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Overview

• Radar basics and background
waveforms– waveforms

•pulse compression

•ambiguity function•ambiguity function

– phased array radars

– STAPSTAP

– target models

– early look at waveform diversityearly look at waveform diversity
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Overview (2)

• MIMO Radar
– importance of diversity– importance of diversity

– virtual array representation

– theoretical analysestheoretical analyses
•target models

•diversity ordery

– STAP with distributed sensors

• MIMO and Waveform Diversityy
– MIMO ambiguity function

– waveform design
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– fast-time & slow-time MIMO



I : Radar Basics

Single transmitter/receiver

Range = R

Transmitted signal : 
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Received signal : 



I.1: Radar Basics : Ideal

Ideal Transmitted Signal:

time

Ideal Received I Ideal Received 
Signal

time

Issues:

• Noise

• Peak-to-average power

• Bandwidth
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Radar Basics : Bandlimited Pulses

• Transmit a pulse (effectively) limited in time and 
frequency  e gfrequency, e.g.,

T

∆• Range resolution (∆R) proportional to T
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Radar Basics : Bandlimited Pulses (2)

Transmitted Signal:

Receiver Range Receiver resolution
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Range resolution inversely 
proportional to bandwidth



Radar Basics : Bandlimited Pulses (3)

• Matched filter:                    ;: gathers all energy in  

D t t t g t b  fi di g th  i  f th  t t • Detect target by finding the maximum of the output 
of the matched filter

target declared present if signal above some threshold– target declared present if signal above some threshold

– target range from round-trip time

• This is equivalent to pulse compression• This is equivalent to pulse compression
– transmitted signal spread over long time

– receiver creates very narrow signal in time– receiver creates very narrow signal in time
•range resolution inversely proportional to bandwidth 

(∆R ≈ c/2B)
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•improvement in resolution ≈ time-bandwidth product



Radar Basics : Doppler Shift

• What if the target is moving? Doppler shift:

bank of matched filters– bank of matched filters
•each matched to a single Doppler frequency

• Detect target by finding the maximum of the output • Detect target by finding the maximum of the output 
of the matched filters
– target present if signal above some thresholdtarget present if signal above some threshold

– target range from round-trip time

– target Doppler from which MF provides the max
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Radar Basics : Ambiguity Function

• Range-Doppler resolution determined by the 
ambiguity functionambiguity function
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Radar Basics : Ambiguity Function (2)

• Indicates the spread in delay (  ) and Doppler (    ) 
due to the matched filterdue to the matched filter
– determines the resolution in range and Doppler

• Key properties:
Energy: – Energy: 

– Fixed area: – Fixed area: 
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Background : Popular Waveforms

• Linear FM: FM modulate a linear signal
instantaneous frequency is proportional to time– instantaneous frequency is proportional to time

– time shift implies a frequency shift…
• leading to a coupling in range and Doppler•…leading to a coupling in range and Doppler

– constant envelope signal

– Doppler tolerant in that characteristics  e g  Doppler tolerant in that characteristics, e.g., 
sidelobes, not affected by Doppler shift of target

• Phase-coded waveforms
– Subdivide a long pulse into    “chips” 

– in each chip use a different phase for the transmit 
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p p
waveform



Background : Popular Waveforms (2)

• Resolution function of chip length, not pulse length

C  h  th  h   t  g  i i i  • Can choose the phase sequence to e.g., minimize 
sidelobe levels

• Biphase codes• Biphase codes
– phases of 0 and 180 degrees only

Barker codes– Barker codes
•achieve best peak-to-sidelobe ratio

– Maximal length sequencesMaximal length sequences
•low peak sidelobes, high average sidelobes compared 

to LFM
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•poor spectral characteristics without bandlimiting



Background : Popular Waveforms (3)

• Polyphase codes
polyphase Barker codes through exhaustive search– polyphase Barker codes through exhaustive search

– Frank, P1 and P2 codes
•lower sidelobe levels for same length•lower sidelobe levels for same length

•P1 and P2 codes are robust to bandlimiting

•All have poor Doppler tolerancea e poo opp e to e a ce
– range sidelobes raise dramatically with Doppler

•P3 and P4 codes mimic LFM and can be robust to 
b dli iti (P4)bandlimiting (P4)

