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Abstract—We consider linear precoding and decoding in the
downlink of a multiuser multiple-input, multiple-output (MIMO)
system. In this scenario, the transmitter and the receivers may
each be equipped with multiple antennas, and each user may
receive more than one data stream. We examine the relation-
ship between the sum capacity for the broadcast channel with
channel state information at the transmitter under a sum power
constraint and the achievable sum rates under linear precoding.
We show that achieving the optimum sum throughput under
linear precoding is equivalent to minimizing the product of mean
squared error (MSE) matrix determinants. The resulting non-
convex optimization problem is solved numerically, guaranteeing
local convergence only. The performance of this approach is
analyzed via comparison to the sum capacity and to existing
approaches for linear precoding.

I. INTRODUCTION

A relatively recent theme in multiple-input multiple-output
(MIMO) research involves its application to the multiuser
downlink, where a single base station communicates with
multiple users on the same time/frequency channel. MIMO
techniques enable improved reliability and/or increased data
rates by exploiting the spatial dimension using an antenna
array at the transmitter and/or the receiver. In this paper, we
focus on using these methods to maximize total throughput.

Communication in the multiuser MIMO downlink, also
known as the broadcast channel (BC), has been of particular
interest in information theory. The sum capacity in the BC has
been characterized using an uplink-downlink duality [1], [2]
and game theory [3], and optimum strategies that achieve sum
capacity [4], [5] have been derived using Costa’s dirty paper
coding (DPC) [6]. Practical realizations of DPC are largely
based on Tomlinson-Harashima precoding (THP) [7]–[10].
These methods incur high complexity due to their nonlinear
nature and the combinatorially complex problem of finding an
optimal user ordering. THP-based schemes also suffer from
rate loss when compared to the sum capacity due to modulo
and shaping losses.

Several researchers have considered linear precoding as an
alternative to THP-based approaches to reduce precoder com-
plexity in the MIMO downlink. The analysis in [11] compares
zero forcing (ZF) and its generalization, block diagonalization
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(BD), in the asymptotically high SNR region. Both of these
techniques use simple linear precoding techniques to transform
the multiuser channel into orthogonal single-user channels;
however, the decreased complexity comes at the expense of
restricting the number of receive antennas to be fewer than the
number of transmit antennas. These schemes, therefore, limit
the possibility of gains from additional receiver antennas.

Linear precoding approaches to sum rate maximization
with higher complexity have been proposed for single-antenna
receivers [12], [13] and for multiple antenna receivers [14],
[15]. In [12], the authors suggest an iterative method for direct
optimization of the sum rate, while [13] and [14] exploit the
SINR uplink-downlink duality of [16]–[18]. In [15] and [19],
two similar algorithms were independently proposed to max-
imize the sum rate indirectly, by formulating the problem
as the minimization of the product of the mean squared
errors (PMSE). The work of [19] was motivated by the the
equivalence relationship developed between the single user
minimum MSE (MMSE) and mutual information in [20]. Each
of these approaches in [12]–[15], [19] yields a suboptimal
solution, as the resulting solutions converge only to a local
optimum, if at all.

In the single-user multicarrier case, minimizing the PMSE
is equivalent to minimizing the determinant of the MSE matrix
and thus is also equivalent to maximizing the mutual informa-
tion [21]. This equivalence does not exist in the single-carrier
multiuser downlink. In this paper we extend this relationship to
formulate a minimization problem based on the product of the
determinants of all users’ MSE matrices (PDetMSE), toward
maximizing mutual information (and thus sum throughput) in
the multiuser MIMO downlink. We show that maximizing the
sum throughput under linear precoding is equivalent to the
PDetMSE problem. This non-convex optimization problem is
solved numerically, guaranteeing only local convergence. The
performance of this approach is analyzed via comparison to the
sum capacity and to existing approaches for linear precoding.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model used and states the as-
sumptions made. Section III provides some background on
the sum capacity of the MIMO broadcast channel and on the
achievable sum rate under linear precoding, and Section III-C
examines some existing schemes based on linear precoding.
Section IV investigates the use of the product of MSE matrix
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Fig. 1. Processing for user k in downlink.

determinants as the optimization criterion under a sum power
constraint. Results of simulations testing the effectiveness of
the proposed approach are presented in Section V. Finally, we
draw conclusions in Section VI.

