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Linear Processing and Sum Throughput in the
Multiuser MIMO Downlink
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Abstract—We consider linear precoding and decoding in the
downlink of a multiuser multiple-input, multiple-output (MIMO)
system, wherein each user may receive more than one data
stream. We propose several mean squared error (MSE) based
criteria for joint transmit-receive optimization and establish a
series of relationships linking these criteria to the signal-to-
interference-plus-noise ratios of individual data streams and the
information theoretic channel capacity under linear minimum
MSE decoding. In particular, we show that achieving the max-
imum sum throughput is equivalent to minimizing the product
of MSE matrix determinants (PDetMSE). Since the PDetMSE
minimization problem does not admit a computationally efficient
solution, a simplified scalar version of the problem is considered
that minimizes the product of mean squared errors (PMSE).
An iterative algorithm is proposed to solve the PMSE problem,
and is shown to provide near-optimal performance with greatly
reduced computational complexity. Our simulations compare the
achievable sum rates under linear precoding strategies to the sum
capacity for the broadcast channel.

Index Terms—Adaptive arrays, adaptive modulation, diversity
methods, information rates, MIMO systems, nonlinear program-
ming, optimization methods, least mean square methods, space
division multiplexing.

I. INTRODUCTION

THE benefits of using multiple antennas for wireless
communication systems are well known. When antenna

arrays are present at the transmitter and/or receiver, multiple-
input multiple-output (MIMO) techniques can utilize the spa-
tial dimension to yield improved reliability, increased data
rates, and the spatial separation of users. In this paper, the
methods we propose will focus on exploiting all of these
features, with the goal of maximizing the sum data rate
achieved in the MIMO multiuser downlink.

The optimal strategy for maximizing sum rate in the mul-
tiuser MIMO downlink, also known as the broadcast channel
(BC), was first proposed in [1]; the authors prove that Costa’s
dirty paper coding (DPC) strategy [2] is sum capacity achiev-
ing for a pair of single-antenna users. The sum-rate optimality
of DPC was generalized to an arbitrary number of multi-
antenna receivers using the notions of game theory [3] and
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uplink-downlink duality [4], [5]; this duality is employed in
[6], [7] to derive iterative solutions that find the sum capacity.
DPC has been shown to be the optimal precoding strategy not
only for sum capacity, but also for the entire capacity region in
the BC [8]. Unfortunately, finding a practical realization of the
DPC precoding strategy has proven to be a difficult problem.
Existing solutions, which are largely based on Tomlinson-
Harashima precoding (THP) [9]–[12], incur high complexity
due to their nonlinear nature and the combinatorial problem
of user order selection. THP-based schemes also suffer from
rate loss when compared to the sum capacity due to modulo
and shaping losses.

Linear precoding provides an alternative approach for trans-
mission in the MIMO downlink, trading off a reduction in
precoder complexity for suboptimal performance. Orthogo-
nalization based schemes use zero forcing (ZF) and block
diagonalization (BD) to transform the multiuser downlink into
parallel single-user systems [13], [14]. A waterfilling power
allocation can then be used to allocate powers to each of the
users [15]. The simplicity of these approaches comes at the
expense of an antenna constraint requiring at least as many
transmit antennas as the total number of receive antennas.
These schemes, therefore, restrict the possibility of gains from
additional receiver antennas. The constraint is relaxed under
successive zero forcing [16], which requires only partial or-
thogonality but incurs higher complexity in finding an optimal
user ordering. Coordinated beamforming [17] and generalized
orthogonalization [18] are able to avoid the antenna constraint
via iterative optimization of transmit and receive beamformers.

It is also possible to improve the sum rate achieved with
ZF and BD by including user or antenna selection in the
precoder design. The sum-rate maximizing ZF precoder can
be found by comparing precoders for all possible subsets of
available receive antennas [1]; however, this strategy incurs
exponential complexity on the order of the total number of
receive antennas. Greedy and suboptimal strategies for user
selection [19]–[22] may also be applied with lower compu-
tational cost. However, user selection is outside the scope of
this paper; our goal here is to focus on the rates achievable
under linear precoding. While all of these schemes possess
lower complexity than the THP based methods, the use of
orthogonalization results in suboptimal performance due to
noise enhancement. In this paper, we consider the optimal
formulation for sum rate maximization under linear precoding.

Much of the existing literature on linear precoding for
multiuser MIMO systems focuses on minimizing the sum of
mean squared errors (SMSE) between the transmitted and
received signals under a sum power constraint [23]–[28]. An
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important recurring theme in most of these papers is the use
of an uplink-downlink duality for both MSE and signal-to-
interference-plus-noise ratio (SINR) introduced in [24] for
the single receive antenna case and extended to the MIMO
case in [26], [27]. These MSE and SINR dualities are equally
applicable to sum rate maximization.

