
Direction of Arrival Estimation

1 Introduction

We have seen that there is a one-to-one relationship between the direction of a signal and the

associated received steering vector. It should therefore be possible to invert the relationship and

estimate the direction of a signal from the received signals. An antenna array therefore should

be able to provide for direction of arrival estimation. We have also seen that there is a Fourier

relationship between the beam pattern and the excitation at the array. This allows the direction

of arrival (DOA) estimation problem to be treated as equivalent to spectral estimation.

d

φ
1

φ
2φ

3

Figure 1: The DOA estimation problem.

The problem set up is shown in Fig. 1. Several (M) signals impinge on a linear, equispaced,

array with N elements, each with direction φi. The goal of DOA estimation is to use the data

received at the array to estimate φi, i = 1, . . .M . It is generally assumed that M < N , though

there exist approaches (such as maximum likelihood estimation) that do not place this constraint.

In practice, the estimation is made difficult by the fact that there are usually an unknown

number of signals impinging on the array simultaneously, each from unknown directions and with

unknown amplitudes. Also, the received signals are always corrupted by noise. Nevertheless, there

are several methods to estimate the number of signals and their directions. Figure 2 shows some

of these several spectral estimation [1] techniques1. Note that this is not an exhaustive list.

This chapter is organized as follows. We begin by determining the Cramer-Rao bound, the

theoretical limit on how well the directions of arrival can be estimated. We then look at methods

to estimates the directions assuming we know the number of incoming signals. We will only describe

5 techniques: correlation, Maximum Likelihood, MUSIC, ESPRIT and Matrix Pencil. Finally we

1I would like to acknowledge the contributions of Prof. Alex Gershman, Dept. of Elec. and Comp. Engg.,

McMaster University, for this figure [1]
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Figure 2: Some of the several approaches to spectral estimation

look at two methods to estimate the number of signals.

2 The Cramer-Rao Bound

We begin by realizing that the DOA is a parameter estimated from the received data. The minimum

variance in this estimate is given by the Cramer-Rao bound (CRB).

The CRB theorem: Given a length-N vector of received signals x dependent on a set of P

parameters θ = [θ1, θ2, . . . , θP ]
T , corrupted by additive noise,

x = v(θ) + n, (1)

where v(θ) is a known function of the parameters, the variance of an unbiased estimate of the p-th

parameter, θp, is greater than the Cramer Rao bound

var(θp) ≥ J−1
pp , (2)

where J−1
pp is the p-th diagonal entry of the inverse of the Fisher information matrix J whose (i, j)th

is given by

Jij = −E

{

∂2

∂θi∂θj
[ln fX(x/θ)]

}

, (3)

where, fX(x/θ) is the pdf of the received vector given the parameters θ and E {·} represents

statistical expectation.

The CRB tells us that estimating parameters from noisy data will necessarily result in noisy

estimates. Furthermore, the CRB is the best we can possibly do in minimizing the residual noise in

unbiased estimates. Also, due to the fact that the minimum variance is dependent on the inverse
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of the Fisher information matrix, we cannot ignore parameters that we are not interested in. The

vector θ must include all parameters in the model for v.

2.1 CRB for DOA Estimation

As shown in Fig. 1, the model under consideration is a number of signals impinging at the array,

corrupted by white noise. We will derive the CRB for a single signal corrupted by noise (M = 1).

The data model is therefore

x = αs(φ) + n, (4)

where s(φ) represents the steering vector of the signal whose direction (φ) we are attempting to

estimate. The noise vector n is zero-mean Gaussian with covariance σ2I. Note that, even though

we are not interested in the amplitude, there are two unknown parameters, α and φ. Here α

and φ are modelled as an unknown, but deterministic, constants, i.e., E {x} = αs(φ). In CRB

literature, α would be considered a nuisance parameter, which must be accounted for because it is

unknown. Finally, α itself represents two unknowns, its real and imaginary parts, or equivalently

its magnitude and phase. Let α = aejb. Therefore, θ = [ a, b, φ ]T . In our case,

v(θ) = α s(φ), (5)

fX(x/θ) = Ce−(x−v)HR−1(x−v), (6)

where R = σ2I and C is a normalization constant.

⇒ ln fX(x/θ) = lnC −
(x− v)H (x− v)

σ2
(7)

= lnC +
−xHx+ vHx+ xHv − vHv

σ2
, (8)

= lnC +
−xHx+ α∗sH(φ)x+ αxHs(φ)− |α|2 sH(φ) s(φ)

σ2
. (9)

Note that the first two terms in this final equation are constant with respect to the parameters θi.

Since we are interested in taking derivatives of this expression, we can ignore these terms. Focusing

on the important terms and writing the result in terms of the parameters θ = [ a, b, φ ]T ,

g(θ) =
1

σ2

[

ae−jbsH(φ)x+ aejbxHs(φ) − a2sH(φ)s(φ)
]

. (10)

Also,

J = E
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As shown in the chapter on array theory, we can choose any convenient form of the steering vector,

including the form where the phase reference is at the center of the array, i.e., for a array with an

odd number of elements

s(φ) =
[

z−(N−1)/2, z−(N−3)/2 . . . , z−1, 1, z, . . . , z(N−3)/2, z(N−1)/2
]T

, (12)

where

z = ejkd cosφ. (13)

Consider the partial derivative of s(φ) as a function of φ. Denoting this vector to be s1(φ),

s1(φ) =
∂s(φ)

∂φ
,

= −jkd sin φ

[

−(N − 1)

2
z−(N−1)/2,

−(N − 3)

2
z−(N−3)/2, . . .