IRSI’11 December 2011



I.2 : Phased Arrays

• So far, we assumed a single transmit antenna with 
an isotropic patternan isotropic pattern
– energy sprayed in all directions equally

– radar range improved using directive antennas– radar range improved using directive antennas

• Phased arrays provide digital control of antenna • Phased arrays provide digital control of antenna 
patterns
– control location of the mainbeam using phase shifts

IRSI’11 December 2011

control location of the mainbeam using phase shifts



Phased Arrays (2)

• Consider a linear, equi-
spaced phased arrayspaced phased array

• : inter-element 
spacingspacing

• Controlling phase         
shift      controls the shift      controls the 
direction of mainbeam

• Can provide gains in p g
SNR of up to 
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Phased Arrays (3)

• Received signal

• : noise,     : target amplitude

• : look angle,                    is the wavenumber

• Optimal weights: 

• Optimal because                                     and the 
matched filter is optimal in white noise 
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Phased Arrays (4)

The weights cause a beampattern - with a peak at the look direction

Look angle = 0o Look angle = 45o
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Look angle  0 Look angle  45

Inter-element spacing = 



Phased Arrays (5)

•However, depending on 
the spacing, the entire p g,
space may not 

– be visible (closely spaced 
elements – not really 

Grating lobes

relevant to MIMO radar)
– be uniquely identifiable:  

grating lobes with widely 
spaced elements

Look angle = 0o

spaced elements
– grating lobes are caused by 

coherent addition at multiple 
angles

– use unequally spaced 
elements
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Inter-element spacing = 



Phased Arrays (6)

• So far, we have focused on detection of a single 
target in noisetarget in noise
– what if there is interference?

•e g  clutter  external sources of interferencee.g., clutter, external sources of interference

– can use an array to suppress interference while 
maintaining gain on the target

– key: knowing the target signature that we are 
searching for

For a linear array with look direction 
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Phased Arrays (7)

• Received signal

N     i l d  b h i f  d i• Now,    includes both interference and noise

• Key difference from noise-only case

• Interference is now “coloured”
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Phased Arrays (8)

• With interference, optimal weights require both 
amplitude and phase controlamplitude and phase control

• : the steering vector corresponding to the look
directiondirection
– this may not be the target direction

– target is discrete interference when looking – target is discrete interference when looking 
elsewhere!
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Phased Arrays (9)

• With these weights

• Also,
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• This is the whiten-then-match filter



Phased Arrays (10)

• The most important problem: the matrix     is 
unknown a prioriunknown a priori
– must be estimated using training data samples

– need at least       samples  – need at least       samples  

– these samples must 
•not contain any targetnot contain any target

•be “homogeneous”, i.e., statistically independent and 
identically distributed in relation to the interference

– usually, for each look range (the primary range cell) 
choose training data from range cells close by

l  ll d d  d t
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•also called secondary data



I.3 : Space-Time Adaptive Processing

• Can extend this to both space and time
because target may not be seen in 1D only– because target may not be seen in 1D only
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Space-Time Adaptive Processing (2)

• elements (spatial channels),      pulses in a 
coherent pulse interval (CPI)coherent pulse interval (CPI)
– Use of multiple pulses provides Doppler resolution

– : pulse repetition rate– : pulse repetition rate

– : the look Doppler frequency
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Space-Time Adaptive Processing (3)

• Again,                    , however, now…

• …and     is an                      matrix, making 
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estimating this matrix very hard



Space-Time Adaptive Processing (4)

• To deal with estimation issues, usually one reduces 
the adaptive degrees of freedom (DoF) the adaptive degrees of freedom (DoF) 
– joint domain localized processing

•processing in a small region around look angle/Dopplerprocessing in a small region around look angle/Doppler

– Σ∆—STAP
•Use sum (Σ) and difference (∆) channels only( ) ( ) y

– parametric adaptive matched filter
•parametrize the matched filter

– fast fully adaptive processing
•break large problem into a series of small problems
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– many others



STAP (5): Reduced Rank STAP

• Several reduced rank methods can be described as

• Computational load is reduced by a factor of 

• Required sample support
– in practice, sample support is the fundamental 
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Space-Time Adaptive Processing (6)