Linear precoding approaches to sum rate maximization have
been proposed for both single-antenna receivers [29], [30] and
for multiple antenna receivers [31]–[33]. In [29], the authors
suggest an iterative method for direct optimization of the sum
rate, while [30] and [31] exploit the SINR uplink-downlink
duality of [24], [26], [27]. In [32] and [33], two similar algo-
rithms were independently proposed to minimize the product
of the mean squared errors (PMSE) in the multiuser MIMO
downlink; these papers showed that the PMSE minimization
problem is equivalent to the direct sum rate maximization
proposed in [29]–[31]. The work of [33] was motivated by
the equivalence relationship developed between the single user
minimum MSE (MMSE) and mutual information in [34]. Each
of the approaches in [29]–[33] yields a suboptimal solution,
as the resulting solutions converge only to a local optimum,
if at all.

Given this prior work in linear precoding, an important
motivation for this paper is to determine the performance
upper bound achievable under linear precoding and to evaluate
how closely PMSE minimization comes to approaching this
upper bound. In the single-user multicarrier case, minimizing
the PMSE is equivalent to minimizing the determinant of
the MSE matrix and thus is also equivalent to maximizing
the mutual information [35]. This equivalence does not apply
to the multiuser scenario. In this paper, we investigate the
relationship between the MSE-matrix determinants, the mutual
information, and the maximum achievable sum rate under
linear precoding in the multiuser MIMO downlink, resulting
in an optimization problem based on minimizing the product
of the determinants of all users’ MSE matrices (PDetMSE).
Furthermore, we underline the differences between the joint
(multi-stream) optimization that arises from the PDetMSE
approach and the scalar (per-stream) PMSE-based solution.
While chronologically, the PMSE approach was developed
before the PDetMSE formulation, we present PMSE in this
paper as a lower complexity approximation of the PDetMSE
formulation.

The main contributions of this paper are:
• Deriving the maximum achievable information rates for

both joint and scalar processing under linear precoding
and formulating the joint (PDetMSE) and scalar process-
ing (PMSE) based sum rate maximization problems using
MSE expressions.

• Proposing solutions to these optimization problems based
on uplink-downlink duality, and addressing several issues
regarding algorithm implementation.

• Analyzing the performance of our proposed schemes
in comparison to the DPC sum capacity and to or-
thogonalization based approaches. We demonstrate that
a performance improvement is made in narrowing the
gap to capacity at practical values of transmit SNR,
and show that the PDetMSE approach provides the best
performance of all proposed schemes.

Fig. 1. Processing for user k in downlink and virtual uplink.

The remainder of this paper is organized as follows.
Section II describes the system model used and states the
assumptions made. Section III derives the performance upper
bound for the achievable sum rate under linear precoding, and
develops the use of the product of MSE matrix determinants
as the optimization criterion for joint processing. Section IV
investigates a suboptimal framework based on the product of
mean squared errors and proposes a computationally feasible
scheme for implementation. Results of simulations testing the
effectiveness of the proposed approaches are presented in
Section V. Finally, we draw our conclusions in Section VI.

Notation: Lower case italics, e.g., x, represent scalars while
lower case boldface type is used for vectors (e.g., x). Upper
case italics, e.g., N , are used for constants and upper case
boldface represents matrices, e.g., X. Entries in vectors and
matrices are denoted as [x]i and [X]i,j respectively. The
superscripts T and H denote the transpose and Hermitian
operators. E[·] represents the statistical expectation operator
while IN is the N×N identity matrix. tr [·] and det (·) are the
trace and determinant operators. ‖x‖1 and ‖x‖2 denote the 1-
norm (sum of entries) and Euclidean norm. diag(x) represents
the diagonal matrix formed using the entries in vector x,
and diag [X1, . . . ,Xk] is the block diagonal concatenation
of matrices X1, . . . ,Xk. A � 0 and B � 0 indicate
that A and B are positive definite and positive semidefinite
matrices, respectively. êmax(A,B) is the unit Euclidean norm
eigenvector x corresponding to the largest eigenvalue λ in the
generalized eigenproblem Ax = λBx. Finally, CN (m, σ2)
denotes the complex Gaussian probability distribution with
mean m and variance σ2.

II. SYSTEM MODEL WITH LINEAR PRECODING

The system under consideration, illustrated in Fig. 1, com-
prises a base station with M antennas transmitting to K
decentralized users over flat wireless channels. User k is
equipped with Nk antennas and receives Lk data streams
from the base station. Thus, we have M transmit antennas
transmitting a total of L =

∑K
k=1 Lk symbols to K users,

who, together, have a total of N =
∑K

k=1 Nk receive antennas.
The data symbols for user k are collected in the data vector
xk = [xk1, xk2, . . . , xkLk

]T and the overall data vector is
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x =
[
xT

1 ,xT
2 , . . . ,xT

K

]T
. We assume that the modulated

data symbols x are independent with unit average energy
(E
[
xxH

]
= IL). User k’s data streams are processed by the

M × Lk transmit filter Uk = [uk1, . . . ,ukLk
] before being

transmitted over the M antennas; ukj is the precoder for
stream j of user k, and has unit power ‖ukj‖2 = 1. Together,
these individual precoders form the M ×L global transmitter
precoder matrix U = [U1,U2, . . . ,UK ]. Let pkj be the power
allocated to stream j of user k and the downlink transmit
power vector for user k be pk = [pk1, pk2, . . . , pkLk

]T ,
with p =

[
pT

1 , . . . ,pT
K

]T
. Define Pk = diag{pk} and

P = diag{p}. The channel between the transmitter and user k
is represented by the Nk×M matrix HH

k . The overall N ×M
channel matrix is HH , with H = [H1, H2, . . . ,HK ]. The
transmitter is assumed to know the channel perfectly.

