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Abstract— In this paper we propose a novel method for
joint transmit-receive linear optimization in the downlink of
a multiuser MIMO communication system. This new method
adapts existing joint linear optimization algorithms from the
single user domain for application to the multiuser domain. The
optimum transmit matrix is obtained using an iterative procedure
based on a minimum mean-squared error (MMSE) criterion and
a per-user power constraint; the optimum receive matrices for
each user are then derived under an MMSE constraint. The
proposed technique improves performance and increases data
throughput in multiuser scenarios.

I. INTRODUCTION

The desire to introduce multimedia technologies into mobile
networks has motivated a great deal of research into increasing
reliability and data throughput. A key development in this
regard is the introduction of multiple antenna arrays at both
the base station and mobile terminal [1], [2].

Within this broad field of research, one particular branch
investigates optimal linear precoding at the transmitter and
decoding at the receiver. The goal, usually, is to minimize
the mean squared error between transmit and receive data
streams, generally using spatial linear processing methods [3]–
[6]. In [3], Sampath et al. consider a weighted minimum mean
squared error (MMSE) criterion and find the optimum trans-
mit and receive matrices through eigendecomposition of the
channel. In [4], Scaglione et al. develop space-time precoding,
again for the MMSE criterion. Palomar et al. generalize these
results to several design criteria, classified into Schur-concave
and Schur-convex objective functions [5]. The concavity or
convexity of the objective function then determines the method
used for finding the optimum transmit and receive matrices.
The receive matrix is derived as the MMSE (Wiener) filter. The
optimum transmit matrix is then determined through SVD of
the whitened channel.

The aim of the work in [3]–[5] is to optimally trans-
mit multiple data streams to a single user. An interesting
question therefore arises as to how to transmit multiple data
streams to multiple users. In such a multiuser environment
(that is, the broadcast channel), individual users’ receivers
cannot cooperate with each other. In [7], Yu determines that
a generalized decision feedback equalizer (GDFE) located at
the transmitter is capable of achieving sum capacity. This
GDFE is implemented using nonlinear Tomlinson-Harashima
precoding (THP). In a similar approach, Liu and Duel-Hallen
introduce THP for interference rejection [8]. In [9], Fischer

and Windpassinger also use the THP concept for precoding at
the transmitter.

In this paper we focus on linear processing methods, as
reducing the complexity and processing requirements is de-
sirable. As well, we focus only on processing in the spatial
domain, making results directly applicable to existing time-
domain based multiple access systems such as code division
or time division multiple access (CDMA/TDMA). We develop
linear processing for joint transmit-receive optimization in a
multiuser system. In [6], Khaled and Bourdoux derive such a
scheme by imposing a null-space constraint on the transmit
matrix to ensure orthogonality between the effective chan-
nels of each user. This scalarization/diagonalization method
reduces the global multiuser problem to a set of single user
problems to which the approach of [3] can be applied. While
the methods demonstrated in [6] are effective, they place a
strict requirement on the number of transmit/receive antennas.
Satisfying the null-space constraint requires that there be
at least as many transmit antenna elements as the sum of
receive antenna elements. When a realistic number of available
transmit antenna elements is used, this constraint severely
restricts the possibility of receiver diversity.

The algorithm developed in this paper eliminates the con-
straint on the number of transmit antennas imposed in [6]. In
fading channels, the algorithm provides the largest possible
diversity order while increasing data throughput. Available
single user algorithms [3], [5] are extended to the multiuser
situation. An optimal receive matrix is derived for an arbitrary
precoding matrix. The eigendecomposition method of [3] is
then applied iteratively, under a per-user power constraint, to
obtain the individually optimum transmit matrix.

Section II describes the system model that is assumed in the
derivations and results that follow. Section III derives the opti-
mum receive and transmit matrices. Section IV presents some
simulated results to illustrate the performance of the proposed
algorithms. Finally, Section V presents our conclusions and
discusses possibilities for future research.

II. SYSTEM MODEL

Consider the downlink of a wireless multiuser communi-
cation system with K users in a flat fading environment.
Fig. 1 illustrates the model as applied to the kth user. In this
system, there are N transmit antennas at the base station which
are shared by all users. These antennas are used to transmit
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Fig. 1. Illustrating the transmit-receive scheme for the kth user.