−z−1, 0, z . . .
(N − 3)

2
z(N−3)/2,

(N − 1)

2
z(N−1)/2

]T

,

⇒ s1(φ)n = −jkdn sinφ zn, (14)

where s1(φ)n is the n-th element in the vector s1. Similarly, denote as s2(φ) the second derivative

of s(φ) with respect to φ.

Using the definitions of s(φ), s1(φ), and z∗ = z−1 we can derive some terms that will be useful

later:

E [v] = αs = aejbs, (15)

sH(φ)s(φ) = N, (16)

sH1 (φ)s(φ) = jkd sin φ

(N−1)/2
∑

n=−(N−1)/2

n = 0, (17)

sH1 (φ)s1(φ) = (kd)2 sin2 φ

(N−1)/2
∑

n=−(N−1)/2

n2 , B2(kd)2 sin2 φ, (18)

where B2 represents the sum in Eqn. (18).

Having dealt with preliminaries, we obtain the CRB in the case of DOA estimation. Using

Eqn. (5), we derive some of the entries in the Fisher information matrix given in Eqn. (11).

∂g

∂a
=

1

σ2

[

e−jbsH(φ)x+ ejbxHs(φ) − 2asH(φ)s(φ)
]

, (19)

⇒
∂2g

∂a2
=

1

σ2

[

−2sH(φ)s(φ)
]

⇒ E

[

∂2g

∂a2

]

= −2
sH(φ)s(φ)

σ2
, (20)
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∂2g

∂a∂b
=

1

σ2

[

−je−jbsH(φ)x + jejbxHs(φ)
]

(21)

⇒ E

[

∂2g

∂a∂b

]

=
1

σ2

[

−je−jbaejbsH(φ)s+ jejbae−jbsH(φ)s(φ)
]

= 0 (22)

∂2g

∂a∂φ
=

1

σ2

[

e−jbsH1 (φ)x+ ejbxHs1(φ)− 2asH1 (φ)s(φ) − 2asH(φ) s1(φ)
]

(23)

⇒ E

[

∂2g

∂a∂φ

]

=
1

σ2

[

e−jbaejbsH1 (φ)s + ejbae−jbsHs1(φ)− 2asH1 (φ)s− 2asH(φ)s1

]

= 0, (24)

where, in deriving Eqn. (24) we use the orthogonality between s1 and s derived in Eqn. (17). Similar

to the derivation in Eqn. (22), we can show that ∂2g/∂b∂φ = 0. Therefore, all the non-diagonal

terms in the Fisher information matrix J are zero. The only term we have to worry about is

∂2g/∂φ2.

∂g

∂φ
=

1

σ2

[

ae−jbsH1 (φ)x+ aejbxHs1(φ)− a2sH1 (φ)s(φ) − a2sH(φ)s1(φ)
]

, (25)

⇒
∂2g

∂φ2
=

1

σ2

[

ae−jbsH2 (φ)x+ aejbxHs2(φ)− a2sH2 (φ)s(φ) − a2sH1 (φ)s1(φ)−

a2sH1 (φ)s1(φ)− a2sH(φ)s2(φ)
]

(26)

⇒ E

[

∂2g

∂φ2

]

=
1

σ2

[

a2e−jbejbsH2 (φ)s + a2ejbe−jbsHs2(φ)− a2sH2 (φ)s(φ)

−a2sH1 (φ)s1(φ)− a2sH1 (φ)s1(φ)− a2sH(φ)s2(φ)
]

(27)

⇒ E

[

∂2g

∂φ2

]

= −2a2
1

σ2
sH1 s1, (28)

= −
2a2(kd sin φ)2B2

σ2
, (29)

where Eqn. (29) is obtained using Eqn. (18). Using the definition of B,

B2 =

N−1

2
∑

n=−
N−1

2

n2 = 2

N−1

2
∑

n=1

n2

= 2

(

N − 1

2

)(

N + 1

2

)

N

6
=

N(N2 − 1)

12
(30)

Using |α| = a, the CRB for the DOA estimation problem is therefore,

var(φ) ≥

[

E

(

∂2g

∂φ2

)]−1

≥
6σ2

|α|2N(N2 − 1)(kd)2 sin2 φ
. (31)
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We now have the CRB of the estimate of the DOA. Note that there are clear physical inter-

pretations to be made. The CRB sets the best possible estimation. As expected, as the SNR

(|α|2/σ2) increases, the CRB is reduced. Further, the denominator is approximately proportional

to [(N − 1)kd]2, which is proportional to the electrical length of the array, the length in terms of

wavelength, i.e. as the array size increases, we can form a better estimate. The N term suggests that

for a given overall electrical length the more samples (elements) we have the better the estimate we

can obtain. Finally, the sinφ term represents the fact that as we scan off broadside the beamwidth

increases in φ terms, i.e., this represents the beam broadening factor making DOA estimates that

much worse.

3 DOA Estimation using Correlation

Having determined how well we can do, we now turn to actual algorithms to determine the directions

of arrival. The model is of M signals incident on the array, corrupted by noise, i.e.,

x =

M
∑

m=1

αms(φm) + n. (32)

The goal therefore is to estimate φm, m = 1, . . . M . The easiest way to estimate the an-

gles is through correlation. We know that by the Cauchy-Schwarz inequality, as a function of φ,

sH(φ)s(φm) has a maximum at φ = φm. Therefore, the correlation method plots Pcorr(φ) versus φ

where

Pcorr(φ) = sH(φ)x. (33)

Pcorr(φ) is a non-adaptive estimate of the spectrum of the incoming data. The M largest peaks of

this plot are the estimated directions of arrival.