Based on this model, user k receives a length-Nk vector

yk = HH
k U

√
Px + nk,

where nk consists of the additive white Gaussian noise
(AWGN) at the user’s receive antennas with i.i.d. entries
[nk]i ∼ CN (0, σ2); that is, E

[
nknH

k

]
= σ2INk

. To estimate
its Lk symbols xk, user k processes yk with its Lk × Nk

decoder matrix VH
k resulting in

x̂DL
k = VH

k HH
k U

√
Px + VH

k nk,

where the superscript DL indicates the downlink. The global
receive filter VH is a block diagonal matrix of dimension
L × N , V = diag [V1, V2, · · · ,VK ], where each Vk =
[vk1, . . . ,vkLk

]. The MSE matrix for user k in the downlink
under these general precoder and decoder matrices can be
written as

EDL
k = E

[
(x̂k − xk) (x̂k − xk)H

]
= VH

k HH
k UPUHHkVk + σ2VH

k Vk

− VH
k HH

k Uk

√
Pk −

√
PkUH

k HkVk + ILk
.

(1)

We will make use of the dual virtual uplink, also illustrated
in Fig. 1, with the same channels between users and base
station. In the uplink, user k transmits Lk data streams.
Let the uplink transmit power vector for user k be qk =
[qk1, qk2, . . . , qkLk

]T , with q = [qT
1 , . . . ,qT

K ]T , and define
Qk = diag{qk} and Q = diag{q}. The transmit and receive
filters for user k become Vk and UH

k respectively. As in the
downlink, the precoder for the virtual uplink contains columns
with unit norm; that is, ‖vkj‖2 = 1. The received vector at
the base station and the estimated symbol vector for user k
are

y =
K∑

i=1

HiVi

√
Qixi + n,

x̂UL
k =

K∑
i=1

UH
k HiVi

√
Qixi + UH

k n.

The noise term, n, is again AWGN with E
[
nnH

]
= σ2IM .

We define a useful virtual uplink receive covariance matrix

as

J = E
[
yyH

]
=

K∑
k=1

HkVkQkVH
k HH

k + σ2IM

= HVQVHHH + σ2IM .

The global MSE matrix for all users in the virtual uplink can
then be expressed as

EUL = E

[
(x̂− x) (x̂ − x)H

]
= UHJU − UHHV

√
Q−

√
QVHHHU + IL.

(2)

III. LINEAR PRECODING AND SUM RATE MAXIMIZATION

In this section, we formulate the sum rate maximization
problem under linear precoding in the broadcast channel. We
begin by introducing the information theoretic DPC upper
bound, and then derive the performance upper bound achiev-
able under linear precoding. We then derive an equivalent
formulation in terms of MSE expressions, and propose the
PDetMSE based scheme for achieving this optimal sum rate
performance under linear precoding.

A. Sum Capacity and Dirty Paper Coding

Information theoretic approaches characterize the sum ca-
pacity of the multiuser MIMO downlink by solving the sum
capacity of the equivalent uplink multiple access channel
(MAC) and applying a duality result [4], [5]. The BC sum
capacity can thus be expressed as

Rsum = max
Σk

log det

(
I +

1
σ2

K∑
k=1

HkΣkHH
k

)

s.t. Σk � 0, k = 1, . . . , K
K∑

k=1

tr [Σk] ≤ Pmax,

where Σk is the uplink transmit covariance matrix for mobile
user k, and Pmax is the maximum sum power over all users.
Note that this optimization problem is concave in Σk, and is
hence relatively easy to solve. This result does not translate
to linear precoding.

B. Achievable Sum Rate under Linear Precoding

The achievable rate for a single user MIMO channel is
log (det (Kx + Kz)/ det (Kz)) (where Kx is the received
signal covariance and Kz is the noise covariance) [36]. Under
single-user decoding, multi-user interference is treated as
noise, and user k can achieve rate Rk in the downlink using
transmit covariance Σk:

Rk = log
det
(∑K

j=1 HH
k ΣjHk + σ2I

)
det
(∑

j �=k HH
k ΣjHk + σ2I

) .

Under the system model described in Section II, user k
transmits with covariance matrix Σk = UkPkUH

k . The
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achievable rate for user k under linear precoding is therefore

RLP
k = log

det
(∑K

j=1 HH
k UjPjUH

j Hk + σ2I
)

det
(∑

j �=k HH
k UjPjUH

j Hk + σ2I
)

= log
detJk

detRN+I,k
,

(3)

where Jk = HH
k UPUHHk + σ2I and RN+I,k = Jk −

HH
k UkPkUH

k Hk are the received signal covariance matrix
and the noise-plus-interference covariance matrix at user k,
respectively.