Notation: We use the following conventions: lower case
italics, e.g., x, represent scalars while lower case boldface type
is used for vectors (e.g., x). Upper case italics, e.g., N , are
used for constants and upper case boldface represents matrices,
e.g., X. Entries in vectors and matrices are denoted as [x]i
and [X]i,j . The superscripts T and H denote the transpose
and Hermitian operators respectively. E[·] represents the sta-
tistical expectation operator while IN is the N × N identity
matrix. ‖x‖

1
and ‖x‖

2
denote the 1-norm (sum of entries)

and Euclidean norm. diag(x) represents the diagonal matrix
formed using the entries in vector x, and diag [X1, . . . ,Xk]
is the block diagonal concatenation of matrices X1, . . . ,Xk.
A ≻ 0 and B � 0 indicate that A and B are positive definite
and positive semidefinite matrices, respectively; C ≻ D states
that the matrix C−D is positive definite. Finally, CN (m,σ2)
denotes the complex Gaussian probability distribution with
mean m and variance σ2.

II. SYSTEM MODEL UNDER LINEAR PRECODING

The system under consideration, illustrated in Fig. 1, com-
prises a base station with M antennas transmitting to K

decentralized users over flat wireless channels. User k is
equipped with Nk antennas and receives Lk data streams
from the base station. Thus, we have M transmit antennas
transmitting a total of L =

∑K

k=1
Lk symbols to K users,

who together have a total of N =
∑K

k=1
Nk receive antennas.

The data symbols for user k are collected in the data vector
xk = [xk1, xk2, . . . , xkLk

]
T and the overall data vector is

x =
[

xT
1 ,xT

2 , . . . ,xT
K

]T
. User k’s data streams are processed

by the M × Lk transmit filter Uk = [uk1, . . . ,ukLk
] before

being transmitted over the M antennas; ukj is the precoder for
stream j of user k, and has unit power ‖ukj‖2 = 1. Together,
these individual precoders form the M ×L global transmitter
precoder matrix U = [U1,U2, . . . ,UK ]. Let pkj be the power
allocated to stream j of user k and the downlink transmit
power vector for user k be pk = [pk1, pk2, . . . , pkLk

]
T ,

with p =
[

pT
1 , . . . ,pT

K

]T
. Define Pk = diag{pk} and

P = diag{p}. The channel between the transmitter and user k

is represented by the Nk×M matrix HH
k . The overall N ×M

channel matrix is HH , with H = [H1, H2, . . . ,HK ]. The
transmitter is assumed to know all the channels perfectly.

Based on this model, user k receives a length-Nk vector

yk = HH
k U

√
Px + nk, (1)

where nk consists of the additive white Gaussian noise
(AWGN) at the user’s receive antennas with i.i.d. entries
[nk]i ∼ CN (0, σ2); that is, Rn = E

[

nkn
H
k

]

= σ2INk
.

This assumption of independent AWGN is made without loss
of generality; for coloured and/or correlated noise covariance
matrices Rn, a linear transformation of Rn to the identity
matrix can be incorporated into the channel matrices Hj . To
estimate its Lk symbols xk, user k processes yk with its
Lk × Nk decoder matrix VH

k resulting in

x̂DL
k = VH

k HH
k U

√
Px + VH

k nk, (2)

where the superscript DL indicates the downlink. The global
receive filter VH is a block diagonal matrix of dimension
L × N , V = diag [V1, V2, · · · ,VK ], where each Vk =
[vk1, . . . ,vkLk

].
We assume that the modulated data symbols x are drawn

from a PSK constellation where each data symbol xi has
power |xi|2 = 1. Furthermore, the data symbols are inde-
pendent of each other, so that E

[

xxH
]

= IL, and are also
independent of the noise.

III. LINEAR PRECODING AND SUM BROADCAST

CAPACITY

A. Broadcast Channel Sum Capacity

Information theoretic approaches characterize the sum ca-
pacity of the multiuser MIMO downlink by solving the sum
capacity of the equivalent uplink multiple access channel
(MAC) and applying a duality result [1], [2]. The MAC
capacity is found by solving the problem in (3), where transmit
covariance matrices Σk are designed for each mobile user k,
subject to a sum power constraint of Pmax:

Rsum = max
Σk

log det

(

I +
1

σ2

K
∑

k=1

HkΣkH
H
k

)

s.t. Σk � 0, k = 1, . . . ,K
K
∑

k=1

tr [Σk] ≤ Pmax. (3)

One key feature of this optimization problem is that it is
convex in Σk, and can be solved efficiently using well
established techniques.