• In applying STAP in the real world, a non-
homogeneity detector (NHD) is importanthomogeneity detector (NHD) is important
– identifies samples within the secondary data set that 

are statistically inconsistent are statistically inconsistent 
•these samples are discarded

• Several types of NHD in the literatureyp
– all search for some kind of discriminant

• Reducing DoF coupled with NHD makes it possible to g p p
implement STAP
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I.4 : Target Models

• Target amplitude a function of its radar cross section 
for complex targets  a sum of returns from different – for complex targets, a sum of returns from different 
parts making the amplitude a random variable

• Swerling models:• Swerling models:
– Type I: Amplitude Gaussian, independent scan-to-scan

– Type II: like type-I  independent pulse-to-pulseType II: like type I, independent pulse to pulse

– Type III: One dominant, other smaller surfaces: 
constant plus Gaussian independent scan-to-scanp p

– Type IV: like type-III, independent pulse-to-pulse

– Type V: constant throughout
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•best case



I.5 : Waveform Diversity

• Broad term covering waveform design and adapting 
waveforms in real-time to better improve waveforms in real-time to better improve 
detection/localization
– generally try to improve signal-to-interference plus generally try to improve signal to interference plus 

noise ratio

• “Diversity” implies having a choice of multiple y p g p
waveforms to achieve a specific purpose

• Start with waveform design…
– …followed by MIMO radar…

– …followed by joint consideration of MIMO radar and 

IRSI’11 December 2011

waveforms



A Brief History

• Waveform Diversity
first discussions in late 1990s at AFRL Rome– first discussions in late 1990s at AFRL-Rome

– had spent 90s working on STAP and knowledge-based 
processingprocessing

– some work on joint design of waveforms and processing

– renewed interest in distributed aperturesrenewed interest in distributed apertures

• Work at AFRL and other place culminated in the 1st

Annual Waveform Diversity Workshop in Feb. 2003 y p
– stayed “annual” until 2005 or so…

– was expanded into the series of Waveform Diversity and 
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An Early Waveform Design Problem

• Received signal: 

• Output signal:

• We want max-SNR in output signal – sampled at 
appropriate time 

• Use the fact that noise is white: 
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Waveform Design (2)

B  C h S h                          h  h d • By Cauchy-Schwarz,                        ,, the matched 
filter

f• In turn, if the transmitter knows       , what is the 
optimal      ?

th   th t i i  th  SNR
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– the one that maximizes the SNR



Waveform Design (3)

• This leads to an eigenvalue equation

hwhere

is the kernel of the channel

• This arises because of the magnitude squared term 
Sin the SNR

• Choose eigenfunction corresponding to largest  
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• If noise is coloured, whiten it first



Waveform Design (4)

• Need to normalize the energy to ensure the 
transmitter meets its power constrainttransmitter meets its power constraint

• So far, no limit on bandwidth
incorporate bandwidth constraints by limiting the – incorporate bandwidth constraints by limiting the 
kernel function in the frequency domain

• Special case: flat channelSpecial case: flat channel
– leads to prolate spheroidal wave functions
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II : MIMO Radar

• Multiple Input Multiple Output radar systems
exploits multiple transmitters  multiple receivers  – exploits multiple transmitters, multiple receivers, 
multiple waveforms 

•i.e., all available degrees of freedomi.e., all available degrees of freedom

– a generalization of multistatic radar 

– let’s agree that MIMO radar research did not start in g
2004

•called “multistatic radar”, “distributed apertures”, 
“waveform diversity”, “netted radar”….

•it is important to emphasize that MIMO radar 
research builds on previous works in this area
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MIMO Radar : Introduction (2)

• Statistical MIMO radar:
often widely spaced apertures– often widely spaced apertures

•conceivably acts as one big aperture

– the target response for each transmit-receive pair is – the target response for each transmit-receive pair is 
statistically independent 

•possibly due to different look angles or different p y g
frequencies

• Coherent MIMO radar
– closely spaced apertures operating on the same 

frequency, e.g., French RIAS system (1984)

    ll i
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– same target response to all tx-rx pairs



II.1 : Sample Result

Without Frequency Offset (No Diversity) With Frequency Offset (Waveform Diversity)

