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Abstract—Federated learning (FL) with over-the-air computa-
tion efficiently utilizes the communication resources, but it can
still experience significant latency when each device transmits a
large number of model parameters to the server. This paper
proposes the Segmented Over-The-Air (SegOTA) method for
FL, which reduces latency by partitioning devices into groups
and letting each group transmit only one segment of the model
parameters in each communication round. Considering a multi-
antenna server, we model the SegOTA transmission and reception
process to establish an upper bound on the expected model
learning optimality gap. We minimize this upper bound, by
formulating the per-round online optimization of device grouping
and joint transmit-receive beamforming, for which we derive
efficient closed-form solutions. Simulation results show that our
proposed SegOTA substantially outperforms the conventional
full-model OTA approach and other common alternatives.

I. INTRODUCTION

Federated learning (FL) [1] enables multiple worker devices
to collaboratively train a machine learning model using their
local datasets, with a parameter server (PS) aggregating their
local updates into a global model. In wireless FL, the PS often
is hosted by a base station (BS) [2]. However, limited wireless
resources and signal distortion in wireless links degrade the
performance of wireless FL, making efficient communication
design a necessity.

Most prior wireless FL works focused on improving the
communication efficiency in uplink aggregation of local model
parameters from the devices to the BS [3]–[13]. Early works
[3]–[5] studied digital transmission-then-aggregation schemes
using orthogonal channels, which can consume large band-
width and cause high latency with many devices. Later,
analog transmission-and-aggregation schemes were proposed
[6]–[8], which adopt analog modulation and superposition for
over-the-air computation of local parameters via the multiple
access channel. Analog schemes result in significant com-
munication savings and lower latency compared with digital
approaches. However, these analog schemes are designed for
single-antenna BSs, making their solutions and convergence
analysis unsuitable for the multi-antenna BSs commonly used
in practical wireless systems.

In the multi-antenna communication, beamforming plays
a critical role in improving communication quality in wire-
less networks. Receive beamforming was considered in [14],
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[15] to boost performance of the uplink analog over-the-
air computation. Various uplink beamforming designs have
since been proposed to improve the training performance of
wireless FL [9]–[13]. These works demonstrate that well-
designed beamforming schemes can significantly enhance the
over-the-air computation for wireless FL.

The existing uplink analog over-the-air works [6]–[13] typ-
ically adopt the traditional full-model transmission approach
illustrated in Fig. 1(left). In each channel use, all devices
simultaneously send parameters from the same location in their
model parameter vectors to the BS, which aggregates these
parameters via over-the-air computation. However, this full-
model transmission approach can lead to substantial latency
when the model parameter vector is long, which degrades the
overall performance of wireless FL.

To address this issue, we propose the Segmented Over-
The-Air (SegOTA) method for wireless FL, as illustrated
in Fig. 1(right). SegOTA divides the locations of a model
parameter vector into equal-sized segments and assigns the
transmission task of each segment to a group of devices. By
allowing simultaneous transmission of parameters in different
segments, SegOTA can substantially reduce the communica-
tion latency, while maintaining satisfactory learning perfor-
mance by allowing the BS to aggregate and update global
parameters for each segment. However, it also introduces wire-
less interference among the different segments, which requires
careful transmission design to balance the tradeoff between
communication efficiency and OTA computation accuracy, in
order to optimize the overall FL performance.

The main contribution of this paper is summarized as
follows:

• We propose a novel SegOTA method to allow simultane-
ous transmission of parameters from multiple segments in
wireless FL. We formulate an optimization problem to care-
fully manage the inter-segment interference through device
grouping, BS receive beamforming, and device transmit
power control, in order to minimize the expected model
optimality gap after a given number of FL communication
rounds. As far as we are aware, this is the first study on
segmented OTA transmission in FL.

• We analyze the SegOTA transmission and reception pro-
cesses and derive an upper bound on the expected
model optimality gap. We show that minimization of this
bound can be decomposed into per-round online opti-



+

Model Parameters at Device 

Model Parameters at Device 

Base 

Station +

Model Parameters at Device 

Model Parameters at Device 

Group 

Group  

Group  

Base 
Station

Fig. 1. Uplink analog OTA aggregation for wireless FL. Left: traditional full-model OTA approach; Right: proposed SegOTA (Each colored box represents
a model segment that consists of It parameters; different colors indicate different segments).

mization problems of device grouping and uplink joint
transmit-receive beamforming. We apply a spherical k-
means method for device grouping and then optimize joint
transmit-receive beamforming, obtaining efficient closed-
form solutions at each round. The proposed solution is
guaranteed to converge to a stationary point.

• Simulation under typical wireless network settings shows
that SegOTA substantially outperforms the conventional
approach of full-model OTA aggregation, as well as other
alternatives such as segmented OTA with the popular zero-
forcing beamforming.