B. Sum Rate under Linear Precoding

When linear precoding is employed, the convex solution
above does not generally exist. If each user transmits with
covariance matrix Σk, the achievable rate for user k under
linear precoding is

Rk = log
det
(

∑K

j=1
HH

k ΣjHk + σ2I
)

det
(

∑

j 6=k HH
k ΣjHk + σ2I

) . (4)

Under the system model described in Section II, user k

transmits with covariance matrix Σk = UkPkU
H
k .
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The achievable rate under linear precoding is therefore

RLP

k = log
det
(

∑K

j=1
HH

k UjPjU
H
j Hk + σ2I

)

det
(

∑

j 6=k HH
k UjPjU

H
j Hk + σ2I

)

= log
detJk

detRN+I,k

where Jk = HH
k UPUHHk + σ2I and RN+I,k = Jk −

HH
k UkPkU

H
k Hk are the received signal covariance matrix

and the noise-plus-interference covariance matrix at user k,
respectively.

The rate maximization problem with sum power constraint
under linear precoding can then be formulated as

(U,P) = arg max
U,P

K
∑

k=1

log
detJk

detRN+I,k

s.t. ‖ukj‖2 = 1, k = 1, . . . ,K, j = 1, . . . , Lk

pkj ≥ 0, k = 1, . . . ,K, j = 1, . . . , Lk

‖p‖1 =
K
∑

k=1

Lk
∑

j=1

pkj ≤ Pmax. (5)

A scalarized version of the same problem considers the
user’s own data streams l 6= j as self-interference (in addition
to the multiuser interference). Under the assumption that the
noise-plus-interference is approximately Gaussian (valid for a
sufficient number of interferers by the central limit theorem),
we can write the scalar rate for user k’s substream j as

RLP

k,j = log
(

1 + γDL

kj

)

,

where

γDL

kj =
vH

kjH
H
k ukjpkju

H
kjHkvkj

vH
kjJkjvkj

, (6)

and Jkj = Jk − HH
k ukjpkjukjHHk is the noise-plus-

interference covariance matrix as seen by stream j belonging
to user k.

The scalar rate maximization problem with sum power
constraint under linear precoding can thus be written as

(U,P) = arg max
U,P

K
∑

k=1

Lk
∑

j=1

log (1 + γkj)

s.t. ‖ukj‖2 = 1, k = 1, . . . ,K, j = 1, . . . , Lk

pkj ≥ 0, k = 1, . . . ,K, j = 1, . . . , Lk,

‖p‖1 =

K
∑

k=1

Lk
∑

j=1

pkj ≤ Pmax. (7)

C. Existing Schemes for Linear Precoding

1) Orthogonalization-Based Methods: In block diagonal-
ization, each user’s precoder is selected so that it is orthogonal
to the channels of all other users. The precoder matrices are
required to satisfy the following orthogonality constraints:

HH
k Uj = 0, k = 1, . . . ,K; j 6= k. (8)

By applying this orthogonalization, the multiuser downlink is
transformed into a set of K parallel single-user MIMO effec-
tive channels, Gk = HH

k Uk. Satisfying all of the equations
in (8) requires at least M ≥ N − min(N1, . . . , Nk) transmit
antennas; conversely, satisfying the orthogonality constraints
consumes N − Nk degrees of freedom for user k. The
resulting effective channels Gk are statistically equivalent to
i.i.d. complex Gaussian (M − N + Nk) × Nk channels [11].
The maximum sum rate that can be achieved under the BD
precoder by convex waterfilling over the parallel Gaussian
channels is then

RBD
max = max

Pk

K
∑

k=1

log det

(

I +
1

σ2
GkPkG

H
k

)

s.t.

K
∑

k=1

Pk ≤ Pmax. (9)

An analogous formulation exists for zero-forcing, where the
precoder for each substream is orthogonal to all subchannels
other than its own. As in (6), each data stream treats all other
data streams as interference. The orthogonality constraints are:

hH
knukl = 0, k = 1, . . . ,K; l 6= n

hH
knujl = 0, k = 1, . . . ,K; j 6= k. (10)

The resulting N effective channels are scalar, gkj = hH
kjukj ,

and are each statistically equivalent to an (M−N+1)×1 i.i.d.
complex Gaussian vector channel in a single-user scenario.
The maximum sum rate under zero-forcing can again be found
by convex waterfilling over parallel channels:

RZF
max = max

pkj

K
∑

k=1

Nk
∑

j=1

log

(

1 +
1

σ2
pkj |gkj |2

)

s.t.

