΠX ul
t

(xul
t ) =

xul
t

‖xul
t ‖

.



• For subproblem (29): ΠYt(pt) is given by

pk,t =


DP ul

k

‖θJk,t‖2
pk,t >

DP ul
k

‖θJk,t‖2
,

pk,t pk,t ≤ DP ul
k

‖θJk,t‖2
.
∀ k ∈ K

Thus, the computation using PGD via (30) has low complexity.
Also, PGD is guaranteed to find an approximate stationary
point for each subproblem in polynomial time [15]. We
summarized our proposed JDU-BF algorithm in Algorithm 1.

C. Separate Downlink and Uplink Beamforming Design

In the above, we have proposed joint downlink-uplink
beamforming design for the FL system, which is based on the
global model update in (9) derived from each communication
round. For comparison purpose, we also consider the conven-
tional approach where downlink and uplink transmission are
designed separately for the communication system.

Downlink: We formulate the problem of downlink beam-
forming and the uplink beamforming separately. At the com-
munication round t, since the BS broadcasts the global model
to all devices, the downlink beamforming problem is to
maximize the minimum received SNR, which is a single-group
multicast beamforming max-min fair problem:

max
wdl
t

min
k∈K

|hHk,twdl
t |2 s.t. ‖wdl

t ‖2‖θt‖2 ≤ DP dl. (31)

The solution to this problem can be efficiently computed using
the projected subgradient algorithm proposed in [16] based on
the optimal multicast beamforming structure [17].

Uplink: For uplink over-the-air aggregation, the transmit
beamforming weight at device k is set to ak,t =

√
pk,t

hHk,tw
ul
t

|hHk,tw
ul
t |

to phase-align the transmissions from all devices. Each device
uses the maximum transmit power; thus, the power scaling
factor is pk,t =

DP ul
k

‖θJk,t‖2
, ∀ k ∈ K. Then, we design uplink

receive beamforming to maximize the received SNR (from
the aggregated signal) at the BS:

max
wul
t :‖wul

t ‖2=1

K∑
k=1

pk,t|hHk,twul
t |2. (32)

This problem can be solved using PGD via (30). We name this
approach as the separate downlink and uplink beamforming
(SDU-BF) algorithm.

V. SIMULATION RESULTS

1) Simulation Setup: We consider the real-world dataset
for image classification under an LTE wireless system setting.
Following the typical LTE specifications, we set system band-
width 10 MHz and carrier frequency 2 GHz. The maximum
BS transmit power is 47 dBm. The maximum device transmit
power is 23 dBm, and we assume the devices use 1 MHz
bandwidth for uplink transmission. The path gain between the
BS and device k is Gk[dB] = −139.2 − 35 log10 dk − ψk,
where dk ∈ (1 km, 1.5 km) is the BS-device distance in
kilometers, and ψk is the shadowing random variable with
standard deviation 8 dB. The channel vector is generated as
hk,t =

√
Gkh̄k,t with h̄k,t ∼ CN (0, I). Noise power spectral

density is N0 = −174 dBm/Hz, and noise figure NF = 8 dB
and 2 dB at the device and BS receivers, respectively.

We adopt the MNIST dataset [18] for model training and
testing. MNIST consists of 6×104 training samples and 1×104

test samples from 10 different classes. Each sample is a labeled
image of size 28×28 pixels, i.e., s ∈ R784 and v ∈ {0, . . . , 9}
indicating the class. We consider training a convolutional
neural network with an 8 × 3 × 3 ReLU convolutional layer,
a 2× 2 max pooling layer, a ReLU fully-connected layer, and
a softmax output layer, resulting in D = 1.361 × 104 model
parameters in total. We use the 1×104 test samples to measure
the test accuracy of the global model update θt at each round
t. The training samples are randomly and evenly distributed
over devices, and the local dataset at device k has Sk = 6×104

K
samples. For the local training via the SGD at each device, we
set L = 10, J = 30, mini-batch size |Bτk,t| = 2×103

K ,∀k, τ, t,
and the learning rate ηt = 1

10JL , ∀t.
2) Performance Comparison: For the comparison purpose,

we consider the following three schemes: i) Ideal FL [1]:
Perform FL via the global model update in (9), assuming
error-free downlink and uplink and perfect recovery of model
parameters at the BS and devices, i.e., receiver noise ñdl

k,t =

ñul
t = 0, receiver post-processing weight ρk,t = 1

K , ∀k, t.
This benchmark provides the performance upper bound for all
schemes. ii) SDU-BF: the separate SNR-maximizing design
scheme described in Section IV-C. iii) Random beamforming
(RBF): Perform FL via (9) with randomly generated downlink
and uplink beamforming vectors wdl

t and wul
t . The devices

use the maximum transmit power and do not perform transmit
beamforming phase alignment.