II. WIRELESS FL SYSTEM MODEL

We consider an FL system consisting of a server and K
worker devices that collaboratively train a machine learning
model. Let Ktot = {1, . . . ,K} denote the total set of devices.
Each device k ∈ Ktot holds a local training dataset of size
Ak, denoted by Ak = {(ak,i, yk,i) : 1 ≤ i ≤ Ak}, where
ak,i ∈ Rb is the i-th data feature vector and yk,i is the label
for this data sample. Let θ ∈ RD be the parameter vector
of the machine learning model, which has D parameters. The
local training loss function that represents the training error at
device k is given by

Fk(θ) =
1

Ak

Ak∑
i=1

L(θ; ak,i, yk,i)

where L(·) is the sample-wise training loss corresponding to
each data sample. The global training loss function is the
weighted sum of the local loss function Fk(θ) of each device
k, expressed as

F (θ) =
1∑K

k=1Ak

K∑
k=1

AkFk(θ). (1)

The learning objective is to find the optimal global model θ?

that minimizes F (θ).
The K devices communicate with the server via separate

downlink and uplink channels to exchange the model training
information iteratively. The FL training procedure in each
communication round t = 0, 1, . . . is given as follows:

• Downlink broadcast: The server sends the parameter vector
of the current global model θt to all K devices. We make
the common assumption that the downlink channel is error-
free.

• Local model update: Device k divides Ak into smaller mini-
batches, and applies the standard mini-batch stochastic gra-
dient descent (SGD) algorithm with J iterations to generate
an updated local model based on θt. Let θτk,t be the local
model update by device k at iteration τ ∈ {0, . . . , J − 1},
with θ0

k,t = θt, and let Bτk,t denote the mini-batch at
iteration τ . Then, the local model update is given by

θτ+1
k,t = θτk,t − ηt∇Fk(θτk,t;Bτk,t)

= θτk,t −
ηt
|Bτk,t|

∑
(a,y)∈Bτk,t

∇L(θτk,t; a, y) (2)

where ηt is the learning rate in communication round t,
and ∇Fk and ∇L are the gradient functions with respect to
(w.r.t.) θτk,t. After J iterations, device k obtains the updated
local model θJk,t.

• Uplink aggregation: The devices send their updated local
models {θJk,t}k∈Ktot to the server through the uplink chan-
nels. The server aggregates θJk,t’s to generate an updated
global model θt+1 for the next communication round t+1.
In the existing full-model OTA approach [6]–[13], this
consists of analog transmission of each of the parameters
in the θJk,t vector by device k, and OTA aggregation by the
BS, as shown in Fig. 1(left). In this paper, we will propose
a segmented OTA approach to improve the communication
efficiency of this step.
For the model exchange between the server and devices

through a wireless system, we assume the server is hosted by
a BS equipped with N antennas, and each device has a single
antenna. In this paper, we propose a segmented transmission
approach for uplink OTA aggregation and optimize the cor-
responding uplink beamforming to accelerate the FL training
convergence.

III. UPLINK SEGMENTED OVER-THE-AIR AGGREGATION

We propose an efficient uplink aggregation approach, named
SegOTA. Under SegOTA, each device only sends one segment



of its D local parameters to the BS in each communication
round, shown in Fig. 1(right) as a colored segment.

In particular, at the beginning of communication round t,
the BS partitions the K devices into St groups, which remain
unchanged during this round. Let Ki,t denote the set of devices
of group i ∈ {1, . . . , St} in round t, with Ki,t , |Ki,t|. The
BS also divides the model parameter vector into St equal-sized
segments, with each segment having a length of It , dDSt e. If
D is not a multiple of St, the last segment will be padded with
zero. Let St , {1, . . . , St} be the index set of model segments
in round t. Devices in group Ki,t are assigned to send segment
m̂(i, t) ∈ St to the BS. Each group is assigned a unique
segment, which can be either at random or in a round-robin
fashion. The BS then aggregates the received local segments
from the devices in group Ki,t to update segment m̂(i, t) of
the global model θt+1 for the next communication round t+1.
Below, we detail the formulation of uplink aggregation under
the proposed SegOTA.

Let sk,Jm,t ∈ RIt denote the segment m of the local model
update θJk,t at device k in communication round t. For efficient
transmission, we represent sk,Jm,t ∈ RIt using an equivalent
complex vector s̃k,Jm,t, whose real and imaginary parts contain
the first and second halves of the elements in sk,Jm,t, respec-
tively. That is, s̃k,Jm,t = s̃k,Jre

m,t + js̃k,J im
m,t ∈ C

It
2 , where s̃k,Jre

m,t

contains the first It
2 elements in sk,Jm,t and s̃k,J im

m,t contains the
other It

2 elements.
We denote the channel from device k to the BS in com-

munication round t by hk,t and assume it is known at the
BS. We denote the transmit beamforming weight at device k
in round t by ak,t ∈ C. Device k in group i applies ak,t to

the normalized complex model segment
s̃k,J
m̂(i,t),t

‖s̃k,J
m̂(i,t),t

‖
, and all K

devices send their respective segments simultaneously to the

BS with It
2 channel uses. Let

s̃k,J
m̂(i,t)l,t

‖s̃k,J
m̂(i,t),t

‖
be the l-th element in

segment
s̃k,J
m̂(i,t),t

‖s̃k,J
m̂(i,t),t

‖
sent in the l-th channel use. The received

signal vector at the BS in the l-th channel use is given by

vl,t =

St∑
i=1

∑
k∈Ki,t

hk,tak,t
s̃k,Jm̂(i,t)l,t

‖s̃k,Jm̂(i,t),t‖
+ ul,t

where ul,t ∼ CN (0, σ2I) is the receiver additive white
Gaussian noise vector with variance σ2.

