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Abstract— Wireless networks, and especially wireless sensor
networks, have complexity and energy constraints, within which
they must confront the challenging wireless fading environment.
In this paper, fractional cooperation is introduced, which is
shown to provide energy-efficient and low-complexity diversity
gains for constant energy costs per bit throughout the network.
To minimize complexity, cooperation is based on demodulate-
and-forward, wherein the relay nodes encode demodulated, not
decoded symbols. A scheme is presented for cooperative error-
control coding in complexity-constrained networks, using low-
density generator-matrix codes and repeat-accumulate codes,
both chosen for being simple to encode, as well as for their
easily adaptable rates. It is shown that these codes, coupled
with fractional cooperation, are robust to system parameters and
conditions, and introduce little added complexity at the receiver,
while providing excellent performance.

Index Terms— Wireless networks, error-control coding, relay
networks, cooperative communication.

I. INTRODUCTION

FOR many contemporary applications, wireless networks
are required to be unobtrusive, with numerous nodes

that are dependent on a battery power source. For instance,
the present paper is motivated by sensor networks [1], in
which distributed sensors, embedded in nodes, take local
measurements of a phenomenon, and form a wireless network
to share their information amongst themselves, or transmit it to
some central authority, known as the data sink. Such networks
have a wide variety of potential applications, from wildlife
monitoring [2] to load monitoring in structures [3]. In this type
of wireless network, nodes must be as small, inexpensive, and
as efficient as possible, which places stringent constraints on
their computational and energy resources. On the other hand,
the data sink is assumed to have access to substantial energy
and computational resources, within the limits of reasonable
expense and contemporary technology.
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The challenging nature of the wireless channel poses several
problems for ubiquitous wireless networks, in that their low
complexity nodes must ensure reliable communication in the
presence of fading. A useful technique is spatial diversity,
which exploits the large number of antennas available in the
wireless network – at least one of the nodes likely has a
good link to the data sink, and that node can be used as
a relay for its neighbors [4]. This idea can be generalized
to cooperative diversity [5], [6], [7], in which two (or more)
transmitters assist each other in sending their messages to a
common receiver.

To implement cooperative diversity, it is generally nec-
essary to use error-control coding across multiple nodes in
the network – a scheme known as cooperative coding. This
concept has attracted much attention in the literature. In [8],
cooperative diversity was combined with error-control coding
as a more flexible strategy than merely repetition by the
partner. In [9], a simple and practical ARQ-based scheme
was introduced to improve the performance of relays, while
in [10], adaptive Raptor codes (described in [11]) were used to
guarantee decoding over a source-relay link. There have been
a variety of alternative approaches presented in the literature.
In [12], a scheme using punctured convolutional codes was
presented. Efforts using more powerful error-correcting codes
included [13], where a capacity-approaching method using
Turbo codes was presented; and [14], [15], [16], where various
optimized schemes using LDPC codes were presented.

The results in this paper are inspired by scenarios such as
the ones described in [9], [10], [17]. However, in the spirit
of our focus on low complexity, low-energy devices, we are
more concerned with relay schemes that achieve both diversity
and reliable transmission in a robust and low-cost manner,
rather than in maximizing data rate. To this end, we make
two key assumptions throughout this paper, which are distinct
from other scenarios in the available literature. First, we place
stringent constraints on the nodes’ computational abilities,
which we formalize in Section II-C (e.g., they are incapable
of decoding each others’ error-control-coded transmissions).
Second, we assume that it is more efficient to vary the number
of transmitted symbols, at constant transmitter power, rather
than varying the transmitter power, for a constant number of
transmitted symbols. Furthermore, our results do not rely on
any external knowledge or intervention, such as knowledge
of the geographic positions of the nodes, or any form of
ARQ. With these assumptions in mind, the main contributions
of this paper are as follows. First, suppose that, due to its
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own constraints, relay nodes can only offer a fraction of their
transmission window to relay their neighbor’s data. This is
significantly different from the widely used “all-or-nothing”
model where a relay either gives up all its power/bandwidth
resources to cooperation or does not cooperate at all. For
this scenario, we provide an information-theoretic analysis to
show that, once a minimum number of relays are in use,
each additional relay contributes a full order of diversity,
regardless of the fraction of the source’s symbols that are
relayed. Indeed, fractional cooperation allows us to minimize
the number of symbols transmitted by each relay to achieve a
given diversity order. Second, we develop the use of error-
correcting codes which are simple to encode, particularly
low-density generator-matrix (LDGM) and repeat-accumulate
(RA) codes, in relay systems. Furthermore, we investigate
these codes under the constraint that relays cannot decode
received codewords – they merely demodulate the signal
before re-encoding it. Demodulate-and-forward was proposed
in different contexts in [18], [19], although our process differs
by allowing the relay to encode the demodulated data using
flexible codes. In spite of the simplicity and adaptability of this
scenario, we show that excellent and robust performance can
be achieved. Although these results are applicable to general
wireless networks, they are most likely to be applicable to
networks with low complexity nodes, such as sensor networks.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model used throughout
this paper. In Section III, we extend our framework to multiple
relays by introducing fractional cooperation, and develop the
theoretical properties of our approach. In Section IV, we
provide a framework for coded cooperation under complexity
constraints, which is particularly useful for fractional coop-
eration, and which is based on a demodulate-and-forward
scheme. Finally, in Section V, we present simulation results
demonstrating the efficacy of our method.

II. SYSTEM MODEL

Our relaying system is assumed to operate in an environ-
ment with the following conditions. Nodes may not transmit
and receive at the same time (this half-duplex assumption
has previously been suggested for “cheap” hardware in [20];
performance limits for half-duplex relaying were considered
in [7]). Each node has an orthogonal channel in which it
transmits, so that there is no co-channel interference on
any link. Signals are observed coherently at each node. The
communication links use binary phase shift keying (BPSK) for
data modulation. The channel amplitudes follow a Rayleigh
fading model. Finally, the fading amplitudes are quasi-static,
remaining constant throughout the transmission of a single
codeword. The orthogonal channel and coherency assumptions
are made for ease of exposition, but in Section V-C we briefly
discuss how these assumptions may be relaxed. Similarly,
using BPSK simplifies the exposition; coupled with coherent
reception, we can focus on real-valued signals. However, our
results can be easily generalized to other modulation schemes.

Throughout this paper, we disregard the problem of assign-
ing relay resources to assist a particular source. We assume
that the destination is aware of the identities of all the
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Fig. 1. A single-relay system.

relays, and of all parameters relevant to the relaying, including
channel state information.

A. One-relay model

We start by describing a three-node model, having a source,
a single relay, and a destination. As shown in Figure 1,
there are three radio links: source-to-relay (SR), source-to-
destination (SD), and relay-to-destination (RD). A particular
realization of the channel is parameterized by the triple
(aSR, aSD, aRD), representing the amplitude on the three links.