Beampatterns

Without Frequency Offset (No Diversity) With Frequency Offset (Waveform Diversity)
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Sample Results : Uniform Spacing 

Ability to distinguish signal from interference

Without Frequency Offset (No Diversity) With Frequency Offset (Waveform Diversity)
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Signal-to-jammer ratio



II.2 Virtual Array Representation

• Consider      transmit and      receive antennas
transmitters at – transmitters at 

– receivers at 

assume that the transmitters transmit      orthogonal – assume that the transmitters transmit      orthogonal 
coherent waveforms 

•e.g., using orthogonal codes g , g g

•the receiver can distinguish each waveform without 
error

•after matching to the        transmit signal at the         
receiver the received signal from target is
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Virtual Array Representation (2)

• where

Thi  i  i l    i      • This is equivalent to a receive aperture at   
locations

A th  i t t ti  h t itt  h  it   • Another interpretation: each transmitter has its own 
receive aperture

the positions of the virtual array are a convolution of – the positions of the virtual array are a convolution of 
the transmitter and receiver positions
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Virtual Array Representation (3)

• Consider the transmitters and receivers on a grid
usually grid of       spacing– usually grid of       spacing

– for now consider a 1-D line

• Example: 3 transmitter antennas at [1 1 1]• Example: 3 transmitter antennas at [1 1 1]

3 receive antennas at [1 1 1] (co-located)

E i l t t  5 i  t  ith l ti  • Equivalent to 5 receive antennas with relative 
weighting of [ 1 2 3 2 1 ]

acts a virtual array of 5 elements– acts a virtual array of 5 elements

– some elements have excess weighting because they 
are sampled repeatedly 
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are sampled repeatedly 
•e.g., Tx1-to-Rx3 is the same as Tx3-to-Rx1



Virtual Array Representation (4)

• Can be further improved by using a thinned array

E l  3 t  l t  t [1 1 0 1] d • Example: 3 antenna elements at [1 1 0 1] and co-
located receive antennas results in a virtual array of 
[1  2  1  2  2  0  1] (a 6-element virtual array)[1  2  1  2  2  0  1] (a 6 element virtual array)

• Transmitter and receiver not necessarily co-located

• Example: 3 transmitter antennas at [1 1 1]• Example: 3 transmitter antennas at [1 1 1]

3 receive antennas at [1 0 0 1 0 0 1 0 0]

results in [ 1 1 1 1 1 1 1 1 1] (9 elements)results in [ 1 1 1 1 1 1 1 1 1] (9 elements)

• Here, there are no repeated paths and each 
transmit receive pair is unique 
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transmit-receive pair is unique 



Impact on Resolvability

•Co-located antennas provides 
only a little improvement in 

l bilit  resolvability 

•improves antenna due to 
transmit and receive 

•Max diversity creates the 
largest virtual array

•leads to improvements in 
both gain and 
resolvability
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Impact on Resolvability (2)

•6 targets equally spaced in 
angle

•Vertical lines indicate 
locations of targets

•The max-diversity array can 
detect all 6

•The co-located antennas case 
detects 4 of the 6 reliably

•small errors visible

•Receive only processing 
cannot detect any 

•Depends on orthogonal 
transmissions
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Parameter Estimation

• With a receive phased array:      elements in array
can estimate up to            parameters– can estimate up to            parameters

With l t d t / MIMO                     i  • With co-located tx/rx MIMO array:                    in 
virtual array

• Max # elements in virtual MIMO array:• Max # elements in virtual MIMO array:
– can estimate up to between  

andand

parameters 
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II.3 : Theoretical Analysis

IRSI’11 December 2011
How do we characterize such a system?



II.3.1 : Target Models

• In the case of co-located antennas, the target 
response is the same to all antennasresponse is the same to all antennas

• transmit antennas,     receive antennas,     pulses 
transmit antennas at– transmit antennas at

– receiver antennas at

– parameter vector for transmitter    receiver   :– parameter vector for transmitter   , receiver   :

– target at location:   , velocity   , parameters

– relative delay,      relative Doppler, 
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relative delay,      relative Doppler, 



Target Models (2)

• Signal transmitted by antenna   :

Sig l i d b  t    
not 

• Signal received by antenna   : antenna index!