The BS applies receive beamforming on vl,t to aggregate
the local segments {s̃k,Jm̂(i,t),t}k∈Ki,t from each group i. Let
wi,t ∈ CN denote the receive beamforming vector at the BS
for group i in communication round t, which is normalized as
‖wi,t‖2 = 1. The effective channel from device k ∈ Ki,t to the

BS after applying wi,t is given by αk,t ,
wH
i,thk,tak,t

‖s̃k,J
m̂(i,t),t

‖
. Then,

the post-processed received signal vector for the aggregated
local segments {s̃k,Jm̂(i,t),t}k∈Ki,t over the It

2 channel uses is

zm̂(i,t),t=
∑
k∈Ki,t

αk,ts̃
k,J
m̂(i,t),t+

∑
j 6=i

∑
q∈Kj,t

wH
i,thq,taq,t

s̃q,Jm̂(j,t),t

‖s̃q,Jm̂(j,t),t‖

+ nm̂(i,t),t (3)

where nm̂(i,t),t ∈ C
It
2 is the post-processed receiver noise

vector with the l-th element being wH
i,tul,t, and the last term

is the inter-segment interference.
After receive beamforming, the BS receiver finally performs

scaling to obtain the global model update. Let sm,t ∈ RIt
denote segment m of the global model update θt in com-
munication round t, and let s̃m,t be the equivalent complex
representation of sm,t. Let î(m, t) represent the device group
that transmits segment m in round t. The BS scales zm,t by
αs
m,t ,

∑
k∈Kî(m,t),t

αk,t to obtain segment m of the global
model update θt+1 for the next round t+ 1:

s̃m,t+1 =
zm,t
αs
m,t

. (4)

Based on (3)(4), we obtain the following updating equation
for segment s̃m,t in each round:

s̃m,t+1 = s̃m,t +
∑

k∈Kî(m,t),t

ρk,t∆s̃km,t + ñm,t

+
1

αs
m,t

∑
j 6=î(m,t)

∑
q∈Kj,t

wH
î(m,t),t

hq,taq,t
s̃q,Jm̂(j,t),t

‖s̃q,Jm̂(j,t),t‖
(5)

where ∆s̃km,t , s̃k,Jm,t − s̃k,0m,t is the difference in the local
segment update after the local training, ρk,t ,

αk,t
αs
m,t

represents

the weight of each device k in group î(m, t), and ñm,t ,
nm,t
αs
m,t

is post-processed receiver noise vector.
Finally, segment m of the global model update θt+1, i.e.,

sm,t+1, can be recovered from its complex version as sm,t+1 =
[Re{s̃m,t+1}T, Im{s̃m,t+1}T]T.

IV. SEGOTA DESIGN OPTIMIZATION

A. Joint Optimization Formulation

We focus on the uplink communication design involved
in SegOTA, aiming to maximize the FL training conver-
gence rate. For effective SegOTA, we consider joint transmit-
receive beamforming in the uplink, where the device trans-
mit beamforming weights {ak,t}k∈Ki,t and the BS receive
beamforming vector wi,t are designed jointly for each group
i in communication round t. In communication round t, the
model segments {s̃k,Jm̂(i,t),t}k∈Ki,t from devices within the
same group i need to be combined coherently, as indicated
in the first term of (3). To achieve this, we phase-align the
effective channels {ak,t}k∈Ki,t among the devices in group i
via the joint transmit-receive beamforming. In particular, we
set the transmit beamforming weight at device k in group i as
ak,t =

√
pk,t

hH
k,twi,t

|hH
k,twi,t|

, where pk,t is the transmit power used
for sending the entire segment at device k. Then, the effective
channel of this device k is given by

αk,t =
wH
i,thk,tak,t

‖s̃k,Jm̂(i,t),t‖
=

√
pk,t|hH

k,twi,t|
‖s̃k,Jm̂(i,t),t‖

, k ∈ Ki,t. (6)



Given a total number of device groups St, our goal is to opti-
mize the device grouping and joint transmit-receive beamform-
ing to minimize the expected optimality gap E[‖θT − θ?‖2]
after T communication rounds. Let pt , [pT

1,t, . . . ,p
T
St,t

]T,
where pi,t ∈ RKi,t contains the transmit power of each
device in group i of round t, pk,t, k ∈ Ki,t. Also, wt ,
[wH

1,t, . . . ,w
H
St,t

]H ∈ CStN contains the BS receive beamform-
ing vectors for all St groups in round t. Let T , {0, . . . , T −
1}. Then, the joint optimization problem is formulated as

Po : min
{{Ki,t}Sti=1,wt,pt}

T−1
t=0

E[‖θT − θ?‖2]

s.t. Ki,t
⋂
Kj,t = ∅, i 6= j, i, j ∈ St, t ∈ T , (7)⋃

i∈St

Ki,t = Ktot, t ∈ T , (8)

pk,t ≤ ItPk, k ∈ Ktot, t ∈ T , (9)

‖wi,t‖2 = 1, i ∈ St, t ∈ T (10)

where E[·] is taken w.r.t. receiver noise and mini-batch local
data samples at each device, (7) and (8) are the device
grouping constraints, Pk is the average transmit power budget
at device k for sending a signal and constraint (9) specifies
the per-device average transmit power budget for sending the
entire model segment in each communication round.

