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Abstract— Given limitations with current technology, nodes
in a sensor network have stringent energy and complexity
constraints. This paper presents a scheme for cooperation via
relaying and error-control coding in sensor networks, using punc-
tured systematic repeat-accumulate codes. Assuming knowledge
of the source-relay channel quality, we use density evolution to
show that the proposed scheme achieves good performance and
a good energy tradeoff despite low computational complexity. An
interesting additional benefit of such a scheme is the notion of
fractional cooperation by a relay node. As a motivating example,
we analyze networks of up to ten cooperating nodes in Rayleigh
fading, which communicate with a more sophisticated receiver.

I. INTRODUCTION

A sensor network is a system in which distributed sensors
take local measurements of a phenomenon and form a network
to share their information, or to transmit it to some central
authority. Such networks have a wide variety of potential
applications, from wildlife monitoring [1] to load monitoring
in structures [2]. Many of these applications require the
network to be unobtrusive and ubiquitous, and to function
with little or no maintenance. Nodes, therefore, must be as
small, inexpensive, and efficient as possible. However, the data
sink may have access to substantial energy and computational
resources, within the limits of reasonable expense and con-
temporary technology.

In the literature, an important strategy for efficient commu-
nication in a network uses the relay channel [3], in which a
transmitter is assisted by intermediate transceiver in sending
a message, where the transceiver has no message of its
own to send. This idea can be generalized to cooperative
diversity [4], in which two (or more) transmitters assist each
other in sending their messages to a common receiver. In [5],
cooperative diversity was combined with error-control coding
as a more flexible strategy than merely repetition by the partner
while in [6], the two component codes of a Turbo code were
split up between two relaying nodes, and used to implement
a distributed Turbo code.

It is notable that much current research in sensor networks,
including research cited above, do not address the compu-
tational limitations of the sensor nodes. For instance, many
proposed schemes for sensor networking, such as [7], rely
on the sensor node decoding complicated error-control codes,

such as LDPC codes. Even the encoding of such codes requires
relatively high complexity, large amounts of memory, or both.
If the true gains of error-control coding are to be achieved
in practical sensor networks, it will be necessary to find
powerful codes that are simple to encode, and relay schemes
that can operate without intermediate error control decoding.
In this regard, the proposal in [8], though using a simplistic
code, is interesting for the gains achieved in spite of the low
complexity required of the relay nodes.

Another challenge for sensor nodes is to ensure reliable
communication in fading channels. For successful reception,
a sufficient amount of energy must arrive at a receiver. With
a traditional error-correcting code, since the block length (and
hence the transmission time, for fixed symbol rate) is fixed,
this may be done by changing the transmitted power. However,
this is not the only option – a code with variable block length
may be used as well. Example of such codes are the Luby
transform (LT) codes [9], and the related Raptor codes [10].
Unfortunately, it is known that LT codes, while simple to en-
code, suffer from high error floors outside of erasure channels
[11]. Raptor codes, which have high encoding complexity,
were recently been proposed for relay channels [7], though
in a manner that requires intermediate decoding at the relay.

In this paper we use a particular variety of repeat-
accumulate (RA) codes [12] known as systematic punctured
RA codes. RA codes are LDPC-like with low encoding
complexity, are iteratively decodable with the sum-product
algorithm [13], and have no error floors. Indeed, in the limit of
long block length, they exhibit the same thresholding behavior
as LDPC codes, with arbitrarily low probability of bit error
for sufficiently high signal-to-noise ratio (SNR). Puncturing
these codes gives them a multi-rate quality, in that the rate
can be easily changed by varying the number of bits punctured
or transmitted. Furthermore, like all codes decoded using the
sum-product algorithm, it is easy to modify the decoding
procedure to account for the relay. To the knowledge of the
authors, this work represents the first use of RA codes in a
sensor networking or relaying context.

The main contribution of this paper is a low-complexity
error-control coding and relaying scheme based on RA codes.
The proposed system is unique in the literature in that it



has been expressly designed with flexibility and simplicity
in mind, and should be usable on contemporary sensor net-
working hardware. We are interested in using RA codes to
improve efficiency – that is, using the flexibility provided by
the code at the source and relay to reduce the computational or
energy burden at each of the sensors. The ability to puncture
the code allows fractional cooperation by the relay, such that
it need to contribute only as much information as necessary
for successful decoding. This is in contrast to the currently
proposed all-or-nothing cooperation schemes [14].

