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The performance of the optimum passive detector for Gaussian signals is studied for TW 
(observation interval--signal spectral bandwidth) products of the order of unity. Detection and 
false-alarm probabilities are evaluated for carrier-symmetric bandpass signals. Conditions are then 
obtained under which it is preferable to use either the narrow-band or the broad-band component of 
the received signal. Though in most situations the results advocate processing the higher-energy 
component, there are situations of practical importance where the lower-energy component may be 
preferred. 
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INTRODUCTION 

The signals encountered in many passive sonar prob- 
lems consist of a combination of broad-band and narrow- 

band components. The optimum detector clearly uses 
both in appropriate combination. In practice, however, 
one can rarely justify implementation of the optimum 
processor. It therefore becomes pertinent to inquire 
when detection should rely primarily on the narrow-band 
components and when the principal reliance should be 
placed on processing the broad-band signals. Since the 
narrow-band components, though often characterized 
by a locally high signal-to-noise ratio, frequently have 
a total power which is small compared to that of the 
broad-band components, the answer is not at all obvious. 

Existing analyses of broad-band passive sonar detec- 
tion have almost invariably assumed Gaussian signals 
and noises with a bandwidth W and observation time T 

satisfying TW>> 1. z-a This assumption- generally very 
reasonable for the broad-band case --has two important 
consequences: 

(1) Signal and noise can be represented by Fourier 
coefficients which are statistically independent. The 
spatial operations performed by the receiving array ar.e 
then separated from the required temporal (frequency) 
filtering operations. The latter often become trivial 
and attention focuses on the spatial problem. 

(2) The relatively long smoothing time T makes the 
detector output approximately Gaussian. Detection and 
false-alarm probabilities are now easily inferred from 
the output signal-to-noise ratio, which therefore serves 
as the usual figure of merit. 

At the other extreme, when narrow-band signals have 
been analyzed, the usual assumption has been TW<< 1.4 
The signal may now be regarded as a sinusoid with un- 
known phase and analytical treatment becomes once 
again possible. 

The narrow-band signals of interest to us fall into 
neither of the above categories. We certainly can not 

assume TW>> 1. On the other hand, we do not wish to 
postulate the extreme degree of frequency stability im- 
plied by TW<< 1. We are therefore forced to seek dif- 
ferent methods for avoiding the analytical difficulties 
sketched above. 

Our approach to separating space and time operations 
is the opposite of case (1). While the large TW assump- 
tion trivializes the time-filtering operation and centers 
attention on the spatial problem, we triviaiize the 
spatial problem (by assuming white noise independent 
from sensor to sensor) and focus our attention on the 
temporal-filtering problem. We circumvent the diffi- 
culty of dealing with a non-Gaussian system output in 
computing the detection and false-alarm probabilities 
by somewhat restricting the class of allowed narrow- 
band signals. This leads to probabilities in the form of 
series which converge rapidly for the parameter values 
of interest. 

I. THE LIKELIHOOD RATIO DETECTOR 

A block diagram of the array processor is shown in 
Fig. 1. The receiving array may have arbitrary geom- 
etry. Without loss of generality we may assume that 
the output of each sensor has been delayed sufficiently 
so that the various signal components are aligned. The 
output of the jth sensor, suitably delayed, will be desig- 
natedas rl(t)=asl(t)+nJ(t), wheresJ(t) andnJ(t) are 
the signal and noise waveforms, respectively. a is 
unity if a signal is present and zero if it is not. With 
the assumed alignment of signals sJ(t)=s(t), for all j. 
We may then represent our entire data set by the vec- 
tor r(t), whose components are the rt(t). Each of the 
r•(t) is in turn represented (for the moment) by an ar- 
bitrary orthonormal expansion 

r •(t) =•. r• c•t(t) , (1) 
i=1 

•'/a • 1 r• = f-•'/a r ( )ck•(t)dt . (2) 
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FIG. 1. A passive array processor. 

We make the following assumptions: 

(1) Signal and noise are independent stationary Gauss- 
ian processes. The signal has a kfiown correlation 
function R (•). 

(2) The noise is white and independent from sensor 
to sensor. Its spectral density is the constant N. 

Under these assumptions the obvious choice for the 
orthonormal set [4•(t)} is the set of eigenfunetions of 
the Karhunen-Lobve equation 

R(t - -)4, (-) = 4, (t). (a) 
Well-known computational procedures now lead to the 
structure of the optimum (likelihood ratio) detector. 
The detector output is 

u = N(MA i + N) r , (4) i=l $-1 

where M is the number of sensors. Figure 2 shows a 
block diagram of the detector specified by P.q. 4. Spa- 
tial processing is seen to consist of nothing more than 
conventional beamforming. The array has become 
equivalent to a single sensor with improved signal-to- 

noise ratio. bq_nce Eq. 2 is a linear operation on the 
r•(t) and r(t) is Gaussian, the sums •l r/appearing in 
Eq. 4 are zero-mean Gaussian random variables with 
variance 

D • r =N+aMX o or=O, 1 . (5) 

A siraight/orward, though somewhat tedious, compu- 
tation now yields the characteristic function of the de- 
tector output u. 