• : target amplitude seen at receiver due to 
ig l f  t itt  signal from transmitter 

• Next step: matched filtering and sampling
ibl  hi        l  h– possibly matching to      pulse shapes

– pulses in a CPI
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Target Models (3)

• Writing the signal over     pulses into a vector

• :        : signal matrix,                   amplitude 
vectorvector

• Now, combining all      receive antennas 

: noise vector
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Target Models (4)

• Also,

• The data covariance matrix given by
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Target Models (5)

• Rank of     is the key : an                       matrix 

• If rank-1,                  and the target signal is coherent
across the          transmit receive pairsacross the          transmit-receive pairs
– a coherent target, for example with co-located MIMO 

radarradar

• If rank =         (maximum possible), the target 
returns are non-coherent across the         transmit-returns are non coherent across the         transmit
receive pairs
– a non-coherent target and maximum diversity
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II.3.2 : Diversity Order

• In wireless communications, diversity order 
measures the number of independent paths in measures the number of independent paths in 
multi-antenna systems
– slope of the BER v/s SNR curve at high SNRslope of the BER v/s SNR curve at high SNR

– usually achieved at moderate SNR regime

• Can we use this idea in MIMO radar systems?Can we use this idea in MIMO radar systems?

• A few concerns:
– High SNR is irrelevant in radar systemsHigh SNR is irrelevant in radar systems

– Probabilities of detection/miss only make sense if 
false alarm is kept constant
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Background

• A regular radar is characterized by its probability of 
detection      for a fixed probability of false alarmdetection      for a fixed probability of false alarm

• We wish to analyze the impact of using multiple 
independent (    ) platformsindependent (    ) platforms

• Let’s start with a single platform; the received 
signal vector is given bysignal vector is given by
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Background (2)

• This signal is processed using the weights

leading to the statistic 

• Neyman-Pearson test uses the likelihood ratio:

:: the target present hypothesis

: the target absent hypothesis
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: threshold that determines 



Background (3)

• Under     ,    is exponentially distributed with mean     
andand

• Similarly  under      isis exponentially distributed • Similarly, under     , isis exponentially distributed 
with mean     and

• Note that reducing the threshold (increasing 
sensitivity) increases both      and sensitivity) increases both      and 

• As we use a MIMO radar, the analysis must account 
for this increase in both measures
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Illustrating Diversity Order in MIMO
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Diversity Order : Definition

• Our definition also uses a slope:

The diversity order of a radar system is the slope in a 
linear scale of the probability of detection versus SNR linear scale of the probability of detection versus SNR 

curve at for a fixed probability of false alarm.

• Definition captures
– the SNR range of interestg

– is valid only for a fixed false alarm rate

– the interaction of the spatial degrees of freedom and 
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System Model

• sensors, 
antennas each

• Noise limited

• Uses the 
Swerling-II model 
for the target

• Signal received 
t  at sensor :
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Single Sensor

• For a single sensor

d di i  d  i  and diversity order is 

• For co-located antennas that see the same target 
lit d  ( t ll  MIMO) di it  d  i  amplitude (not really MIMO) diversity order is 
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Joint Detection

• Each sensor transmits its exact likelihood ratio to a 
fusion centerfusion center
– the fusion center combines the LR from all    sensors

•the LR are proportional to signal powerthe LR are proportional to signal power

•similar to maximal ratio combining in communications

– each sensor contributes an exponential RVp
•the sum follows a gamma distribution
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Joint Detection (2)

• PDF under      provides the threshold by finding the 
false alarm rate (       )false alarm rate (       )

• PDF under      then finds

• For large     the diversity order proportional to• For large    , the diversity order proportional to

• The improved detection probability is partially
offset by increased false alarm rate offset by increased false alarm rate 
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Distributed Detection

• The Neyman-Pearson test is optimal under CFAR
Each sensor reports a local decision (    ) to the – Each sensor reports a local decision (    ) to the 
fusion center

• The fusion center combines the decisions into a • The fusion center combines the decisions into a 
final decision

• Optimal combiner needs knowledge of statistics at Optimal combiner needs knowledge of statistics at 
the sensors:

– compare          to a threshold that sets 

IRSI’11 December 2011

– Again, the diversity order is proportional to 



Distributed Detection (2)

