
MIMO Systems and Transmit Diversity

1 Introduction

So far we have investigated the use of antenna arrays in interference cancellation and for receive

diversity. This final chapter takes a broad view of the use of antenna arrays in wireless communi-

cations. In particular, we will investigate the capacity of systems using multiple transmit and/or

multiple receive antennas. This provides a fundamental limit on the data throughput in multiple-

input multiple-output (MIMO) systems. We will also develop the use of transmit diversity, i.e.,

the use of multiple transmit antennas to achieve reliability (just as earlier we used multiple receive

antennas to achieve reliability via receive diversity).

The basis for receive diversity is that each element in the receive array receives an independent

copy of the same signal. The probability that all signals are in deep fade simultaneously is then

significantly reduced. In modelling a wireless communication system one can imagine that this

capability would be very useful on transmit as well. This is especially true because, at least in the

near term, the growth in wireless communications will be asymmetric internet traffic. A lot more

data would be flowing from the base station to the mobile device that is, say, asking for a webpage,

but is receiving all the multimedia in that webpage. Due to space considerations, it is more likely

that the base station antenna comprises multiple elements while the mobile device has only one or

two.

In addition to providing diversity, intuitively having multiple transmit/receive antennas should

allow us to transmit data faster, i.e., increase data throughput. The information theoretic analysis

in this chapter will formalize this notion. We will also introduce a multiplexing scheme, transmitting

multiple data streams to a single user with multiple transmit and receive antennas.

This chapter is organized as follows. Section 2 then presents a theoretical analysis of the capacity

of MIMO systems. The following two sections, Sections 3 develops transmit diversity techniques

for MIMO systems based on space-time coding. Section 4 then addresses the issue of maximizing

data throughput while also providing reliability. We will also consider transmitting multiple data

streams to a single user. This chapter ends in Section 5 with stating the fundamental tradeoff

between data throughput (also called multiplexing) and diversity (reliability).

2 MIMO Capacity Analysis

Before investigating MIMO capacity, let us take a brief look at the capacity of single-input single-

output (SISO) fading channels. We start with the original definition of capacity. This set of
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Figure 1: A single-input-single-output channel

notes assumes the reader knows the basics of information theory. See [1] for a detailed background.

Consider the input-output system in Fig. 1. The capacity of the channel is defined as the maximum

possible mutual information between the input (x) and output (y). The maximization is over the

probability distribution of the input fX(x), i.e.

C = max
fX(x)

[I(X; Y )] = max
fX(x)

[h(Y ) − h(Y/X)] , (1)

where h(Y ) is the entropy of the output Y .

For a SISO additive white gaussian noise (AWGN) channel, y = x+n, with n ∼ CN (0, σ2) and

with limited input energy (E
{

|x|2
}

≤ Es), one can show that the capacity achieving distribution

is Gaussian, i.e., x ∼ CN (0, Es) and y ∼ CN (0, Es + σ2). It is not difficult to show that if n is

Gaussian and has variance σ2, h(N) = log2(πeσ2). Therefore h(Y ) = log2(πe(Es + σ2)). Also,

h(Y/X) is the residual entropy in Y given the channel input X, i.e., it is the entropy in the noise

term N . Therefore, h(Y/X) = log2(πeσ2) and the channel capacity, in bits/s/Hz, is given by

C = [h(Y ) − h(Y/X)] = log2

(

Es + σ2

σ2

)

= log2 (1 + ρ) , (2)

where ρ = Es/σ2 is the signal-to-noise ratio (SNR).

In the case of a fading SISO channel, the received signal at the k-th symbol instant is y[k] =

h[k]x[k]+n[k]. To ensure a compatible measure of power, set E
{

|h[k]|2
}

= 1 and E
{

|x[k]|2
}

≤ Es.

At this point there are two possibilities, a fixed fading channel with a random but unchanging

channel gain and a slow, but fluctuating channel. In the first case, the capacity is given by

C = log2

(

1 + |h|2 ρ
)

, (3)

where ρ = Es/σ2. An interesting aspect of this equation is that in a random, but fixed channel, the

theoretical capacity may be zero. This is because, theoretically, the channel gain could be as close

to zero making guaranteeing a data rate impossible. What is possible in this case is determining

what are the chances a required capacity is available. This requires defining a new probability of

outage, Pout, as the probability that the channel capacity is below a threshold rate R0.

Pout = P (C < R0) = P

(

|h|2 >
2 R0 − 1

ρ

)

, (4)

= 1 − exp

{

−2 R0 − 1

ρ

}

, (5)
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where the final equation is valid for Rayleigh fading. Note that in the high-SNR regime (ρ → ∞),

Pout ∝
1

ρ
, (6)

i.e., at high SNR, the outage probability falls off inversely with SNR.

In the case of a time varying channel, assuming sufficient interleaving that the channel is

independent from one symbol to the next, the average capacity over K channel realizations is

CK =
1

K

K
∑

k=1

{

log2

(

1 + |hk|2 ρ
)}

. (7)

Based on the law of large numbers, as K → ∞ the term on the right converges to the average or

expected value. Hence,

C = Eh

{

log2

(

1 + |h|2 ρ
)}

, (8)

where the expectation operation is taken over the channel values h. Note that this expression is

non-zero and therefore with a fluctuating channel it is possible to guarantee the existence of an

error-free data rate.

2.1 MIMO Systems

We now consider MIMO systems with the goal of evaluating the capacity of a system using N

transmit and M receive antennas. We begin with the case of N parallel channels - basically N

SISO channels operating in parallel. However, we will assume that the transmitter knows the N

channels and can therefore allocate power intelligently to maximize capacity.

2.1.1 Parallel Channels

The N parallel channels are AWGN with a noise level of σ2. The received data (y) from input data

x over N channels is modelled as

y = x + n (9)

E{nnH} = σ2IN . (10)

The transmitter has an energy budget of Es which must be allocated across the N channels. The

capacity of this channel is

C = max
{En}

∑

N

n=1
En≤Es,En≥0

N
∑

n=1

log2

(

1 +
En|hn|2

σ2
n

)

, (11)
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Figure 2: Illustrating Waterfilling.

where En is the energy allocated to the nth channel. The equivalent Lagrange problem is1:

L({En} ; λ) =
N
∑

n=1

log2

(

1 +
En |hn|2

σ2

)

+ λ

(

N
∑

n=1

En − Es

)

(12)

⇒ ∂L

∂En
=

|hn|2
σ2

log2(e)
(

1 + En|hn|2
σ2

) + λ = 0, (13)

⇒ ∀n,

(

σ2

|hn|2
+ En

)

= µ (a constant). (14)

Since En ≥ 0,

En =

(

µ − σ2

|hn|2
)+

, (15)

where (x)+ indicates only positive numbers are allowed, i.e. (x)+ = x if x ≥ 0, else (x)+ = 0. The

constant µ is chosen to meet the total energy constraint. Equation (15) tells us how to allocate

energy given knowledge of the channel attenuation through which the data must suffer.

Interestingly, the optimal power allocation scheme does not allocate all the power to the best

channel. This is because the log2(1 + ρ) expression for capacity implies a diminishing marginal

returns on adding signal power (the capacity grows only as log2 at high SNR, but linearly at

low-SNR). So providing some power to weaker channels can actually increase overall sum capacity.

1Note that the Lagrange problem being set up ignores the constraint that En ≥ 0 for now and that this constraint

is “added” later. A formal proof that this is OK will take us into a detour. The proof uses the fact that if we were to

add this constraint (N of them), the associated Lagrange multiplier is either zero or the constraint is not met with

equality.
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This optimal scheme is known as waterfilling. An intuitive understanding of waterfilling (and

why it is called so) may be obtained from Fig. 2, borrowed from Prof. Schlegel [2]. In the figure,

σ2
n refers to the effective noise power at each time instant, σ2/ |hn|2. Waterfilling tells us that the

optimal strategy is to ‘pour energy’ (allocate energy on each channel). In channels with lower noise

power, more energy will be allocated. In channels with large noise power, the energy allocated is

low . Some channels are so weak that the effective noise power becomes very large. Waterfilling

tells us that transmitting any information on these channels is a waste of energy. If energy is

allocated, the sum of the allocated energy and the effective noise power (σ2
n = σ2/|h2

n) is a constant

(the “water level”, µ). Finally, if the channel were all equal, i.e. σ2
n were a constant, waterfilling

leads to an equal energy distribution. Determining the water level, µ, is an iterative process.