Lk symbol streams to the kth user, which are received at
Mk receive antennas. Each user receives a combination of
all L =

∑K
k=1 Lk symbol streams through its own channel

Hk. The goal of the joint transmit-receive linear processing
design is to enable each user to recover its own set of Lk

symbol streams. Two important constraints must be satisfied
to guarantee resolvability. First, there must be at least as many
transmit antennas at the base station as the total number of
streams being transmitted. As well, user k must have at least
as many receive antennas as it does received substreams , i.e.

L =
K∑

k=1

Lk ≤ N ; Lk ≤ Mk. (1)

The length-Mk received data vector, yk, and length-Lk soft-
decision received data vector, x̂k, for the kth user are

yk = HkBx + nk, (2)

x̂k = AH
k yk = AH

k HkBx + AH
k nk, (3)

where the superscript H indicates the conjugate transpose
operator, x is the L × 1 vector of transmitted symbols, x =[
xT

1 · · ·xT
K

]T
, and xk = [xk,1xk,2 · · ·xk,Lk

]T . B is the N×L
global transmit matrix for all users, Hk is the Mk×N channel
from the base station to user k, nk is the Mk ×1 noise vector
for user k, and Ak is the Lk × Mk receive matrix for user
k. We assume individual data streams have unit power and
are independent, i.e. E{xkxH

k } = ILk
, where E represents the

expectation operator and ILk
the Lk ×Lk identity matrix. We

also assume that input data and noise are independent and that
the receiver noise at the kth terminal has correlation Rnk

.

III. OPTIMUM RECEIVE AND TRANSMIT MATRICES

For user k, the mean squared errors are the diagonal entries
in the error covariance matrix, Ek, defined as

Ek = E
[
(x̂k − xk)(x̂k − xk)H

]
. (4)

Using (3) and expanding the result yields

Ek = AH
k E

[
ykyH

k

]
Ak − AH

k E
[
ykxH

k

]

−E
[
xkyH

k

]
Ak + ILk

(5)

= AH
k RykAk − AH

k HkBk − BH
k HH

k Ak + ILk
,(6)

with

Ryk = E
[
ykyH

k

]

= HkBBHHH
k + Rnk

. (7)

The goal then, using a per user power constraint, is to find the
optimal matrices Ak and Bk (for each user k) that minimize
the sum MSE, i.e. trace of Ek,

(
Aopt

k ,Bopt
k

)
= arg min

Ak,Bk,tr[BkBH
k ]≤P/K

tr [Ek] . (8)

Note that the power constraint restricts the transmit matrix
only.

A. Optimum Receive Matrix

The derivation for the receive matrix is presented first, as
the optimum solution can be found as a general solution for
any transmit matrix B. A similar derivation for the single user
case is available in [5].

Given a transmit matrix B, the problem of finding the
optimum receive matrix Ak (that minimizes the trace of Ek)
is equivalent to:

Aopt
k = arg min

Ak

cHEkc ∀c. (9)

Since for arbitrary matrices C and D, with consistent dimen-
sions, tr [CD] = tr [DC], and the fact that cHEkc is a scalar,
we can write cHEkc = tr

[
cHEkc

]
, and (9) becomes

Aopt
k = arg min

AH
k

tr
[
EkccH

] ∀c. (10)

Taking the gradient of the new objective function and equating
it to zero,

∇AH
k

tr
[
EkccH

]
= RykAkccH − HkBkccH = 0. (11)

Thus, we find that the optimum solution is the linear MMSE
solution (Wiener filter):

Aopt
k = R−1

yk
HkBk

= (HkBBHHH
k + Rnk

)−1HkBk. (12)

This result illustrates that the optimum receive matrix for
user k, Aopt

k , can be obtained through linear processing
when knowledge of the transmitting filter coefficients and
the channel coefficients from the base station to the user are
available. The receiver does not require knowledge of the
channels to other users, i.e. it does not require cooperation
with other users. On the other hand, the receiver does require
knowledge of the transmit linear precoding matrix B to all
users. One can imagine this information being transmitted to
the user or the Wiener filter being estimated in a training phase.