The overall communication occurs in two phases. In the first
phase, the source encodes its data sequence as a codeword of
an error-correcting code, and transmits the length-n sequence
x(S) = [x(S)

1 , x
(S)
2 , . . . , x

(S)
n ] ∈ Xn, where X represents

the set of symbols available to the transmitter. The relay
and destination simultaneously observe this sequence as real-
valued vectors y(R) and y(SD), respectively, where

y(R) = aSRx(S) + n(R), (1)

y(SD) = aSDx(S) + n(SD), (2)

where n(R) and n(SD) represent unit-variance additive white
Gaussian noise (AWGN) vectors at the relay and destination,
respectively.

The signal y(R) is incident to the relay. Let the function
φ : R

n → Xm, represent the processing at the relay, so that

x(R) = φ
(
y(R)

)
(3)

where x(R) is the the sequence transmitted by the relay in
the second phase, which is also the codeword of an error-
correcting code. (Note that x(R) is an m-dimensional vector,
while x(S) is an n-dimensional vector, which admits the
possibility that the transmissions of the source and relay are
of different lengths.) The signal received by the destination in
this second phase is given by

y(RD) = aRDx(R) + n(RD). (4)

The Rayleigh fading model is parameterized by γ̄, the
average signal-to-noise ratio, assuming unit noise power. Thus,
in a fading channel, the amplitude triple (aSR, aSD, aRD) is
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Fig. 2. A multiple-relay system.

a three-dimensional vector of three independent Rayleigh-
distributed random variables, parameterized by the triple
(γ̄SR, γ̄SD, γ̄RD).

B. Multiple-relay model

A system with r relays is depicted in Figure 2. The
notation is similar to the one-relay case, with the following
generalizations:

1) There is an index set I = {1, 2, . . . , r} containing a
unique index for each relay.

2) The channel is parameterized by (a(SR), a(SD),a(RD)),
where a(SR) = [a(SR)

1 , a
(SR)
2 , . . . , a

(SR)
r ] is the vector

of source-to-relay amplitudes for each relay in I, and
a(RD) = [a(RD)

1 , a
(RD)
2 , . . . , a

(RD)
r ] is the vector of

source-to-relay amplitudes for each relay in I. (Note
that a(SD) is still a scalar.)

3) The source-destination link (2) does not change, but
Equations (1) and (4) must be specified for each relay.
The notation can be made compact by writing

Y(R) = A(SR)X(S) + N(R), and (5)

Y(RD) = A(RD)X(R) + N(RD). (6)

For (5), we define

Y(R) :=

⎡
⎢⎢⎢⎣

y(R,1)

y(R,2)

...
y(R,r)

⎤
⎥⎥⎥⎦ , A(SR) := diag(a(SR)),

X(S) :=

⎡
⎢⎢⎢⎣

x(S)

x(S)

...
x(S)

⎤
⎥⎥⎥⎦ , N(R) :=

⎡
⎢⎢⎢⎣

n(R,1)

n(R,2)

...
n(R,r)

⎤
⎥⎥⎥⎦ .

The superscript (R, i) for i ∈ I refers to processes at

the ith relay. Similarly, for (6), we define

Y(RD) :=

⎡
⎢⎢⎢⎣

y(RD,1)

y(RD,2)

...
y(RD,r)

⎤
⎥⎥⎥⎦ , A(RD) := diag(a(RD)),

X(R) :=

⎡
⎢⎢⎢⎣

x(R,1)

x(R,2)

...
x(R,r)

⎤
⎥⎥⎥⎦ , N(RD) :=

⎡
⎢⎢⎢⎣

n(RD,1)

n(RD,2)

...
n(RD,r)

⎤
⎥⎥⎥⎦ .

The superscript (RD, i) for i ∈ I refers to processes
taking place at the destination, corresponding to the
ith relay. Note that, as indicated in x(R), with the
superscripts (R, i), each relay is allowed to send a
different transmission to the data sink.

4) For all i ∈ I, φi(·) represents the processing function
at the ith relay (thus, each relay may process the signal
differently).

5) In a Rayleigh fading scenario, the amplitudes
(a(SR), a(SD),a(RD)) are independent and Rayleigh
distributed, with (γ̄(SR), γ̄(SD), γ̄(RD)) representing
respective vectors of average SNRs on each link.

In (6), it seems like the relay sequences x(R,i) must all be of
the same length. However, this is only done for convenience
in specifying the notation. For instance, the sequences x(R,i)

can be zero-padded so that they are all the same length.

C. Relay Processing Function

The previous section introduced the function φi(·) to rep-
resent the processing performed by the relay. As mentioned
in the introduction, the relay operates under complexity con-
straints, so in this section we define φi(·), bearing this in
mind. In particular, since high-performance error-correcting
codes require computationally complex decoding algorithms,
we assume that these algorithms are beyond the reach of
small, low complexity wireless nodes. As a result, our focus
here is on demodulate-and-forward, rather than decode-and-
forward. Our relay processing function may be summarized as
follows: demodulate by making hard decisions on the observed
symbols, and encode these as information symbols using
another error-correcting code. If we choose not to forward
all the hard decisions, the ones to be forwarded are chosen at
random (with the identities of the forwarded decisions known
to the data sink).

Since all transmitters in the system use BPSK modulation,
each transmitter’s symbol alphabet is X = {+1,−1}. For
convenience, we define σ : {0, 1} → {+1,−1} as the
function for translating between binary alphabets, with σ−1(·)
its inverse. With a slight abuse of notation, if the argument
of σ(·) is a vector, then the function σ(·) is applied to each
element of the vector, and similarly for σ−1(·).

The function φi(·) takes y(SR,i) as its argument. It is
difficult to describe φi(y(SR,i)) in closed form, so we will
describe the sequence of operations that are carried out to
calculate it. From (5), the ith relay observes y(SR,i), and
makes hard decisions on it, forming sign(y(SR,i)), where
sign(·) returns +1 if the argument is positive, and −1 if the
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argument is negative, with the same modified definition for a
vector argument. The bit values in {0, 1} are recovered from
this sequence, resulting in

b := σ−1
(
sign

(
y(R,i)

))
.

The ith relay then selects k of the n received bits in b to relay,
where k ≤ n, and where k could be different from relay to
relay. Let q ∈ {0, 1}n represent the indicator sequence which
indicates the bits from b to be relayed; clearly, the Hamming
weight of q is k. The relay then forms the information
sequence w from b by letting hj represent the indices of
these bits, given formally by

hj := min

{
h :

h∑
t=1

qt = j

}
, (7)

and then letting wj := bhj
. That is, w contains those elements,

and only those elements, of b where qt = 1. This length-k
information sequence may be encoded with an error-correcting
code, resulting in the length-m codeword c (specifics are given
for two types of codes in Section IV). Finally, the function
φi(y(R,i)) returns the modulated version of the codeword,
σ(c).