The capacity on using the waterfilling approach is

C =
N
∑

n=1

log2

(

1 +
En |hn|2

σ2

)

. (16)

Aside: The result also leads to an interesting observation: if one could only focus on the times

that the channel is in a “good” condition one could get enormous gains in capacity. Of course,

this may not always be possible. However, thinking of a multiuser situation, if the channel to each

user is changing with time, it is likely that at any time instant, one user has a good channel. By

transmitting energy on that channel, overall capacity can be achieved in a multiuser situation. This

is a new form of diversity called “opportunistic beamforming” [3].

Finally, if the channel is not available at the transmitter, clearly the best distribution scheme

is to spread the energy evenly between all transmitters, i.e. En = Es/N and

C =
N
∑

n=1

log2

(

1 +
Es

Nσ2

)

. (17)

Note that since the log function increases significantly slower than the linear N term, the overall

capacity is significantly larger than that for the SISO case.

2.1.2 Known MIMO Channels

We now turn to the more practical MIMO situation with N transmitters and M receivers with a

full M ×N channel matrix H in between. We will assume we know the channel matrix H at both

the transmitter and receiver. Also, we will set M ≤ N , however, the results here are easily extended

for M > N . To ensure no artificial amplification in the channel, we shall set E{|hmn|2} = 1. The

data received at the M elements can be modelled as

y = Hx + n, (18)
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Figure 3: A communication system that achieves capacity.

where H is the full M × N channel matrix.

Based on the singular value decomposition2 , one can decompose H as H = UΣVH , with

Σ = [diag(d1, d2, . . . , dM ) | 0M×N−M ], where dm ≥ 0 are the M singular values of H. Using

Eqn. (18) and the fact that UHU = IM ,

y = UΣVHx + n, (19)

⇒ UHy = ΣVHx + UHn, (20)

⇒ ỹ = Σx̃ + ñ, (21)

where ỹ = UHy and x̃ = VHx. This transformed data in Eqn. (21) is equivalent to M parallel

channels with effective noise powers of σ2
m = σ2/d2

m. Note that if E{nnH} = σ2I, E{ññH} =

E{UHnnHU} = σ2UHIU = σ2I. Furthermore, since VHV = IN , the energy constraint remains

the same, i.e.,
∑N

n=1 Ẽn = Es. Since the last (N −M) columns of Σ are all zero, the last (N −M)

entries in x̃ are irrelevant. In fact, if the rank of H is r, the system is equivalent to r parallel

channels only. Note that r ≤ min(N, M).

In the rotated (tilde) space MIMO communications is exactly the same as r parallel channels.

The optimal power allocation is, therefore, the same waterfilling scheme as with the N parallel

channels in Section 2.1.1. However, now the energy is spread over the eigen-channels, as opposed

to physical channels. Figure 3 illustrates the communication system being considered. The data

to be transmitted in encoded (if the encoder achieves capacity in an AWGN channel the overall

scheme achieves channel capacity) and sent onto a serial-to-parallel converter with r outputs, where

r is the rank of the channel matrix. The waterfilling scheme is used to determine the powers of

each element in these r outputs. The r outputs are augmented with (N − r) zeros to form the

data vector x̃. Multiplying with the right singular vector matrix V leads to the data vector x

to be transmitted over the N elements. This transmission suffers channel H. At the receiver the
2Any M × N matrix A can be decomposed as A = UΣV

H . The columns of U are the M eigenvectors of HH
H

and the columns of V are the N eigenvectors of H
H
H. The M ×N matrix Σ is a diagonal matrix of singular values.

If M ≤ N , Σ = [ diag(σ1, σ2, . . . , σM ) | 0M×N−M ] where σ2

m are the M eigenvalues of HH
H . Note that this is for an

arbitrary rectangular matrix A and these singular values should not be confused with the noise power. Since HH
H

and H
H
H are positive semi-definite matrices, UU

H = U
H
U = IM , VV

H = V
H
V = IN and σm ≥ 0. The matrix

U (V) is the matrix of left (right) singular vectors.
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length-M data vector y is multiplied by the left singular vectors (UH) resulting in the transformed

vector ỹ. This transformed vector is used for decoding the original data symbols.

The optimal energy distribution Ẽm on the m-th channel and overall capacity are given by

Ẽm =

(

µ − σ2

d2
m

)+

, (22)

C =
R
∑

m=1

log2

(

1 +
Ẽmd2

m

σ2

)

. (23)

To illustrate the workings of this capacity formula, let us consider four examples:

Case 1: 1 transmitter and M receivers, H = [h1, h2, . . . , hM ]T , rank(H) = 1.

Since rank(H) = 1, only one singular value is non-zero and all the energy is allocated to this

eigen-channel. This singular value and the resulting capacity are given by

d1 =
√

|h1|2 + |h2|2 + . . . |hM |2, (24)

C = log2

(

1 +
E

σ2

M
∑

m=1

|hm|2
)

. (25)

Case 2: N transmitters and 1 receiver, H = [h1, h2, . . . , hN ], rank(H) = 1.

Since rank(H) = 1, only one singular value is non-zero and all the energy is allocated to this

eigen-channel. This singular value and the resulting capacity are given by

d1 =
√

|h1|2 + |h2|2 + . . . |hN |2, (26)

C = log2

(

1 +
E

σ2

N
∑

n=1

|hn|2
)

, (27)

Note that this result is valid only if the channel is known at the transmitter.

Case 3: N transmitters and M receivers with perfect line of sight (LOS), without multipath.

Let dt be the distance between the transmit elements and dr the distance between the receive

elements. The transmitter transmits in direction φt with respect to its baseline while the receiver

receives from angle φr with respect to its baseline. In this case,

hmn = exp(jkdr(m − 1) cos φr) exp(jkdt(n − 1) cos φt). (28)

Note that even though the channel matrix H is M × N , it is still rank-1 and d1 =
√

NM . The

capacity is given by

C = log2

(

1 + NM
Es

σ2

)

, (29)
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i.e., in line-of-sight conditions, the arrays at the transmitter and receiver only provide a power gain

of NM .

Case 4: N = M and the channel has full rank with equal singular values.

Since the square of the singular values of H are the eigenvalues of HHH ,

M
∑

m=1

d2
m = trace

(

HHH
)

=
N
∑

n=1

M
∑

m=1

|hmn|2.

Since, on average, the each channel has unit power and we assume equal singular values, d2
m =

NM/M = N , ∀m. Since all singular values are equal the energy allocation is clearly uniform

(Em = Es/N) and

C =
M
∑

m=1

log2

(

1 +
Esd

2
m

Nσ2

)

=
M
∑

m=1

log2

(

1 +
Es

σ2

)

= N log2

(

1 +
Es

σ2

)

. (30)

Note the significant difference in the capacities described in Eqns. (29) and (30). Under perfect

LOS conditions, the transmit and receive array only provide power gain and the capacity increases

as the log of the number of elements. However, when the channel is set up such that each eigen-

channel is independent and has equal power, the capacity gains are linear. The independent channels

allow us to transmit independent data streams (N in the final example above), thereby increasing

capacity.

In summary, in this section we have shown that a system with N transmitters and M receivers

can be reduced to a problem of r parallel AWGN channels, where r is the rank of the channel

matrix. To achieve the greatest gains in capacity, the channels from two different transmitters

to the receivers must be independent and have equal power. The maximum possible gain in the

channel capacity (over the SISO case) is the minimum of the number of transmitters and receivers,

i.e., min(N, M). We will address this final constraint on the linear growth in capacity again in

Section 2.1.4.

2.1.3 Channel Unknown at Transmitter

The analysis in Section 2.1.2 assumes both the transmitter and receiver know the channel matrix

H. However, in the more practical case that the channel is not known at the transmitter, but is

known at the receiver, the approach is not valid. In this case, channel capacity must be determined

as the maximum possible mutual information between input X and output Y.

The capacity is given by

C = max
fX(x)

I(X; Y ) = max
fX(x)

[H(Y) − H(Y/X)] , (31)
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where H(X) is the entropy in X with probability density function fX(x) and is not to be confused

with the channel matrix H. Assuming channel matrix H is known at the receiver, the entropy in

Y, given the input data X, is clearly only due to the noise N. Assuming the noise to be complex,

white and Gaussian with variance σ2,

H(Y/X) = H(N) = M log2(πeσ2) = log2(πeσ2)M , (32)

Given the channel, the entropy is Y is determined by the distribution of X. We invoke the fact

that the input distribution required to achieve capacity is Gaussian, i.e., X must be Gaussian

distributed with X ∼ N(0,Σx) where Σx is the covariance matrix of X and whose diagonal entries

are such that they meet the criterion of limited transmit energy.