The rate maximization problem with a sum power constraint
under linear precoding can then be formulated as

(U,P) = argmax
U,P

K∑
k=1

log
detJk

detRN+I,k

s.t. ‖ukj‖2 = 1, k = 1, . . . , K, j = 1, . . . , Lk

pkj ≥ 0, k = 1, . . . , K, j = 1, . . . , Lk

‖p‖1 =
K∑

k=1

Lk∑
j=1

pkj ≤ Pmax. (4)

C. MSE Formulation: Product of MSE Matrix Determinants

In this section, we show that an MSE-based formulation
using joint processing of all streams (rather than treating each
user’s own data streams as interference) leads to an equivalent
optimal formulation of the rate maximization problem under
linear processing. We develop this relationship by using the
MSE matrix determinants.

First, consider the linear MMSE decoder for user k, Vk,

Vk =
(
HH

k UPUHHk + σ2I
)−1

HH
k Uk

√
Pk

= J−1
k HH

k Uk

√
Pk.

(5)

When using this matrix as the receiver in (1), the downlink
MSE matrix for user k in can be simplified as

EDL
k = ILk

−
√

PkUH
k HkJ−1

k HH
k Uk

√
Pk. (6)

Consider the following optimization problem which mini-
mizes the product of the determinants of the downlink MSE
matrices under a sum power constraint:

(U,P) = argmin
U,P

K∏
k=1

detEDL
k

s.t. ‖ukj‖2 = 1, k = 1, . . . , K, j = 1, . . . , Lk

pkj ≥ 0, k = 1, . . . , K, j = 1, . . . , Lk

‖p‖1 =
K∑

k=1

Lk∑
j=1

pkj ≤ Pmax. (7)

Theorem 1: Under linear MMSE decoding at the base
station, the sum rate maximization problem in (4) and the
PDetMSE minimization problem in (7) are equivalent.

Proof: The determinant of the downlink MSE matrix can
be written as

detEDL
k = det

(
ILk

− HH
k UkPkUH

k HkJ−1
k

)
(8)

= det
[(

Jk − HH
k UkPkUH

k Hk

)
J−1

k

]
= det

[
RN+I,kJ−1

k

]
=

detRN+I,k

detJk
,

where (8) follows from (6) since det(I+AB) = det(I+BA)
when A and B have appropriate dimensions. We then see the
relationship to (3),

log detEDL
k = − log

detJk

detRN+I,k

= −RLP
k .

With this result, we can see that under MMSE reception using
Vk as defined in (5), minimizing the determinant of the MSE
matrix EDL

k is equivalent to maximizing the achievable rate
for user k. It follows that minimizing the product of MSE
matrix determinants over all users is equivalent to sum rate
maximization,

min
K∏

k=1

detEDL
k ≡ min

K∑
k=1

log detEDL
k (9)

≡ max
K∑

k=1

RLP
k .

where (9) holds since since log(·) is a monotonically increas-
ing function of its argument.

Note that this new result represents an upper bound on the
sum rate on all linear precoding schemes in the broadcast
channel.

The covariance matrices Jk and RN+I,k in the MSE matrix
Ek are each functions of all precoder and power allocation
matrices. Thus, the sum rates Rk for each user k (and the sum
rate for all users) are coupled across users. As such, finding
U and P jointly or finding only the power allocation P for a
fixed U are both non-convex problems and are just as difficult
to solve as the rate maximization problem.

In the sum capacity and SMSE problems, the problem of
non-convexity is addressed by solving a convex virtual uplink
formulation and applying a duality-based transformation. Un-
fortunately, the sum rate expression under linear precoding in
the virtual uplink is nearly identical to that derived above for
the downlink, and does not admit a cancellation or grouping
of terms to decouple the problem across users.

Direct solution of the non-convex downlink problem for
minimizing the product of MSE matrix determinants requires
finding a complex M × L precoder matrix. We consider the
application of sequential quadratic programming (SQP) [37]
to solve this problem. SQP solves successive approximations
of a constrained optimization problem and is guaranteed to
converge to the optimum value for convex problems; however,
in the case of this non-convex optimization problem, SQP can
only guarantee convergence to a local minimum.

This computationally intensive approach is the only avail-
able option in the absence of a convex virtual uplink formu-
lation. Moreover, the numerical techniques used for solving
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nonlinear problems do not guarantee convergence to the
global minimum. This is clearly not a desirable method for
finding a practical precoder, especially when one of our major
motivations for using linear precoding is reducing transmitter
complexity. We do not suggest that this method be practically
implemented; rather, we use it to illustrate the difference in
performance between the solutions to the optimal PDetMSE
formulation and the more practical PMSE algorithm that we
propose in the following section.