In the case of our linear, equispaced array, the steering vector s(φ) is equivalent to Fourier

coefficients, i.e., the correlation in Eqn. (33) is equivalent to a DFT of the data vector x. We will

see that this technique is optimal (in the maximum likelihood sense) in the single user situation.

4 Maximum Likelihood Estimator: Correlation of a different kind

One way of estimating the DOA of an incoming signal is to maximize the likelihood that that the

signal came from that particular angle. The data model we use is the same as in Eqn. (4), i.e., we

are focusing on estimating the DOA of a single user. However, here we generalize the vector n to

be an interference vector, including the signals from other users. This interference vector is colored

and, in general, E
[

nnH
]

= Rn. We are still attempting to estimate φ, though since we have two
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unknown parameters, the magnitude and DOA, the maximum likelihood estimator (MLE) is given

by

φ̂, α̂ = max
α,φ

[

fX/α,φ(x)
]

, (34)

where fX/α,φ(x) is the pdf of the data vector x given the parameters α, φ. Assuming that the

interference vector is complex Gaussian,

fX/α,φ(x) =
1

πN det(Rn)
e−(x−αs)HR

−1
n (x−αs), (35)

i.e., the maximization in Eqn. (34) is equivalent to

φ̂, α̂ = min
α,φ

[

(x− αs)H R−1
n (x− αs)

]

,

= min
α,φ

[

xHR−1
n x− αxHR−1

n s− α∗sHR−1
n x+ α∗αsHR−1

n s
]

. (36)

We must minimize this function over both α and φ. Starting first with α and remembering that

we can differentiate with respect to α∗ while treating α as an independent variable,

∂

∂α∗
= sHR−1

n (x− αs) ,

⇒ α̂ =
sHR−1

n x

sHR−1
n s

. (37)

Using this value of α, we get

φ̂ = max
φ

[PMLE(φ)] = max
φ

[

∣

∣sHR−1
n x

∣

∣

2

sHR−1
n s

]

. (38)

The function PMLE(φ) is the maximum likelihood estimate of the spectrum of the incoming data.

The DOA estimate is the point where this function takes its maximum.

An interesting aspect of this estimator is that if there is only one user and Rn = σ2I, the

correlation matrix is diagonal and the MLE reduces to the correlation technique of Section 3. This

is expected because the correlation technique there is equivalent to the matched filter, which is

optimal in the single user case (more generally, in any case where the received data is a single data

vector plus white Gaussian noise).

Note that if we define a new vector ñ = R
−1/2
n n, E

[

ññH
]

= R
−1/2
n E

[

nnH
]

R
−1/2
n = I, i.e. the

new interference vector is white. The operation in Eqn. (38) is equivalent to taking the inner

product of two whitened vectors, s̃ = R
−1/2
n s and x̃ = R

−1/2
n x. Therefore, the MLE is equivalent

to the correlation technique of Section 3, only in whitened data space.

The ML approach is optimal in the maximum likelihood sense. However, it is an impractical

algorithm. The algorithm assumes knowledge of Rn, the interference covariance matrix, something

that is not available in practice. While it may be possible to estimate the covariance of x, estimating
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the covariance of the interference (by itself) is almost impossible. Also, the algorithm is highly

computationally intensive. For each signal, a new interference covariance matrix is required. Even

is this matrix were known, for each a matrix inverse and finally a search are required to find where

PMLE(φ) reaches its maximum.

5 MUSIC: MUltiple SIgnal Classification

Of all techniques shown in Fig. 2, MUSIC is probably the most popular technique. MUSIC, as

are many adaptive techniques, is dependent on the correlation matrix of the data. Using the data

model in Eqn. (32),

x = Sα+ n. (39)

S = [s(φ1) s(φ2) . . . , s(φM )] , (40)

α = [α1, α2 . . . αM ]T . (41)

The matrix S is a N ×M matrix of the M steering vectors. Assuming that the different signals to

be uncorrelated, the correlation matrix of x can be written as

R = E
[

xxH
]

, (42)

= E
[

Sαα
HSH

]

+ E
[

nnH
]

,

= SASH + σ2I, (43)

= Rs + σ2I, (44)

where

Rs = SASH (45)

A =









E
[

|α1|
2
]

0 · · · 0

0 E
[

|α2|
2
]

· · · 0

0 0 · · · E
[

|αM |2
]









. (46)

The signal covariance matrix, Rs, is clearly a N × N matrix with rank M . It therefore has

N−M eigenvectors corresponding to the zero eigenvalue. Let qm be such an eigenvector. Therefore,

Rsqm = SASHqm = 0, (47)

⇒ qH
mSASHqm = 0, (48)

⇒ SHqm = 0 (49)

where this final equation is valid since the matrix A is clearly positive definite. Equation (49)

implies that all N −M eigenvectors (qm) of Rs corresponding to the zero eigenvalue are orthogonal
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to all M signal steering vectors. This is the basis for MUSIC. Call Qn the N × (N −M) matrix of

these eigenvectors. MUSIC plots the pseudo-spectrum

PMUSIC(φ) =
1

∑N−M
m=1 |sH(φ)qm|2

=
1

sH(φ)QnQ
H
n s(φ)

=
1

||QH
n s(φ)||2

(50)

Note that since the eigenvectors making up Qn are orthogonal to the signal steering vectors, the

denominator becomes zero when φ is a signal direction. Therefore, the estimated signal directions

are the M largest peaks in the pseudo-spectrum. However, in any practical situation, the signal

covariance matrix Rs would not be available. The most we can expect is to be able to estimate

R the signal covariance matrix. The key is that the eigenvectors in Qn can be estimated from the

eigenvectors of R.