In our setup, relays are used to enhance utility – that is,
the total number of information bits returned to the sink per
possible channel use. Of the available work in the literature,
our approach is most similar to [6]–[8]. However, unlike [6],
[8], we provide the flexibility of an inherently variable rate
to match a wide range of possible channel conditions, and
the use of the relay is not mandatory to gain the benefit of
the full code. Furthermore, compared to [7], our approach
significantly reduces the computational burden on the sensor
nodes. We point out that Turbo encoding, such as suggested
in [6], is relatively simple, and that much work has been done
on reducing the complexity of LDPC encoding (such as [15]),
but RA encoding is extremely simple, and LDPC codes in
particular are difficult to puncture.

The remainder of the paper is organized as follows. In
Section II, we introduce our system model and underlying
assumptions. In Section III, we discuss the use of repeat-
accumulate codes, and indicate how they can be used in a
relaying framework. In Section IV, we analyze our system
with density evolution. Finally, in Section V, we present some
preliminary results found using density evolution.

II. SYSTEM MODEL

Our scenario imagines a sensor network with multiple
sensors and one information sink, and the task of the sensors
is to convey their information as efficiently and accurately
as possible to the sink. The sensors possess simple two-way
radios, processors of limited complexity, and limited power
resources; while the data sink possesses virtually unlimited
radio, computational, and power resources, within the limits
of contemporary technology. The sensors’ limited capabilities,
and their ability to communicate with each other, imply
that they should co-operate in conveying information to the
sink. Furthermore, it is assumed that data traffic is light in
this network, which is a reasonable assumption for a sensor
network measuring a physical phenomenon changing slowly
with time.

Figure 1 depicts our system, containing n sensor nodes. To
simplify the analysis, we allow single relays only; although
multiple relays are possible in principle. We assume that the
transmitting node is sufficiently aware of the system state that
it can choose the best available relay. Since we assumed that
network traffic is light, we can also assume that this desired
relay is always available when needed.

Once a node picks a relay, the system may be reduced
(without loss of generality) to the sensor, its relay, and the
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Fig. 1. An example sensor network with several nodes. As shown, either
direct links or single relays to the sink are permitted.
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Fig. 2. The relaying scheme once a relay has been selected.

destination, as in Fig. 2. Let ws ∈ {0, 1}k represent the k-bit
binary information sequence observed by the sensor, and let
xs represent the data modulated symbol sequence representing
m-bit codeword (m > k) generated and transmitted by the
sensor. Define ρ : {0, 1} → {+1,−1} as the function
translating between the two binary alphabets, where ρ(0) =
+1, and ρ(1) = −1, and when ρ takes a vector argument,
the translation is applied to each element in the vector. Using
BPSK modulation, the relay observes

ysr = Asrρ(xs) + nsr, (1)

and the sink observes

ysd = Asdρ(xs) + nsd, (2)

where Asr and Asd, incorporating the relevant channel, are
the scalar amplitudes of the source-to-relay and source-to-sink
links, respectively; and nsr and nsd are white Gaussian noise
vectors with unit variance.

In the second, cooperative, phase, the relay transmits data
on behalf of the source. To minimize complexity, the relay
(which is itself a sensor node) does not decode the received



transmission. Instead, it simply makes hard decisions on the
channel observations. Let the relay’s estimate of the trans-
mitted codeword be x̂sr = σ(ysr), where σ(·) is a hard
decision function yielding a length-m binary sequence,. The
relay may only wish to retransmit a fraction of x̂sr. Let
wr ∈ {0, 1}q, q ≤ m, represent the symbols taken from x̂sr

to be retransmitted by the relay. Analogously to the source,
let xr represent the transmitted n-bit codeword, i.e., the relay
uses a (q, n) code. In this phase, the sink observes

yrd = Asdρ(xr) + nrd, (3)

where Asd is the amplitude of the relay-to-sink link, and nrd

is unit-variance white Gaussian noise. The sink is assumed to
know the channel state from the source, the relay and between
the source and relay.