The relays, therefore, demodulate the received signal, select
a subset of the received coded bits as the information bits to be
transmitted, and encode these into a codeword for transmission
– hence the terminology demodulate-and-forward. Note that
the indicator sequence q and k may differ from relay to relay.
We assume that the destination has complete knowledge of
the function φi(·) used by each relay.

III. FRACTIONAL COOPERATION

In this section, we present our main theoretical contribution:
the notion of fractional cooperation, in which a node enlists a
large number of its neighbors to each relay a small fraction of
its transmission (i.e., each relay uses an indicator sequence q
with weight much less than n). This fraction may be fixed in
advance or determined dynamically by the bandwidth/energy
resources available at each relay.

For this approach, our results indicate that a fractional coop-
eration system has a critical number of relays, rc, depending
on its system parameters. If the number of relays is greater
than or equal to rc, then each additional relay provides a full
order of diversity gain (Theorem 1). Furthermore, the cost of
complexity-reducing assumptions, such as a lack of centralized
coordination, and no intermediate decoding, is at most a finite
number of orders of diversity; thus, the above property is not
affected by the relaxation of these assumptions (Corollary to
Theorem 1).

The first point illustrates why this technique is powerful:
each relay could be relaying an arbitrarily small fraction of the
source’s transmission, but each additional relay nonetheless
adds a full order of diversity. Furthermore, the second point
indicates that the strategy is highly robust and thus appropriate
for a distributed, complexity-constrained network. Fractional
cooperation is therefore particularly useful in systems where
greater power savings are achieved by varying the number
of symbols transmitted, rather than varying the transmitter
amplitude – for example, where a constant amount of energy

is expended in observing or processing each symbol to be
relayed, in addition to the power used by the radio. Our
scheme minimizes these costs by minimizing the number of
symbols required from each potential relay.

A. Key assumptions and definitions

We adopt all the modeling assumptions given in Section II.
We assume that the relays choose the symbols they relay
at random and uniformly from all the symbols transmitted
by the source. Rather than assigning a particular number of
symbols to relay, we assume for convenience that each symbol
transmitted by the source has some probability ν of being
relayed by a given relay, so the expected value of bits relayed
by a neighbor is νn. We will also assume for convenience
that the average SNR γ̄ on every link is the same (but we
will show in Section V-C that relaxing the assumption makes
no difference to our results). As before, let r represent the
number of relays in the system.

We define a system outage as the event where the overall
probability of error between the source and destination fails
to achieve a given frame error rate criterion. To describe
asymptotic outage probabilities, designated Pout, we will be
using the Θ order notation, where g(x) = Θ(f(x)) means
that there exists a constant c such that limx→∞ f(x)/g(x) =
c. In Rayleigh fading, a system with diversity order d has
probability of system outage Pout = Θ(γ̄−d).

For a single link in Rayleigh fading, and given a minimum
SNR γmin to avoid system outage, it is easy to show that Pout

is given by

Pout = Pr(γ < γmin) = 1 − e−αγmin/γ̄ (8)

where α is a positive constant. Given the Taylor series expan-
sion of ex, it is easy to show that 1 − e−αγmin/γ̄ = Θ(γ̄−1).

When using error-correcting codes, we assume that there
exists an SNR γ > 0 so that the code (and its decoding
algorithm) is equal or superior to using no coding for every
SNR greater than γ. In other words, for sufficiently high SNR,
the use of the code does not result in a higher probability of
error than using no code.

With these definitions and assumptions in mind, we are now
ready to present the main theoretical results of the paper.

B. Theoretical results

Our main result is stated in Theorem 1. However, we first
give some preliminary results that are useful in the proof of
the theorem.

Lemma 1: Let rc(γ(SD)) represent the number of relays
such that whenever r < rc(γ(SD)), a system outage always
occurs at that value of γ(SD) for all values of γ(SR,i), γ(RD,i).
Then rc(γ(SD)) exists and rc(γ(SD)) <∞ for all γ(SD) ≥ 0.

Proof: To simplify the proof, we first assume that γ(SD) =
0, and γ(RD,i) = ∞ for all i, and relax these assumptions
later. Suppose any transmission received by a relay below a
minimum SNR, γmin, is discarded. The probability of a given
symbol being selected by a given relay was defined as ν,
making the probability that a given symbol is selected by a
relay not in outage is νPr(γ(SR) ≥ γmin), since these are
independent events. Given r relays, the probability that a given
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symbol is not selected by any relay with Pr(γ(SR) ≥ γmin) is
pnr, where

pnr =
(
1 − νPr(γ(SR) ≥ γmin)

)r
. (9)

Thus, pnr is the probability that a symbol is not selected
for relaying at all, or is not selected by any relays with
high enough γ(SR). The equivalent relay channel is thus (at
worst) a binary symmetric channel with crossover probability
corresponding to γmin (ignoring the possibility that symbols
are chosen by more than one relay) concatenated with an
erasure channel with erasure probability pnr. The overall bit
probability of error is then, at worst,

pnr +
1 − pnr

2
erfc

(√
γmin

2

)
.

Ignoring the error-correcting code, for any finite block length
n, and assuming that the SNR is at least γmin and constant
over the n symbols, the frame error rate is then at worst

1 −
(

1 − pnr − 1 − pnr
2

erfc
(√

γmin

2

))n
. (10)

There exists γmin large enough so that erfc(γmin/2) → 0,
and from (9), for any γmin, there exists r large enough so
that pnr → 0. So any frame error rate criterion for outage
probability can be satisfied, with rc being the satisfying value
of r.

In the case γ(RD) <∞, we have a system with two binary
symmetric channels concatenated with an erasure channel with
erasure probability pnr. By a similar argument, there exists a
sufficiently high γmin so that any frame error rate criterion
can be satisfied. Furthermore, the value of rc(γ(SD)) for any
γ(SD) > 0 must be less than the case where γ(SD) = 0.
Clearly, rc(γ(SD)) exists, since it is finite and lower bounded
by zero for all γ(SD).

For simplicity, the proof above ignores the error correcting
code, instead using a minimum SNR threshold of γmin for
the “protection” of the data. In practice, for any γmin, there
exists some code length (block length) n such that the data is
protected. This is true as long as an adequate fraction of the
bits are relayed. Thus, the lemma emphasizes the importance
of coded cooperation to reduce rc to a realistic value. This
will be explored further in Section IV.