K
∑

k=1

Nk
∑

j=1

pkj ≤ Pmax. (11)

2) Direct Optimization: Both block diagonalization and
zero-forcing consume available degrees of freedom to satisfy
orthogonality constraints, thus reducing the diversity order of
the effective channel and limiting the number of receive anten-
nas that can be present for a fixed number of transmit antennas.
This restriction has motivated research on direct optimization
of the sum-rate under linear precoding [12], and on maxi-
mization of the SINR expression (6) using uplink-downlink
duality [13], [14]. In each of these papers, approximations and
iterative solutions are used to solve (7), while avoiding the
antenna constraints associated with orthogonalization. Since
optimization of (7) is a non-convex problem, these solutions
only converge to local minima (if at all), and do not admit
closed-form solutions.

Recently, [15], [19] have independently derived a relation-
ship between the sum rate under linear precoding (7) and
the product of mean squared errors (PMSE). By formulating
the optimization problem as a function of the MSEs ǫkj =

E

[

|x̂kj − xkj |2
]

, an iterative solution can be designed using
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the alternating optimization framework in a manner similar to
minimization the sum of mean squared errors (SMSE) [17],
[18]. The PMSE minimization problem is written as

(U,P) = arg min
U,P

K
∏

k=1

Lk
∏

j=1

ǫkj

s.t. ‖ukj‖2 = 1, k = 1, . . . ,K, j = 1, . . . , Lk

ukj ≥ 0, k = 1, . . . ,K, j = 1, . . . , Lk

‖p‖1 =

K
∑

k=1

Lk
∑

j=1

pkj ≤ Pmax, (12)

and is directly equivalent to the sum rate maximization prob-
lem (7).

IV. PRODUCT OF MSE MATRIX DETERMINANTS

This section presents the core contribution of this paper.
In [21], the single-user rate maximization problem using linear
precoding is solved by minimizing the determinant of the
MSE matrix. The minimum determinant solution is equivalent
to the PMSE solution for the single user case, as the MSE
matrix can be diagonalized using a unitary transformation of
the precoder matrix. Since this diagonalization is not possible
in the multiuser case, the minimization of the PMSE and of
the product of MSE matrix determinants (PDetMSE) yield
different solutions. Furthermore, treating each user’s own data
streams as interference (as in PMSE) is sub-optimal compared
to joint optimization over all of the user’s data streams. In
this section, we investigate this problem and develop the
relationship between the MSE matrix determinants and the
maximum achievable rate under linear precoding.

First, consider the downlink MSE matrix under linear
MMSE decoding with receive matrices Vk,

Vk =
(

HH
k UPUHHk + σ2I

)−1

HH
k Uk

√

Pk

= J−1

k HH
k Uk

√

Pk. (13)

When using this receive matrix, the MSE matrix achieved by
user k in the downlink is

EDL
k = E

[

(x̂k − xk) (x̂k − xk)
H
]

(14)

= ILk
−
√

PkU
H
k HkJ

−1

k HH
k Uk

√

Pk (15)

Consider the following optimization problem which mini-
mizes the product of the determinants of the downlink MSE
matrices under a sum power constraint:

(U,P) = arg min
U,P

K
∏

k=1

detEDL
k

s.t. ‖ukj‖2 = 1, k = 1, . . . ,K, j = 1, . . . , Lk

pkj ≥ 0, k = 1, . . . ,K, j = 1, . . . , Lk

‖p‖1 =
K
∑

k=1

Lk
∑

j=1

pkj ≤ Pmax. (16)

Theorem 1: Under linear MMSE decoding at the base
station, the sum rate maximization problem in (5) and the
PDetMSE minimization problem in (16) are equivalent.

Proof: The determinant of the downlink MSE matrix can
be written as

detEDL
k = det

(

ILk
− HH

k UkPkU
H
k HkJ

−1

k

)

(17)

= det
[(

Jk − HH
k UkPkU

H
k Hk

)

J−1

k

]

(18)

= det
[

RN+I,kJ
−1

k

]

(19)

=
detRN+I,k

detJk

, (20)

where (17) follows from (15) since det(I + AB) = det(I +
BA) when A and B have appropriate dimensions. We then
see the relationship to (5),

log detEDL
k = − log

detJk

detRN+I,k

(21)

= −RLP

k . (22)

With this result, we can see that under MMSE reception using
Vk as defined in (13), minimizing the determinant of the MSE
matrix EDL

k is equivalent to maximizing the achievable rate
for user k. It follows that minimizing the product of MSE
matrix determinants over all users is equivalent to sum-rate
maximization,

min

K
∏

k=1

detEDL
k ≡ min

K
∑

k=1

log detEDL
k (23)

≡ max

K
∑

k=1

RLP

k . (24)

where (23) holds since since log(·) is a monotonically increas-
ing function of its argument.