•(x) =•I (1 - Zjxa•) ']P' , (6) 
where 

•,i-N+aMXi , a=0, I. (•) 
Fourier inversion of Eq. 6 leads to the probability 

density p(u) which car• in turn be integrated to obtain 
the detection and false-alarm probabilities. The com- 
putational problems involved are not trivial. a,? The litera- 
ture contains analytical results for very weak signals, • 
very small TW products, • and for bounds on the detec- 
tion and false alarm probabilities s -- none of which are 
conditions well matched to our requirements. Numeri- 
cal procedures for computing the cumulative distribution 
function directly from the characteristic function have 
been described by Nuttall xø'n and Wang. x2 Similar tech- 
niques could undoubtedly be used here. Instead we take 
a somewhat different approach, restricting attention to 
a particular signal model which leads to relatively sim- 
ple analytical manipulations and pos•penes numerical 
procedures to the final step. 

II. CARRIER--SYMMETRIC BANDPASS SIGNALS 

The narrow-band signal process we want to model can 
be assumed to be a bandpass process centered about a 
carrier frequency co o . We shall further assume that the 
signal power spectrum is symmetric about the carrier. 

The received waveforms are processed as shown in 
Fig. 3 to yield two waveforms Z•(t) and Zz(0. These, 
instead of the single waveform Zg• r•(t) used in Fig. 2, 

FIG. 2. Optimum de•ector. 
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Low-pass representation of bandpass signals. 

form the inputs for the likelihood ratio test: 

Zt(t)=ast(t)+nt(t) , i=l, 2. (8) 

The following properties of the demodulated low-pass 
signals s•(t) and s2(t ) follow immediately. ta 

(1) Sincd the input signal s(t) is wide-sense st•.tionary, 
s•(t) and s2(t ) are also wide-sense stationary. They have 
the same power spectrum, which is just the low-pass 
component of the bandpass spectrum after it has been 
shifted to the origin. It follows that the eigenvalues of 
s•(t) and s•.(t) are the same. 

(2) Since the bandpass process is symmetric about 
the carrier, sx(tt) and s•(t2) are uncorrelated for all ob- 
servation instants t t and t 2. The Gaussian assumption 
the n makes st(t ) and s•.(t) independent. 

Examples of carrier symmetric bandpass signals oc-' 
cur often enough in radar, sonar, and communication 
problems •4 to make the class a practically interesting 
one. 

III. ERROR PROBABILITIES 

The two low-pass processes Zt(t ) and Z•.(t) can be 
processed separately (since they are independent) and 
then combined to generate the approximate statistic (see 
Eq. 4): 

k 

it= Z Xt ,.t N(MX, +N) (9) 
where 

Z fr/•'Z 'P•p•(t)dt, n=l, 2 (10) 

Equation 9 is approximate because the sum is termi- 
nated at i = k. Since •=t Xi = R(O), a finite number, there 
is clearly a finite k such that the cumulative contribu- 
tion to Eq. 4 of all terms i > k is negligible. In fact, it 
will become apparent shortly that the k required for the 
problem of interest here can be 'quite small. 

si(t) and s2(t ) have the same spectrum; hence the 
characteristic functions of Ztt and Z2t are the same. 
Also, since they are independent, the characteristic 
function of u is (Eq. 6) 

•b(x) =H (1 - 2jx6•,,) '• . (11) 
i=1 

The probability density function of u can now be calcu- 
lafed exactly: 

k 

p(u)= a•exp - , u•O, 
i=1 

= 0 , u < 0 , (12) 

where 

a•,= L 2 J J=l (•.t--•) ' 
•e probabiHW of de•ection •s 

p•= p(u]•=l)du=•bxiex p - , •>0, (14) 
i•1 

• the probability of f•lse atarm is 

where 

•; (16) 

• y •s •he detect, on •hreshold. 

IV. DETECTION OF NARROW-BAND VERSUS 
BROAD-BAND SIGNAL COMPONENT 

We now turn to the problem which motivated this study. 
Consider a narrow-band signal with the low-pass equiva- 
lent spectrum 

= 0, otherwise . (17) 

The eigenvalues and eigenfunctions for this well-known 
spectrum have been tabulated. t• Since we are interested 
in small. TW products and since there are only approx- 
imately 2TW significant eigenvalues for the above spec- 
trurn• the number of terms k in Eqs. 14 and 15 need not 
be too large to get accurate results. Also, from Eqs. 
7 and 16, we see that both g•t and I batl decrease rapid- 
ly for higher-order eigenvalues. All of these factors 
ensure rapid convergence of the expressions for P• and 

Let us introduce several new symbols to emphasize 
the important parameters in the performance character- 
istics. Let 

C = •rWT, (18) 

which is a measure of the time-bandwidth product of 
the signal 

E = CMH 

= (1rHWT)M , 

which, for constant M, 
hal energy 

(19) 

is a measure of the average sig- 
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A = HM/N, (20) 

which, for constant M, is a measure of the signal-to- 
noise ratio in the signal band. Notice that CA = 

In Fig. 4 we plot the probability of detection as a func- 
tion of C, the normalized TW product. The false-alarm 
probability is fixed at 10 's in Fig. 4(a) and at 10 'a in 
Fig. 4(b). The solid curves in each instance describe 
system performance for a given normalized signal ener- 
gy E/N, while the dashed curves specify system per- 
formante for a given signal-to-noise ratio A in the sig- 
nal band. 

