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Abstract—In this paper, it is shown that Cauchy’s method various methods is the approach used to evaluate the order
can be used effectively to interpolate/extrapolate narrow-band of the two polynomials and the coefficients that define them.
raical datapoints o measurd expenmentl data over a band. " [Ll: the authors also introduce the frequency derivative
For theoretical data extrapolation or interpolation, the sampled teqhnlque. The approach uses the derivatives of th? pa_trameter
values of the function and, optionally, a few of its derivatives P€Ng modeled with respect to frequency. These derivatives are
have been used to reconstruct the function. For measured data, used to evaluate the coefficients. The order of the polynomials
only measured values of the parameter are used to create broad- is determined by the available information.
band information from limited data as derivative information The more popular rational polynomial approach is to use
is too noisy. Cauchy’'s method assumes that the parameter to Pace approximations [2]. The approach is based on the Taylor

be extrapolated/interpolated, as a function of frequency, is a xpansion of th rameter function of fr nev. i th
ratio of two polynomials. The problem is to determine the order expansion of thé parameter as a function of frequency, I1.€., the

of the polynomials and the coefficients therein. The method of Moments of the parameter around a given frequency point. In
total least squares (TLS) has been used to solve the resulting[3], Sanaieet al. use complex frequency hopping without poles
matrix equation involving the coefficients of the polynomials. such that moments at different frequency points can be used to
Typical numerical results have been presented to show that reli- model the parameter of interest. The method is dependent on
able interpolation/extrapolation can be done for various system choosing expansion points in frequency and then comparing
reSponses. either resulting poles or the value of the rational polynomial
Index Terms—Cauchy’s method, extrapolation, interpolation.  generated by these expansion points. In [4], the authors use
frequency-shifted moments to obtain the Pagbproximation.
The performance of the model is strongly dependent on the
o ] ) ) o choice of frequency points. In both cases, the order of the
N A HOST of applications in engineering, it is necessanysjynomials is determined by the available information. In
to obtain information about a system over a broad ran ], Sakata has extended the Radpproximation to two
In most cases it is not possible to evaluate the paramelghensions.
of interest in a closed form. However, either theoretical or T approach presented in this paper is significantly dif-
experimental data is available in a narrow band. Generati@}ent from Pad-type approximations. The model does not
of the data over the broad band is not possible or may Bgpend on a Taylor expansion around a set of frequency points.
extremely time-consuming. In this paper, the principle 6fnhe coefficients are obtained directly using the singular value
analytic continuation is utilized by the Cauchy method [Iecomposition (SVD) of a data matrix. The SVD also allows
to extrapolate/interpolate the data over a wide band. e to estimate the required order of the polynomials used
The Cauchy method deals with approximating a function by he rational model. This is a significant advance over the
a ratio of two polynomials. Given the values of the functioRgjier published methods. Further, total least squares (TLS)

and its derivatives at a few points, the order of the polynomialga ;sed to solve for the coefficients. This allows for some
and their coefficients are evaluated. Once the Coeﬁ'c'entss‘?fppression of the effects of noise in the data.

the two polynomials are known, they can be used to generatérhe pasic difference between this paper and the work in

the parameter over the entire band of interest. (ﬁ] is that, here, the computations have been made automatic
li

Rational polyn_omials have been used _extensively to mo zing the SVD. This methodology also helps address the
frequency-domain responses. The key difference between {i8 iritical issues as to when the Cauchy model is not valid
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band calculations of the currents using the method of mometite Cauchy problem is as follows:
(MoM). Particularly in the MoM, generation of the response_, (n) .
at each frequency point is very time consuming. HowevepPVen " (sy) forn=0,--- Ny, j=1,---,J,

the current and its derivatives with respect to frequency can find P, @, {ax, k =0,---, P}, and{bx, k =0,---,Q}.