Problem Po is a T -horizon stochastic optimization problem.
To tackle this challenging problem, we first analyze the
training convergence rate and develop a more tractable upper
bound on E[‖θT−θ?‖2]. Then, we propose an efficient scheme
for device grouping and joint transmit-receive beamforming to
minimize this upper bound.

B. SegOTA Training Convergence Analysis

To analyze the FL training convergence speed, we make the
following assumptions. They are commonly used in the exist-
ing literature for conventional full-model OTA aggregation,
and here we have extended them to segmented OTA.

Assumption 1. The local loss function Fk(·) is L-smooth and
λ-strongly convex, k ∈ Ktot.

Moreover, let ∇F denote the gradient of the global loss
function given in (1) w.r.t. θt. Denote segments m of gradi-
ents ∇F (θt) and ∇Fk(θτk,t) respectively by ∇Fm(θt) and
∇Fmk (θτk,t). We then make Assumption 2 below.

Assumption 2. Bounded gradient divergence: for all t, τ , and
m, E[‖∇Fm(θt)−

∑
k ck∇Fmk (θτk,t)‖2] ≤ φ, for some φ ≥ 0

and 0 ≤ ck ≤ 1 such that
∑
k ck = 1. Furthermore, for all t,

τ , k, and m, E[‖∇Fmk (θτk,t) − ∇Fmk (θτk,t;Bτk,t)‖2] ≤ µ, for
some µ ≥ 0.

We apply ak,t and αk,t given at the beginning of Sec-
tion IV-A into the segment updating equation (5) and further
define ∆s̃m,t ,

∑
k∈Kî(m,t),t

ρk,t∆s̃km,t. Moreover, let ẽm,t be
the fourth term for the inter-segment interference on the right-
hand side of (5). Stacking all St segments, s̃m,t+1, m ∈ St,

together, following (5), we express the entire global model
update θ̃t+1 from θ̃t as

θ̃t+1 = θ̃t + ∆θ̃t + ñt + ẽt (11)

where ∆θ̃t is the vector that stacks ∆s̃m,t, m ∈ St, and ñt
and ẽt are similarly defined.

We analyze the expected optimality gap, E[‖θt+1−θ?‖2] at
round t+ 1. Based on (11), we can show that its upper bound
is a function of E[‖θt− θ?‖2]. In particular, we first consider
an ideal centralized model training procedure using the full
gradient descent training algorithm and all the device datasets.
We assume the BS has the device datasets and implements this
centralized training procedure without exchanging any model
updating information with the devices. Let vτt be the model
update at iteration τ ∈ {0, . . . , J − 1}, with v0

t = θt. The
ideal centralized model update is given by

vτ+1
t = vτt − ηt∇F (vτt ). (12)

Let θ̃?, ∇F̃mk (θτk,t), ṽτt , and ∇F̃ (vτt ) respectively denote the
equivalent complex representations of θ?,∇Fmk (θτk,t), vτt , and
∇F (vτt ). Based on (11)(12), we have

θ̃t+1 − θ̃?

= θ̃t − ηt
J−1∑
τ=0

∇F̃ (vτt )− θ̃?+ ηt

J−1∑
τ=0

∇F̃ (vτt ) + ∆θ̃t + ñt + ẽt

= ṽJt − θ̃? + ηt

J−1∑
τ=0

∇F̃ (vτt ) + ∆θ̃t + ñt + ẽt

= ṽJt −θ̃?+ηt

J−1∑
τ=0

∇F̃ (vτt )−∆θ̄t︸ ︷︷ ︸
,α̃t

+∆θ̄t+∆θ̃t︸ ︷︷ ︸
,β̃t

+ñt+ẽt︸ ︷︷ ︸
,δ̃t

(13)

where ∆θ̄t stacks ηt
∑
k∈Kî(m,t),t

ρk,t
∑J−1
τ=0 ∇F̃mk (θτk,t),

m ∈ St. Following the above, we have

E[‖θ̃t+1 − θ̃?‖2] = E[‖ṽJt − θ̃? + α̃t + β̃t + δ̃t‖2]

≤ E[(‖ṽJt − θ̃?‖+ ‖α̃t‖+ ‖β̃t‖+ ‖δ̃t‖)2]

(a)

≤ 4
(
E[‖ṽJt − θ̃?‖2] + E[‖α̃t‖2] + E[‖β̃t‖2] + E[‖δ̃t‖2]

)
(14)

where (a) is based on a specific case of the Cauchy–Schwarz
inequality (

∑G
i=1 xi)

2 ≤ G
∑G
i=1 x

2
i ,∀xi ∈ R, for some G ∈

N+. We upper bound each term in (14) below.
We first obtain an upper bound for E[‖ṽJt − θ̃?‖2] in

Lemma 1. The proof uses the same technique as in [16, Lemma
2] and thus is omitted.

Lemma 1 (Bounding E[‖ṽJt − θ̃?‖2]). Consider SegOTA
described in Section III and the ideal centralized training
described in Section IV-B. For ηt < 1

L , ∀t ∈ T , under
Assumption 1, E[‖ṽJt − θ̃?‖2] is upper bounded as

E[‖ṽJt − θ̃?‖2] ≤ (1− ηtλ)2JE[‖θ̃t − θ̃?‖2], t ∈ T . (15)

Next, we bound the terms E[‖α̃t‖2], E[‖β̃t‖2], and E[‖δ̃t‖2]
respectively in the following lemma.