From Eqn. (18), given H, Y is also Gaussian with Y ∼ N(0,Σy) where Σy = σ2IM +HΣxH
H

and IM is the M × M identity matrix. Using the entropy result for the Gaussian pdf [1],

H(Y) = log2

[

(πe)M detΣy

]

, (33)

⇒ C = max
fX(x)

I(X;Y) = log2

[

(πe)M det
(

σ2IM + HΣxH
H
)

]

− log2

(

πeσ2
)M

, (34)

= log2 det

(

IM +
1

σ2
HΣxH

H

)

, (35)

Based on an eigendecomposition of the covariance matrix of the input data, Σx, one can show that

the optimal covariance matrix is Σx = (Es/N)IN [1, 2, 4] which corresponds to independent data

streams and equal power distribution over all available channels. The capacity is therefore,

C = log2 det

(

IM +
Es

Nσ2
HHH

)

. (36)

Note that, as with SISO channels, for a fixed MIMO channel unknown at the transmitter, the true

capacity is zero since we cannot guarantee any minimum channel quality.

2.1.4 Fading MIMO Channels

So far we have focused on fixed channels. In the most practical situation, the channels vary as a

function of time. In this case, the channel can change from one time instant to the next. Assuming

sufficient interleaving to make the channel independent from one symbol instant to the next, the

average capacity over a block of K data symbols is given by

C =
1

K

K
∑

k=1

max
fX(x)

I(X[k];Y[k])

=
1

K

K
∑

k=1

log2 det

(

IM +
Es

Nσ2
H[k]H[k]H

)

. (37)

9



Figure 4: MIMO capacity in fading channels [5].

Based on the law of large numbers as K → ∞ this approaches the expectation value of the right

hand side in Eqn. (36) [4]

C = E

{

log2 det

(

IM +
Es

Nσ2
HHH

)}

. (38)

If {d2
m, m = 1, 2, . . . , M} are the M eigenvalues of HHH , the eigenvalues of

(

IM + Es/(Nσ2)HHH
)

are 1 + Es/(Nσ2)d2
m. The capacity in Eqn. (38) is then

C = E

{

M
∑

m=1

log2

(

1 +
Es

Nσ2
d2

m

)

}

, (39)

where the expectation is taken over the M eigenvalues.

This result in Eqns. (38) and (39) is valid for any type of fading. Specializing this to the case

of completely independent Rayleigh fading from each transmit element to each receive element,

each individual entry in H is an independent complex Gaussian random variable. In this case, the

matrix HHH is Wishart distributed [6]. In addition, the pdf of its eigenvalues are known [5,7].

f(d2
1, . . . , d2

M ) =
1

MKM,N
e−

∑

M

m=1
d2

m

M
∏

m=1

(d2
m)N−M

∏

m<n

(

d2
m − d2

n

)2
, (40)

where KM,N is a normalizing factor and

C =
M
∑

m=1

E{d2
m}

{

log2

(

1 +
Esd

2
m

Nσ2

)}

, (41)

⇒ C = M

[

E{d2

1
} log2

(

1 +
Esd

2
1

Nσ2

)]

(42)
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Figure 5: Outage probability in fading channels [8].

where the final expectation is taken over the pdf of an individual eigenvalue, found by marginalizing

the multivariate pdf in Eqn. (40). The resulting capacity has been obtained by Telatar in [5] and

shown in Fig. 4. The figure plots the capacity (in b/s/Hz) versus M or N . The eight plots are for

different SNRs between 0dB and 35dB in steps of 5dB. Note the linear relationship between the

capacity and the number of transmit and receive channels.

There are two important results included in here, one positive, one cautionary. First, just as

when the channel is known at the transmitter, if the channel is Rayleigh and independent, it is

possible to have linear increases in capacity in fading channels as well. The second (cautionary)

result is that the increase is proportional to the minimum of the number of transmitters and

receivers, i.e., min(N, M). This has important implications in a cellular network - it is reasonable

to assume multiple elements at the base station. But, it is unlikely one could have more than one

or two elements in a handheld device. In this case, multiple antennas at one end will only provide

power gains, but not the parallel channels that provide large capacity gains.

The result in Eqn. (42) and Fig. 4 present the true capacity of a MIMO channel with independent

Rayleigh fading, i.e., it is theoretically possible to have error-free transmission with rate below this

capacity. Another figure of merit is outage probability such as derived in Eqn. (5) for SISO channels.

In [8], Foschini and Gans evaluate the outage probability under Rayleigh fading. One of their results

is shown in Fig. 5. Note the huge improvement in outage probability (here they plot the cumulative

distribution, which is (1 − Pout) by moving from a SISO channel to N = M = 2. With a SNR

of 21dB, the capacity of a SISO channel is larger than approximately 2.5b/s/Hz 96% of the time,

while for N = M = 2 the capacity is larger than approximately 8.5b/s/Hz 96% of the time.
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3 Transmit Diversity

So far, we have developed the capacity of MIMO systems in the case of the channel being known

at the transmitter and receiver (leading to a waterfilling solution) and in the more practical case of

the channel known at the receiver only (the results of [5,8]). This answers the question, “How fast

can data be transmitted?”, i.e., what is the theoretical maximum data rate that can be achieved

in a MIMO system. We now investigate a different goal, using the multiple antennas to achieve

reliability. We have already addressed this issue when the receiver has multiple receive antennas

(receive diversity). Here we focus on transmit diversity. In a departure from the previous discus-

sions, this will involve coding across the space and time dimensions. We begin with two remarkably

simple schemes to achieve diversity on transmit, one inefficient, one efficient.

3.1 Space-Time Coding: Motivation

If using multiple receive antenna elements, we have shown that the optimal receiver is the maximal

ratio combiner (MRC) which matches the receive weights to the channel. If the transmitted signal

is As0u(t) within a symbol period of Ts, where s0 is the symbol transmitted and u(t) is the symbol

waveform with unit energy, the received signal at the N elements (after the filter matched to the

symbol waveform) and the combined signal are given by

x = gs0 + n =
√

Eshs0 + n, (43)

y = hHx =
√

Es

[

N−1
∑

n=0

|hn|2
]

s0 + noise, (44)

where Es is the energy in the signal per symbol and the average energy in the fading term hn is

unity, i.e. E
{

|hn|2
}

= 1. The MRC therefore results in the signal being multiplied by the sum of

the powers in the channels. In transmit diversity, the array with N elements is at the transmitter.

We will claim we have optimal (maximal ratio) transmission if we achieve a similar received signal.

In the chapter on receive diversity we considered a system with a single transmit and N receive

antennas. Here we will consider a system with N transmit and a single receive antenna. The

receiver is assumed to know the channel.

An easy diversity scheme is to repeat the transmission of the same data symbol (s0) over N

symbol periods, one element at a time. At the receiver, the data from the N received signals from

N symbol periods is written as a length-N vector x which is given by

x =
√

Eshs0 + n, (45)

which has the same form as that for the receive diversity case. Note a crucial different though.

This vector is the received signal at a single element over N symbol intervals. The vector h is the
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length-N vector of the channels from the N transmitting elements to the single receive element.

The data vector x is processed as

y = hHx =
√

Es

[

N−1
∑

n=0

|hn|2
]

s0 + noise. (46)

If the N channels are independent, this transmit scheme achieves diversity of order N .

This transmit diversity scheme is clearly very inefficient. Within any symbol period, only a single

element is used. A single symbol is sent over N periods, i.e., one would need a bandwidth expansion

of N to achieve the same data rate. On the other hand, this scheme shows that transmit diversity

is possible. It also illustrates another important point - one cannot achieve transmit diversity by

focusing on a single symbol period only. The scheme must also involve the time dimension - this is

the basis for space-time coding - coding, by definition, introduces redundancy - to achieve transmit

diversity one must introduce redundancy in both the space and time dimensions.