The result in (12) was derived in general terms; as such, it
is valid for any transmit filter B. By rewriting the BBH term
as

∑K
j=1 BjBH

j , we can rewrite (12) as

Aopt
k = (HkBkBH

k HH
k + R(n+I)k

)−1HkBk, (13)

where

R(n+I)k
= Rnk

+
K∑

j=1,j �=k

HkBjBH
j HH

k . (14)

The result in (13) is directly analogous to the result in [5]
for the single user case. The noise covariance matrix in [5] is
replaced by a noise-plus-interference covariance matrix.



B. Optimum Transmit Matrix

Given the optimal receive matrix in (13) and the original
expression for MSE in (6), the resulting MSE between the
transmitted and received streams is given by

Ek = I − BH
k HH

k (HkBkBH
k HH

k + R(n+I)k
)−1HkBk

=
(
I + BH

k RHk
Bk

)−1
, (15)

where RHk

.= HH
k R−1

(n+I)k
Hk and (15) follows from the

matrix inversion lemma.
A convenient solution for the optimal transmit matrix of

user k, Bk, would also have been analogous to that for the
single user case in [5]. However, when a similar derivation is
attempted in the multiuser case (to find a global solution to
the constrained MMSE problem), the noise covariance matrix
is replaced by the noise-plus-interference covariance matrix.
The result of this substitution is that, unlike in the single user
case, each user’s MSE matrix becomes a complicated function
of all of the other users’ transmit matrices, and not just that
of the user under consideration (user k).

In order to overcome this difficulty, we propose an itera-
tive solution. In our algorithm, the ith step of the iteration
optimizes the kth user’s transmit matrix using the transmit
matrices calculated for users 1, . . . , k − 1 in the current
iteration, i, and those determined for users k + 1, . . . , K in
the previous iteration, i − 1. Using this iterative method, we
solve a set of individually concave optimizations, rather than
trying to find an optimum solution based on the complicated
global MSE matrix. In particular, we assign equal power to
individual users, which may be sub-optimal.
Proposition: The solution to the Schur-concave optimization
problem1

min
Bk, tr[BH

k Bk≤P/K]
tr [Ek] , (16)

is given by
Bk = UkΣk, (17)

where Uk are the L̃k eigenvectors corresponding to the L̃k

largest eigenvalues of RHk
, L̃k = min{Lk, rank [Hk]}. Σk =

[0; diag{σk,l}] is a L̃k ×Lk matrix with zero elements except
along the rightmost main diagonal. Furthermore,

σk,l =
[
µ−1/2λ

−1/2
k,l − λ−1

k,l

]+

, (18)

where [x]+ = {x, x ≥ 0; 0, x < 0}. λk,l are the eigenvalues of
RHk

and µ is chosen to satisfy the transmit power constraint
per user, tr

[
BkBH

k

]
= P/K.

Proof: The detailed proof is omitted due to space constraints.
However, the proposition is valid as the optimization equation
in (16) is directly analogous to Eqn. (8) in [5], with the noise
covariance term being replaced by the noise-plus-interference
covariance matrix. Since the derivation in [5] is valid for an
arbitrary noise covariance matrix, (17) holds. For the same
reasons, (18) holds. As such, we follow methods similar to [3]

1Proof that this problem is Schur-concave is available in [5].

and [5] in decomposing the resulting channel and allocating
power for each user over its best available eigenchannels.

C. Proposed Algorithm

The steps in the proposed iterative algorithm are:
1) Initialization: Before beginning the iterative process,

we initialize the transmit matrix for each user. One
possible starting point for the iterative process is with
a zero transmit matrix (B(0) = 0). The selection of
zero as an initialization point allows the first user to
form its first transmit matrix as if it were in a single
user environment. Simulations demonstrate that while
solutions using different initialization points converge to
the same sum MSE, selecting the zero initialization point
provides faster convergence. An example in Section IV
illustrates this phenomenon.