Perhaps the single most important feature of Figs. 
4(a) and 4{b) is the qualitative difference between the 

i0 -I 

t 

(0 -2 

,0' 

•-=50 (a) 

i0 '1 

tO -Z 

[0 -5 
0 

,o (b) 

FIG. 4. Detection probability Pd vs normalized time-bandwidth 
product C. constant (E/N). -- - -- consfantA. (a) 
(b) p,,: •o -'•. 

fixed-energy curves near the top and those near the 
bottom of the graphs. The high-energy curves near the 
top of the diagrams have a small but definitely positive 
slope. (Note that Pa has been plotled logarithmically. ) 
The low-signal-energy curves exhibit a negative slope 
which becomes more pronounced as the signal energy 
decreases. Thus, there is a threshold value V t above 
which an increase of bandwidth leads to improved detec- 
tion performance. Below the threshold there is a deft- 
nile premium on the use of narrow bandwidth. 

Now consider the following practical problem. A 
received signal is known to contain a broad-band com- 
ponent and a narrow-band component. We want to find 
a simple criterion that will enable us to determine which 
of the two makes the dominant contribution to the detec- 

tion process. (Extensions to several narrow-band com- 
ponents are straightforward. ) There are six possible 
combinations of the relative magnitude of wide-band 
E/N, narrow-band E/N, and threshold value: 

(1) (E/N)w.b. >-- (E/N)n.b. > V,, 

(2) (E/N)n.b. > V•> (E/N)w.b. , 

(3) (E/N)w.b. > Vt > (E/N)n. b. , 

(4) F', > (E/N) n. b. > (E/N) w.b. , 

(5) (E/N)n.b. - (E,/N)w.b. > V, , 

(6) V, > (E/N) w.b. > (EIN) n. b. 

In cases (1)-(4) qualitative inspection of the perfor- 
mance curves is sufficient to make the choice: in each 

case the higher-energy component is clearly preferable. 
In cases (5) and (6) one must look more carefully. In 
case {5) the narrow-band signal lies near the left end of 
the higher-energy curve. The broad-band signal lies 
on the right side of its (rising) curve and may therefore 
be preferable in spite of its lower total energy. The 
opposite situation can occur in case (6). Both E/N val- 
ues are below threshold, and now the negative slope of 
the performance curves can easily be sufficient to off- 
set the basic energy advantage of the wide-band signal. 

The general conclusion therefore is: one always pre- 
fers the component with higher energy unless (1) both 
E/N values are above threshold and the narrow-band 
component is stronger, or (2) both E/N values are be- 
low threshold and the wide-band component is stronger. 
In these two cases a more careful examination of the 

performance curves is indicated. 

Figure 5 represents an attempt to indicate the depen- 
dence of V, on the false-alarm probability. The defini- 
tion of V, has an element of arbitrariness because there 
is no single value of E/N for which the performance 
curve is entirely horizontal. However, it is clear from 
Fig. 5 that the transition from predominantly positive 
slope to predominantly negative slope occurs at lower 
and lower energy levels as the allowed false-alarm prob- 
ability increases. 

If one attempts to look at the same problem from the 
point of view 6f signal-to-noise ratio A rather than nor- 
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FIG. 5. Relation between threshold energy 
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malized signal energy E/N, the results are much less 
informative. All of the constant A (dashed) curves in 
Fig. 4 rise sharply from left to right. When the signal- 
to-noise ratio (in the signal band) of the wide-band com- 
ponent exceeds that of the narrow-band component, the 
wide-band component is clearly preferable. This is a 
correct but trivial conclusion. However, short of a 
detailed study of numerical values, it is not at all evi- 
dent how much larger the signal-to-noise ratio of the 
narrow-band component must be before it begins to 
dominate the detection process. Discrimination on the 
basis of relative energy appears to be by far the more 
useful approach. 

V. CONCLUSIONS 

The performance of the optimum array detector was 
studied for TW products of the order of unity. Carrier 
symmetric bandpass signals were used to simplify the 
analysis. Conditions were obtained under which it is ß 
preferable to use either the narrow-band component or 
the broad-band component of the received signal. Though 
in most situations the results advocate processing the 
higher-energy component, there are clear situations of 
practical importance when a lower-energy component 
would be preferred. 

It should also be mentioned that by focusing attention 
on the spatial part of the optimum processor, one can 
pose the parallel problem of determining the detector 
performance for small BL (spatial bandwidth length of 
array) products. The analysis and results of this study 
remain applicable with trivial modifications. 
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