3.2 Diversity without wasting bandwidth

In [9] Alamouti presents a remarkably simple scheme to achieve transmit diversity, for an array of

two elements, without any loss of bandwidth. The scheme transmits two symbols over two time

periods (note again the time dimension is used). In the simplest case, the receiver has only a single

element, though extensions are possible to receivers of multiple elements as well.

Denote two symbols to be s0 and s1. In the first symbol interval, transmit s0 from the element

#0 and s1 from the element #1. In the next symbol interval, transmit (−s∗1) from element #0 and

(s∗0) from element #1 where the superscript ∗ represents conjugation. The channel from the two

elements to the receiver is assumed constant over both intervals (2Ts). The two transmit antennas

have a total energy budget of Es, each symbol is transmitted with half the energy. Overall, the

received signal over the two symbol intervals (y0 and y1) can be written as

y0 =

√

Es

2
[h0s0 + h1s1 + n0] , (47)

y1 =

√

Es

2
[−h0s

∗
1 + h1s

∗
0 + n1] , (48)

⇒
[

y0

y∗1

]

=

√

Es

2

[

h0 h1

h∗
1 −h∗

0

][

s0

s1

]

+

[

n0

n∗
1

]

⇒ y = H

[

s0

s1

]

+ n (49)

Note that the second entry in the vector y is the conjugate of the data received on the second
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Figure 6: Performance of Alamouti’s transmit diversity scheme

symbol interval.

⇒ r =

[

r0

r1

]

= HHy =

√

Es

2
HHH

[

s0

s1

]

+ HHn, (50)

⇒ r0 =

√

Es

2

[

|h0|2 + |h1|2
]

s0 + h∗
0n0 + h1n

∗
1, (51)

r1 =

√

Es

2

[

|h0|2 + |h1|2
]

s1 − h∗
0n

∗
1 + h∗

1n0. (52)

Note that the equations for r0 and r1 include the squares of the two channel magnitudes, i.e., the

received signal incorporates order-2 diversity. In addition, two symbols are transmitted over two

symbol intervals and no bandwidth is wasted. This is the beauty of Alamouti’s scheme. With

a remarkably simple arrangement of transmitted and received data coupled with purely linear

processing, order-2 diversity is achieved without any loss in bandwidth. The only ‘penalty’ is the

halving in transmitted energy per symbol. We expect, therefore, the performance of Alamouti’s

scheme to be 3dB worse than the corresponding 2-element receive diversity case.

Figure 6 is taken from Alamouti’s original paper [9]. The line furthest to the right corresponds

to the SISO case of a single transmitter and receiver. The other two groups compare transmit and

receive diversity. The middle curves compare two-element transmit and receive diversity. The 3dB

loss for transmit diversity is clear. However, note Alamouti’s transmit diversity scheme does achieve

the order-2 diversity. This is similar to the curves on the left which compare four element receive

diversity with the case of 2-transmit and 2-receive elements. Again, sharing the total power between

the two transmitters causes a loss of 3dB. We will see soon that Alamouti’s scheme, basically found

serendipitously, is unique in its simplicity and efficiency.
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3.3 Good Codes

In Section 3.2 we developed an excellent scheme to achieve diversity in the specific case of two

transmit antennas. The scheme required careful arrangement of data over both space and time,

introducing redundancy in the transmission process. This is reminiscent of error controlling coding

wherein controlled redundancy is introduced to achieve reliable transmissions. Alamouti’s scheme,

therefore, is a good space-time code.

Left open, so far, are efficient schemes for transmit diversity in the general case. However, an

immediate question arises “what are good codes?”. This leads to an important question, “what

makes a code good?”. In [10], Tarokh, et al. answer this question in terms of a bound on the

probability of error. The notes in this section are taken in a large part from their presentation on

space-time coding (STC) in [10]. We will focus on independent Rayleigh fading.

Consider a MIMO system with N transmit and M receive antennas. The space-time code spans

L symbols. The M ×N channel matrix H = [hmn] is assumed constant over these L symbols. The

symbols themselves are normalized to have unit energy and each entry in the channel matrix sat-

isfies E{hmn} = 1. The transmitter transmits the coded sequence c =
{

c0
1, c1

1, . . . , c
(N−1)
1 , c0

2, c1
2, . . . , c

(N−1)
2 , c0

L, c1
L, . . . , c

(N−1)
L

}

over L time instants from the N ele-

ments. At time instant l, the symbol cn
l is transmitted from element #n. At each time instant l,

the received data is given by

y(l) = Hx(l) + n, (53)

⇒ ym(l) =
√

Es

N−1
∑

n=0

hmncn
l + nm, (54)

where Es is the energy received per symbol. A maximum-likelihood (ML) decoder uses this data to

decode to a sequence c̃ =
{

c̃0
1, c̃1

1, . . . , c̃
(N−1)
1 , c̃0

2, c̃1
2, . . . , c̃

(N−1)
2 , c̃0

L, c̃1
L, . . . , c̃

(N−1)
L

}

, which may

not be the same as the transmitted sequence c. However, note that since the transmitted sequence

is c and the ML decoder decides on c̃, both c and c̃ are valid codewords.

Given the channel at the receiver, the probability of error, i.e., the probability that c is trans-

mitted and c̃ is decoded is bounded by

P (c → c̃) ≤ exp

[

−d2 (c, c̃)
Es

4σ2

]

, (55)

where d (c, c̃) is the Euclidean distance between c and c̃ weighted by the known channel, H, at the
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receiver.

d2 (c, c̃) =
M−1
∑

m=0

L
∑

l=1

∣

∣

∣

∣

∣

N−1
∑

n=0

hmn (cn
l − c̃n

l )

∣

∣

∣

∣

∣

2

, (56)

=
M−1
∑

m=0

N−1
∑

n=0

N−1
∑

n′=0

hmnh∗
mn′

L
∑

l=1

(cn
l − c̃n

l )
(

cn′

l − c̃n′

l

)∗
, (57)

=
M−1
∑

m=0

ΩmEEHΩH
m, (58)

where ∗ represents the conjugate transpose and

Ωm =
[

hm0 hm1 . . . hm(N−1)

]

, (59)

E =















c0
1 − c̃0

1 c0
2 − c̃0

2 · · · c0
L − c̃0

L

c1
1 − c̃1

1 c1
2 − c̃1

2 · · · c1
L − c̃1

L
...

...
. . .

...

cN−1
1 − c̃N−1

1 cN−1
2 − c̃N−1

2 · · · cN−1
L − c̃N−1

L















. (60)

Note that keeping with the notation [10], Ωm, the channel from the N transmitters to the m-th

receiving element is a row vector. Also, E is the N ×L error matrix of the differences between the

two codewords c and c̃ over the N transmit elements and L time instants.

Since EEH is a positive semi-definite matrix, its eigenvectors are orthogonal to each other and

one EEH = QΛQH , where Q is a unitary matrix. All eigenvalues in the diagonal of Λ satisfy

λn ≥ 0. Defining a new vector βm = ΩmQ, we have

ΩmEEHΩH
m = ΩmQΛQHΩH

m = βmΛβm, (61)

=
N−1
∑

n=0

λn |βmn|2 , (62)

⇒ d2(c, c̃) =
M−1
∑

m=0

N−1
∑

n=0

λn |βmn|2 . (63)

Now, since the channel is assumed to be Rayleigh and any two channels are assumed in-

dependent, with unit average power, Ω is zero-mean complex Gaussian and E
{

ΩH
mΩm

}

= IN .

Since βm is a linear combination of Ωm, it too is zero-mean complex Gaussian and E
{

βH
mβm

}

=

QHE
{

ΩH
mΩm

}

Q = IN , i.e. βm is also Rayleigh distributed and |βmn|2 is exponentially distributed

with unit mean.

We know that if X is exponentially distributed with unit mean, E{e−γx} = 1/(1 + γ). Putting
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this fact together with Eqns. (55) and (63),

E {P (c → c̃)} ≤ ≤ E

{

exp

[

−d2(c, c̃)
Es

4σ2

]}

, (64)

≤ E

{

exp

[

− Es

4σ2

M−1
∑

m=0

N−1
∑

n=0

λn |βmn|2
]}

, (65)

≤
M−1
∏

m=0

N−1
∏

n=1

E

{

exp

[

− Es

4σ2
λn |βmn|2

]}

, (66)

≤
[

N−1
∏

n=0

1
(

1 + Esλn

4σ2

)

]M

. (67)

Note that if rank
[

EEH
]

= R, the product in Eqn. (67) is only upto R and

E {P (c → c̃)} ≤
[

R−1
∏

n=0

1
(

1 + Esλn

4σ2

)

]M

, (68)

≤
(

R−1
∏

n=0

λn

)−M
(

Es

4σ2

)−RM

, (69)

≤





[

R−1
∏

n=0

λn

]1/R




−RM
(

Es

4σ2

)−RM

. (70)

Such a code is a called a R-space-time code.