2) Iteration: For each user k = 1, . . . , K,

R(n+I)k
= Rnk

+
k−1∑
j=1

HkBj(i)BH
j (i)HH

k (19)

+
K∑

j=k+1

HkBj(i − 1)BH
j (i − 1)HH

k

RHk
= HH

k R−1
(n+I)k

Hk. (20)

Using these matrices with Eqns. (17) and (18), determine
the transmit matrix Bk(i) for user k.

3) Termination: The process of iteration is terminated when
the transmit matrix B(i) has converged to a solution.
Convergence may be defined in some convenient fash-
ion, such as in terms of the average MSE.

IV. SIMULATION RESULTS AND ANALYSIS

In this section we provide Monte Carlo simulation results to
illustrate certain features of the joint optimization algorithm.
All cases assume a flat Rayleigh fading environment and zero
mean Gaussian noise with variance σ2 (Rnk

= σ2I). Channel
coefficients are generated for each realization of the channel
matrix H as independent and identically distributed (i.i.d.)
samples of a complex Gaussian process with zero mean and
unit variance. Full knowledge of the channel matrix H is
assumed at the transmitter, and each user k is assumed to
have knowledge of its own channel matrix Hk. As well, each
receiver is assumed to have knowledge of the transmit matrix
B. The number of iterations in transmit optimization is limited
to 60; however, it is rare that more than 30 iterations are
required for the algorithm to converge.

Example 1: Comparison to Existing Techniques: In this
first example we compare the performance of our iterative
algorithm to the null-space criterion method described in [6].
The system uses two antennas to transmit to two users (N = 2,
K = 2). A single QPSK modulated data stream is transmitted
to each user. To satisfy the “number of transmit antennas”
constraint of [6], the implementation of their method uses one
receive antenna element per user (Mk = 1). To illustrate the
fact that the method proposed in this paper does not require
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Fig. 2. Performance improvement using iterative method

that constraint, the algorithm is implemented with two receive
antenna elements per user (Mk = 2). 200 QPSK symbols are
transmitted for each channel realization, and bit error rates
(BER) are averaged over at least 1000 channel realizations. A
minimum of 104 bit errors are generated for each data point.

Fig. 2 plots the average BER as a function of SNR for the
two cases, Mk = 1 (using the null-space constrained solution
proposed in [6]) and Mk = 2. Using two receive elements per
user, a gain of approximately 14 dB is achieved at a BER of
10−3. The fact that the gain arises is not surprising. However,
what is interesting is that the scheme proposed in Section III-
C allows us to achieve these gains, even though the null-space
constraint of [6] is violated.

Example 2: Initialization Conditions: In this example, we
examine the convergence and effects of initialization of the
transmit matrix on the iterative algorithm. The data illustrated
in this example are the result of averaging over Monte Carlo
simulations of 5000 channel realizations for each SNR value.
The numerical results represent the average MSE over all
symbol streams for all users. Here, the two conditions tested
are zero initialization and random initialization. In the random
case, the entries of B(0) are drawn as i.i.d. samples of a com-
plex Gaussian random process with zero mean and variance

1
NL , so that B(0) meets the specified power constraint.

Individual simulations suggest that the algorithm converges
to the same point regardless of the initialization point. How-
ever, upon examining the average performance over many
simulations, it appears that when using zero initialization,
convergence occurs in fewer iterations. Fig. 3 confirms this
behaviour. Here, two symbol streams (one per user, Lk = 1)
are transmitted over two transmit antenna elements (N = 2)
to two users (K = 2), each of whom has two receive antenna
elements (Mk = 2). This case demonstrates an interesting
result: while the two initialization points yield equally rapid
convergence at low SNR, using a zero initialization provides
much quicker convergence at higher SNR. This behaviour
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Fig. 3. Illustrating the effects of initialization on convergence, Mk = 2

is due to the fact that the first step, following the zero
initialization, is unaffected by the other users at low SNR
(where noise dominates the noise+interference covariance ma-
trix). However, at high SNR, where multiuser interference is
dominant, the zero initialization point leads to a better ‘first
estimation’ (i.e. the single-user estimation). In contrast, the
random initialization point causes less desirable interference
(when compared to that induced by the iterative algorithm).
More iterations must thus be dedicated to cancelling out this
initial interference in order to reach the convergence point.