• More practically, 
OR  AND  MAJ rules– OR, AND, MAJ rules

• OR rule: the diversity order is proportional to

AND l  th  di it  d  i  ti l t  • AND rule: the diversity order is proportional to 
– there is no gain due to distributed sensors

th  d d d t ti  b bilit  i  ff t tl  b  – the reduced detection probability is offset exactly by 
the reduced false alarm rate

• MAJ rule: somewhere in between• MAJ rule: somewhere in between
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II.4 : STAP with Distributed Sensors

• Non-Frequency Diversity (NFD) Case :     platforms 
use same frequency (overlapping waveforms)use same frequency (overlapping waveforms)
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STAP with Distributed Sensors (2)

• Frequency Diversity (FD)/orthogonal waveforms case
Each platform uses a different frequency – Each platform uses a different frequency 
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System Model

• Received signal
NFD case– NFD case

pp

q

– FD case

Reflector
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Interference Covariance Matrix

• Define 

NFD • NFD case

• FD case
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(De)Centralized? (Sub)Optimum?

• Centralized Algorithm                                         Decentrailzed Algorithm

Fusion

Center
Fusion

Center

1/0 1/0

binary 
decision

1/0

Optimum Algorithm                                         Suboptimum (Reduced Rank) Algorithm
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Decentralized Reduced Rank Algorithm

• Optimum Centralized Algorithm
Computation Load– -- Computation Load

– -- Sample Support

Large Communication BW– -- Large Communication BW

– + Optimum Performance

FusionFusion

Center
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Decentralized Reduced Rank Algorithm

• Optimum Decentralized Algorithm
Still have computation load & sample support – -- Still have computation load & sample support 

problem

– + Reduced Communication BW+ Reduced Communication BW

1/0 1/0

Fusion

C t

1/0 1/0

Center

1/0 binary 
decision
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Decentralized Reduced Rank Algorithm

• Sub-Optimum Decentralized Algorithm
Performance Degradation– -- Performance Degradation

– + Reduced Computation Load

+ Reasonable Sample Support– + Reasonable Sample Support

Fusion

1/01/0

Center

1/0 binary 
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Simulation Results

• Simulation Scenario Target speed : 10m/s

100m/sx

y PRF : 1KHz

# of array elements : 10

2

100m/s 16km
Carrier freq.

x

# of pluses : 10

# of platforms : 3

1

100m/s

20km

NFD

f0=450MHz

# of clutter patches : 360

3100m/s

24km
FD

f1 = 450MHz

f2  430MH
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3100m/s f2 = 430MHz

f3 = 410MHz 



Simulation Results

Prob. of detection for 
individual platforms

Note both the poor Note both the poor 
performance and the 
sensitivity to target 
directiondirection

SNR=15dB
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Simulation Results : Multiple Platforms

0.9

1
Probability of Detection

 

0.7

0.8

MP-FD

Prob. of detection for 
MIMO case platforms

0 4

0.5

0.6

P
D

MP-FD
MP-FD-OR
MP-FD-JDL
MP-FD-JDL-OR
MP-FD-Σ∆

Note both the poor 
performance for the 

0.2

0.3

0.4 MP-FD-Σ∆
MP-FD-Σ∆-OR
MP-NFD
MP-NFD-OR

performance for the 
NFD case and the 
robustness in the FD 
case

0 50 100 150 200 250 300 350
0

0.1
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SNR=10dB

Direction of Target



Results : Single v/s Multiple Platforms

Comparing detection 
probability of the 
single and multiple single and multiple 
platforms

Note the difference 
in diversity order
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Results : Multiple Platforms

MP-FD
MP FD OR

0.7

0.8

0.9 MP-FD-OR
MP-FD-JDL
MP-FD-JDL-OR
MP-FD-Σ∆
MP-FD-Σ∆-OR

Comparing detection 
probability of 
different processing 

0.4

0.5

0.6

P
D

MP-NFD
MP-NFD-OR schemes

0.2

0.3

0.4
Note they all appear 
to have the same  
diversity order

-30 -20 -10 0 10 20 30
0

0.1

SNR
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Discussion : Diversity Order

• There is no loss in diversity due to using a sub-
optimum STAP approachoptimum STAP approach
– the JDL and Σ∆ approaches have curves that are 

parallelparallel

– appears to have the same diversity order as the fully 
adaptive, centralized, scheme 