In the chapter on receive diversity we defined the diversity order to be the slope of the BER v/s

SNR curve (on a log-log scale). From Eqn. (70) we see that the space-time code provides a diversity

order of RM . Second, the product of the eigenvalues of the error matrix provides an additional

coding gain. Since c and c̃ are two arbitrary codewords, we now know what makes a code good:

1. A good code has highest possible rank in the error matrix between any two codewords (

L ≥ N and R = N), i.e., the Hamming distance between any two codewords must be N .

This will provide the greatest coding gain

2. A good code has the highest product of eigenvalues of the error matrix 3, i.e., this gain, purely

due to the choice of code is an additional coding gain.

In [10], Tarokh et al. also prove two limitations on the space-time code.

3This is not exactly the determinant since this is only the product of non-zero eigenvalues. However, since any

decent space-time code design would have full rank, in practice this is often referred to as the determinant criterion.
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Figure 7: Space-Time Trellis Codes proposed by Tarokh et.al. for a 4-PSK constellation

Figure 8: Results for the Space-Time Trellis Codes proposed in [10] for a 4-PSK constellation
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Theorem 1: If the signal constellation has 2b elements and A2bL(N, R) is the number of codewords

over L time instants with Hamming distance R, then the rate of the code (r), in bits/sec/Hz satisfies

r ≤ log2 A2bL(N, R)

L
. (71)

Furthermore, A2bL(N, R) < 2bL, i.e.

r ≤ b (72)

This tells us that to achieve a certain data throughput, one needs a certain level of complexity

in the signal constellation. However, clearly that also makes for a more complicated code. This is

especially true of the trellis codes suggested in [10].

The second result is specifically for trellis codes. The constraint length of a code is the number

of steps before again reaching the all-zero codeword.

Theorem 2: A R-space-time code must have constraint length greater than or equal to R − 1.

The second theorem tells us that to achieve a certain diversity order (R) one needs a suitably

complicated trellis. Since ML decoding is exponential in the constraint length, this also means one

needs a significantly complicated decoding mechanism. The decoding may therefore restrict the

diversity achievable by a code. Note that the transmit diversity order cannot, in any case, greater

than N , the number of transmit antennas.

3.4 Space Time Coding

Having described what makes a code good, Tarokh et al. also proposed some space-time trellis

codes that meet the criteria developed in Section 3.3. Figure 7 provides the trellis diagrams for

three codes presented in [10]. All three codes are for a 4-PSK constellation, achieving a rate of 2

b/s/Hz for a two-element array. The pairs of numbers on the left of the code represent the outputs

of the encoder to be transmitted from element. For example, the first trellis code has four states

(states 0-3). The data input is a serial train of 4-PSK symbols (data 0-3). If the code is in state 0

and the input is ‘1’, a ‘0’ is transmitted from antenna #0 and a ‘1’ is transmitted from antenna #1.

Similarly, if the code is in state 2 and the input is a ‘1’, a ‘2’ is transmitted from antenna #0 and

a ‘1’ is transmitted from antenna #1. The other two codes presented have 8 and 16 states. They

all achieve a transmit diversity order of 2, but with increasing coding complexity, the coding gain

is significantly increased.

Figure 8 plots the frame error rate versus SNR for several trellis codes with varying number

of states. The system has two transmitters and two receivers. All codes achieve diversity order 4

(2 on transmit and 2 on receive). However, note the additional gain in error rate with increasing

complexity of code. This is due to the coding gain, as described in Eqn. (67) in Section 3.3.
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The work of [10] has served as a huge step forward in the understanding of transmit diversity

and the area of space-time coding. The paper describes the essential properties to look for in a

proposed space-time code and provides certain codes with these properties. However, the paper

also points out some significant limitations of space-time coding. The two theorems in the earlier

section in particular point out that there is no free lunch. Data transfer and coding gain arise

at the expense of encoding complexity. There is another significant problem with the approach

developed so far - the trellis code needs to be designed, effectively, by brute force. Furthermore,

each code must be designed for every possible data constellation used, i.e., changing from a 4-PSK

to a 8-PSK required complete redesign of the code. Finally, trellis decoding is inherently complex

with exponential complexity in the number of states.

These problems, coupled with the extremely simple and flexible (in terms of signal constellation)

encoding block coding scheme proposed by Alamouti, led Tarokh and others to investigate generalize

the block coding concept.

3.5 Space-Time Block Codes

We saw in Section 3.2 a simple scheme for space-time coding that allows for order-2 diversity. This

section illustrates another approach to space-time coding, one based on encoding blocks of data

(a block of 2 data symbols in the Alamouti scheme). The symbols are arranged in a such a way

that, at the receiver, ML decoding can be performed individually on each symbol independent of

the other symbols. The data symbols, effectively, are ‘orthogonal’ to each other. In [11], Tarokh

et.al. develop the theory for orthogonal space-time block coding (OSTBC) for an arbitrary number

of elements, allowing for extremely simple decoding with almost no growth in complexity.

The development of OSTBC is based on the theory of orthogonal designs for real symbols un-

earthed by Tarokh and his co-authors in [11]. The authors extend these designs to include complex

symbols. The discussion summarizes some of the key results that leads to OSTBC. Consider again

a communication system with N transmitters and M receivers. The data is encoded over L time

slots. At the l-th time instant, the transmitter transmits data vector cl. The received data is

yl = Hcl + nl. (73)

Over the L time instants, the ML decoder finds the solution to

c̃ = min
c

L
∑

l=1

M
∑

m=1

∣

∣

∣

∣

∣

ym
l −

N
∑

n=1

hmncn
l

∣

∣

∣

∣

∣

2

. (74)

In a N × N orthogonal design, N data symbols {cn, } are transmitted over N time instants using

20



the N elements. The ML decoder is equivalent to

c̃ = min
{cn}

N
∑

n=1

en, (75)

where en is some measure of error. The key is that en depends on cn only, i.e., each symbol can be

decoded individually 4. Note that an orthogonal code has full rank in its corresponding error matrix.

Hence, the transmit diversity order, determined by the rank of the error matrix as in Eqn. (60), is

N .

3.5.1 Real Designs

The theory of OSTBC starts with real designs, assuming real data. A real orthogonal design is a

N × N matrix of “indeterminates” made of N variables xn or −xn. Given a block of N symbols,

the indeterminates are replaced with the corresponding symbols. At time instant l, the l-th row is

transmitted over the N antenna elements. For example, a 2 × 2 orthogonal design is

O2 =

(

x1 x2

−x2 x1

)

. (76)

Given a block of two symbols s1 and s2, at the first time instant, s1 is transmitted from the first

element and s2 from the second element. In the second instant, −s2 is transmitted from the first

element and s1 from the second element. Note that O2OT
2 =

(

x2
1 + x2

2

)

I2.

A linear processing orthogonal design E allows each row of the design to be linear combinations

of the N indeterminates. Given a row vector of indeterminates, x = (x1, x2, . . . , xN ), the lth row

of the matrix E is given by xAl for some matrix Al. The authors show that any linear design is

equivalent to another linear design L where

LLT =

(

N
∑

n=1

x2
n

)

IN . (77)

Constructing an orthogonal design therefore becomes equivalent to constructing matrices Al, l =

1, . . . , N that satisfy this requirement. The theory unearthed by Tarokh et al. is the Hurwitz-Radon

family of K matrices Bl, l = 1, . . . , K that satisfy

BT
l Bl = I BT

l = −Bl BlBm = −BmBl (78)

The l-th row of a linear design L is given by xBl. Note that to construct a square orthogonal

design, we need K = N − 1 (in addition, the first row of the design set to be the data vector x

itself, i.e. B1 = I).

4See [11] for the expression detailing en.
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According to the theory of Hurwitz and Radon, if N = 2ab with b odd and a = 4c + d with

c, d ≥ 0, the number of matrices in this family satisfies, K < ρ(N) = 8c + 2d. Therefore, the only

numbers that satisfy K = N − 1 are N = 2, 4, or 8. Therefore, only for a few specific cases is it

possible to construct a N × N orthogonal design (a square design).