Example 3: Diversity Gain with Additional Antennas: This
example serves to illustrate the increase in diversity order
that is exhibited when multiple antennas are added at the
transmitter or receiver. With the exception of the antenna
parameters N and Mk, simulations for this example are
configured identically to those in Example 1. In Fig. 4 we see
an increase in diversity order when the number of transmit
antennas is fixed (N = 2) and the number of receive antennas
per user is varied (Mk = 2, 3, 4); this increase is exhibited
by the changing slope of the BER curve. Similar observations
can be made when the number of receive antennas is fixed
(Mk = 2) but the number of transmit antennas increases
(N = 2, 3, 4). An equivalence can be seen between adding
antennas at the transmitter and receiver, as the (N = 2,Mk =
3) and (N = 2,Mk = 4) configurations offer nearly identical
performance to the (N = 3,Mk = 2) and (N = 4,Mk = 2)
configurations respectively.

Example 4: Performance Comparison to Other Numerical
Methods: In this final example, we examine the performance
of the proposed algorithm in the context of other numerical
solutions. In particular, we apply the Sequential Quadratic
Programming method [10] to the MMSE problem. SQP
uses numerical approximations to decompose a problem into
quadratic programming subproblems that are solved using well
known methods. As SQP is a more computationally intensive
algorithm, it is not comparable to our proposed algorithm



0 2 4 6 8 10 12 14 16 18 20

10
−4

10
−3

10
−2

10
−1

SNR(dB) − total transmit power / receive noise

A
ve

ra
ge

 B
E

R

N=2;M
k
=2

N=2;M
k
=3

N=2;M
k
=4

N=3;M
k
=2

N=4;M
k
=2

Fig. 4. Increasing diversity by adding transmit / receive antennas

0 2 4 6 8 10 12 14 16 18 20

10
−4

10
−3

10
−2

10
−1

SNR(dB) − total transmit power / receive noise

A
ve

ra
ge

 B
E

R

N=2;M
k
=2

N=2;M
k
=2, SQP−P

N=2;M
k
=2, SQP−S

N=2;M
k
=4

N=2;M
k
=4, SQP−P

N=2;M
k
=4, SQP−S

Fig. 5. Comparison of proposed algorithm to SQP

in terms of efficiency; however, it does provide a point of
comparison in terms of possible BER performance.

In Fig. 5, we compare the BER performance of our proposed
algorithm with the SQP solution under both a per-user and
sum power constraint. Simulation parameters are identical to
selected cases in Example 3. Here, we see that while SQP
based methods can achieve higher diversity order (and thus
better performance) than our iterative approach, the change
in diversity order when adding antennas is similar. The im-
provement in performance when applying SQP to the problem
suggests that the algorithm proposed in Section III converges
to a false minimum; this is most likely caused by the presence
of the kth user’s transmit matrix in the MMSE subproblems
of the other K−1 users. The results in Fig. 5 also confirm that
the per-user power constraint (SQP-P) is indeed sub-optimal
when compared to a sum power constraint (SQP-S).

V. CONCLUSIONS

This paper has presented a technique for joint transmit-
receive optimization in multiuser situations. A general solution
was derived for the optimum (MMSE) receive matrix, and
an iterative procedure was developed to find an individually
optimum transmit matrix for each user under a per-user power
constraint. Simulation results were presented to illustrate the
possible increases in performance made possible by the linear
processing optimization method and to examine the impact of
initialization conditions on convergence.

A significant drawback of the proposed iterative approach
is that it appears to converge to a false, local, minimum.
More computationally intensive approaches, such as SQP,
on the other hand, provide better performance. The theory
to overcome this performance loss would be a significant
extension of this work. On the other hand, the results in
Section IV show the proposed iterative algorithm to provide
excellent results and make full use of the available transmit-
receive spatial resources. Finally, the techniques developed
within this paper operate only in the spatial domain, and, as
such, can be applied without modification to current multiple
access schemes, such as CDMA or TDMA.
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