III. REPEAT-ACCUMULATE CODES

A. Code structure

Regular RA codes have a structure similar to that of an
LDPC code. To encode an information sequence w ∈ {0, 1}k,
we start by forming the sequence a ∈ {0, 1}kr, which contains
the elements of w, repeated r times each. The sequence a
is then permuted by some random permutation π(·), known
to both the encoder and decoder, to form the new sequence
b = π(a). Finally, the codeword x is formed by taking the
cyclic mod-2 accumulated sum of all symbols in b:

xi =
{

bi, i = 1,
xi−1 ⊕ bi, 1 < i ≤ kr.

(4)

A systematic RA code can be easily generated. In (4), x is
of length kr, the same as b; instead, suppose x is of length
(k + 1)r, and

xi =

 wi, 1 ≤ i ≤ r,
bi−r, i = r + 1,

xi−r−i ⊕ bi−r, r + 1 < i ≤ (k + 1)r,
(5)

so the systematic bits are at the beginning of the codeword.
A factor graph representing a regular RA code is shown in
Fig. 3.

The codeword of a punctured systematic RA code is formed
by transmitting all the information bits, and a randomly
selected fraction of the remaining bits. Let x̂ be a systematic
RA codeword satisfying (5), and let P be the index set of
elements from x̂ that are in the punctured codeword (i.e.,
for some integer j, if j ∈ P , then x̂j is in the punctured
codeword). Since all systematic bits are transmitted, all the
integers up to r are in P , but integers from r + 1 to (k + 1)r
are added randomly. Thus, letting Pi represent the ith smallest
element of P , the transmitted codeword x has elements given
by

xi = x̂Pi .

The factor graph for this code is the same as for the non-
punctured code, but the channel messages for punctured sym-
bols are set to zero.

If all the symbols are transmitted, the rate of the non-
systematic RA code is 1/r, and the rate of the systematic code

Accumulator bits
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Fig. 3. Factor graph representation of a Repeat-Accumulate code. The value
of r is equal to the degree of the information nodes, so in this case, r = 3.

is 1/(1+r). The rate of the RA code can be crudely controlled
by varying r, but it is easily seen that the maximum practical
rate is 1/2 for a non-systematic code, or 1/3 for a systematic
code. Furthermore, it is known that codes with r = 2 have
poor performance, although the performance can approach the
Shannon limit when r ≥ 3. Alternatively, the rate can be varied
by using a systematic code, fixing r, and randomly puncturing
(i.e., not transmitting) some of the code symbols. This method
retains good performance over a wide spectrum of rates, and
has the advantage of being incremental. That is, to decrease
the rate, the code can remain the same while more punctured
symbols are transmitted.

Finally, decoding is accomplished using the sum-product
algorithm over the factor graph in Fig. 3. From (5), the
symbols bi, xi, and xi−1 satisfy

bi ⊕ xi ⊕ xi−1 = 0.

In other words, the three symbols satisfy a parity check
equation. Since the code is systematic, bi, xi, and xi−1 are
all symbols included in the transmitted codeword, and from
Fig. 3, all codeword symbols are represented as nodes in the
factor graph. Thus, all the constraints in this code are simple
parity checks, and so the message calculations are all the same
as in LDPC codes.

B. RA codes in relaying and cooperation

We now discuss the impact of relaying on the RA coding
scheme. As mentioned previously, the relay does not decode,
but directly incorporates noisy observations into its informa-
tion string.

In our proposed scheme, the source sensor encodes its
symbols in a systematic punctured RA code and transmits
them. The relay observes ysr from the sensor, then makes
a hard decision on these symbols to form x̂sr = σ(ysr), and
forms a string wr by selecting either some or all of the hard
decisions to relay. The codeword formed by the relay, xr, is
formed in the same manner as by the source.