IV. SCALAR PROCESSING AND THE PRODUCT OF MEAN

SQUARED ERRORS

Given the complexity of the PDetMSE solution, we consider
PMSE minimization as a suboptimal (but likely feasible)
approximation to rate maximization in the multiuser MIMO
downlink. In [35], the single-user rate maximization problem
using linear precoding is solved by minimizing the deter-
minant of the MSE matrix. This solution is equivalent to
minimizing the product of individual stream MSEs because the
problem is scalarized by diagonalization of both the channel
and MSE matrices. It was recently demonstrated in [38] that
the MSE matrices can also be diagonalized in the multiuser
case by applying unitary transformations to the precoder
and decoders; however, in the absence of orthogonalizing
precoders (e.g., BD or ZF), minimization of the PMSE yields
a different solution from minimizing the PDetMSE.

The PMSE approach, based on scalar processing of the indi-
vidual stream MSEs for each user, follows from the treatment
of the optimization problems in [26], [27], where non-convex
problems in the downlink are transformed to convex problems
in the dual uplink. With this motivation in mind, we consider
formulating the scalar optimization problem directly in the
virtual uplink, and transforming the resulting solution to the
downlink using the uplink-downlink MSE duality in [26], [27].

A. Achievable Sum Rate using Scalar Processing

In the scalarized version of the rate maximization problem,
the user’s own data streams (l 
= j) are considered as self-
interference in addition to the multiuser interference. The
achievable rate for user k’s substream j can thus be expressed
as

RLP
k,j = log

(
1 + γUL

kj

)
,

where

γUL
kj =

uH
kjHkvkjqkjvH

kjH
H
k ukj

uH
kjJkjukj

(10)

is the SINR and Jkj = J − HkvkjqkjvH
kjH

H
k is the virtual

uplink interference-plus-noise covariance matrix for stream j
of user k.

The scalar rate maximization problem with a sum power
constraint under linear precoding can thus be written as

(V,Q) = argmax
V,Q

K∑
k=1

Lk∑
j=1

log
(
1 + γUL

kj

)
s.t. ‖vkj‖2 = 1, k = 1, . . . , K, j = 1, . . . , Lk

qkj ≥ 0, k = 1, . . . , K, j = 1, . . . , Lk

‖q‖1 =
K∑

k=1

Lk∑
j=1

qkj ≤ Pmax. (11)

B. MSE Formulation: Product of Mean Squared Errors

With this scalar processing rate maximization problem in
mind, we consider the MSE-equivalent formulation. We begin
by finding the optimum linear receiver, and can see from
(10) that ukj does not depend on any other columns of U.
Furthermore, it is the solution to the generalized eigenproblem

uopt
kj = êmax

(
HkvkjqkjvH

kjH
H
k ,Jkj

)
.

Within a normalizing factor, this solution is equivalent to the
MMSE receiver,

uopt
kj = J−1Hkvkj

√
qkj . (12)

When the MMSE receiver in (12) is used, the virtual uplink
MSE matrix (2) reduces to

EUL = IL −
√

QVHHHJ−1HV
√

Q.

Thus, the mean squared error for user k’s jth stream is entry
j in block k of EUL,

εUL
kj = 1 − qkjvH

kjH
H
k J−1Hkvkj .

Now consider another optimization problem, minimizing
the product of mean squared errors (PMSE) under a sum
power constraint,

(V,Q) = arg min
V,Q

K∏
k=1

Lk∏
j=1

εUL
kj

s.t. ‖vkj‖2 = 1, k = 1, . . . , K, j = 1, . . . , Lk

qkj ≥ 0, k = 1, . . . , K, j = 1, . . . , Lk

‖q‖1 =
K∑

k=1

Lk∑
j=1

qkj ≤ Pmax. (13)

Theorem 2: Under linear MMSE decoding at the base
station, the optimization problems defined by (11) and (13)
are equivalent.

Proof: Using (10), we can rewrite 1 + γUL
kj as

1 + γUL
kj =

uH
kjJukj

uH
kjJukj − uH

kjHkvkjqkjvH
kjH

H
k ukj

.

It follows that by using the MMSE receiver from (12),

1
1 + γUL

kj

= 1 − uH
kjHkvkjqkjvH

kjH
H
k ukj

uH
kjJukj

= 1 −
(
qkjvH

kjH
H
k J−1Hkvkj

)2

qkjvH
kjH

H
k J−1Hkvkj

= 1 − qkjvH
kjH

H
k J−1Hkvkj = εUL

kj .

(14)

This relationship is similar to one shown for MMSE detection
in CDMA systems [39]. By applying (14) to (11), we see that

K∑
k=1

Lk∑
j=1

log
(
1 + γUL

kj

)
= − log

⎛
⎝ K∏

k=1

Lk∏
j=1

εUL
kj

⎞
⎠ .

Since the constraints on vkj and qkj are identical in (11) and
(13), the problem of maximizing sum rate in (11) is therefore
equivalent to minimizing the PMSE in (13).