Fig. 1 shows the test accuracy performance by the consid-
ered methods over communication round T for three system
settings for (N,K). All curves are obtained by averaging over
20 channel realizations. The shadowed area over each curve
indicates the 90% confidence interval of the curve. Fig. 1-Left
shows the test accuracy performance for (N,K) = (64, 20).
Our proposed JDU-BF outperforms other alternative schemes:
it nearly attains the upper bound under the Ideal FL after 40
communication rounds and achieves an accuracy of ∼ 91%
at ∼ 100 rounds. SDU-BF has a much slower model training
convergence rate. After 100 rounds, it only nearly reaches 80%
test accuracy. RBF exhibits the worst performance, where no
training convergence is observed, and the accuracy is ∼ 10%
for all rounds. This is because that RBF provides no beam-
forming gain, leading to highly suboptimal communication
performance, which affects the learning performance. Fig. 1-
Middle shows the test accuracy for (N,K) = (64, 40). We
see that as the number of devices K increases from 20 to 40,
the learning performance and, thus, the test accuracy of JDU-
BF and SDU-BF improves. JDU-BF nearly attains the optimal
performance after 30 rounds, while SDU-BF approaches the
upper bound slowly and is slightly worse than JDU-BF after
100 rounds. The gain comes from the improved uplink over-
the-air aggregation as the result of (distributed) transmit beam-
forming gain by more devices (i.e., phase alignment via ak,t).



Fig. 1. Test accuracy vs. communication round T . Left: N = 64,K = 20. Middle: N = 64,K = 40. Right: N = 16,K = 20.

In particular, the improvement of SDU-BF over K is more
noticeable. RBF is still the worst among all methods, with the
test accuracy remaining at 10%, as it does not benefit from
more devices since no beamforming gain can be collected.

Fig. 1-Right shows the case for (N,K) = (16, 20), where
N < K. Compared with Fig. 1-Left, both JDU-BF and SDU-
BF perform worse as N reduces. This is expected due to
reduced downlink and uplink beamforming gain with fewer
antennas, impacting the overall learning performance of FL
via wireless communication. Nonetheless, JDU-BF still nearly
attains the upper bound after 100 rounds. In summary, our
proposed JDU-BF is an effective communication scheme to
facilitate FL in a wireless system for achieving fast training
convergence and high test accuracy.

VI. CONCLUSION

In this paper, we have formulated the downlink-uplink
transmission process for FL in a wireless system. We obtain
the global model update in each round, capturing the impact
of transmitter/receiver processing, receiver noise, and local
training on the model update. Aiming to optimize downlink-
uplink beamforming to maximize the FL training performance,
we have derived an upper bound on the expected global loss
after T rounds, and proposed an efficient JDU-BF algorithm to
minimize this upper bound. JDU-BF is a low-complexity algo-
rithm that uses the AO approach along with PGD to minimize
the bound on the loss function per round. Simulation results
show that JDU-BF outperforms other alternative schemes and
provides a near-optimal learning performance for wireless FL.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Substitute ρk,t =
αul
k,t∑K

j=1 α
ul
j,t

with αul
k,t =

√
pk,t|hHk,twul

t | into (18)(20). We apply Lemmas 1 and 2
to (21). Let Mt = ηtJ

2Qt

(
5(1 − Qt) + 4

√
1−Qt − 1

)
and

Rt = H(wdl
t ,w

ul
t ,pt) + Ct. For 1

10L ≤ ηtJ < 1
2L , we have

Qt > 0 and 5(1 − Qt) + 4
√

1−Qt − 1 > 0. Thus, Mt > 0
and Rt > 0. Then, after combining Lemmas 1 and 2 and (21),
we have
E[F (θt+1)]−F ? ≤ E[F (θt)]−F ?+MtE[‖∇F (θt)‖2]+Rt
(a)

≤ E[F (θt)]−F ?+L2MtE[‖θt − θ?‖2]+Rt
(b)

≤ E[F (θt)]−F ?+
2L2Mt

λ
(E[F (θt)]− F ?)+Rt (33)

where (a) and (b) follow from (2) and the L-smoothness
and λ-strong-convexity of Fk(·) in Assumption 1, respectively.
Summing up both sides of (33) over t ∈ T and rearranging
the terms, we have (22).
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