The covariance matrices Jk and RN+I,k in the MSE matrix
Ek are each functions of all precoder and power allocation
matrices. Thus, the sum rates Rk for each user k (and the sum
rate for all users) are coupled across users. As such, finding
U and P jointly or finding only the power allocation P for a
fixed U are both non-convex problems and are just as difficult
to solve as the rate maximization problem.

In the sum capacity and SMSE/PMSE problems, the prob-
lem of non-convexity is addressed by solving an equiva-
lent virtual uplink formulation and applying a duality-based
transformation. Unfortunately, the sum rate expression under
linear precoding in the virtual uplink is nearly identical to
that derived above for the downlink, and does not admit a
cancellation or grouping of terms to decouple the problem
across users. Moreover, there does not appear to be a duality
between the product of MSE determinants in the uplink and
downlink. Thus, while we do believe that the uplink power
allocation subproblem may be a geometric programming (GP)
problem (as shown for the PMSE case in [15]), an iterative
solution based on uplink-downlink duality can not be applied.

Direct solution of the non-convex downlink problem for
minimizing the product of MSE matrix determinants requires
finding a complex M × L precoder matrix. We can apply
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sequential quadratic programming (SQP) [22] to solve the
PDetMSE minimization problem. SQP solves successive ap-
proximations of a constrained optimization problem and is
guaranteed to converge to the optimum value for convex
problems; however, in the case of this non-convex optimization
problem, SQP can only guarantee convergence to a local min-
imum. This computationally intensive method is clearly not a
desirable method for finding a practical precoder, especially
when one of our major motivations for using linear precoding
is reducing transmitter complexity; however, in this case, SQP
seems to be the only available option. We do not suggest
that this method be practically implemented; rather, we use
it to illustrate the optimality of PDetMSE formulation as the
theoretical upper bound on performance, in contrast to the
previously proposed PMSE.

V. NUMERICAL EXAMPLES

In this section, we present simulation results to illustrate the
performance of the proposed algorithm. In all cases, the fading
channel is modelled as flat and Rayleigh, with i.i.d. channel
coefficients distributed as CN (0, 1). The examples use a
maximum transmit power of Pmax = 1; SNR is controlled
by varying the receiver noise power σ2. The transmitter is
assumed to have perfect knowledge of the channel matrix H.

We compare the sum rate achievable using linear precoding
and the information theoretic capacity of the BC. That is,
we consider the spectral efficiency (measured in bps/Hz) that
could be achieved under ideal transmission by drawing trans-
mit symbols from a Gaussian codebook. Figure 2 illustrates
how the proposed schemes perform when compared to the
sum capacity for the broadcast channel (i.e. using dirty paper
coding (DPC) [6]) and to traditional linear precoding methods
based on channel orthogonalization, i.e., block diagonalization
(BD) and zero forcing (ZF) [11]. Simulation results for the
DPC, BD, and ZF plots were obtained by using the cvx
optimization package [23], [24]. This simulation models a
K = 2 user system with M = 4 transmit antennas and Nk = 2
or Nk = 4 receive antennas per user. The plot is generated
using 30000 channel realizations, with 5000 data symbols per
channel realization. This example also serves to illustrate the
flexibility of the PMSE and PDetMSE schemes since BD and
ZF cannot be used with Nk = 4 receive antennas. Note that
curves for THP can not be included for comparison, as the
modulo and shaping losses from the DPC sum capacity are
fundamentally related to THP’s nonlinear modulation scheme.

In Fig. 2, we see a negligible difference in performance
between the PMSE and PDetMSE algorithms. Detailed views
in Fig. 3 and Fig. 4 illustrate that the PDetMSE solution does
marginally outperform the PMSE-based solution; however,
these plots suggests that even though joint processing may al-
low for increased throughput, the gains are small and are prob-
ably not worth the greatly increased computational complexity.
The PMSE and PDetMSE algorithms also both demonstrate a
divergence in performance when compared to the theoretical
DPC bound at higher SNR. This drop in spectral efficiency
may be caused by the non-convexity of the optimization
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Fig. 2. Comparing PDetMSE, PMSE, DPC and orthogonalization–based
methods
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Fig. 3. Detailed view of DPC vs PDetMSE/PMSE, Nk = 2

problem causing convergence to local minima. Nonetheless,
these schemes still maintain a higher spectral efficiency than
the orthogonalization based schemes for Nk = 2. Furthermore,
the gap between the DPC bound and the PDetMSE/PMSE
precoders is only 0.6 dB for Nk = 4, where BD and ZF
schemes can not be applied due to constraints on the number
of antennas.