Note that this result has been independently derived in [32],
[33].
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C. Algorithm: PMSE Minimization

We now present an algorithm that minimizes the product
of mean squared errors. The algorithm draws upon previous
work based on uplink-downlink MSE duality [26], [27], which
states that all achievable MSEs in the uplink for a given U,
V, and q (with sum power constraint ‖q‖1 ≤ Pmax), can
also be achieved by a power allocation p in the downlink
(where ‖p‖1 ≤ Pmax). It operates by iteratively obtaining the
downlink precoder matrix U and power allocations p and the
virtual uplink precoder matrix V and power allocations q.
Each step minimizes the objective function by modifying one
of these four variables while leaving the remaining three fixed.

1) Downlink Precoder: For a fixed set of virtual uplink
precoders Vk and power allocation q, the optimum virtual
uplink decoder U is defined by (12). Each εkj is minimized
individually by this MMSE receiver, thereby also minimizing
the product of MSEs. This U is normalized and used as the
downlink precoder.

2) Downlink Power Allocation: The downlink power allo-
cation p is given by [27]:

p = σ2(D−1 − Ψ)−11,

where Ψ is the L × L cross coupling matrix defined as

[Ψ]ij =
{ |h̃H

i uj |2 = |uH
j h̃i|2 i 
= j

0 i = j
,

D = diag

{
γUL
11

|vH
11H

H
1 u11|2 , . . . ,

γUL
KLK

|vH
KLK

HH
KuKLK |2

}
,

where H̃ = HV = [h̃1, . . . , h̃L], U = [u1, . . . ,uL], and 1 is
the all-ones vector of the required dimension.

3) Virtual Uplink Precoder: Given a fixed U and p, the
optimal decoders Vk are the MMSE receivers:

Vk = J−1
k HH

k Uk

√
Pk.

In this equation, Jk = HH
k UPUHHk + σ2INk

is the receive
covariance matrix for user k. The optimum virtual uplink
precoders are then the normalized columns of Vk.

4) Virtual Uplink Power Allocation: The power allocation
problem on the virtual uplink solves (13) with a fixed matrix
V. While it is well accepted that the power allocation sub-
problem in PMSE minimization (or equivalently, in sum rate
maximization) is non-convex [30], [31], [40], recent work [32]
has shown that the optimal power allocation can be found
by formulating the subproblem as a Geometric Programming
(GP) problem [41]. A similar approach was proposed in [31],
where iterations of the the sum rate maximization problem are
solved by local approximations of the non-convex sum rate
function as a GP. We employ numerical techniques (SQP) to
solve the power allocation subproblem.

In summary, the PMSE minimization algorithm keeps three
of four parameters (U,p,V,q) fixed at each step and obtains
the optimal value of the fourth. Convergence of the overall
algorithm to a local minimum is guaranteed since the PMSE
objective function is non-increasing at each of the four param-
eter update steps. Termination of the algorithm is determined
by the selection of a convergence threshold ε.

TABLE I
ITERATIVE PMSE MINIMIZATION ALGORITHM

Iteration:
1- Downlink Precoder

Ũk = J−1HH
k

Vk
√

Qk , ukj =
ũkj

‖ũkj‖2

2- Downlink Power Allocation via MSE duality
p = σ2(D−1 − Ψ)−11

3- Virtual Uplink Precoder

Ṽk = J−1
k

HH
k Uk

√
Pk , vkj =

ṽkj

‖ṽkj‖2

4- Virtual Uplink Power Allocation

q = arg minq

∏K

k=1

∏Lk

j=1
εkj , s.t. qkj ≥ 0, ‖q‖1 ≤ Pmax

5- Repeat 1–4 until [PMSEold − PMSEnew] /PMSEold < ε

Since the overall minimization problem (13) is not convex,
all of the suggested methods are guaranteed to converge only
to a local minimum. Nonetheless, simulations suggest that the
locally optimal value of the sum rate is not overly sensitive to
selection of an appropriate initialization point. It is important
to ensure that the initial solution allocates power to all L
substreams, as the iterative algorithm tends to not allocate
power to streams with zero power. A reasonable initialization
is to select random unit-norm precoder vectors in U and
uniform power allocated over all substreams. A summary of
our proposed algorithm can be found in Table I.

V. NUMERICAL EXAMPLES

In this section, we present simulation results to illustrate
the performance of the proposed algorithms. In all cases, the
fading channel is modelled as flat and Rayleigh, with i.i.d.
channel coefficients distributed as CN (0, 1). The examples use
a maximum transmit power of Pmax = 1; SNR is controlled
by varying the receiver noise power σ2. As stated earlier,
the transmitter is assumed to have perfect knowledge of the
channel matrix H.

A. Sum Capacity and Achievable Sum Rate

We first compare the sum rate achievable using linear
precoding to the information theoretic capacity of the BC.
That is, we consider the spectral efficiency (measured in
bps/Hz) that could be achieved under ideal transmission by
drawing transmit symbols from a Gaussian codebook. Figure 2
illustrates how the proposed schemes perform when compared
to the sum capacity for the broadcast channel (i.e., using dirty
paper coding (DPC) [2]) and to linear precoding methods
based on channel orthogonalization, i.e., block diagonalization
(BD) and zero forcing (ZF) [15].1 The convergence threshold
for the PMSE algorithm is set at ε = 10−6. Note that
curves for THP can not be included for comparison, as the
modulo and shaping losses from the DPC sum capacity are
fundamentally related to THP’s nonlinear modulation scheme.