For any eigenvector qm ∈ Q,

Rsqm = λqm

⇒ Rqm = Rsqm + σ2Iqm,

= (λm + σ2)qm, (51)

i.e. any eigenvector of Rs is also an eigenvector of R with corresponding eigenvalue λ + σ2. Let

Rs = QΛQH . Therefore,

R = Q
[

Λ+ σ2I
]

QH

= Q
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...
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0 0 · · · 0 0 · · · σ2
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QH . (52)

Based on this eigendecomposition, we can partition the eigenvector matrix Q into a signal

matrix Qs with M columns, corresponding to the M signal eigenvalues, and a matrix Qn, with

(N − M) columns, corresponding the noise eigenvalues (σ2). Note that Qn, the N × (N − M)

matrix of eigenvectors corresponding to the noise eigenvalue (σ2), is exactly the same as the matrix

of eigenvectors of Rs corresponding to the zero-eigenvalue. This is the matrix used in Eqn. (50).

Qs defines the signal subspace, while Qn defines the noise subspace.

There are few important observations to be made:
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• The smallest eigenvalues of R are the noise eigenvalues and are all equal to σ2, i.e., one way

of distinguishing between the signal and noise eigenvalues (equivalently the signal and noise

subspaces) is to determine the number of small eigenvalues that are equal.

• By orthogonality of Q, Qs ⊥ Qn

Using the final two observations, we see that all noise eigenvectors are orthogonal to the signal

steering vectors. This is the basis for MUSIC. Consider the following function of φ:

PMUSIC(φ) =
1

∑N
m=M+1 |q

H
ms(φ)|2

=
1

sH(φ)QnQH
n s(φ)

, (53)

where qm is one of the (N − M) noise eigenvectors. If φ is equal to DOA one of the signals,

s(φ) ⊥ qm and the denominator is identically zero. MUSIC, therefore, identifies as the directions

of arrival, the peaks of the function PMUSIC(φ).

5.1 MUSIC in Practice - or close to it

In practice, the correlation matrix R is unknown and must be estimated from the received data.

This estimation requires averaging over several snapshots of data.

R =
1

K

K
∑

k=1

xkx
H
k , (54)

where xk is the k-th snapshot. If the received data is Gaussian, this estimate asymptotically

converges to the true correlation matrix. As we will see later in this course, this matrix is used

extensively in adaptive beamforming. In [2], the authors prove that one requires at least K > 2N

so that the signal-to-noise ratio is within 3dB of the optimum. While this result cannot be directly

applied to the case of DOA estimation, this figure has been taken as a good rule of thumb.

One of the problems arising from using an estimate of the correlation matrix is that the noise

eigenvalues are no longer the same. Figure 3 plots the eigenvalues in the ideal situation of a known

correlation matrix and the more realistic situation of an estimated correlation matrix. The example

uses an 11-element array with three incoming signals. As is clear, in the ideal case, the eight noise

eigenvalues are all equal. The three signal eigenvalues are dependent on the signal power.

In the realistic case, where the correlation matrix is estimated, the eigenvalues are more of a

continuum. There is no clear distinction between the signal and noise eigenvalues. Note that some

noise eigenvalues are greater than their true value of 0dB. Several authors have suggested choosing

the “knee” of this plot to estimate the number of signals. This is especially error prone in low SNR

situations where the corresponding signal eigenvalue (λM + σ2) is not significantly different from

the noise eigenvalue (σ2).
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Figure 3: The eigenvalues of the ideal and estimated correlation matrix
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Figure 4: Comparision of the performance of the correlation (FFT) approach and the MUSIC
algorithm
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If the number of signals (M) is unknown, it is difficult then to decide which eigenvalues are

equal, i.e., estimating the number of signals is error prone. The “equality” of the noise eigenvalues

can be measured in a statistical sense. This is an issue we will address in Section 10. For now we

will assume that M , the number of signals, is known.

In practice, therefore, the steps of MUSIC are:

1. Estimate the correlation matrix R using Eqn. (54). Find its eigendecomposition R = QΛQH .

2. Partition Q to obtain Qn, corresponding to the (N − M) smallest eigenvalues of Q, which

spans the noise subspace.

3. Plot, as a function of φ, the MUSIC function PMUSIC(φ) in Eqn. (53).

4. The M signal directions are the M largest peaks of PMUSIC(φ).

Figure 4 plots the performance of the two algorithms (correlation and MUSIC) for the same

example as in Fig. 3. The correlation plot is marked “FFT-based” since, for a linear array of

equispaced isotropic sensors, the correlation approach is equivalent to taking a DTFT. Note the

huge improvement of MUSIC over the non-adaptive correlation technique. The three peaks in

MUSIC are clear and almost exactly on target. The signal arriving from angle 60o was the weakest,

resulting in the broadest peak (worst accuracy). This is consistent with the CRB result of Section 2.

5.2 Root-MUSIC: Model Based Parameter Estimation

There is a significant problem with MUSIC as described above. The accuracy is limited by the

discretization at which the MUSIC function PMUSIC(φ) is evaluated. More importantly, it requires

either human interaction to decide on the largest M peaks or a comprehensive search algorithm to

determine these peaks. This is an extremely computationally intensive process. Therefore, MUSIC

by itself is not very practical - we require a methodology that results directly in numeric values for

the estimated directions. This is where Root-MUSIC comes in.