Lemma 2 (Bounding E[‖α̃t‖2], E[‖β̃t‖2], and E[‖δ̃t‖2]).
Consider SegOTA described in Section III and joint transmit-
receive beamforming described at the beginning of Sec-
tion IV-A. Let ν , maxk∈Ktot,m∈St,t∈T ‖s̃

k,J
m,t‖2 and σ̃2

t ,
σ2It/2. Under Assumption 2, E[‖α̃t‖2], E[‖β̃t‖2], and
E[‖δ̃t‖2] are respectively upper bounded as

E[‖α̃t‖2] ≤ η2t J2Stφ, t ∈ T , (16)

E[‖β̃t‖2] ≤ η2t J2StK
2µ, t ∈ T , (17)

E[‖δ̃t‖2] ≤ ν
St∑
i=1

σ̃2
t

(
∑
k∈Ki,t

√
pk,t|hH

k,twi,t|)2

+ ν

St∑
i=1

∑
j 6=i

Kj,t

∑
j 6=i
∑
q∈Kj,t pq,t|h

H
q,twi,t|2

(
∑
k∈Ki,t

√
pk,t|hH

k,twi,t|)2
, t ∈ T . (18)

Proof: See Appendix A.
Using the above, we obtain an upper bound on E[‖θT −

θ?‖2] in the following proposition.

Proposition 1. For SegOTA described in Section III, under
Assumptions 1–2 and for ηt < 1

L , ∀t ∈ T , the expected model
optimality gap after T communication rounds is bounded by

E[‖θT − θ?‖2]

≤
T−1∑
t=0

Gt
(
Ht({Ki,t},wt,pt) + Ct

)
+ Γ

T−1∏
t=0

Gt (19)

where Γ , E[‖θ0 − θ?‖2], Gt , 4(1 − ηtλ)2J , Ct ,
4η2t J

2St(φ+K2µ), Gt ,
∏T−1
s=t+1Gs with GT−1 = 1, and

Ht({Ki,t},wt,pt) , 4ν

St∑
i=1

σ̃2
t

(
∑
k∈Ki,t

√
pk,t|hH

k,twi,t|)2

+ 4ν

St∑
i=1

∑
j 6=i

Kj,t

∑
j 6=i
∑
q∈Kj,t pq,t|h

H
q,twi,t|2

(
∑
k∈Ki,t

√
pk,t|hH

k,twi,t|)2
. (20)

Proof: Combining (14)–(18), we have

E[‖θ̃t+1 − θ̃?‖2] ≤ GtE[‖θ̃t − θ̃?‖2]

+Ht({Ki,t},wt,pt) + Ct. (21)

Summing up both sides of (21) over t ∈ T and rearranging
the terms, we have (19).

C. Beamforming Optimization for SegOTA

We replace the objective function in Po with the upper
bound in (19). Omitting the constant terms in (19) that do
not depend on the optimization variables, we arrive at an
equivalent optimization problem with the objective function∑T−1
t=0 GtHt({Ki,t},wt,pt). By Proposition 1 and Assump-

tion 1, we have ηt < 1
L ≤

1
λ , ∀t ∈ T , which leads to

Gt > 0 and further Gt > 0. Hence, we separate this opti-
mization problem into T per-round problems, each minimizing
Ht({Ki,t},wt,pt) in communication round t.

Next, we apply
∑
k∈Ki,t pk,t|h

H
k,twi,t|2 ≤

(
∑
k∈Ki,t

√
pk,t|hH

k,twi,t|)2 to the denominators in (20)

to further upper bound Ht({Ki,t},wt,pt). Then, we arrive
at the following per-round online optimization problem:

P1,t : min
{Ki,t}Sti=1,wt,pt

St∑
i=1

Zi,t
∑
j 6=i
∑
q∈Kj,t pq,t|f

H
q,twi,t|2 + 1∑

k∈Ki,t pk,t|f
H
k,twi,t|2

s.t. Ki,t
⋂
Kj,t = ∅, i 6= j, i, j ∈ St,⋃

i∈St

Ki,t = Ktot,

pk,t ≤ ItPk, k ∈ Ktot,

‖wi,t‖2 = 1, i ∈ St

where Zi,t ,
∑
j 6=iKj,t and fk,t , hk,t/σ̃t. Note that the

objective function represents a sum of the inverse of received
signal-to-interference-and-noise ratio (SINR) corresponding to
received aggregated segment from each device group.

The above is a mixed-integer programming problem. Fur-
thermore, the objective function is nonconvex w.r.t. the power
vector pt and the beamforming vector wt, which is challeng-
ing to solve. We propose a device grouping scheme based
on spherical k-means to first obtain {Ki,t}. Based on this, we
then optimize the joint transmit-receive beamforming (wt,pt)
in P1,t.