The authors then generalize linear designs to non-square matrices. A block of K data symbols

(and possibly their negatives) are arranged in a linear L × N design. The lth row of this matrix is

transmitted in the lth time slot over the N elements. The rate of this code is clearly R = K/L. A

generalized linear design G satisfies

GGT =

(

K
∑

k=1

x2
k

)

I (79)

Clearly a desirable property is to minimize L for a given rate R. This would minimize the block

size in the encoding and decoding process. Denote as A(R, N) the minimum L for which a linear

design exists. The authors show that for real symbols there exists a rate-1 linear design for any N .

For example,

G3 =















x1 x2 x3

−x2 x1 −x4

−x3 x4 x1

−x4 −x3 x2















, (80)

which transmits K = 4 symbols over L = 4 time instants using N = 3 antennas.

3.5.2 Complex Designs

So far, we have focused on real designs only, i.e., designs for real symbols. Clearly, in a commu-

nication system we are also interested in designs for complex symbols. A complex design uses

as indeterminates symbol manipulations of the form ±x, ±x∗, ±jx, ±jx∗ where the superscript ∗

represents the complex conjugate.

Some important results:

• Any complex design is equivalent to a real design with xn(= xr
n + jxi

n) replaced with
(

xr
n xi

n

−xi
n xr

n

)

.

• Complex designs exist for N = 2 only.

• Any complex linear design is equivalent to a linear design Lc such that each entry in Lc is a

linear combination of xn or its conjugates.
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• A L × N generalized linear design satisfied GcGH
c =

(

∑K
k=1 |xk|2

)

I.

• Full rate linear designs exist for N=2 only.

• The maximum rate that can be guaranteed for an arbitrary N is R = 1/2. However, rate-3/4

“sporadic” codes exist for N = 3 and N = 4 and are provided in [11]. For example, the

rate-3/4 code for N = 3 and N = 4 are

G3 =

























x1 x2
x3√

2

−x∗
2 x∗

1
x3√

2

x∗

3√
2

x∗

3√
2

−x1−x∗

1
+x2−x∗

2

2

x∗

3√
2

− x∗

3√
2

x2+x∗

2
+x1−x∗

1

2

























, (81)

and

G4 =



























x1 x2
x3√

2
x3√

2

−x∗
2 x∗

1
x3√

2
− x3√

2

x∗

3√
2

x∗

3√
2

−x1−x∗

1
+x2−x∗

2

2
−x2−x∗

2
+x1−x∗

1

2

x2

3√
2

− x∗

3√
2

x2+x∗

2
+x1−x∗

1

2
x1+x∗

1
+x2−x∗

2

2



























, (82)

respectively.

In 2001, an alternative G4 matrix was proposed in [12]:

G4 =

























x1 0 x2 −x3

0 x∗
1 x∗

3 x2
2

−x∗
2 −x3 x∗

1 0

x∗
3 −x2 0 x∗

1

























, (83)

which interestingly may “save” on power due the inclusion of some zeros in the transmission.

The performance of OSTBC codes are presented in a companion paper [13]. Figure 9 plots

the BER versus SNR for two cases - rate of 3 b/s/Hz and 2b/s/Hz. For two antennas, as per the

theorem in [10] and in Section 3.4, achieving this rate requires constellations of 8 and 4 elements
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(8-PSK and 4-PSK here) respectively. However, for 3 and 4 antennas, achieving 3b/s/Hz requires a

constellation of 16-elements (16-QAM here) since one can only achieve a rate-3/4 code. Similarly,

for 2b/s/Hz, the transmitter uses 16-QAM with a rate-1/2 code.

Note that in the second figure, due to the greater number of constellation points to achieve

the same rate, using only two elements does better than 3 or 4 elements even for up to a BER of

10−3! This is because to satisfy the budget of a maximum total transmit energy of Es, with three

elements the signal from each element is transmitted with energy Es/3. However, note that the

three and four element schemes do achieve diversity orders of 3 and 4 respectively.

One interesting point listed above is that orthogonal complex rate-1 codes exist for N = 2

only. Alamouti’s code, the orthogonal code for N = 2 is therefore unique in its simplicity and

efficiency. This issue and the work in [11] has set off a lot of research in STBC that has higher

spectral efficiency, efficiencies close to unity. In general, these codes trade-off spectral efficiency for

complexity in decoding.

4 Tradeoffs Between Reliability and Throughput

So far we have analyzed the use of MIMO systems from two opposing points of view - how fast we can

transmit data (capacity in Section 2) and reliability (transmit diversity in Section 3). Admittedly,

unlike with transmit diversity, we have not developed any practical schemes that could achieve

the promised data throughput (which is probably impossible, but we haven’t even attempted to

come close). In particular, as with capacity a good practical scheme should be able to achieve the

linear gains (of order min(M, N)) in data throughput. However, intuitively we understand that

in transmitting data faster we will have to sacrifice reliability. This section discusses schemes to

achieve greater throughput, before concluding a statement of the fundamental tradeoff between

throughput and reliability.

In any case, for arrays with more than very few elements constructing a trellis code is difficult

and ML decoding becomes prohibitively complex. We also saw that efficient and simple block codes

exist only for N ≤ 4.

4.1 Combined Beamforming and STC

In [14], Tarokh et al. present a scheme that represents a tradeoff between data throughput and

diversity order. The scheme is based transmitting multiple data streams while limiting the coding

complexity but yet exploiting all available spatial degrees of freedom. Consider a transmitting array

of N elements divided into Q groups of sub-arrays, each with Nq elements, i.e.,
∑Q

q=1 Nq = N . At

the input, B bits are divided into Q blocks of Bq bits each. Using a low-complexity encoder
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(denoted as Cq, the Bq bits are encoded, yielding Nq symbols per time slot for transmission using

Nq elements. The overall code can be represented as C1 ×C2 × . . . ×CQ. Note that each code may

itself be a trellis or block code. Let cq denote the data transmitted using the qth subarray.

The receiver decodes each block of data successively. Without loss of generality we start with

decoding the first block. The data received at the M receiving elements is given by

y = Hc + n, (84)

=















h11 h12 · · · h1N1
h1(N1+1) · · · h1N

h21 h22 · · · h2N1
h2(N1+1) · · · h2N

...
... · · · ...

...
. . .

...

hM1 hM2 · · · hMN1
hM(N1+1) · · · hMN





























c1

c2

...

cQ















+ n, (85)

where the channel matrix H is partitioned to isolate the channel from the first subarray to the

receiver. Only N1 of the N transmitters are of interest. The data transmissions c2 to cQ (through

the channels from their respective transmitters) act as interference and degrade the decoding of

the data in the first block, c1.

Denote as Ω(C1) the M × N1 channel matrix from the N1 elements in the first subarray to

the M receive elements. Similarly denote as Λ(C1) the M × (N − N1) matrix of the “interfering”

channel5, i.e.

Ω(C1) =















h11 h12 · · · h1N1

h21 h22 · · · h2N1

...
... · · · ...

hM1 hM2 · · · hMN1















, Λ(C1) =















h1(N1+1) h1(N1+2) · · · h1N

h2(N1+1) h2(N1+2) · · · h2N

...
... · · · ...

hM(N1+1) hM(N1+2) · · · hMN















. (86)

Since Λ(C1) has N −N1 columns, if M > N −N1, rank(Λ(C1)) ≤ N −N1 and there exist at least

M − (N − N1) = (M − N + N1) vectors that are orthogonal to all (N − N1) vectors in Λ(C1).

Denote as Θ(C1) as the M × (M − N + N1) matrix whose columns are orthogonal to Λ(C1). In

addition, one can assume the columns of Θ(C1) are mutually orthonormal. Note that due to the

constraint M > N −N1, it is always possible to create matrix Θ(C1) given the channel matrix H.

Now consider a new set of “received” data

ỹ1 = Θ(C1)
Hy, (87)

= Θ(C1)
HΩ(C1)c1 + Θ(C1)

HΛ(C1)









c2

...

cQ









+ Θ(C1)
Hn, (88)

= Θ(C1)
HΩ(C1)c1 + Θ(C1)

Hn (89)

5The notation is in a large part from Tarokh et.al. [14]
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The noise term Θ(C1)
Hn is also zero-mean and satisfies E

{

Θ(C1)
HnnHΘ(C1)

}

= σ2Θ(C1)
HΘ(C1) =

σ2IM−N+N1
, i.e., the noise term is still white. Note that all the interference has been eliminated.