Note that MUSIC is a technique that estimates the spectrum of the incoming data stream, i.e., it

is a spectral estimation technique. The end product is a function PMUSIC(φ) as a function of the

DOA, φ. Root-MUSIC, on the other hand, is an example of a model-based parameter estimation

(MBPE) technique. We use a model of the received signal as a function of the DOA - here, the

model is the steering vector. The DOA, φ, is a parameter in this model. Based on this model and

the received data, we will estimate this parameter.

A crucial aspect of MBPE is that the estimation technique is valid only as much as the model

itself is valid. For example, our steering vector model is not valid when we take mutual coupling
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into account or for a circular array. Without accounting for the change in model, the estimation

results will be significantly off base [3]. However, we will not be addressing these concerns in this

class. For now, define

z = ejkd cosφ. (55)

Then, assuming the receiving antenna is a linear array of equispaced, isotropic, elements,

s(φ) =
[

1, z, z2, . . . , zN−1
]T

, (56)

⇒ qH
ms =

N−1
∑

n=0

q∗mnz
n = qm(z), (57)

i.e., the inner product of the eigenvector qm and the steering vector s(φ) is equivalent to a polyno-

mial in z. Since we are looking for the directions (φ) where qm ⊥ s(φ), m = (M + 1), . . . , N , we

are looking for the roots of a polynomial.

To find the polynomial whose roots we wish to evaluate, we use

P−1
MUSIC(φ) = sH(φ)QnQ

H
n s(φ)

= sH(φ)Cs(φ) (58)

where

C = QnQ
H
n (59)

⇒ P−1
MUSIC(φ) =

N−1
∑

m=0

N−1
∑

n=0

znCmnz
−m =

N−1
∑

m=0

N−1
∑

n=0

z(n−m)Cmn (60)

The final double summation can be simplified by rewriting it as a single sum by setting l = n−m.

The range on l is set by the limits on n and m, i.e. −(N − 1) ≤ l ≤ (N − 1) and

⇒ P−1
MUSIC(φ) =

(N+1)
∑

l=−(N−1)

Clz
l, (61)

Cl =
∑

n−m=l

Cmn, (62)

i.e., Cl is the sum of the elements of C on the n-th diagonal. Eqn. (61) defines a polynomial of

degree (2N − 2) with (2N − 2) zeros. However, we can show that not all zeros are independent. If

z is a zero of the above polynomial, and of P−1
MUSIC(φ)), 1/z

∗ is also a zero of the polynomial. The

zeros of P−1
MUSIC(φ) therefore come in pairs.

Since z and 1/z∗ have the same phase and reciprocal magnitude, one zero is within the unit

circle and the other outside. Note that we are using this root to estimate the signal angle. From
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the definition of z, only the phase carries the desired information, i.e., both z and 1/z∗ carry the

same desirable information. Also, without noise, the roots would fall on the unit circle.

The steps of Root-MUSIC are:

1. Estimate the correlation matrix R using Eqn. (54). Find its eigendecomposition R = QΛQH .

2. Partition Q to obtain Qn, corresponds to the (N−M) smallest eigenvalues of Q, which spans

the noise subspace. Find C = QnQ
H
n .

3. Obtain Cl by summing the l-th diagonal of C.

4. Find the zeros of the resulting polynomial in terms of (N − 1) pairs.

5. Of the (N − 1) roots within the unit circle, choose the M closest to the unit circle (zm, m =

1, . . . M).

6. Obtain the directions of arrival using

φm = cos−1

[

ℑ ln(zm)

kd

]

, m = 1, . . . M (63)

As Root-MUSIC only worries about the phase of the roots, errors in the magnitude are irrelevant

(in the ideal case the magnitude of the roots would be unity). In some cases, especially in low SNR

situations, Root-MUSIC may provide better performance than MUSIC.

5.3 Smooth-MUSIC

There are several variants of the MUSIC algorithm, including Cyclic-MUSIC and Smooth-MUSIC.

Smooth-MUSIC is interesting because it overcomes the MUSIC assumption that all incoming signals

are uncorrelated (we had set the matrix A to be diagonal). In a communication situation, assuming

flat fading, there may be multipath components from many directions. These components would

be correlated with each other. Correlated components reduce the rank of the signal correlation

matrix Rs, resulting in more than (N −M) noise eigenvalues.

In smooth-MUSIC, the N elements are subdivided into L overlapping subarrays, each with P

elements. For example, subarray 0 would include elements 0 through P − 1, subarray 1 elements

1 through P , etc. Therefore, L = N − P + 1. Using the data from each subarray, L correlation

matrices are estimated, each of dimension P × P . The MUSIC algorithm then continues using a

smoothed correlation matrix correlation matrix

RL =
1

L

L−1
∑

l=0

Rl (64)

This formulation can detect the DOA of up to L− 1 correlated signals. This is because the signal

correlation matrix component of RL becomes full rank again. See [4] for additional details.
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6 ESPRIT: Estimation of Signal Parameters using Rotational In-

variance Techniques

ESPRIT is another parameter estimation technique, based on the fact that in the steering vector,

the signal at one element is a constant phase shift from the earlier element. As in Eqn. (55) in

Section 5.2, let zm = ejkd cosφm . Using Eqn. (43), the correlation matrix is dependent on S, the

N ×M matrix of steering vectors given by

S =

























1 1 · · · 1

z1 z2 · · · zM
...

...
. . .