1) Device grouping via spherical k-means: Since receive
beamforming wi,t is applied to the devices of the same
group i, more spatially correlated device channels can lead to
higher received beamforming gain for this group [17]. For this
purpose, we propose a device grouping scheme that uses the
clustering idea to find the spatially correlated device groups.
The scheme is based on the spherical k-means framework
[18], which is a variant of the standard k-means that captures
the cosine similarity among data points to form clusters. In
particular, we first define the feature space for the purpose of
device grouping. Let Xt denote the feature space spanned by
the device uplink channels in round t, given by

Xt =

{
xk,t : xk,t ,

hk,t
‖hk,t‖

e−j∠h1k,t , ∀k ∈ Ktot

}
where ∠h1k,t denotes the phase of the first element in hk,t.
Each data point xk,t in Xt is phase-adjusted such that its first
element is phase-aligned to 0 degree. This is to ensure that
during the iterative updating process, all xk,t’s are phase-
aligned to sum up properly in computing the centroid. Let
cr,t denote the centroid of cluster r = 1, . . . , St in Xt with
‖cr,t‖ = 1. We consider the following metric to measure
distance from each data point xk,t in Xt to a centroid cr,t:

δ(x, c) = |xH
k,tcr,t|, ∀xk,t ∈ Xt (22)

where δ(x, c) ∈ [0, 1]. This distance metric measures the
correlation level between the channel vector and the centroid,
with 1 being fully correlated and 0 being orthogonal. A data
point xk,t will be included in cluster cr,t where it has the
largest δ(x, c) among all clusters. Specifically, denote the set
of xk,t’s in cluster cr,t by

Yr,t = {xk,t ∈ Xt : δ(xk,t, cr,t) > δ(xk,t, cr′,t), r
′ 6= r}.



Given Xt and δ(x, c), we then apply the spherical k-means
method [18] to form St centroid points and clusters in Xt
and iteratively update the centroid points cr,t’s. The centroid
update c

(l+1)
r,t at iteration l is then given by

c
(l+1)
r,t =

∑
xk,t∈Yr,t xk,t

|Yr,t|
; c

(l+1)
r,t ←

c
(l+1)
r,t

‖c(l+1)
r,t ‖

. (23)

The above procedure is repeated until convergence to obtain
a device grouping solution {Ki,t}Sti=1.

2) Joint transmit-receive beamforming: Given {Ki,t}Sti=1,
we now optimize uplink beamforming (wt,pt) in P1,t. Since
the problem is nonconvex, we propose to alternatingly opti-
mize receive beamforming wt and the device transmit powers
in pt via the block coordinate descent (BCD) method [19].
The two subproblems are given below:

i) Updating wt: Given pt, P1,t can be equivalently decom-
posed into St subproblems, one for each beamformer wi,t for
each device group i as

Pwsub1
1,t,i : min

wi,t

Zi,t
∑
j 6=i
∑
q∈Kj,t pq,t|f

H
q,twi,t|2+1∑

k∈Ki,t pk,t|f
H
k,twi,t|2

s.t. ‖wi,t‖2 = 1.

After expanding the quadratic terms in Pwsub1
1,t,i , wi,t can be

moved outside of the summation at both the numerator and
denominator, given by

Pwsub2
1,t,i : min

wi,t

wH
i,t

(
Zi,t

∑
j 6=i
∑
q∈Kj,t pq,tfq,tf

H
q,t + I

)
wi,t

wH
i,t

(∑
k∈Ki,t pk,tfk,tf

H
k,t

)
wi,t

s.t. ‖wi,t‖2 = 1,

which is a generalized eigenvalue problem. Specifically,
let Ai,t , Zi,t

∑
j 6=i
∑
q∈Kj,t pq,tfq,tf

H
q,t + I and Bi,t ,∑

k∈Ki,t pk,tfk,tf
H
k,t. We re-express problem Pwsub2

1,t,i as

Pwsub3
1,t,i : min

wi,t

wH
i,tAi,twi,t

wH
i,tBi,twi,t

s.t. ‖wi,t‖2 = 1.

The optimal solution wi,t of Pwsub3
1,t,i is the generalized

eigenvector corresponding to the smallest generalized eigen-
value in the generalized eigenvalue problem of Ai,tΦi,t =
Bi,tΦi,tΛi,t, where Φi,t is the eigenvector matrix and Λi,t a
diagonal matrix with its diagonal elements being the eigen-
values. Let ΦA

i,t and ΦB
i,t denote the eigenvector matrices of

Ai,t and Bi,t, respectively. Let ΛB
i,t be a diagonal matrix with

its diagonal elements being the eigenvalues of Bi,t. Then, the
generalized eigenvector matrix is given by

Φi,t = ΦB
i,t(Λ

B
i,t)
−1/2ΦA

i,t. (24)

The optimal solution wi,t is a column vector in Φi,t corre-
sponding to the smallest generalized eigenvalue.

ii) Updating pt: Let gij,t be the vector containing {giq,t ,
|fH
q,twi,t|2, q ∈ Kj,t} from group j after applying receive

beamformer wi,t. Given wt, we can rewrite P1,t as

Ppsub1
1,t : min

pt

St∑
i=1

Zi,t
∑
j 6=i g

T
ij,tpj,t + 1

gT
ii,tpi,t

s.t. pk,t ≤ ItPk, k ∈ Ktot.