•though theoretically, asymptotically in : 
– centralized scheme:        ;

distributed OR scheme: – distributed OR scheme: 

• Clear loss in diversity for the NFD scheme
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Discussion : Issues Not Addressed

• The results shown here – and most research in 
MIMO systems – are based on a key assumptionMIMO systems – are based on a key assumption
– synchronization across platforms

– in radar  each sample corresponds to range bin– in radar, each sample corresponds to range bin
•in processing across multiple platforms, a key 

assumption is that the samples at a specific time at 
all platforms refers to the same range bin

– this is crucial also for secondary data in STAP for MIMO 
radar

•essentially, in these results, we have assumed true 
time delay
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Part III : MIMO and Waveform Diversity

• So far we have considered detection and 
estimation using a MIMO radarestimation using a MIMO radar
– no discussion of the choice of waveform

– first deal with case without constraints and then we – first deal with case without constraints and then we 
will add some practical constraints

• MIMO ambiguity functionMIMO ambiguity function
– generalization of the ambiguity function to MIMO

– interpret the ambiguity function as the cross-p g y
correlation between estimating the true target 
parameters                         and test parameters 
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SISO Ambiguity Function Revisited

• Transmitted signal:

R i d ig l d  t  t g t ith t• Received signal due to target with parameters

• Cross correlation between signal due to

and 
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III.1 : MIMO Ambiguity Function

• MIMO ambiguity function a function of the 
waveforms  target parameters and geometrywaveforms, target parameters and geometry

• transmit antennas,     receive antennas,     pulses 
transmit antennas at– transmit antennas at

– receiver antennas at

– parameter vector for transmitter    receiver   :– parameter vector for transmitter   , receiver   :

– target at location:   , velocity   , parameters

– relative delay,      relative Doppler, 
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MIMO Ambiguity Function (2)

• To focus on the waveform, consider a unit point 
targettarget
– perfectly correlated across all transmit-receive pairs

– set                 (   is a length- vector of ones) – set                 (   is a length- vector of ones) 
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MIMO Ambiguity Function (3)

• This expression includes
 signal from element   delayed due to – : signal from element   delayed due to 

presumed target location

– similar expression for true location     (note the   ) similar expression for true location     (note the   ) 

– ,                   : phase shifts due to distance 
travelled

– : difference in Doppler shift

– further simplification using matrix notation
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MIMO Ambiguity Function (4)

• Define a matrix associated with the transmit 
signalssignals

• and the corresponding steering vectors,

• then,
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MIMO Ambiguity Function (5)

• Note that the ambiguity function is a complicated 
function of the geometry of the transmit-receive function of the geometry of the transmit-receive 
arrays
– and depends on the target modeland depends on the target model

• Also, there is no free lunch
– let                . The “clear” area that can be created in let                . The clear  area that can be created in 

delay-Doppler space is reduced by a factor of             
(work of Y. Abramovich and G. Frazer)
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III.2 : MIMO Waveform Design

• Many different approaches
covariance matrix design– covariance matrix design

– in frequency domain

max  mutual information/MMSE– max. mutual information/MMSE

– with and without clutter statistics

IEEE search for ‘waveform design <and> MIMO – IEEE search for waveform design <and> MIMO 
radar’ results in 157 choices!
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MIMO Waveform Design (2)

• transmit antennas,     receive antennas,     pulses 
simple case  point transmitters and receivers– simple case: point transmitters and receivers

– transmitter    transmits 

• In continuous time  target response between • In continuous time, target response between 
transmitter   and receiver   : 

• In discrete time  signal component at element• In discrete time, signal component at element

• : observation window 
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MIMO Waveform Design (3)

• Rewriting as matrix equation
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MIMO Waveform Design (4)

• Rewriting as matrix equation

• Combining all      vectors, 
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MIMO Waveform Design (5)

• MMSE estimate : given    find the minimum mean 
squared error estimate of squared error estimate of 
– given    MMSE estimate is well known

• Optimal waveform: find the waveform (   ) that Optimal waveform: find the waveform (   ) that 
minimizes this MMSE
– however we must meet a power constraint
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MIMO Waveform Design (6)