Let rc = limγ(SD)→0 rc(γ(SD)). Furthermore, since rc is an
integer, there must be some γ(SD) > 0 so that rc = rc(γ(SD));
so let γ(SD)

0 = max{γ(SD) : rc = rc(γ(SD))} be the largest
such value (thus, we have that rc applies to every γ(SD)

from 0 to γ
(SD)
0 ). The following lemma is a straightforward

consequence of these definitions:
Lemma 2: If r < rc, then by including the source-

destination channel, the system diversity order is 1, and if
r = rc, then the system diversity order is 2.

Proof: From Lemma 1, rc exists and is less than ∞.
Suppose r < rc. Then, by the definition of rc, the system
is in outage if γ(SD) ≤ γ

(SD)
0 . The fact that a minimum SNR

must be maintained on the SD link implies that the diversity
order is 1.

Suppose r = rc. From the definition of rc, there must exist
γsuf > 0, which is the minimum γ(SR,i) or γ(RD,i) for any

i, such that the system is not in outage when γ(SD) < γ
(SD)
0 .

Then a sufficient condition for system outage is that γ(SD) ≤
γ

(SD)
0 , and γ(SR,i) < γsuf or γ(RD,i) < γsuf for any i. Thus,

letting ζ(SR,i) := 1 − Pr(γ(SR,i) < γsuf) and ζ(RD,i) := (1 −
Pr(γ(RD,i) < γsuf)), we have that

Pout ≥ Pr(γ(SD) < γ
(SD)
0 )

(
1 −

r∏
i=1

ζ(SR,i)ζ(RD,i)

)
, (11)

where the inequality follows from the sufficient condition.
Since, by assumption, the average SNR of every channel (SD,
SR, and RD) is equal to γ̄, the probabilities of an SNR less
than γsuf are all equal to (8). Substituting into (11), we have

Pout ≥ (1 − e−αγ
(SD)
0 /γ̄)

(
1 −

r∏
i=1

(e−αγsuf/γ̄)(e−αγsuf/γ̄)

)

= (1 − e−αγ
(SD)
0 /γ̄)

(
1 − e−2rαγsuf/γ̄

)
= Θ(γ̄−1)Θ(γ̄−1) = Θ(γ̄−2).

Similarly, from the definition of rc, there must exist γnec <
∞, which is the maximum γ(SR,i) or γ(RD,i) for any i, such
that the system is in outage when γ(SD) ≤ γ

(SD)
0 . Thus, a

necessary condition for system outage is that γ(SD) ≤ γ
(SD)
0 ,

and γ(SR,i) < γnec or γ(RD,i) < γnec for any i. The analysis
of the necessary case follows similarly, with ≤ in place of ≥
in (11), which is enough to show that the diversity order is 2.

Since this proof depends on the definitions given in Lemma 1,
and since that result applied to both demodulate-and-forward
as well as decode-and-forward, this result applies to both
methods as well.

We are now ready to state our main result.
Theorem 1: For a relay system with a number of relays r,

where rc ≤ r <∞, diversity order is given by r−rc+2. That
is, each additional relay adds an order of diversity, regardless
of system parameters.

Proof: We follow similarly to the proof of Lemma 2. From
Lemma 1, rc exists and is less than ∞. From the definition of
rc, note that for each number of relays r, there exists γsuf,r >
0 such that if γ(SD) < γsuf,r and at least r−rc+1 relays have
γ(SR,i) ≤ γsuf,r or γ(RD,i) ≤ γsuf,r, then an outage always
occurs. Since this is a sufficient condition for system outage,
and letting

po,r := Pr(γ(SR,i) < γsuf,r ∪ γ(RD,i) < γsuf,r),

we have that

Pout ≥ Pr(γ(SD) < γsuf,r)
r∑

j=r−rc+1

(
r

j

)
pjo,r(1 − po,r)r−j .

Since Pr(γ(SD) < γsuf,r) = Θ(γ̄−1), po,r = Θ(γ̄−1),
(1 − po,r) = Θ(1), and the binomial coefficient is constant
with respect to SNR, we have that Pout ≥ Θ(γ̄−(r−rc+2)).
Similarly to the proof of Lemma 2, the necessary condition
for system outage leads to Pout ≤ Θ(γ̄−(r−rc+2)). Thus, the
diversity order is r − rc + 2, and the theorem follows.
In the statement of the theorem, we say that the diversity gains
are achieved “regardless of system parameters”. Of course ν
is a system parameter, and rc is a function of ν. However,
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once the system parameters are fixed, then rc is fixed, so an
additional order of diversity is gained for every relay above
rc, regardless of how small ν was fixed in the beginning.

From Theorem 1 and Lemmas 1 and 2, the diversity
order depends on the system parameters only through rc.
Since Lemma 1 made no assumptions concerning the error-
correcting code in use, it is sufficiently broad to include any
code and any SNR on the source-relay link, including an SNR
of ∞, which corresponds to the case of intermediate decoding.
Furthermore, it is easy to make minor modifications to Lemma
1 to include any method of choosing symbols for relaying, so
long as there exists sufficiently large (but finite) r so that
pnr < ε for any ε > 0. As well, by assumption, using the
error-correcting code does not increase the probability of error
on any link. Thus, Lemma 1 applies to decode-and-forward
as well. Furthermore, Lemma 2 and Theorem 1 applies to
decode-and-forward, since these results depend on γnec and
γsuf , which would simply have smaller values under decode-
and-forward. Thus, we have the following:

Corollary (to Theorem 1): Consider a relaying system of
the type used in Theorem 1. Consider any of the following
system parameters: the strength of the code used by the trans-
mitter, or decoder used by the receiver; the use or exclusion
of intermediate decoding at the relay (due to the generality of
Lemmas 1 and 2, and Theorem 1); or the method of choosing
symbols for relaying (so long as there exists sufficiently large
r <∞ to achieve pnr < ε for any ε > 0). Regardless of these
system design choices, Theorem 1 holds, and the impact of
these three choices is reflected in the value of rc.

Owing to this corollary, for any simplifying assumption
that we can make in designing a fractional relay system, the
“cost” is at most a finite number of orders of diversity, through
the changing value of rc; for r > rc, the property that each
additional relay leads to a full order of diversity still holds.
In other words, fractional relaying is a tremendously robust
strategy, which is highly amenable to distributed wireless
networking hardware.