To efficiently compute pt, we adopt BCD to update
p1,t, . . . ,pSt,t alternatingly, one for each group i. Specifically,
given pj,t, ∀j ∈ St, j 6= i, the optimization of pi,t for group
i is given by

Ppsub2
1,t,i : min

pi,t

Zi,t
∑
j 6=i g

T
ij,tpj,t + 1

gT
ii,tpi,t

+
∑
j 6=i

Zj,tg
T
ji,t

gT
jj,tpj,t

pi,t

s.t. pk,t ≤ ItPk, k ∈ Ki,t.

Problem Ppsub2
1,t,i is convex w.r.t. pi,t, for which the optimal pi,t

can be obtained in closed-form. Specifically, let

βmin
i,t , min

k∈Ki,t

(
Zi,t

∑
j 6=i g

T
ij,tpj,t + 1∑

j 6=i
Zj,tgjk,t
gT
jj,tpj,t

gik,t

)1/2

,

and let k′ ∈ Ki,t be the corresponding device index that
achieves βmin

i,t . Let Pi be the vector containing the maximum
power of devices in group i {Pk, k ∈ Ki,t}. Then, each device
transmit power pk,t, k ∈ Ki,t in the optimal pi,t is given by

pk,t =


ItPk for k ∈ Ki,t, k 6= k′

ItPk′ −

[
Itg

T
ii,tPi − βmin

i,t

]+
gik′,t

for k = k′

where [β]+ = max{β, 0}. All pi,t’s are updated alternatingly
using the above solution.

Since subproblems Pwsub3
1,t,i and Ppsub2

1,t,i for each i are solved
optimally, and our optimization objective is lower bounded by
zero, by the monotone convergence theorem of BCD [19], our
proposed algorithm for computing (wt,pt) is guaranteed to
converge to a stationary point.

V. SIMULATION RESULTS

1) Simulation Setup: We evaluate our proposed SegOTA for
FL on image classification over a simulated wireless network
under typical wireless specifications with system bandwidth
1 MHz, carrier frequency 2 GHz, and per-device maximum
transmit power at each device Pk = 23 dBm. We generate
channels as hk,t =

√
Gkh̄k,t, where h̄k,t ∼ CN (0, I) and the

path gain Gk[dB] = −136.3−35 log10 dk−ψk, with BS-device
distance dk being uniformly distributed within (0.02, 0.5) km
and shadowing variable ψk ∼ N (0, σ2

ψ) with σψ = 8 dB. We
set the receiver noise power σ2 = −79 dBm, which accounts
for both thermal noise and inter-cell interference.

We use the MNIST dataset for model training and testing. It
consists of 6× 104 training samples and 1× 104 test samples.
We trains a convolutional neural network with an 8 × 3 × 3
ReLU convolutional layer, a 2×2 max pooling layer, a ReLU
fully-connected layer with 20 units, and a softmax output layer,
with D = 2.735 × 104 model parameters. We use the 104

test samples to measure the test accuracy of the global model
update θt at each round t. The training samples are randomly
and evenly distributed across K devices, with local dataset
size Ak = 6×104

K at device k. For local training using SGD,
we set J = 100, mini-batch size |Bτk,t| = 600/K,∀t, τ, k,
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Fig. 2. Test accuracy vs. number of model segments St ((N,K) = (32, 50)).
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Fig. 3. Test accuracy vs. number of model segments St ((N,K) = (64, 50)).

and learning rate ηt = 0.1, ∀t. All results are obtained by
averaging over 20 channel realizations.

2) Performance Comparison: For comparison, we consider
the following five schemes: i) Ideal: SegOTA via (5) with
noise-interference-free uplink and perfect recovery of model
parameters, which serves as a performance upper bound for
all schemes. ii) SegOTA: our proposed method. iii) Ran-
dom: the same as the proposed SegOTA, except that devices
are randomly partitioned into equal-sized groups instead of
our grouping method proposed in Section IV-C1. iv) ZF:
the same as the proposed SegOTA and device grouping in
Section IV-C1, except that we apply zero-forcing receive
beamforming under maximum device transmit powers [20].
v) FullModel: traditional full-model OTA approach, which is
equivalent to SegOTA with St = 1,∀t.

We study the tradeoff between communication efficiency
in the uplink model transmission and test accuracy of the
global model updates. Figs. 2–4 compare the test accuracy
performance of the five methods using a total of 2.736× 104

channel uses per device for uplink model transmission. Each
device group is randomly assigned a unique segment, as
mentioned at the beginning of Section III. Fig. 2 and 3 show
the test accuracy vs. St model segments for the overloaded
setup (N,K) = (32, 50) and the underloaded setup (N,K) =
(64, 50), respectively. SegOTA outperforms both Random and
ZF for all St > 1. Furthermore, SegOTA nearly attains the
performance of Ideal for St ≤ 10. Fig. 4 shows the test
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Fig. 4. Test accuracy vs. number of devices K for N = 32 and St = 10.

accuracy vs. K devices for N = 32 and St = 10. Again,
we see that SegOTA nearly attains the optimal performance
under Ideal and outperforms the other alternatives. We also
observe that ZF can perform worse than FullModel, especially
when St or K is large. This shows the effectiveness of our
proposed beamforming algorithm for SegOTA targeting at FL
training performance, while conventional ZF for interference
cancellation may not be effective.