We consider two possibilities in decoding this code. We
first consider a serial decoder, in which the sink first decodes
the relay’s transmission, and uses the result to help decode
the source’s transmission. Assuming that yrd is successfully



decoded, the sink has knowledge of wr, which is equivalent
to observing some (or all) of xs through an independent
binary symmetric channel. Suppose the ith sensor symbol,
xs,i, corresponds to the jth symbol in wr, wr,j . Let psr

represent the crossover probability of the equivalent source-
to-relay binary symmetric channel, where

psr =
1
2

erfc
(

Asr√
2

)
.

Using the same notation as in the previous section, the channel
message for xs,i is then given by

ci =
{

Asdysd,i + log 1−psr

psr
ρ (wr,j) , i ∈ P,

0, i /∈ P.
(6)

and the additive term on the right is deleted if ysd,i is not
relayed. Notice that the additive term is the message for a
pure binary symmetric channel. Decoding proceeds in exactly
the same manner as in the non-relay case.

In practice, serial decoding can result in error propagation,
as the decoding procedure fails if either the relay transmission
or the sensor transmission result in a decoding failure. As
an alternative, we propose parallel decoding, in which both
the relay and sensor codes are decoded simultaneously. The
sequences xs and wr are correlated random variables, and
are therefore connected with a factor graph structure. The
expression in (6) gives the message value where wr,j is
perfectly known. In the sum-product algorithm, if wr,j is
uncertain, the additive term on the right would be marginalized
over the two binary values, which, for i ∈ P , would result in

ci = Asdysd,i (7)

+ log
1− psr

psr
(Pr(wr,j = +1)− Pr(wr,j = −1)) .

and ci = 0 for i /∈ P . The probabilities in this expression
are a posteriori probabilities provided by the code attached to
wr,j . Thus, the two RA code factor graphs are connected with
structures as depicted in Fig. 4. An analogous calculation is
performed for the message being passed in the other direction.

C. A note on encoder complexity

Our primary motivation in proposing these codes is the low
complexity with which they can be encoded. The computa-
tional tasks in encoding a punctured systematic RA code are
repetition, permutation, accumulation, and puncturing. Repeti-
tion and accumulation are computationally simple, with linear
complexity in the length of the code. There exist computation-
ally simple algorithms for permutation (see, e.g., [16]), so long
as a random number generator is available. Random punctur-
ing can be accomplished with similar ease when a random
number generator is available. Furthermore, a random number
generator could be as simple as a pseudo-noise sequence
generator with a known seed; certainly, algorithms exist to
generate them with low complexity, or where storage is not
an issue, a lookup table could be used. The overall complexity
is therefore linear in the number of encoded symbols.

Pr(wr,j = xs,i)

RA code for relay

RA code for source

xs,i

wr,j

Fig. 4. Linkage between information symbols in the relay factor graph.
These nodes connect the two RA code factor graphs.

IV. DENSITY EVOLUTION

We analyze the proposed system using density evolu-
tion [17], which is a method for analyzing message-passing
decoders for linear codes with sparse parity-check matrices.
Messages passed within the factor graph are functions of
random observations of a codeword, and thus are themselves
random variables. Density evolution tracks the probability
density functions (PDFs) of all the messages passed within
the factor graph, and assumes (for the sake of tractability)
that all the previous messages passed through the graph
that contribute to the calculation of a current message are
statistically independent. For RA and other Turbo-like codes,
it is easy to show that this assumption becomes asymptotically
correct as the number of information symbols approaches
infinity. Moreover, the performance at shorter block lengths
is usually similar to the asymptotic performance (e.g., see the
simulation results in [17]).

The message calculations performed at the parity check and
variable nodes within the RA code’s factor graph are identical
to those performed in an LDPC factor graph, for which density
evolution is well known. For example, at a variable node, the
outgoing message ` along a particular edge is the sum of all
the incoming messages mi along the other edges, i.e.,

` =
dv−1∑
i=1

mi,

where dv is the degree of the variable node. Under the
assumption that the incident messages are all independent, the
message PDF is given by

fL(`) = fM1(m1) ? fM2(m2) ? . . . ? fMdv−1(mdv−1),

where ? represents convolution. The PDF transformation at
parity check nodes is tedious to describe, though not concep-
tually difficult, and the reader is directed to [17] for the details.