IV. LOW COMPLEXITY CODED COOPERATION VIA

DEMODULATE-AND-FORWARD

From Lemma 1, there is a clear motivation for implementing
fractional cooperation with good error-correcting codes. From
(9)-(10), to achieve any practical frame error rate, the value
of rc needs to be enormous in the absence of error-correcting
codes. However, from an information-theoretic perspective,
recalling that r is the number of relays and ν is the probability
of any relay selecting a source symbol for retransmission, if
symbols not selected for relaying are treated as erasures, then
from (9), the erasure probability is (1−ν)r, and so the capacity
of the equivalent relay channel is at most 1− (1− ν)r. Thus,
letting R represent the rate of the SD codeword, rc is lower-
bounded by the smallest r such that R ≤ 1− (1− ν)r, which
is a comparatively small number. A very good error-correcting
code could come close to achieving this bound.

Again, bearing our computational constraints in mind, we
seek error-correcting codes that are powerful, but that are also
adaptive and have low encoding complexity. In this section, we
specify the transformation from the information sequence w to

the codeword c, first using systematic low-density generator-
matrix (LDGM) codes, and subsequently using punctured
systematic repeat-accumulate (PSRA) codes. Although we
have chosen to implement systematic codes in this paper,
which have the desirable property that the encoded symbols
are repeated in the transmitted codeword, any code with a
sparse parity check matrix may be used. For instance, one
may use low-density parity-check (LDPC) codes (which are
non-systematic), though these codes have fixed block lengths
and higher (though still reasonable) encoding complexity than
the codes we discuss in this section [21]. However, although
we emphasize the low-complexity requirements at the relay,
in our system the same codes will also be used by the source,
which is itself a low-complexity device.

A. Coded cooperation with LDGM codes

LDGM codes [22] are parallel concatenations of many
simultaneous single parity check codes, resulting in a very
sparse generator matrix. This makes encoding very simple,
which is our motivation for choosing this type of code.
Furthermore, these codes are closely related to LT codes [23],
which have the property of being “rateless”; thus, it is also
easy to adapt the rate of an LDGM code to the channel
conditions. However, a negative consequence of the sparse
generator matrix is a low minimum distance (and hence error
floors at high SNR). To keep the encoder’s complexity low,
we choose not to implement strategies for improving the error
floor, such as proposed in [24].

As we mentioned, our work considers systematic LDGM
codes, where the information sequence forms part of the
codeword. Let w = [w1, w2, . . . , wk] ∈ {0, 1}k represent
a k-bit binary information vector. Recall that the relay’s
transmission is of length m. An arbitrary linear systematic
code of length m has a k×m generator matrix G of the form

G =
[
I(k) | P

]
, (12)

where I(k) represents a k × k identity matrix, and P is some
k × (m − k) binary matrix. A codeword c is formed by
calculating

c = wG (13)

in modulo-2 arithmetic. In a systematic LDGM code, G must
be of low density (as the name implies), which means P must
also be sparse.

For the purposes of this paper, given a column weight dj ,
the jth column of P is formed by placing dj ones in the
column at random, uniformly distributed over all possible
arrangements of dj ones, and independently of any other
column. Letting pj represent the jth column of P, from (12)
and (13) we can write

ck+j = wpj . (14)

Furthermore, if ψj(h) represents the location of the hth one
in pj (for 1 ≤ h ≤ dj), we can write (14) as

ck+j = wψj(1) ⊕ wψj(2) ⊕ . . .⊕ wψj(dj),

where ⊕ represents mod-2 addition. Thus, the following
simple scheme generates an LDGM codeword c:
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1) For 1 ≤ j ≤ k, let cj = wj .
2) For k < j ≤ m, select dj−k symbols at random from

w, and take their sum (modulo 2), yielding cj . The
identities of the selected symbols are known in advance
by the decoder.

The algorithm does not change at all for different values of m,
so the value of m can be chosen dynamically in response to
channel conditions (unlike many other kinds of block codes
which must be redesigned in order to change their length).
Thus, LDGM codes satisfy both our low complexity and
adaptivity criteria.

B. Coded cooperation with PSRA codes

Repeat-accumulate (RA) codes [25] are Turbo-like codes
with a very simple encoding method, and have excellent
performance, especially in low-SNR channels. Code rates are
made adaptive by puncturing, i.e., by transmitting a subset
of the bits from a codeword, and omitting the remainder. It
is known that to retain good performance under puncturing,
the codes must be systematic [26]. As a result, we propose
to use punctured systematic repeat accumulate (PSRA) codes
as part of our coded cooperation scheme. Since they rely on
puncturing to change their rate, PSRA codes are not as flexible
as LDGM codes, but they avoid the problem of error floors.

Once again, let w = [w1, w2, . . . , wk] ∈ {0, 1}k represent a
k-bit binary information vector. A PSRA codeword is formed
in the following four steps.

1) Repeat: For some integer ρ > 0, form the vector v of
length kρ, containing ρ concatenated versions of w. For
example, if ρ = 3, then v = [w,w,w].

2) Permute: Form the vector v(Π) by permuting v with
respect to the permutation Π on kρ letters. The permu-
tation Π is selected uniformly at random from the set
of all possible such permutations, and is known by the
decoder.

3) Accumulate: Form the vector of accumulator bits a,
whose elements are the running modulo-2 sum of the
elements of v(Π). In other words,

aj =
j∑

h=1

v
(Π)
h mod 2

=

{
v
(Π)
1 , j = 1;

aj−1 + v
(Π)
j mod 2, 1 < j ≤ kρ.

From the second line, the accumulator bits satisfy(
aj + aj−1 + v

(Π)
j

)
mod 2 = 0, which is a valid parity

check; thus, these codes are very similar to LDPC codes.
4) Puncture: This is carried out in much the same man-

ner as the selection of symbols from b, described in
Section II-C. Let q ∈ {0, 1}kρ represent a puncturing
sequence. Form a′ from a by letting a′j := ahj

, where
hj is as defined in (7).

5) Form the systematic codeword: The codeword c is
then given by

c := [w,a′] .

which is of length m = k +
∑kρ
t=1 qt.

Notice that the information sequence is not punctured in
forming the codeword c. Given a random number generator,
there exist algorithms with very low complexity for producing
a random permutation (e.g., [27, p. 145]), and all the other
encoding operations are simple. Thus, PSRA codes satisfy our
criterion of low encoding complexity.

Furthermore, since the information rate is given by

R =
k

m
=

k

k +
∑kρ
t=1 qt

,

the rate can be altered by changing u, although once ρ is
fixed, it is easy to see that the minimum rate is 1/(1 + ρ),
unlike the LDGM code in which there is no minimum rate.
Nevertheless, ρ can be changed dynamically from codeword
to codeword.

C. Decoding

Codes with sparse parity check matrices, including LDGM
and PSRA codes (as well as LDPC codes), have the property
that their parity check matrices may be expressed using factor
graphs, and the code may be decoded iteratively as message-
passing over the factor graph using the sum-product algorithm
[28]. We rely heavily on this property in describing the
decoding algorithms for our system.