be quickly calculated at a few points using the MoM. Then . . . _
Cauchy’s method can be used to extrapolate/interpolate theOne solution to this problem has been outlined in [1]. Here

current over a broad frequency range from which the Réas(_jifferent cor'nputational' approach s taken_ which .is more
can be calculated. reliable an_d gives us priori a Ieve! of confld_ence in the
Another example is the characterization of optical systen{ .SU|tS' Th's includes whether the given data 'Sj adequate and
The time required to evaluate a response over a broad rang%gf more important problem of whether Cauchy’s method can
the size parameter would be prohibitive. The Cauchy meth 8_qppl|ed to thg data. Thgse issues can be addressed by
can be used to generate the response of interest over a bio4H'NY the SVD in the solution of the problem. _
band from the value of the function at some discrete points, ~*5 S€€N from [1_]’ the unknowns,, andb; can be put in
The Cauchy method has wide application. A third examp@e following form:
is in the area of filter analysis. In the laboratory it is not [A]a = [B]b 2)
always possible to make accurate broad-band measurements.
This problem is especially severe in the case of measuring e

transfer function of a filter in the stopband. The signal-to-noise a

ratio may be too low to be confident about the measurements of [A — B] [b} =0 3)
filter characteristics. Here, the Cauchy method can be used to T

generate broad-band information from measured narrow-band [a] = [ao, a1, az,---ap] (4)
data. [b] = [b07 b17 b27 Tt bQ]T (5)

Yet another area of application for the Cauchy method
is that of device characterization. A very useful tool i
automated circuit design would be an online description of t
characteristics of many devices, but since each device may b
used under different operating conditions (each with its own A =[AG ), 00 AG,ny, 100 A, ny, Pl (6)
frequency characteristic) the memory required to describe all B=[B o B o .B o ] )
devices would be prohibitive. Here, the Cauchy method can (G ), 00 2G5, ), 1y G m), QI
be used to generate broad-band information while storing theFor ease of notation, defif€] = [A — B]. C is of order

measured data at only a few frequency points. N x (P +Q +2). A SVD of the matrixC will give us a

In an application of the Cauchy method, the choice @fauge of the required values #f and Q) [7]. A SVD results
polynomial orders is restricted by the information at hangh the equation

While it is true that the more information given, the higher
one can choose the orders, this is not always desirable. In filter U= V]? [a} —0. (8)
analysis especially, the choice of the order of the polynomials b

proves to be very important. The matricesU and V are unitary matrices andl is a

In this paper, the Cauchy technique is used for the inte§iqonal matrix with the singular values 6F in descending
polation and extrapolation of frequency-domain responses. |fyer as its entries. The columns Bf are the left singular

each of the cases mentioned above, the Cauchy technigue:ors ofC or the eigenvectors afCH . The columns oV
would save a significant amount of program execution time gfq he right singular vectors @f or the eigenvectors @ C.

computer memory while still producing accurate results ovge singular values are the square roots of the eigenvalues of
broad-band frequencies. The method is tested and numerigal atrixcH C. Therefore, the singular values of any matrix

results are presented along with two examples illustrating ge req| and positive. The number of nonzero singular values
use as a time-saving device. is the rank of the matrix in (3) and so gives one an idea of
the information in this system of simultaneous equations. If
R is the number of nonzero singular values, the dimension
of the right null space o€ is P 4+ Q 4+ 2 — R. The authors’
Consider a system functio{(s). The objective is to solution vector belongs to this null space. Therefore, to make
approximateH (s) by a ratio of two polynomialsA(s) and this solution unique, one needs to make the dimension of this
B(s) so thatH (s) can be represented by fewer variables. null space 1 so that only one vector defines this space. Hence,

here the matricefA] and [B], of ordersN x (P + 1) and
x (@ + 1), respectively, and” denoted transpose.
Qefine

Il. THE CAUCHY METHOD

Consider P and @ must satisfy the relation
H(s):A(S) :Ei;o aksk' W R+1=P+Q+2. 9)
B(s) E;?:O by s* The solution algorithm must include a method to estimate

R. This is done by starting out with the choices Bf and
Here, the given information may be the valuefs) and its () that are higher than can be expected for the system at
N; derivatives at some frequency poids j = 1,---,J. If hand. Then, one gets an estimate forfrom the number of
H"™(s;) represents theth derivative ofH (s) at points = s;, nonzero singular values of the mat@ Now, using (9) better
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estimates forP and @@ are obtained. Letting” and @ stand In general,
for these new estimates of the polynomial orders, one can

recalculate the matriceA andB. Therefore, one comes back (n) . O — (n)
to the relation V1™ =3 "G 217009 = 1]
=1
C G}EA—B{G}:O. 10 ol -
[ ]|:b [ ] b (10) :[Z]_l [V](n)_chi[z](n—z)[l](z) . (13)
=1

where [C] is a rectangular matrix with more rows than
columns. Many methods to solve (10) are well document?d the ab i ™) is th ¢ ith h el i
[7]. For reasons indicated in the Appendix, the authors choo e above equationsV]'™ is the vector with each elemen

the method of total least squares TLS [8]. The Appendix alsf'l) [IV] ‘2“(%6_”“?;9‘1 Witth_ respect EEO Jriqug_r;f@ytirrlgst: Sim- h
outlines the technique of TLS. ilarly, [Z]'"™ is the matrix generated by differentiating eac