V. RESULTS

Our results are generated using density evolution, and under
the assumption of serial decoding. In the final version of the
paper, we plan to include simulation results using parallel
decoding.

Our first result demonstrates the performance of punctured
RA codes in a simple point-to-point setting, without relays.
Puncturing changes the rate of the code, so using density
evolution, the SNR threshold (i.e., the minimum SNR at which
decoding is successful) is obtained for various punctured rates
and repetition values r. ¿From Fig. 5, we see that the highest
thresholds are obtained where r = 3. However, as we pointed
out earlier, when r = 3, the minimum rate is 1/(1+r), or 1/4,
since this is the rate when every code symbol is transmitted,
and none are punctured. If the channel is so weak that its SNR
is below the threshold for rate 1/4, it becomes necessary to
use a higher value of r. Thus, for some maximum repetition
value rmax, we have the following encoding scheme:

• If the SNR is greater than the threshold for r = 3, use
r = 3 with the appropriate puncturing;

• If the SNR is lower than the threshold for r = 3, but
greater than the threshold for some integer r′, where r′ <
rmax, then encode with r = r′; and

• If the SNR is lower than the threshold for for r = rmax,
declare an outage.

The above encoding scheme can be simply modified for
relaying, as follows.

• Using the above encoding scheme, find the minimum
redundancy (in total channel uses per information bit)
to transmit without relaying.

• For relaying, assume both the sensor and the relay use the
above encoding scheme. For all potential relays, find the
relay link with minimum overall redundancy, including
transmissions from both the sensor and the relay. An
outage occurs if the sensor is using r = rmax and
decoding is unsuccessful.

• The system uses the link with the lowest overall redun-
dancy, either with or without relaying, and an outage is
declared if outages exist on every possible link.

In all the relaying results in this section, we assume that every
symbol transmitted by the sensor is relayed to the sink. For this
relaying scheme, outage probability is plotted as a function of
SNR in Fig. 6, assuming all links have the same average SNR.
This figure shows that the outage probability nearly achieves
the benefit of full diversity for a given number of available
relays, even at relatively low SNR.

For a deployed sensor network, let Rn represent the av-
erage redundancy for links that are not in outage, and let
pout represent the probability of outage. We assume that the
sensors are stationary, so the links are static, and a node in
outage remains in outage forever. To model wireless fading,
we assume that the link amplitudes Asr, Ard, and Asd are
Rayleigh distributed random variables. We also assume that
the network is usually idle, so that the desired relay is
always available when requested. Thus, for all the possible

channel uses available to the network, the average number of
information bits returned to the source is given by

u :=
1

Rn
pout.

We use u as a simple utility metric to measure how efficiently
the network transports data to the sink. In Fig. 7, we see
the value of the utility metric for various values of average
SNR and numbers of available relays, where all links have the
same average SNR. The behavior in the figure is somewhat
surprising at higher SNR, where the utility decreases as relays
are added. This suggests that the network is expending too
much effort to return information bits where both the direct
link and relay link are weak.

We also provide results for a more realistic scenario where
the nodes are spatially distributed. In this case, node locations
were uniformly distributed on a square of 4 m × 4 m,
where each node’s location was independently distributed, and
where the sink was located at the center of the square. All
nodes were assumed to have the same transmit power, with
appropriate path losses amongst the sensor, relay, and sink;
for this example, we used a path loss exponent of 2 (i.e., free
space propagation). For a given total number of nodes in the
system, in Fig. 8 we plot the outage probability versus the
SNR measured when the distance from transmitter to receiver
is 1 m (called the SNR at 1 m). For given SNR at 1 m, we
also plot the utility versus the total number of nodes in the
system in Fig. 9. These figures show that significant gains can
be expected in a realistic ad-hoc network.

VI. CONCLUSION

In this work, we have introduced systematic punctured RA
codes for relaying and co-operative communication in wireless
networks. These codes are relatively simple to encode, and
provide good relaying performance and diversity over a wide
range of SNR for a very simple relaying framework, which
is within the capabilities of contemporary devices. Our results
also show that relaying strategies need to be further studied
in order to optimize the utility of such a system.
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