VI. CONCLUSION

This paper proposes a segmented transmission approach
SegOTA to reduce the latency in uplink OTA aggregation for
wireless FL. Under SegOTA, devices are divided into groups,
where each group is assigned a segment of the model for
OTA aggregation, and all segments are sent via uplink simul-
taneously. Based on the segment global updating equation, we
derive an upper bound on the model training optimality gap to
formulate a joint transmit-receive beamforming problem along
with device grouping. We propose a device grouping scheme
based on their spatial channel correlations via spherical k-
means and an iterative uplink beamforming algorithm with
fast closed-form updates. Simulation results show the proposed
SegOTA with proposed device grouping and uplink beamform-
ing outperforms the traditional full-model OTA approach and
other alternatives.

APPENDIX A
PROOF OF LEMMA 2

Proof: For bounding E[‖α̃t‖2], we have

E[‖α̃t‖2]
(a)
= η2t

St∑
m=1

E

[∥∥∥∥∥
J−1∑
τ=0

∇F̃m(vτt )

−
∑

k∈Kî(m,t),t

ρk,t

J−1∑
τ=0

∇F̃mk (θτk,t)

∥∥∥∥∥
2]

≤ η2t
St∑
m=1

E

[(
J−1∑
τ=0

∥∥∥∥∇F̃m(vτt )

−
∑

k∈Kî(m,t),t

ρk,t∇F̃mk (θτk,t)

∥∥∥∥
)2]



(b)

≤ η2t J

St∑
m=1

J−1∑
τ=0

E
[∥∥∥∥∇F̃m(vτt )

−
∑

k∈Kî(m,t),t

ρk,t∇F̃mk (θτk,t)

∥∥∥∥2]
(c)

≤ η2t J
2Stφ.

where (a) uses the expression of α̃t in (13), (b) is based on
(
∑G
i=1 xi)

2 ≤ G
∑G
i=1 x

2
i ,∀xi ∈ R, for some G ∈ N+, and

(c) follows Assumption 2. Thus, we have (16).
For bounding E[‖β̃t‖2], we have

E[‖β̃t‖2]
(a)
= η2t

St∑
m=1

E

[∥∥∥∥∥ ∑
k∈Kî(m,t),t

ρk,t

J−1∑
τ=0

(
∇F̃mk (θτk,t)

−∇F̃mk (θτk,t;Bτk,t)
)∥∥∥∥∥

2]

≤ η2t
St∑
m=1

E

[( ∑
k∈Kî(m,t),t

J−1∑
τ=0

|ρk,t|
∥∥∥∇F̃mk (θτk,t)

−∇F̃mk (θτk,t;Bτk,t)
∥∥∥)2]

(b)

≤ η2t

St∑
m=1

∑
k∈Kî(m,t),t

J−1∑
τ=0

JKî(m,t),tE
[∥∥∥∇F̃mk (θτk,t)

−∇F̃mk (θτk,t;Bτk,t)
∥∥∥2]

(c)

≤ η2t J
2StK

2µ

where (a) uses the expression of δ̃t in (13), (b) is based on
(
∑G
i=1 xi)

2 ≤ G
∑G
i=1 x

2
i ,∀xi ∈ R, for some G ∈ N+, and

(c) follows Assumption 2. Thus, we have (17).
For bounding E[‖δ̃t‖2], we have

E[‖δ̃t‖2]
(a)
=

St∑
m=1

E

[∥∥∥∥∥ñm,t +
1

αs
m,t

·
∑

j 6=î(m,t)

∑
q∈Kj,t

hH
q,twj,tw

H
î(m,t),t

hq,t

|hH
q,twj,t|

·
√
pq,ts̃

q,J
m̂(j,t),t

‖s̃q,Jm̂(j,t),t‖

∥∥∥∥∥
2]

≤
St∑
m=1

E

[(
‖ñm,t‖+

1

αs
m,t

·
∑

j 6=î(m,t)

∑
q∈Kj,t

∥∥∥∥∥hH
q,twj,tw

H
î(m,t),t

hq,t

|hH
q,twj,t|

·
√
pq,ts̃

q,J
m̂(j,t),t

‖s̃q,Jm̂(j,t),t‖

∥∥∥∥∥
)2]

(b)

≤ ν

St∑
i=1

σ̃2
t

(
∑
k∈Ki,t

√
pk,t|hH

k,twi,t|)2

+ ν

St∑
i=1

∑
j 6=i

Kj,t

∑
j 6=i
∑
q∈Kj,t pq,t|h

H
q,twi,t|2

(
∑
k∈Ki,t

√
pk,t|hH

k,twi,t|)2

where (a) uses the expression of δ̃t in (13), and (b) is based
on (

∑G
i=1 xi)

2 ≤ G
∑G
i=1 x

2
i ,∀xi ∈ R, for some G ∈ N+.

Thus, we have (18).

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. AISTATS, Apr. 2017, pp. 1273–1282.

[2] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward
an intelligent edge: Wireless communication meets machine learning,”
IEEE Commun. Mag., vol. 58, no. 1, pp. 19–25, Jan. 2020.

[3] Y. Du, S. Yang, and K. Huang, “High-dimensional stochastic gradient
quantization for communication-efficient edge learning,” IEEE Trans.
Signal Process., vol. 68, pp. 2128–2142, Mar. 2020.
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