Since there is no intermediate decoding at the relays in
our setup, the data sink must combine all of the relays’
transmissions, and decode the corresponding codes (as well as
the code on the SD link), in order to recover the data originally
transmitted by the source. This could be accomplished in two
ways: with serial decoding, in which the relays’ transmissions
are decoded first, followed by the source’s transmissions; or
by parallel decoding, in which the transmissions are jointly
decoded at the same time.

First consider serial decoding. For ease of exposition,
suppose there is only one relay, so that the observed signal
Y(RD) from the relay is decoded first. This is merely a single
LDGM or PSRA codeword transmitted through a Gaussian
channel, which is decoded using the sum-product algorithm.
Assuming the relay’s transmission is decoded successfully, the
destination has x(R) available, which is a noisy observation of
the source transmission x(S). From (1) and (3), and recalling
the definition of the relay processing function, x(R) is an
observation of certain symbols of x(S) at the ith relay, with a
certain probability that each symbol is inverted. For example,
say the u-th symbol x(S)

u from the source is relayed as the v-th
symbol x(R)

v (with different subscripts due to our description
of the relay processing function). Due to the hard decision at
the relay, there is some probability p that x(R)

v 	= x
(S)
u , and

hence

p
(
x(R)
v | x(S)

u

)
=

{
p, x

(R)
v 	= x

(S)
u ;

1 − p, x
(R)
v = x

(S)
u .

(15)

Now, the code used to protect the SD link is decoded with
respect to the simultaneous observations y(SD), equivalent to a
Gaussian channel, and x(R), equivalent to a binary symmetric
channel with erasures. This is easily done under the sum-
product algorithm, by calculating the channel message μ

x
(S)
j

,

corresponding to the symbol x(S)
j . This is the log-likelihood
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ratio of x(S)
j , taking into account all observations of x(S)

j , but
excluding any information from the code, and is obtained as
follows:

μ
x
(S)
j

=
aSDy

(SD)
j

N0
+ qjx

(R)
hj

log
1 − p

p
, (16)

recalling the notation for the relay processing function defined
in Section II-C. To generalize this to the multiple relay case, a
new term of the form of the second term in (16) can be added
for each additional relay.

If the decoder fails to correctly decode any relay’s code-
word, that error propagates and can cause the overall decoding
task to fail. This problem can be avoided using parallel
decoding, in which the codes are decoded simultaneously at
the destination on a joint factor graph, as in Figure 3. Again
assuming a one-relay case, the sequences x(S) and x(R) are
each codewords of separate codes; these codes are represented
using separate factor graphs. Furthermore, the relationship
between x(S) and x(R) is given in (15). Since, for example,
x

(S)
u and x(R)

v are probabilistically related, they are connected
on a factor graph, and thus these pairs form connections
between the factor graphs for the two codes. Furthermore,
through these connections, messages are exchanged between
the two code graphs. A message μ

x
(S)
u →x

(R)
v

is passed from

x
(S)
u to x(R)

v , and is given (in log-likelihood ratio form) by

μ
x
(S)
u →x

(R)
v

= (17)

log

∑
x
(S)
u ∈{+1,−1} pe

(
x

(S)
u

)
p
(
x

(R)
v = +1 | x(S)

u

)
∑
x
(S)
u ∈{+1,−1} pe

(
x

(S)
u

)
p
(
x

(R)
v = −1 | x(S)

u

) ,
where pe(x

(S)
u ) is a message representing all the summarized

information about x(S)
u , passed from the factor graph repre-

senting the source codeword, and where p(x(R)
v |x(S)

u ) is given
in (16). Similarly, the message μ

x
(S)
u →x

(R)
v

from x
(R)
v to x(S)

u

is given by

μ
x
(R)
v →x

(S)
u

= (18)∑
x
(R)
v ∈{+1,−1} pe

(
x

(R)
v

)
p
(
x

(R,i)
v | x(S)

u = +1
)

∑
x
(R)
v ∈{+1,−1} pe

(
x

(R)
v

)
p
(
x

(R,i)
v | x(S)

u = −1
) ,

where pe(x
(R)
v ) is a message representing all the summarized

information about x(R)
v , passed from the factor graph repre-

senting the relay codeword. These messages are exchanged for
every relayed symbol, and the messages are combined with
the channel messages at each symbol node, where the sum
of all incident messages is taken. Using the factor graph, it is
straightforward to include more relays in this scenario, as each
relay has its own code factor graph, which is connected to the
source graph in the same manner. From (18), when x

(R)
v is

perfectly known, the equation is either equal to log(1 − p)/p
when x(R)

v = +1, or log p/(1−p) when x(R)
v = −1, equivalent

to the second term in (16).
As we have mentioned throughout, the decoding operations

are expected to take place at the data sink, which increases
the destination’s computational load. However, this is assumed
to be fair, in that the data sink is likely to have far more

resources than any other node. For codes decoded on graphs,
it is well known that Θ(n) operations are required to decode
a code of length n; furthermore, the decoder is called upon to
decode the r codes transmitted by each relay, each with length
proportional to the original code, for a total computational
load of Θ(rn). This level of complexity is the same as in, for
example, decode-and-forward.

D. Relationship to systems in the literature

The hard decision, and selection of a subset of the hard
decisions for relaying, can be thought of as a crude quanti-
zation. Quantization and compression are a strategy described
in [4] for communication over the relay channel. Although this
strategy is normally performed when the relay is incapable of
decoding the source’s transmission (i.e., if the source-to-relay
channel’s capacity is below the source’s transmission rate), it
represents a bound on the performance of any relay channel. In
its most general form, this scheme is sometimes referred to as
“estimate-and-forward” or “compress-and-forward.” Bounds
on achievable of rates these schemes were given for full-
duplex channels in [29], and for half-duplex channels in [30].
Practical work to implement such schemes has been done as
an extension of the Slepian-Wolf problem [31] and the Wyner-
Ziv problem [32], [33].

We also wish to emphasize the difference of our system
from that of [6], [7] where a system called “decode-and-
forward” is described which assumes error control decoding
at the relay. Such a decoding is also explicitly specified by
other coded cooperation schemes such as in [8] are related
works; indeed, [15] is implemented similarly to our work,
though without fractional cooperation, and with the require-
ment of decode-and-forward. The important difference from
these works is our restriction of not allowing relays to decode
the transmitted code word. Our relays, therefore, often transmit
erroneous data; however, the reliability of these is taken into
account in the factor graph as described above. A demodulate-
and-forward scheme similar to ours, was proposed in [18]
and then used in [34] to discuss the capacity of relay sys-
tems. Independently, demodulate-and-forward was proposed
to implement cooperative diversity in sensor networks in [19].
However, our approach of re-encoding the demodulated data is
not suggested in these references, nor is fractional cooperation.