This final equation is that of an equivalent space-time coded communication system with N1

transmitters and (M − N + N1) receivers. On the data in c1 we therefore get a diversity order

of N1(M − N + N1), which is significantly lower than the potential diversity gain for a single

data stream of MN . Note that the achieved diversity order makes sense since the data stream

is transmitted using N1 antennas and the M receivers must use (N − N1) degrees of freedom to

suppress the (N−N1) transmissions, leaving (M−N +N1) degrees of freedom to enhance reliability

(diversity) on the N1 transmissions of interest.

Clearly one could repeat the process and achieve Nq(M − N + Nq) diversity order. However,

there is a more intelligent way of processing the same data. Assume the data in c1 is accurately

decoded. At the receiver, we now know the transmitted data from the first subarray and the channel

Ω(C1) and so when decoding c2, one can eliminate this source of interference from the data. Let

y2 = y − Ω(C1)c1 = Λ(C1)















c2

c3

...

cQ















+ n (90)

This is equivalent to a communication system with M receivers and N − N1 transmitters (or

N −N1−N2 interfering sources). To decode c2, only N2 of these transmitters are of interest. Using

the same scheme as described above, one can achieve N2 (M − (N − N1 + N2)) = N2(M − N +

N1 + N2)-order diversity. This is greater than the N2(M − N + N2) order diversity attained using

the “obvious” approach.

Repeating this process for each subarray, to decode cq one can achieve diversity order

Nq

(

M − N +
∑q

p=1 Np

)

, i.e., each successive data block can be decoded with greater diversity

order. This also leads to a variant on this scheme - since each block gets a different order of

diversity, one can transmit these blocks with different power levels to achieve somewhat equal error

rates. In [14] the authors suggest a power allocation in inverse proportion to diversity order.

IMP: The famous Bell Labs Layered Space-Time (BLAST) scheme [15] uses Nq = 1, with the

maximum data throughput but minimum diversity. The scheme is impractical in M ≥ N . In fact,

it should be noted that the BLAST scheme was known before Tarokh’s paper was published and

probably inspired this work.

The scheme presented in [14] is flexible in that it allows for a tradeoff between throughput

(multiplexing) and required reliability. However, it suffers from one significant drawback - the need

for an adequate number of antennas M > N−N1 such that a null space can be formed to cancel the

interference. As mentioned earlier, in cellular communications, one could expect multiple antennas
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at the base station, however, a mobile device would not have many antennas. Thinking in terms

of the downlink, expecting M > N −N1 may not be realistic. Note that BLAST requires M ≥ N .

An alternative analysis of the BLAST scheme (and one that clearly identifies the successive

interference cancellation structure of the scheme) uses the QR decomposition. Consider the simple

case of M = N . The transmission transmits N data streams in parallel (Nq = 1). Let the

transmitted vector be c = [c1c2 . . . cN ]. The received signal is

y = Hc + n. (91)

Since M = N , H is square and we can write H = QR where Q is unitary and R is upper triangular.

Therefore,

y = QRc + n,

ỹ = QHy = Rc + ñ, (92)

where ñ = QHn is the noise term with the same statistics as the original noise term n (since Q is

unitary).

Since R is upper triangular, note that the M th data stream effectively “sees” a SISO channel.

Once this symbol has been decoded it can be cancelled before decoding the (M −1)th stream. Note

that since the M th data stream sees a SISO channel, the diversity order is 1.

4.2 Linear Dispersion Codes

In 2002 Hassibi and Hochwald [16] published their work on linear dispersion codes, a variation on

block codes, to address the problem of flexibility in terms of system design, data rate coupled with

diversity order. LD codes have some very useful properties:

• BLAST (as described above) and STBC are special cases of LD codes, though LD codes

generally outperform both while being simple to encode.

• LD codes are extremely flexible and can be used for any values of M and N .

• They can be decoded using the successive interference cancellation technique described above

(in Section 4.1) and others such as sphere decoding.

• LD codes are designed to maximize the mutual information between input and output (closely

tied to capacity)

LD codes have one other property that the authors present as desirable, but may not be - the

codes are designed with the specific values of M and N in mind, i.e., changing the number of receive
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antennas implies changing the code used. In practice the same transmitter may be communicating

with many types of receivers - or receivers with different numbers of antennas. Using a different code

for each receiver is impractical. The authors propose designing the code for a minimum number

of receive antennas; however, that would in practice be M = 1 thereby significantly reducing the

data throughput gains provided by LD codes.

Let us begin by investigating the information theoretic aspects of Alamouti’s STBC for two

transmit elements. Remember that Eqn. (36) tells us that a MIMO system with N transmit and

M receive antennas has capacity,

C = E

{

log2 det

(

IM +
Es

Nσ2
HHH

)}

. (93)

With N = 2 and M = 1, H = [h0, h1] and C = E
{

log2

(

1 + Es

2σ2

[

|h0|2 + |h1|2
])}

.

In using the Alamouti scheme, transmitting symbols s0 and s1 over two time slots, Eqn. (49)

indicates that the received data can be written as

⇒
[

y0

y∗1

]

=

√

Es

2

[

h0 h1

h∗
1 −h∗

0

][

s0

s1

]

+

[

n0

n∗
1

]

, (94)

⇒ y = H
[

s0

s1

]

+ n, (95)

where HHH =
[

|h0|2 + |h1|2
]

I2. This final equation suggests that the mutual information between

the input and the output for Alamouti’s scheme is

CAlamouti =
1

2
E

{

log2 det

(

I2 +
Es

2σ2
HHH

)}

, (96)

where we use C that seems to indicate capacity, but in reality is only the maximum mutual infor-

mation between the input and output using Alamouti’s scheme. The factor of half is because of

the fact that we transmit the two symbols over two time slots. Using the fact that the determinant

of a matrix is the product of its eigenvalues,

CAlamouti = E

{

log2

(

1 +
Es

2σ2

[

|h0|2 + |h1|2
]

)}

, (97)

implying that if the encoder used to obtain symbols s0 and s1 is capacity achieving, Alamouti’s

code for N = 2 and M = 1 is also achieves capacity!

However, if one is using Alamouti’s code for N = 2 and M = 2, the maximum mutual informa-

tion between the input symbols and output can be shown to be

CAlamouti = E

{

log

(

1 +
2Es

4σ2

[

|h00|2 + |h01|2 + |h10|2 + |h11|2
]

)}

, (98)
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where hmn is the channel from antenna #n to antenna #m. This expression is the capacity of

N = 4, M = 1, not N = 2,M = 2. Due the linear gains in capacity with N = 2,M = 2, Alamouti’s

space-time code does not achieve capacity for N = 2,M = 2.

A similar analysis of the BLAST scheme as described in Section 4.1 indicates that the BLAST

scheme achieves capacity since it transmits N data streams, but provides no diversity (the reliability

of a SISO channel).

4.2.1 Linear Dispersion Code Design

Consider a linear code that transmits K data symbols over L time symbols, i.e., achieves a rate of

R = K/L. The K complex symbols are sk = αk + jβk, k = 1, . . . , K. The linear dispersion code is

a L × N matrix S given by

S =
K
∑

k=1

(αkAk + jβkBk) , (99)

where Ak and Bk are L × N matrices that define the code. For example, Alamouti’s code uses

K = L = N = 2 with

A1 =

[

1 0

0 1

]

, A2 =

[

0 1

−1 0

]

, B1 =

[

1 0

0 −1

]

, B2 =

[

0 1

1 0

]

. (100)

In time slot l the lth row of S is transmitted over the N transmit antennas. In the lth time slot,

the received data is

x(l) = Hs(l) + nl, (101)

where s(l) is transmitted at time slot l. Since s(l) is linearly dependent on the data symbols

(represented in its real and imaginary parts αk and βk), if we were to stack the real and imaginary

30



parts of x(l), l = 1, . . . , L,

x =







































































































xr1(1)

xi1(1)

xr2(1)

xi2(1)
...

xrM (1)

xiM (1)

xr1(2)

xi1(2)
...

xrM (2)

xiM (2)

xr1(L)

xi1(L)

xr2(L)

xi2(L)
...

xrM (L)

xiM (L)







































































































2ML×1

= H































α1

β1

α2

β2

...