VI. CONCLUSIONS

In this paper, we have considered the problem of designing
the theoretically optimal linear precoder that maximizes sum
throughput in the multiuser MIMO downlink. We have com-
pared the sum rate performance of linear precoding schemes
to the sum capacity in the general MIMO downlink, without

988

Authorized licensed use limited to: The University of Toronto. Downloaded on October 30, 2008 at 14:17 from IEEE Xplore.  Restrictions apply.



15 15.2 15.4 15.6 15.8 16 16.2 16.4

20.5

21

21.5

22

22.5

23

23.5

SNR=P
max

/σ2(dB)

S
pe

ct
ra

l E
ffi

ci
en

cy
 (

bp
s/

H
z)

 

 

DPC
PDetMSE
PMSE
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imposing constraints on the number of users, base station an-
tennas, or mobile antennas. Previous work in linear precoding
for the multiuser downlink has focused on orthogonalizing
approaches (which suffer from reduced diversity order and
restrictive antenna constraints), and on the scalarized form
of the sum rate maximization problem. We have shown that
the optimal problem formulation for maximizing the sum
rate under linear precoding uses joint MSE processing via
minimization of the product of MSE matrix determinants.
Simulations demonstrate that the proposed scheme marginally
outperforms the PMSE based solution, but at the expense of
greatly increased computational complexity.
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[14] M. Codreanu, A. Tölli, M. Juntti, and M. Latva-aho, “Joint design of
Tx-Rx beamformers in MIMO downlink channel,” IEEE Trans. Signal
Process., vol. 55, no. 9, pp. 4639–4655, Sep. 2007.

[15] S. Shi, M. Schubert, and H. Boche, “Weighted sum-rate optimization for
multiuser MIMO systems,” in Proc. Conf. Info. Sciences and Systems
(CISS ’07), Mar. 2007, pp. 425–430.

[16] M. Schubert and H. Boche, “Solution of the multiuser downlink beam-
forming problem with individual SINR constraints,” IEEE Trans. Veh.
Technol., vol. 53, no. 1, pp. 18–28, Jan. 2004.

[17] M. Schubert, S. Shi, E. A. Jorswieck, and H. Boche, “Downlink sum-
MSE transceiver optimization for linear multi-user MIMO systems,” in
Proc. Asilomar Conf. on Signals, Systems and Computers, Monterey,
CA, Sep. 2005, pp. 1424–1428.

[18] A. M. Khachan, A. J. Tenenbaum, and R. S. Adve, “Linear processing
for the downlink in multiuser MIMO systems with multiple data
streams,” in Proc. IEEE Internat. Conf. on Communications (ICC 06),
Istanbul, Turkey, Jun. 2006.

[19] A. J. Tenenbaum and R. S. Adve, “Linear processing and sum throughput
in the multiuser MIMO downlink,” Sep. 2006, In Preparation. [Online].
Available: http://www.comm.toronto.edu/˜adam/publications/

[20] D. Guo, S. Shamai, and S. Verdu, “Mutual information and minimum
mean-square error in Gaussian channels,” IEEE Trans. Inf. Theory,
vol. 51, no. 4, pp. 1261–1282, Apr. 2005.

[21] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beam-
forming design for multicarrier MIMO channels: A unified framework
for convex optimization,” IEEE Trans. Signal Process., vol. 51, no. 9,
pp. 2381–2401, Sep. 2003.

[22] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” in
Acta Numerica. Cambridge University Press, 1995, pp. 1–51.

[23] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming (web page and software),” Dec. 2007. [Online]. Available:
http://www.stanford.edu/˜boyd/cvx

[24] ——, “Graph implementations for nonsmooth convex programs,” in To
appear in Recent Advances in Learning and Control (a tribute to M.
Vidyasagar), V. Blondel, S. Boyd, and H. Kimura, Eds. Springer,
2008. [Online]. Available: http://stanford.edu/˜boyd/graph dcp.html

989

Authorized licensed use limited to: The University of Toronto. Downloaded on October 30, 2008 at 14:17 from IEEE Xplore.  Restrictions apply.