...

zN−2
1 zN−2

2 · · · zN−2
M

zN−1
1 zN−1

2 · · · zN−1
M

























. (65)

Based on this matrix, define two (N − 1)×M matrices, S0 and S1,

S0 =















1 1 · · · 1

z1 z2 · · · zM
...

...
. . .

...

zN−2
1 zN−2

2 · · · zN−2
M















S1 =





















z1 z2 · · · zM
...

...
. . .

...

zN−2
1 zN−2

2 · · · zN−2
M

zN−1
1 zN−1

2 · · · zN−1
M





















(66)

and note that S1 = S0Φ where Φ is the M ×M matrix

Φ =















z1 0 · · · 0

0 z2 · · · 0
...

...
. . .

...

0 0 · · · zM















, (67)

i.e. Φ is a diagonal matrix whose entries correspond to the phase shift from one element to the

next due to each individual signal. We see that if we can estimate Φ, we can estimate the DOA of

all signals using Eqn. (55).

If S0 and S1 were known, we could solve for Φ easily. Of course, they are unknown matrices

and we must use proxies to obtain the same result. The ESPRIT algorithm begins by recognizing

that the steering vectors in matrix S span the same subspace the matrix Qs, the N ×M matrix of

signal eigenvectors. Since both these matrices span the same subspace, there exists an invertible

matrix C such that

Qs = SC (68)
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Defining matrices Q0 and Q1 derived from Qs just as S0 and S1 were derived from S, i.e., Q0

comprises the first (N − 1) rows of Qs and Q1 the last (N − 1) rows of Qs, and using Eqn. (68),

we have

Q0 = S0C,

Q1 = S1C = S0ΦC.

Consider

Q1C
−1Φ−1C = S0ΦCC−1Φ−1C = S0C = Q0. (69)

Now, let

Ψ−1 = C−1Φ−1C,

⇒ Q1Ψ
−1 = Q0,

⇒ Q1 = Q0Ψ (70)

where

Ψ = C−1ΦC (71)

Equation (70) implies that the matrix Φ is a diagonal matrix of the eigenvalues of Ψ. Using

Eqns. (70) and (71) we now have a complete algorithm.

The steps of ESPRIT are:

1. Estimate the correlation matrix R using Eqn. (54). Find its eigendecomposition R = QΛQH .

2. Partition Q to obtain Qs, corresponds to the M largest eigenvalues of Q, which spans the

signal subspace.

3. Using least squares, solve Eqn. (71) to obtain an estimate of the M ×M matrix Ψ.

4. Find the eigenvalues of Ψ. Its diagonal elements are the estimates of zm that we are looking

for.

5. Obtain the DOA using Eqn.(63).

In practice, one would obtain the estimate of Ψ not using least squares, but Total Least Squares

(TLS). This is an improved least squares technique detailed in Section 9.

Note that ESPRIT represents a significantly greater computation load than MUSIC. This is

because we need two eigendecompositions, of the correlation matrix R and the estimated Ψ. Fur-

thermore, we need to solve a least squares problem to estimate Ψ.
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7 Matrix Pencil

So far, the “adaptive” algorithms we developed, the MLE, MUSIC and ESPRIT, are all dependent

on an estimate of the correlation matrix R. Estimating this matrix is a significant computation

load as we need at least K samples of the data x (K snapshots) where K > 2N . The inherent

assumption is that all K samples follow the same statistics, i.e., the data is homogeneous. In an

environment in which the fading characteristics are rapidly changing, this may not be valid. More

importantly, estimating the correlation matrix is computationally intensive.

This motivates the development of a “non-statistical” or “direct data domain” (D3) technique

known as Matrix Pencil [5]. Matrix Pencil was originally developed for the estimation of the poles

of a system. However, it can be applied as well to DOA estimation [6]. In the original Matrix

Pencil the received data at time index n is given by

xn =

M
∑

m=1

Amznm + nn, (72)

where zm = ejkd cos φm∆t represent the poles of the system, nn represents the AWGN. The goal is to

estimate zm given xn, n = 0, . . . N − 1.

In our case, the data is received at the terminals of the N antenna elements, otherwise the

formulation is exactly the same. Hence, the original Matrix Pencil algorithm is applicable to DOA

estimation. It is interesting to note that Matrix Pencil has many similarities to the ESPRIT

technique, however without estimating a correlation matrix. We begin by defining two (N −L)×L

matrices X0 and X1 as

X0 =















x0 x1 · · · xL−1

x1 x2 · · · xL
...

...
. . .

...

xN−L−1 xN−L · · · xN−2















, X1 =















x1 x2 · · · xL

x2 x3 · · · xL+1

...
...

. . .
...

xN−L xN−L+1 · · · xN−1















, (73)

where L is a pencil parameter that must satisfy

M ≤ L ≤ N − L Neven,

M ≤ L ≤ N − L+ 1 Nodd. (74)

The basis of Matrix Pencil is that, based on the data model, we can write these matrices as

X0 = Z1AZ2, (75)

X1 = Z1AΦZ2, (76)
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where Φ is the same as in ESPRIT, the diagonal matrix that we want to estimate. The four

matrices are given by

Z1 =















1 1 · · · 1

z1 z2 · · · zM
...

...
. . .

...

z
(N−L−1)
1 z

(N−L−1)
2 · · · z

(N
−
L−1)

M















(N−L)×M

(77)

Z2 =















1 z1 · · · zL−1
1

1 z2 · · · zL−1
2

...
...

. . .
...