V. SIMULATION RESULTS AND DISCUSSION

This paper has developed the two variants of cooperative
diversity, for the specific aim of minimizing complexity in a
distributed wireless network of complexity-constrained nodes.
In Section III studied a network setting with r potential relays,
introducing the notion of fractional cooperation wherein any
relay only forwards a fraction of the source’s codeword to the
destination. The main theorem in Section III shows that there
is a single parameter, rc, that determines the overall diversity
order of the fractionally cooperative system. In Section IV
we developed the notion of cooperation via demodulate-and-
forward within the context of error correcting codes (specif-
ically LDGM and RA codes), which is useful both on its
own and in the context of fractional cooperation. This section
presents results of simulations undertaken to illustrate the
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p(x
(R)
v | x(S)

u )

Accumulator bits

Edge permutation

Information bits (source)

Information bits (relay)

Accumulator bits

Edge permutation

Fig. 3. Joint factor graph with RA codes. Notice that some information bits and some accumulator bits are relayed by the second code, and that not all
code symbols are relayed.

efficacy of our proposals. The first set focuses on coded
cooperation via demodulate-and-forward. The second set fo-
cuses on the extension to fractional cooperation, illustrating
the flexibility and robustness of the proposed schemes.

Throughout this section, we use Eb to represent energy per
information bit. We also use RS to represent the code rate at
the source, and RR to represent the code rate at the relays (for
convenience, the same rate is generally used at every relay).
The number of information bits to be transmitted by the source
is given by kS.

A. Coded Cooperation via Demodulate-and-Forward

Our first results concern the use of single relays, to prove
the effectiveness of coded cooperation with a range of possible
rates and channel conditions. To evaluate the effectiveness in
relaying systematic bits as opposed to parity bits, we define the
new parameter εp as the fraction of source parity bits that are
relayed. In these simulations we consider the relay forward
none of the parity bits (εp = 0) or all of the parity bits it
demodulates (εp = 1). We assume that the SNR (or average
SNR, for fading channels) of every link is the same.

Figures 4 and 5 demonstrate the performance of cooperation
using LDGM codes, where kS = 2000 and RR = 1/2,
with other parameters given in the respective figures. For
convenience we assume that the encoder uses a constant check
degree of 10 (the robust soliton distribution [23] was at-
tempted, but the results were not significantly better). Figure 4
plots the frame error rate (FER) for Gaussian channels for
LDGM codes with different code rates and the two choices of
εp. The figure shows that for higher data rates, the LDGM code
results in a shallow “waterfall”. However, it is interesting that
with only systematic bits relayed and with minimal complexity
at the relay, reliable communications is possible. Figure 5
presents the FER in a Rayleigh fading channel, with similar
variations in the parameters. The key observation is that, as
expected, a diversity order of two is achieved, although the
gain for using a low-rate code is generally small. At the cost
of additional energy expended by the relay, for medium code
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Fig. 4. Frame error rate for Gaussian channels with LDGM codes and a
single relay.

rates, significant gains are achieved by forwarding both data
and parity bits (εp = 1 as opposed to data only, εp = 0).
All in all, the advantages of LDGM codes such as ease of
encoding and flexibility in changing rate, are observed over
the relay channels. The rate of an LDGM code can be changed
easily, meaning that all of these performance curves could be
achieved by a single code, where additional parity bits are
generated as required.

Figures 6 and 7 demonstrate the performance of cooperation
using PSRA codes, again with kS = 2000 and RR = 1/2.
For RS and RR greater than or equal to 1/4, the PSRA
code was configured with a repetition of ρ = 3 and, if
necessary, puncturing to increase the rate. Figure 6 illustrates
the performance for fixed Gaussian channels, demonstrating
that the PSRA code yields better performance at low SNR
and has sharp waterfalls. Furthermore, for most cases a clear-
cut SNR threshold is seen, above which the error rate is
practically zero. Figure 7 illustrates the performance of PSRA
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Fig. 5. Frame error rate for Rayleigh fading channels with LDGM codes
and a single relay.
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Fig. 6. Frame error rate for Gaussian channels with RA codes and a single
relay.

codes in Rayleigh fading channels. Again, a diversity order
two is observed. In both these figures, the gains in transmitting
the parity bits is significantly larger than with LDGM codes.
As with the LDGM case, all of these performance curves
could again be achieved by a single code, where symbols were
punctured or transmitted as required.

The results in Figure 8 compare our method against uncoded
amplify-and-forward (AF) as well as decode-and-forward (DF)
in Rayleigh fading. In these curves, all codes are PSRA codes
with rate 1/2 (whether RS or RR), and kS = 2000. We give
one implementation of AF and two implementations of DF.
For AF, we consider the case of no encoding at the source,
where the relay merely amplifies the transmission. For DF, we
consider the cases where the source is silent after its initial
transmission (S silent), and where it transmits again after a
decoding failure at the relay (S sends). Furthermore, we add
results comparing all these methods to the case of no relaying
(direct). As expected, demodulate-and-forward is better than
AF and worse than DF, but the loss compared to the “S
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Fig. 7. Frame error rate for Rayleigh fading channels with RA codes and a
single relay.
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Fig. 8. Comparison of no relaying, amplify-and-forward, decode-and-
forward, and demodulate-and-forward in Rayleigh fading.

silent” case is only around 1 dB. Furthermore, excluding DF,
our method outperforms every other method at realistic frame
error rates. A system designer may wish to use coded AF, in
which the source employs an error-correcting code prior to
transmitting its information. Under various circumstances this
may be either better or worse than demodulate-and-forward;
we leave the general question of which method is better for
future work. Nonetheless, regardless of performance, a system
designer might find AF unattractive in a practical system for
implementational reasons (such as the half-duplex assumption,
which may require the storage of analog information).

Figures 4-8 illustrate the ability to use simple, flexible
error control codes to achieve cooperation with complexity-
constrained relays using coded cooperation with demodulate-
and-forward. Even though the relays do not individually de-
code the codeword, but only demodulate coded bits, a diversity
order of two is achieved. This is because the destination is able
to account for the reliability of relay bits within the decoding
process. This assumes some knowledge of the source-relay
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Fig. 9. Frame error rate with fractional cooperation.

channel at the destination. How the destination gets this
information is an issue of importance that is acknowledged,
but not addressed here.