• The optimization problem is

• : energy available per time-slot over all    
transmitters 

G f• Generally requires an eigenvalue decomposition of 
– transmit on the eigenvectors of
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MIMO Waveform Design (7)

• Eigendecompose
these are                              matrices– these are                              matrices

• The optimal    is given by 

• is a power allocation matrix obtained using 
waterfilling

 lt th t h   i   li ti  th t – a result that shows up in many applications that 
impose a power constraint

• :                        matrix with orthonormal columns
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MIMO Waveform Design (8)

• The key is the power allocation matrix

Effective noise level 
of Channel 1
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MIMO Waveform Design (9)

• is the “water level”, chosen such that 

Note that some 
“channels” are 
too weak to be 

ll t d allocated power
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MIMO Waveform Design (10)

• This is a first cut at optimize waveforms
assumes target statistics are known– assumes target statistics are known

– other than power constraint, no other constraints

assumes perfect synchronization– assumes perfect synchronization

– ignores interference

• Each of these issues has been addressed in the • Each of these issues has been addressed in the 
literature
– constant modulus waveforms  waveforms formed by constant modulus waveforms, waveforms formed by 

a chosen basis set, etc. etc.

– furthermore, other optimization criteria are also 
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III.3 : Fast-Time & Slow-Time MIMO

• MIMO waveforms still see the same total “amount” 
of range-Doppler spaceof range-Doppler space
– fast-time versus slow-time MIMO

•in fast-time  use time-staggered waveformsin fast time, use time staggered waveforms
– reduction in PRF implies reduction in unambiguous Doppler 

•in slow-time use Doppler-shifted waveforms
– this reduces the unambiguous Doppler 

•which is better depends on your application

i t t ith th  k f Ab i h d F– consistent with the work of Abramovich and Frazer

• Focus here on a single-receive antenna (            )
t it t      l  i  CPI  b f
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Fast-Time MIMO & Non-Causal Beamforming

• Each antenna transmits an orthogonal waveform
time orthogonality achieved by time staggering – time-orthogonality achieved by time-staggering 
waveforms

– consider simple case of uniform linear arrayconsider simple case of uniform linear array

– all waveforms share the same frequency

– transmitter    transmitstransmitter    transmits

– Received signal from target:
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Non-Causal Beamforming (2)

• Similar expression for clutter and other forms of 
interferenceinterference

• Key: on matched filtering, each waveform 
separates separates 
– in addition,  there are     pulses in a CPI

– resulting in a vector of the formresulting in a vector of the form

– : space-time steering vector : space time steering vector 
•the spatial component comes from the angle with 

respect to the transmitter
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Non-Causal Beamforming (3)

• This is the exact same model as we had for STAP!• This is the exact same model as we had for STAP!
– this is adaptive processing at a single receive 

antenna using the transmitted waveforms g

– can use all of what we know about STAP

– rather dramatically called non-causal beamformingy g
•though the beamforming “happens” after the 

transmission, not before

– if multiple receive elements, size of problem 
increases, no conceptual change

has been applied to the Jindalee OTHR in Australia  
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Slow-Time MIMO

• All transmitters transmit at the same time and use 
the same waveformthe same waveform
– however, sub-divide the Doppler space into     

regionsregions

– can be achieved by using an effective PRF that is 
reduced by a factor of     :

– signal transmitted from element   
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Slow-Time MIMO (2)

• This choice divides the unambiguous Doppler space 
of                      into     regionsof                      into     regions

• Implemented in a new Canadian OTHR system 

4-transmit antenna array

(C) Her Majesty the Queen in Right of Canada 
as represented by the Minister of National 
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Slow-Time MIMO (3)

• Again we end up with

• However,  now the steering vector is shorter
th  ti l t i  t  i  th    i  th  f t– the spatial steering vector is the same as in the fast-
time MIMO case

– the Doppler steering vector is of length – the Doppler steering vector is of length 
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Slow-Time MIMO (3)

• The problem size (with a single receive antenna) is 
thereforetherefore
– temporal degrees of freedom

– spatial degrees of freedom– spatial degrees of freedom

• Again, one can apply one’s favourite STAP 
algorithm as desiredalgorithm as desired
– note that the orthogonality here is in the Doppler 

domain
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