How the singular values of matripC] are distributed tells element of the matrixZ] with respect to frequency times.

the user if: 1) the Cauchy method is applicable to the data_aFHeanf" using dathoM prclngrglm, cc:me r(]:an geirr]\e(rjat?rhall the
hand and 2) if the data are adequate, that a curve fitting can'fj@rmation needed 1o apply the Lauchy method. The use

carried out. Both of these tests are carried out by observing ederlv?t_lve_: mfor_matlon saves edx?cutlon t'TetﬁeC%las.f nol
distribution of the singular values of matrj] and the ratio New matrix INVersions are required o generate the additiona

of the largest singular value to the smallest singular value. infprmation. Hencg, evalua_tion of a derivative at a frequency
If there is a reasonable spread of singular values and Nt requiredD(N*®) operations as opposed to solving for the

. ) 3 .
ratio of the largest to smallest singular value is larger th rrﬁntT at atfre?l;r(]ancy Ipct).lnt which tak@${[\7 ).op:erattl%ns.
the signal-to-noise ratio in the data, then it is reasonable ch element of the solution curreff vector is treated as

proceed with the Cauchy method. For example, if the dats function H(s). Given the current and its derivatives at
have five effective bits, the approximate signal to noise ratl me freqijer:rcl:y pomts,t otne can use the_(iauchy method to
is 30 dB (each bit increases the signal to noise ratio by ab proximate the current at many more points.

6 dB). If the above conditions are not satisfied, the Cauck(1)¥ ) Nur_nerical Examples:To test _the Cauchy methpd, RCS's
method may not yield meaningful results. five different perfectly conducting three-dimensional (3-D)

bodies were calculated over wide frequency bands. A program
to evaluate the currents on an arbitrarily shaped closed or open
body using the electric field integral equation and triangular
patching as described in [9] was used. The triangular patching
A. The Method of Moments approximates the geometry of the surface of the body with a
The method of moments (MoM) approximates the inteset of adjacent triangles. The program then uses these currents
actions of complicated bodies with a set of smaller, easitp evaluate the RCS of the body. It was modified to also
solvable interactions [6]. The currents are approximated lplculate the first four derivatives of the currents with respect
a linear combination of some known basis functions. THe frequency. This information was used as input to a Cauchy
problem then of evaluating the current density, as a functisabroutine. The original MoM program was used to calculate
of frequency, reduces to finding the coefficients in the line#iie RCS without the Cauchy method. The two RCS plots were
combination. This approach allows the problem to be writte¥pmpared to show the accuracy of the Cauchy method.
as a matrix equation with the unknown coefficients as the The bodies chosen were a sphere, a square plate, a disk, a
solution to the equation. The major limitation of the MoM ioncave, and a convex hemisphere. In all cases, the currents
that a large matrix equation has to be solved at every frequerayd their first four derivatives were evaluated at five frequency
point of interest. If a large system is to be studied, the prograpeints. Hence, the total information allows a maximum of
execution time may be as long as days. 5x (441) = 25 coefficients combined in the two polynomials
The Cauchy method can partially solve this problem. THef (1). In the application of the Cauchy method to the MoM,
MoM program generates information over a limited band fromt was found that no singular values of the original matrix
which the Cauchy method generates broad-band informatid — B] are zero. This is to be expected, since the current as a
1) Interfacing with the MoM: The Cauchy method can easfunction of frequency is not a ratio of two polynomials. Hence,
ily be incorporated as part of a MoM analysis. The MoMhe higher the polynomial orders chosen, the more accurate the
converts a linear operator equation into a matrix equation @pproximation would be. Therefore, in this application, the
the form step of estimating?, P, and@, in (9), is bypassed. Given the
25 samples, the numerator polynomial was of order 11 while
[V]=[Z]l] (11) the denominator was a polynomial of order 12. Physically,
dahne knows that for the polynomial approximation to be stable,
the numerator polynomial must be of lower order than the
denominator polynomial.