1 zM · · · zL−1
M















M×L

(78)

Φ =















z1 0 · · · 0

0 z2 · · · 0
...

...
. . .

...

0 0 · · · zM















M×M

(79)

A =















α1 0 · · · 0

0 α2 · · · 0
...

...
. . .

...

0 0 · · · αM















M×M

(80)

Without noise, for the choice of pencil parameter L that satisfies the constraints in Eqn. (74), the

matrices X0 and X1 have rank M . Consider the matrix pencil X1 − λX0 = Z1A [Φ− λI]Z2.

For arbitrary λ, this matrix difference also has rank M . However, if λ is one of the zm, i.e. λ =

zm, for somem ∈ [1,M ], the rank of the matrix difference reduces by one to M − 1. This implies

that we can find the poles (zm) as the generalized eigenvalues of the matrix pair [X0,X1], i.e.

X1q = λX0q. (81)

Note that q, the generalized eigenvector, has no relationship to the eigenvectors of the correlation

matrix. The M generalized eigenvalues of this matrix pair form the estimates of the zm and the

DOA may be obtained using Eqn. (63).

The steps of Matrix Pencil are therefore

1. Given N and M , choose L to satisfy Eqn. (74).

2. Form matrices X0 and X1.
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3. Find zm as the generalized eigenvalues of the matrix pair [X0,X1].

4. Find the DOA using Eqn. (63).

Note that finding the generalized eigenvalues of the matrix pair [X0,X1] is equivalent to finding

the eigenvalues of
[

XH
0 X0

]

−1
XH

0 X1.

The similarities of Matrix Pencil and ESPRIT are clear. Both algorithms estimate a diagonal

matrix whose entries are the poles of the system (what we call zm). The major difference is that

ESPRIT works with the signal subspace as defined by the correlation matrix, while Matrix Pencil

works with the data directly. This represents a significant savings in terms of computation load.

As with ESPRIT, in practice, one would implement a TLS version of Matrix Pencil as described

in Section 9.2.

8 Comparison Of Methods

Number of Resolvable Signals : In MUSIC we assumed that the number of elements, N , was greater

than the number of signals, M . This is required because MUSIC depends on the existence of a

noise subspace. Therefore with N elements, MUSIC can resolve a maximum of (N − 1) signals. In

ESPRIT, a similar argument holds.

On the other hand, in Matrix Pencil, due to Eqn. (74), the maximum value of the pencil

parameter L (and hence M) is N/2 for even N and (N + 1)/2 for odd N . This is the penalty we

must pay for not estimating a covariance matrix.

Accuracy : In terms of accuracy, all the adaptive techniques have similar accuracy. Figure 5 plots

an example case of applying Root-MUSIC to a CDMA situation, while Fig. 6 plots the performance

of Matrix Pencil for the same situation. This example uses a N = 7 element array receiving two

incoming signals with 3 multipath components each. The CDMA receiver is matched to the first

path of the first signal. Due to the spreading gain (and the fact that we are using 4 samples per

chip), the other 5 “interfering” signals are suppressed leaving only one signal whose DOA is to be

estimated. This signal has nominal SNR = -20dB, which with the +27dB gain (10 log10(128 × 4))

is effectively an SNR of 7dB.

As can be seen, for both Root-MUSIC and Matrix Pencil, the DOA estimation is very accurate.

Both techniques yield a root mean square error of about 0.3 degrees. This is despite the fact that

only 5 snapshots are used to estimate a 7×7 correlation matrix. This is because there is effectively

only one signal to locate. The other signals have been suppressed due to the spreading gain. 5

snapshots are adequate to estimate the signal subspace (which is orthogonal to the noise subspace).

One problem with applying Matrix Pencil with multiple snapshots is that one needs a coherent
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Figure 5: Accuracy of Root MUSIC. 5 snapshots.
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Figure 6: Accuracy of Matrix Pencil. 5 snapshots.
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detector and knowledge of the data being transmitted (training) . The SNR is improved by aver-

aging the received data. If the phase information is not removed, due to the random phase, the

average would tend to zero! However, assuming we have a coherent detector, Matrix Pencil has the

same accuracy as Root-MUSIC.

A significant advantage of Matrix Pencil is that it does not require multiple snapshots. Figure 7

plots the performance of Matrix Pencil using a single snapshot. As can be seen, while the accuracy

is lower than in Fig. 6, it is still quite accurate. The RMSE is about 1.8degrees. In a similar

situation, Root-MUSIC has a RMSE of greater than 50 degrees (not shown)! This is clearly due to

the inaccurate estimate of the correlation matrix.

Figure 8 illustrates another significant advantage of Matrix Pencil. In comparing the computa-

tion loads Matrix Pencil is at least twice as fast at Root-MUSIC. This is because of the fact that

Matrix Pencil does not require the estimation of a correlation matrix.

9 Total Least Squares

The least squares approach was developed to solve an over-determined system of equations

Ax = b, (82)

where A is a N × M matrix, x is a length M vector of unknowns and b is a length N vector

of observations. The LS approach finds x such that the residual error, ||Ax− b||2, is minimized.

The LS solution is given by xLS =
[

AHA
]

−1
AHb. The least squares approach can also be looked

finding the error matrix E with minimum Frobenius norm2 such that

[A+E]x = b.

This approach is optimal if the vector b is noise-free and all the measurement errors are in A.