1Simulation results for the DPC, BD, ZF, and NuSVD plots were obtained
by using the cvx optimization package [42], [43].
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Fig. 2. Comparing PDetMSE, PMSE, DPC and orthogonalization–based
methods, K = 2, M = 4, Nk = 2, Lk = 2
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Fig. 3. Comparing PDetMSE, PMSE, DPC and orthogonalization–based
methods, K = 2, M = 4, Nk = 4, Lk = 2

The simulations in Fig. 2 model a K = 2 user system
with M = 4 transmit antennas and Nk = 2 receive antennas
per user. We see a negligible difference in performance when
comparing the PDetMSE algorithm to the PMSE solution.
This is interesting because the relationship between PDetMSE
and PMSE mirrors that of BD and ZF; that is, the PDetMSE
can be viewed as the block-matrix formulation of the PMSE
problem. There is, however, a significant performance differ-
ence between BD and ZF. This result is also gratifying because
it suggests that the marginal gains achieved by joint processing
do not merit the greatly increased computational complexity;
the feasible PMSE solution can be used without a large penalty
in performance. The PMSE and PDetMSE algorithms do
demonstrate a divergence in performance from the theoretical
DPC bound at higher SNR. This drop in spectral efficiency
may reflect a fundamental gap between the (optimal) nonlinear
DPC capacity and the rate achievable under linear precoding,
but it may also be caused by the algorithms’ convergence to

local minima due to the non-convexity of the optimization
problems.

The PMSE algorithm outperforms the BD and ZF methods
over the entire SNR range when the orthogonalization-based
schemes are forced to use all N receive antennas. However,
this this approach to orthogonalization is suboptimal; the
optimal BD and ZF precoders may be found by selecting the

best precoder from all
∑min(N,M)

k=1

(
N
k

)
possible subsets

of receive antennas. At high SNR, the PMSE and PDetMSE
precoders perform equivalently to the BD precoder with
selection; we have observed that the PMSE and PDetMSE
precoders (in conjunction with the MMSE receivers) behave
like the BD precoder in orthogonalizing the channel at high
SNR. The biggest gain in performance over orthogonalization-
based solutions occurs at low to mid-SNR values, where BD
and ZF suffer due to noise enhancement.

Figure 3 presents simulation results for a similar system as
Fig. 2, but with Nk = 4 receive antennas per user. In this sys-
tem, there are fewer transmit antennas than receive antennas
(M < N ), so BD/ZF can not be employed without selection.
We include simulation results for BD/ZF with selection, but
note the large computational complexity required (selecting
the best of 162 candidate precoders). We compare these results
to a generalized orthogonalization based approach, referred to
as nullspace-directed SVD (NuSVD) in [18], and observe a
large difference in performance at high SNR. This gain in
spectral efficiency can be attributed to NuSVD’s ability to use
all N = 8 receive antennas, whereas BD and ZF are limited
by an antenna constraint.

Once again, Fig. 3 illustrates that the PMSE/PDetMSE
approaches outperform orthogonalization, particularly at low
to mid-SNR values. This improvement in performance comes
at the expense of additional complexity. Even though NuSVD
and PMSE/PDetMSE are iterative algorithms, NuSVD re-
quires only one (concave) waterfilling power allocation after
convergence of precoder direction iterations, whereas the
PMSE/PDetMSE minimization methods employ numerical
optimization algorithms (SQP) in each iteration.

Figure 4 shows how the sum throughput scales with the
number of users K , for M = 2K transmit antennas and
Nk = 2 receive antennas per user at 5 dB average SNR.
The number of transmit antennas M is chosen so that BD
and ZF can be implemented without selection, as selection-
based BD and ZF are exponentially complex with 4K − 1
possible precoders. This plot illustrates how the proposed
scheme takes advantage of the available degrees of freedom
at the transmitter and provides throughput significantly better
than the orthogonalization based BD and ZF schemes.

The PMSE and PDetMSE algorithms do not require the
explicit selection of Lk; rather, this parameter is determined
implicitly by the power allocation. However, we can force the
PMSE algorithm to allocate a maximum number of substreams
Lk to each user to gain further insight into its behaviour. In
Fig. 5, the number of streams in the Nk = 4 system described
above is varied from L1 = L2 = 2 to L1 = 3 and L2 = 1. The
achievable sum rate in this system decreases in the latter case,
as the asymmetric stream allocation does not correspond to
the symmetric (statistically identical) channel configuration. In
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this case, user 2 is restricted to only a single data stream, and
thus can not take full advantage of good channel realizations.
If the goal is always maximizing the sum rate, the users
should be allocated the maximum number of data streams in as
balanced a manner as possible. Note however that the PMSE
algorithm can provide unbalanced allocations if desired for
other reasons (e.g., quality of service provisioning).