Ill. A PPLICATIONS OF THECAUCHY METHOD

Here,[I] is the vector of coefficients in the representation
the current as a linear combination of basis functighg. is

the known excitation to the system, whilg] is the matrix that oo :
describes the interaction of the currents and the excitation. The motivation to apply the Cauchy method to the MoM is

Differentiating the above equation with respect to frequend§) SaVe Program execution time. To get an idea of how much
results in a binomial expansion time can be saved, the program was timed for two of the above

bodies and compared to the original MoM program. The two
V] = 211+ [2)[I) = 1] = [Z]7 [V] = [2]'[I]]. (12) bodies chosen were the sphere and the plate.
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Fig. 1. Radar cross section of a sphere.
Fig. 2. Radar cross section of a square plate.
In the first example, a sphere of radius 0.3 m was analyzed.
The sphere was triangularized using 182 nodes and 540 ed
Because the sphere is a closed object, this results in
unknowns in the expansion of the current in terms of t
basis functions. The currents on the sphere and its first fdll
derivatives, with respect to frequency, were evaluated at fi
frequency points. The points chosen were in the rahge
0.30 m and X = 0.84 m at a spacing of 0.135 m. Using thist

ber of unknowns in this case was only 408. The procedure
owed is similar to the analysis of the sphere. Here, the
r{je\/e frequency points chosen were in the range= 0.15
and A = 0.30 m at intervals of 0.0375 m. Using this
ormation and the Cauchy method, the currents on the plate
were evaluated at 201 frequency points. The time taken for
his calculation is compared to the time taken by the original

information and the Cauchy method, the current on the sphMé’M program to evaluate the RCS at five frequency points

was calculated for 51 points in the same frequency rand@.the s_ame range: ) )
Using these currents, the RCS of the sphere was calculated a) using the MoM (for 5 points): 21 min 50 s; _
the 51 frequency points. The time taken for this calculation is 2) interpolating with the Cauchy method (for 201 points)
compared to the time taken by the original MoM program to 27 min 47 s; . . _
evaluate the RCS at five frequency points in the same range3) t0 generate the same information at 201 points, the MoM
1) using the MoM only (for 5 points): 47 min 56 s; program would take approximately 14 h 38 min;
2) interpolating with the Cauchy method (for 51 points): 4) all programs were executed on an IBM RS6000 platform

57 min 57 s; running AlX.
3) to generate the same information at 51 points, the MoM Fig. 2 shows the application of this technique to the evalu-
program would take approximately 8 h 8 min. ation of the RCS of a plate. Again, to evaluate the RCS over

In Fig. 1, the results of applying the Cauchy method to i decade bandwidth, three intervals were chosen and the two

evaluation of the RCS of a sphere are seen. Here, the RCET nomials of (1) formed in each interval. The numerator

plotted over a decade bandwidth. This bandwidth was brok flynomial had order 11 while the denominator polynomial
up into three ranges: ad order 12. The intervals chosen were:

0.6mMm<A<1.0m 0.Im<A<0.15m
1L0m<A<18m 0.15m<A<03m
1.8mM<A<6.0m. 0.3m<AL1IOm.

In each of the three ranges the current and its first foThe rational polynomial was used to evaluate the currents at
L ges . 9b1 points in each range. The original MoM program was used
derivatives were evaluated at five equally spaced points using . .
. i ) . ““to%evaluate the RCS of the plate in this decade bandwidth. As
the MoM program. Using this information, the polynomials in .
) ) . ¢an be seen from the figure, the agreement between the two
(1) were formed. This rational polynomial was used to evalua Ssults is excellent
the current at 51 points in each range. Also, the original Mo The third examplé is a disk of radius 0.3 m. The disk was

program was used to calculate the currents at a few points '%ngularized using 142 nodes and 460 edges. Of these, only

the decade bandwidth. The currents were used to calculate . . . ;
RCS of the sphere in this bandwidth. As can be seen from t%%% were interior edges. Fig. 3 shows the RCS of the disk

figure, the agreement between the results from the use of Ejver a decade bandwidth. Here too, the decade bandwidth was

S : foken up into three intervals and polynomials of order 11 and
Cauchy program and the original MoM program is excellent. . ; . .
: 2 formed in each interval. The rational polynomial was used
As a second example, a square plate of side 0.3 m was

analyzed. The plate was triangularized using 169 triangﬁ? evaluate the currents and then the RCS of the disk at 51

e L ) _
nodes and 456 edges. In the MoM formulation the nodes gravency points in each range. The intervals chosen were:
the boundary of an open object are not unknowns. Hence, the 0.6m<A<24m
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24m<A<42m ' ' ‘ ‘
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Fig. 4 shows the results of the final example of the Cauchy
method applied to the MoM. The RCS of a convex and a . 3r