B. Fractional Cooperation in Network Settings

We now illustrate the performance of fractional cooperation
as proposed in Section III. In this extension of the notion of
coded cooperation to networks with multiple relays, each relay
forwards only a fraction ν of the n coded bits it demodulates;
recalling our definitions from Section IV, the value of k at each
relay would be νn. A critical parameter is rc, the number of
relays required to achieve successful communication without
a source-destination link (Lemmas 1 and 2). The results below
show that fractional cooperation is a flexible and remarkably
robust scheme. These curves were generated using PSRA
codes with RS = 1/2 and kS = 2000, where every channel
has the same average SNR. All relays forward a fraction of the
received coded bits. For convenience of simulation, we have
assumed that successful decoding is always achieved along
the RD channel, which (as we have noted) does not affect the
diversity results (as a result, RR is not specified).

Figure 9 presents results for a fractional cooperation
scheme. Consider the three middle curves in the figure with
ν = 0.125, i.e., 500 of the 4000 coded bits are forwarded by
each relay. From top to bottom, these curves exhibit diversity
orders of 4, 5, and 6; with r = 10, r = 11, and r = 12,
respectively. Thus, we conclude that rc = 8. The increasing
diversity order is an effective demonstration of Theorem 1.
The figure also shows the case of r = 11 and ν = 0.1 (400 out
of 4000 bits forwarded) with a diversity order of 3 (implying
rc = 10), while with r = 11 and ν = 0.15 (600 out of 4000
bits forwarded) a diversity order of roughly 6 is observed.

A most interesting suggestion from these curves is that
the value of rc is roughly 1/ν. This suggests that a minimal
system using fractional cooperation should be designed such
that, on average, the total number of forwarded symbols is
n. Considering the erasure channel bound on rc given at the
beginning of Section IV, we should have for a good code
that rc 
 log(1 − R)/ log(1 − ν). Furthermore, the leading
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Fig. 10. Frame error rate for fractional cooperation as a function of ν.
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ν̄ = 0.125, k1:5 = 50, k6 = 500, k7:11 = 950

Fig. 11. Frame error rate for fractional cooperation with each relay choosing
a differing ν.

term in the Taylor series expansion of log(1 − ν) is −ν (and
log(1−R) is negative), so we should expect for a good code
that, roughly speaking, rc 
 − log(1 − R)/ν. The fact that
the results are close to this value clearly validates the use
of coding in fractional cooperation, as well as our specific
choice of code. However, there exists some room for code
optimization.

Figure 10 plots the FER of a r = 11 system as a function of
ν for SNR levels of 0 dB and 8 dB. At low SNR, the FER is
not significantly effected by ν, but at higher SNR, where the
diversity order is a factor, increasing ν (thereby decreasing rc)
significantly improves the FER. This is clearly at the expense
of increased energy consumed by the relays, because larger ν
implies more symbols relayed.

Figure 11 illustrates the robustness of the system to each
relay choosing a different ν. This could happen due to each
relay having differing energy resources, and hence be willing
to give up less or more of its energy to cooperation. For
a fair comparison, each curve in the figure has the same
number of bits forwarded over all the relays. On average
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each relay forwards 500 bits (ν = 0.125). Three different
cases are presented: (a) each relay forwards 500 bits; (b)
the number of bits relayed by each relay ranges from 250
to 750 bits, in 50-bit increments; and (c) 5 relays forward
50 bits, 1 relay forwards 500 bits, and 5 relays forward 950
bits. The performance loss is surprisingly small, indicating
the fact that fractional cooperation is very robust to the level
of cooperation. The similar performance curves also illustrate
that every relay (above rc) contributes a full order of diversity,
independent of how many bits it relays.

C. Discussion

We address two points of discussion raised by our work: the
importance of coded cooperation to fractional cooperation, and
the relaxation of assumptions.

1) Coded fractional cooperation: As we showed in the
examples, an important result is that a full order of diversity
is gained by going from rc to rc+1 relays, or from rc+1 to
rc+2 relays, even though each additional relay is forwarding
only a small fraction of source’s information. This indicates
that fractional cooperation is a distributed and highly energy
efficient method for achieving diversity gains.

Pairing the fractional cooperation technique with simple,
but powerful, error-correcting codes, as we have done in this
paper, is important to achieving good performance and strong
diversity gains. From Lemma 1, very high SNRs and an
enormous value of rc is required for a fractional cooperation
scheme in the absence of coding. However, from our single-
relay results, we see that good performance is achieved using
our coded cooperation method even at very low SNRs. Mean-
while, our result in Figure 9 indicates that coded cooperation
leads to a reasonable value of rc, rc 
 1/ν. Furthermore, since
we have required that our coded cooperation scheme operate
at varying rates, it is straightforward to change the value of ν
used by each relay node, with little added complexity.

2) Relaxation of assumptions: For the sake of convenience,
we have made three assumptions throughout this work, and
here we describe how these assumptions may be relaxed
without impacting the results.

Orthogonal channels. We assumed that the users suffer no
co-channel interference from other nodes. There are several
ways to relax this assumption (such as multiuser detection),
but the most practical option would be to treat the interfer-
ence as noise. Our coded cooperation scheme is designed to
function even for very strong noise, which includes the worst
case scenario where co-channel interference might decrease
the average SNR on each link. These circumstances fall within
the scope of the system we have proposed.

Coherent reception. We could use a standard technique to
eliminate the ambiguity in the signal phase, such as the trans-
mission of pilot symbols. Such techniques can be performed
independently of what we suggest.

Same average SNRs. Consider the case that each link has
a different average SNR, γ̄i (e.g., based on the geographical
locations of the nodes). Thus, the order of the system outage

probability is given by

Pout =
r−rc+2∏
i=1

Θ(γ̄i)

= Θ

(
r−rc+2∏
i=1

γ̄i

)

= Θ

(
r−rc+2∏
i=1

γ̃

)
= Θ

(
γ̃r−rc+2

)
,

where γ̃ is the geometric mean of the link average SNRs,
which maintains the system diversity order.

VI. CONCLUSION AND FUTURE WORK

This paper has introduced a new and practical framework
for coded cooperation in wireless networks. Using fractional
cooperation, we have shown that energy-efficient diversity
gain can be achieved by a system that is flexible enough to be
used in a distributed network. Furthermore, the derivation of
fractional cooperation has made practical assumptions about
the capabilities of wireless networking hardware; specifically
we do not assume that a relay node can decode the source’s
transmission. Our strategy, of letting relays contribute only
as much to the communication link as they can and splitting
up the relaying task over the available relays, is particularly
amenable to powerful error-correcting codes such as LDGM
and PSRA codes. Considering these features, fractional co-
operation based on demodulate-and-forward presents a robust
and flexible option for designers of wireless networks.

Our theoretical and practical results suggest several interest-
ing avenues for future and continuing work, such as exploring
the relationship between rc and the strength of the error-
correcting code employed in fractional cooperation. Further-
more, future work will investigate relay selection to achieve
higher energy efficiencies, as well as the practical problem of
devising protocols to implement fractional cooperation.
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