B. Implementation: Adaptive Modulation

In contrast to the previous results based on Gaussian code-
books, we now consider the selection of constellations for
modulation to achieve a maximum throughput for a specified
bit error rate (BER) target of βkj on user k’s jth substream.
Since the PMSE algorithm assumes unit energy symbols, we
use M -PSK constellations in our implementation. Note that
the prior assumption of Gaussian noise-plus-interference still
holds for a sufficient number of interferers under the central
limit theorem. We propose two approaches for selecting the
modulation scheme for each substream.

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

SNR = P
max

 / σ2 (dB)

A
ve

ra
ge

 S
um

 R
at

e 
(b

its
/tr

an
sm

is
si

on
)

PMSE−P
PMSE
SMSE

Fig. 6. Sum rate vs. SNR for user 1 with M-PSK modulation, K = 2,
M = 4, Nk = Lk = 2

1) Naive Approach: This approach selects the largest PSK
constellation of bkj bits per stream that satisfies the required
BER constraint. The constraint is satisfied using a closed form
BER approximation [44],

BERPSK(γ) ≈ c1 exp
( −c2γ

2c3b − c4

)
, (15)

where M = 2b is the size of the PSK constellation. We apply
the least aggressive of the bounds proposed in [44] by using
the values c1 = 0.25,c2 = 8,c3 = 1.94, and c4 = 0. We note
that this approximation only holds for b ≥ 2; as such, one can
use the exact expression for BPSK:

BERBPSK(γ) =
1
2
erfc (

√
γ) . (16)

The BPSK expression can be used as a test of feasibility for
the specified BER target; if the resulting BER under BPSK
modulation is higher than βkj , then we have two options:
either declare the BER target infeasible, or transmit using the
lowest modulation depth available (i.e. BPSK). In this work,
we have elected to transmit using BPSK whenever the PMSE
stage has allocated power to the data stream.

2) Probabilistic Approach: The naive approach is quite
conservative in that there may be a large gap between the
BER requirement and BERbkj

, the BER achieved for each
channel realization. We suggest a probabilistic bit alloca-
tion scheme that switches between bkj bits (as determined
by the naive approach) and bkj + 1 bits with probability
pkj =

[
βkj − BERbkj

]
/
[
BERbkj+1 − BERbkj

]
. This mod-

ulation strategy may not be appropriate for systems requiring
instantaneous satisfaction of BER constraints; however, the
probabilistic method will still achieve the desired BER in the
long-term over multiple channel realizations.

Figure 6 shows the sum rate achieved in the same system
configuration as in Fig. 2 (K = 2, M = 4, Nk = 2) under the
M -PSK modulation scheme described above. The simulations
use two data streams per user and a target bit error rate
of βkj = 10−2; 5000 data and noise realizations are used
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for each channel realization. The plot illustrates the average
number of bits per transmission for user 1; due to symmetry,
the corresponding plot for user 2 is identical. Note that in
contrast to the previous results based on Gaussian coding using
spectral efficiency, the sum rate in Fig. 6 is the average number
of bits transmitted per realization using symbols from a PSK
constellation.

In Fig. 6, we consider using the PSK modulation scheme for
the PMSE precoder and the SMSE precoder designed in [27].
Examination of this plot reveals that using the PMSE criterion
is justified at practical SNR values with improvements of
approximately one bit per transmission near 15 dB. Further-
more, using the probabilistic modulation scheme (designated
“PMSE-P”) yields an additional improvement of more than
half a bit per transmission across all SNR values.

In Fig. 7, we plot average BER versus SNR for the same
system configuration as in Fig. 6. This plot illustrates how the
naive bit allocation algorithm attempts to achieve the target
BER of 10−2 for all data streams under PMSE, but also
overshoots the target, converging to a BER of approximately
5× 10−4. This can be attributed to the looseness of the BER
bound mentioned above. In contrast, the probabilistic rate
allocation algorithm not only increases the rate, as shown in
Fig. 6, but also converges to a BER that is much closer to the
desired target BER. The remaining gap between the actual
BER achieved and the target BER can again be attributed to
looseness in the approximations of (15) and (16).

VI. CONCLUSIONS

In this paper, we have considered the problem of designing
a linear precoder to maximize sum throughput in the multiuser
MIMO downlink under a sum power constraint. We have
compared the maximum achievable sum rate performance of
linear precoding schemes to the sum capacity in the general
MIMO downlink, without imposing constraints on the number
of users, base station antennas, or mobile antennas. The prob-
lem was reformulated in terms of MSE based expressions, and
the joint processing solution based on PDetMSE minimization

was shown to be theoretically optimal, but computationally
infeasible. A suboptimal framework based on scalar (per-
stream) processing was then proposed, and an implementation
was provided based on PMSE minimization and employing a
known uplink-downlink duality of MSEs. We evaluated the
performance of these schemes in the context of orthogonal-
izing approaches, which suffer from noise enhancement, and
have shown that the MSE based optimization schemes are
able to achieve significant performance improvements. Fur-
thermore, we have demonstrated that negligible performance
losses occur when using the suboptimal PMSE criterion in
comparison to the optimum PDetMSE criterion.
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