αK

βK































2K×1

+ n, (102)

where xrm(l)/xim(l) is the real/imaginary part of the received data at the mth element at the lth

time slot. The 2ML × 2K effective channel matrix H is dependent on the code matrices Ak and

Bk, k = 1, . . . , K.

The linear dispersion code maximizes the mutual information between the input data and the

output, given by

{Ak,Bk} = arg max
Ak,Bk,k=1,...,K

[

1

2L
log2 det

(

I2ML +
Es

Nσ2
HHH

)]

, (103)

where the factor of half is due to the fact that we are now using real data (we have separated out

the real and imaginary parts). This optimization problem must be constrained to ensure that the

transmit energy is bounded. The constraint is

K
∑

k=1

tr
(

AkA
H
k + BkB

H
k

)

≤ 2NL. (104)

The solution to this constrained optimization problem defines the code. The authors also show that

31



Figure 10: Comparing the performance of Alamouti and linear dispersion space-time codes.

the average pairwise error probability (Pe(avg.) ≤ C−0.5
max ), i.e., maximizing the mutual information

also enables reliability.

Numerical Examples: The design methodology described above is tested against the Alamouti code

for the case of N = 2, M = 2 and R = 8bits/channel use. The Alamouti code must therefore use a

256-point constellation (here 256-QAM). The dispersion code, designed for K = 4 and L = 2, uses

a 16-QAM constellation. Figure 10 compares the performance of the two space-time codes. The

line marked “OD” corresponds to the orthogonal Alamouti design whereas the lines marked (31)

and (34) are two variations on the LD code design. Clearly both codes achieve order-2 diversity

though both LD codes perform significantly better than Alamouti’s code. Note that the there is a

tradeoff in that ML decoding of the Alamouti code requires only symbol by symbol decoding where

the LD code requires successive interference cancellation or sphere decoding.

The LD design methodology is also compared to the BLAST scheme for the case of N = 2,

M = 2, R = 4 bits/channel use. The design uses K = 4. Figure 11 plots the results of using

the two transmission schemes. The top two curves correspond to the BLAST scheme - the worse

performance corresponds to the case (described above) with the successive cancellation and nulling

which suffers from error propagation. The lower curve corresponds to ML decoding. The two
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Figure 11: Comparing the performance of BLAST and linear dispersion space-time codes.

better curves correspond to the LD codes with sphere decoding6. Clearly, again, LD codes perform

significantly better than the BLAST scheme. Note specifically that the LD codes achieve a greater

diversity order.

In summary, linear dispersion codes, designed to maximize the mutual information between

input and output ,with the specific values of M , N and rate in mind significantly outperform

other well known codes. If required to deal with several types of receivers with varying numbers of

receive antennas, the authors suggest to use a design for the minimum numbers of receive antennas.

However, this, of course, results in some performance loss.

5 Diversity-Multiplexing Tradeoff

We end this chapter by stating the fundamental tradeoff, stated by Zheng and Tse, between diversity

order and data throughput (also multiplexing) [17]. We have seen that given a diversity order of d

the probability of error in Rayleigh channels is given by Pe ∝ SNR−d at high SNR. Similarly, with

a system using N transmit and M receive antennas, the capacity of the system raises (in the high

SNR limit) as C ∝ min(M, N) log(SNR).

6Outside the scope of this course. A sub-optimal efficient decoding technique.
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Figure 12: Illustrating the diversity-multiplexing tradeoff.

Note that the capacity expression indicates that to achieve capacity one must transmit data

faster as the SNR increases. The authors define a scheme C(SNR) to achieve diversity gain d and

multiplexing gain r if

lim
SNR→∞

log Pe(SNR)

log SNR
= −d (105)

lim
SNR→∞

R(SNR)

log SNR
= r (106)

where R(SNR) is the data throughput of the scheme. Note that the scheme assumes that as the

SNR increases the data rate rises as well (possibly through adaptive modulation). Any scheme

with a fixed data rate, however high, is said to have a multiplexing gain of zero. In this regard,

all schemes we have developed so far have a multiplexing gain of zero. The thinking behind such

a definition is that as the SNR increases one could either gain reliability (reduce Pe) or increase

throughput or part of each. The definition determines how much of each we gain as SNR increases.

Let d⋆(r) be the supremum of all possible schemes with multiplexing gain r. Clearly dmax =

d⋆(0) and rmax = sup(r : d⋆(r) > 0). The authors state the most interesting result:

Diversity Multiplexing Tradeoff: Consider the case of N transmit and M receive antennas.

For a block length L > M +N −1, the optimal tradeoff curve, d⋆(r) is given by the piecewise-linear
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function connecting the points (r, d⋆(r)), r = 0, 1, . . . , min(M, N), where

d⋆(r) = (M − r)(N − r). (107)

In particular, dmax = MN and rmax = min(M, N).

Figure 12 illustrates the fundamental tradeoff between reliability (diversity order) and data

rate (multiplexing). The curve is piecewise linear joining the points (k, d⋆(k)) with d⋆(k) defined

in Eqn. (107). The theorem states that it is not possible to use the available SNR in any manner

better than this curve. Note that as expected at zero multiplexing gain, the diversity order that can

be achieved is MN whereas if one where increasing the data throughput as min(M, N) log(SNR),

there is no diversity, i.e., the error rate does not fall with SNR.

Equation (107) suggests that at the integer points, when the multiplexing rate is r, the system

communicates r parallel data streams. The transmitter and receive each use r degrees of freedom

to eliminate the inter-stream interference leaving a diversity order of (M − r)(N − r). Another

interpretation uses the eigenvalues of the channel matrix [18]. A multiplexing rate of r says that the

raw data rate of transmission is R = r log(SNR). An outage occurs when the mutual information

falls below this rate. The mutual information is given by

C = log2 det

(

IM +
Es

Nσ2
HHH

)

=

min(N,M)
∑

m=1

log2

(

1 +
Es

Nσ2
λm

)

, (108)

where λm, m = 1, . . .M are the eigenvalues of HHH .

At high SNR, we can ignore the “1 + ”. For an outage to occur we need

min(N,M)
∑

m=1

log2

(

SNR

N
λm

)

< r log2(SNR). (109)

The outage events are therefore controlled by the eigenvalues of HHH . For an outage to happen,

these eigenvalues have to be “bad” (small).

• If r is close to zero, an outage occurs if all eigenvalues are poor. This happens rarely (and

yields diversity order MN).

• If r = min(N, M), we need all eigenvalues to be large to avoid an outage (note that the number

of the ‘large’ eigenvalues effectively provides the linear term in front of the log2(SNR).)

• Somewhere in between, to avoid an outage, we need r of the eigenvalues to be large enough,

resulting in a diversity order of (M − r)(N − r).
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6 Summary

This chapter has covered a lot of ground. We started by developing the information theory of

multiple input multiple output systems. The key was that in fading channels, the gains in capacity

were linear in the number of independent channels between transmitter and receiver. The maximum

gain is on order of min(N, M). So while all of this is very exciting, note that there are some

significant costs that must be met to achieve these great gains. This set the theoretical limit on

how fast we could transmit in a MIMO channel.

We then investigated transmit diversity - using the multiple inputs and outputs for reliable

communications. In this regard, the work of Tarokh [10,11,14] proved crucial. We began with the

extremely simple Alamouti code [9]. We showed that transmit diversity is possible, though requires

use of the time dimension as well. We then asked the question - what makes a particular code good?

In [10], the authors develop two criteria for good codes: the error matrix in Eqn. (60) must be full

rank (diversity order) and the product of the eigenvalues must be maximized (to achieve coding

gain). However, they also show that for large N , the coding must necessarily become prohibitively

complex. In [11], the authors generalize the Alamouti space-time block coding scheme for an

arbitrary number of elements. They show that it is not possible to have rate-1 orthogonal codes

for N > 2. However, for N = 3 or N = 4, rate-3/4 orthogonal codes are possible. Finally, in [14],

Tarokh et.al. generalize the BLAST concept to combine the benefits of space-time coding while

yet using all available degrees of freedom.

We also investigated other schemes achieve a specific rate while attempting to maximize diver-

sity. The linear dispersion codes of Hassibi and Hochwald allowed for a simple framework to design

such codes. We wrapped up this chapter by stating a fundamental tradeoff between reliability

(diversity order) and throughput (multiplexing gain).
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