However, if both A and b are noisy, then the TLS approach is optimal. The TLS approach

reorders the original equation to

[A | − b ]

[

x

1

]

= 0. (83)

Now, any rectangular N ×M matrix A can be written in its singular value decomposition (SVD)

A = UΣVH . AssumingN > M , the N×N matrix of left singular vectors U are the N eigenvectors

of AAH , the M ×M matrix of right singular vectors V the M eigenvectors of AHA and Σ is a

N × M matrix whose diagonal elements are the square roots M of the non-zero eigenvalues of

AHA. Furthermore, VHV = IM×M and UHU = IN×N . Note that the singular values are always

real. The SVD is also defined for N < M . Please see [7] for additional details.

2The Frobenius norm of a N ×M matrix A, denoted as ||A||
F
, is defined by ||A||2

F
=

∑
N

n=1

∑
M

m=1
|Anm|2
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Figure 7: Accuracy of Matrix Pencil. One snapshot.
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Total Least Squares finds the error matrix [E | e ] with minimum Frobenius norm such that

[A+E | − b+ e ]

[

x

1

]

= 0. (84)

The solution can be shown to be the singular vector in V that corresponds to the minimum singular

value. This singular value is normalized such that its final entry is 1 to satisfy Eqn. (83).

9.1 TLS ESPRIT

In ESPRIT, the estimate of the matrix Φ is obtained using the matrix equation in Eqn. (70),

Q1 = Q0Ψ. Note that both matrices arise from the eigenvalue decomposition of a noise (estimated)

correlation matrix. There are, therefore, errors in both matrices and a simple LS algorithm is not

completely valid. The TLS version of ESPRIT is based on the TLS method described above [4].

We start by writing the K data snapshots as a K ×N data matrix (each snapshot is a length N

vector of data received at the N elements of the array)

X =















x01 x11 · · · x(N−1)1

x02 x12 · · · x(N−1)2

...
...

. . .
...

x0K x1K · · · x(N−1)K















(85)

A SVD of this matrix X = UΣQH . Note that Q is the matrix of eigenvectors of XHX, which

is proportional to the correlation matrix R, i.e., the matrix of singular vectors Q is same as the

eigenvector matrix Q defined in Section 6. Define matrices Q0 and Q1 as in Section 6. Form the

(N − 1)× 2M matrix [Q0Q1] and take the SVD of this matrix, [Q0Q1] = UΣVH . Note that this

new U and Σ has nothing to do with the same matrices in the SVD of the matrix X. The matrix

we are interested in is the 2M × 2M matrix V. Partition this matrix into four M ×M matrices

V =

[

V11 V12

V21 V22

]

(86)

Now, the poles zm are the eigenvalues of −V12V
−1
22 .

9.2 TLS Matrix Pencil

A similar TLS approach can be applied to Matrix Pencil. However, since Matrix Pencil uses only

one snapshot, the data matrix is defined as the (N − L)× (L+ 1) matrix

X =















x0 x1 · · · xL

x1 x2 · · · xL+1

...
...

. . .
...

xN−L−1 xN−L · · · xN















(87)
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A SVD of this matrix yields X = UΣVH . Only M of the singular values of this matrix correspond

to signals, while the rest correspond to noise. We generate a new, filtered version of the data matrix

X̃ = U′Σ′V′, where U′ is the first M left singular vectors, V′ the first M right singular vectors

and Σ′ are the first M signal singular values.

Matrix Pencil continues as before using the filtered data with X′

0 is the first L columns of X̃

and X′

1 is the last L columns of the same matrix.

10 Estimating Number of Signals

So far we have assumed that we knew M , the number of signals that are incident on the array.

This number is always important, setting the partition of the correlation matrix R in MUSIC and

ESPRIT and determining the number of vectors to use in the TLS Matrix Pencil case. In some

cases, this assumption is valid - if there is a base station controlling the number of users entering

the system. However, even in this case, there may be external interference sources that also act as

incident signals. The number M includes all incident signals. Estimating the number of signals is

therefore a crucial function.

We present here two techniques to estimate the number of signals based on the work in [8].

The algorithms start with realizing that the number of signals M is the number of elements N

minus the number of noise eigenvalues. These eigenvalues are all equal in the ideal case and easy

to identify. In practice, due to the estimation of the correlation matrix, the noise eigenvalues are

not equal, but are close to each other. The algorithms therefore use an estimate of the closeness

of the eigenvalues. If K snapshots are used to estimate the correlation matrix and assuming there

are d signals, a measure of closeness of the noise eigenvalues would be the ratio of their geometric

mean to their arithmetic mean.

L(d) = −K(N − 1) log











[

∏N
n=d+1 λn

]1/(N−d)

1
N−d

∑N
n=d+1 λn











(88)

Based on this measure of closeness, Wax and Kailath define two information theoretic criteria. The

first is the Akaiake Information Criterion (AIC) and the second uses the Minimum Description

Length (MDL)

AIC(d) = L(d) + d(2N − d)

= −K(N − d) log











[

∏N
n=d+1 λn

]1/(N−d)

1
N−d

∑N
n=d+1 λn











+ d(2N − d), (89)
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MDL(d) = L(d) +
1

2
d(2N − d) logK

= −K(N − d) log











[

∏N
n=d+1 λn

]1/(N−d)

1
N−d

∑N
n=d+1 λn











+
1

2
d(2N − d) logK. (90)

The number of signals is the point at which these measures achieve their minimum. Unfortunately,

these two techniques do not always give the same number of signals. The authors show that the

MDL approach results in unbiased estimates, while the AIC approach yields biased estimates. In

general, therefore, it is better to use the MDL than the AIC approach. Also, recently, Chen et.al.

demonstrated an approach based on ranking and selection theory that shows promise [9].
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