¥

concave hemisphere was calculated over a decade bandwidth.of

Fig. 4(a) shows the RCS of a convex hemisphere while “em e
Fig. 4(b) shows the RCS of a concave hemisphere. The radiussz’f)e 2r
of both hemispheres was 0.3 m. The convex hemisphere had ¥’ 5+
257 nodes and 736 edges. This resulted in a problem with
704 unknowns. The concave hemisphere had 316 nodes and
910 edges. Of these, 875 were interior nodes. The decade 05 |- Using Cauchy with Method of Moments —— |

bandwidth was broken into the following ranges: . , Ustng only the Method of Moments

0 0.1 0.2 L 03 0.4 0.5
X

0.6 M<ALIOmM

26m<A<6.0m, Fig. 4. Radar cross section of a hemisphere. (a) Convex hemisphere. (b)

. . . Concave hemisphere.
As in the case of the disk, for the hemispheres too, the
two polynomials of (1) were formed in each of the thréqyg \ange of the size parameter was from 7.0 to 8.0. Hence,
ranges. I_n both cases, the MOM program evaluated the currepts original data had 501 points. The Cauchy method needed
anq Its first four derlvat|_ve.s with respect to frequency at fiv spacing of 0.01 in the size parameter, without any derivative
points n each range. .Th's information was used by, the _Cauci ormation, to accurately calculate the scattering efficiency
subroutine to approximate the currents at 51 points in €36 the sphere at the original 501 points. This cuts down the

range from which the RCS of the hemispheres were calculal gram execution time by a factor of 5. The input to the
at 51 points in each range. Also, the original MoM progra auchy program is shown in Fig. 5(a) '

was used to calculate the RCS over the decade bandwidth. A ecause all computer calculations suffer from roundoff

can be seen from Figs. 3 and 4, the agreement in each C8%%r, most of the singular values returned from the SVD

is excellent. subroutine are not exactly zero. The choice of the threshold
was such that a singular value was considered zero if it
was 18 orders of magnitude lower than the largest singular
The calculation of either the scattering efficiency or the insalue. This is because the data was in double precision.
tensity is highly computationally intensive. If these paramete@nly 72 singular values are above the chosen threshold, i.e.,
are desired over a broad range and at finely spaced points of fhe- 72. Using this estimate foRz and (9), the choice for the
size parameter, the time required for the calculations may pelynomial orders was reduced to 35 for the numerator and 36
prohibitive. The Cauchy method would solve this problem bfpr the denominator. Using these polynomials, the scattering
needing the calculations to be done at a much coarser spagffigciency was calculated at the original 501 points.
and interpolate the parameter of interest. Fig. 5(b) shows the results of the application of the Cauchy
This application was tested on the scattering efficiency ofethod to optical computations. The dotted line represents the
a sphere as a function of size parameter [10]. The sphere logiginal data while the unbroken line represents the interpo-
an index of refraction of 2.0. The original data calculated tHated data. As can be seen, the two plots are nearly visually
scattering efficiency at a spacing 0.002 in the size parametiedistinguishable. Also, even though the input data to the

B. Optical Computations
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Fig. 5. Scattering efficiency as a function of size parameter. (a) Input to the b
Cauchy program. (b) Results of application of the Cauchy method to optical (b)
computations. Fig. 6. Generation of stopband response using passband data. (a) Magnitude

response. (b) Phase response.

program did not have the peaks of the scattering parameter,

the Cauchy method was able to reproduce them. Because this is measured data, there is no information about
the derivative of the transfer function with respect to fre-
C. Filter Analysis quency.

The Cauchy method can also be used in analysis of filtersThe threshold was chosen such that a singular value was

over broad frequency ranges. A filter response is a raﬁgnsidered zero if it was 14 orders of magnitude lower than

of two polynomials and, hence, lends itself easily to th@e largest singular value. After the method checked for the

use of a Cauchy method. This has practical application fymPer of nonzero singular values, the estimate flowas

the problem of generating the stopband response given T_he order of the numer_ator polynomla_l was chosen to be

passband response or the reverse, i.e., generating the passéa‘f’ga"e that of the denominator polynomial was chosen to
e 8.

response given some data from the stopband. .

A filter transfer function(S,;) was measured using a !N Fig. 6(a) and 6(b) the results from the Cauchy program
network analyzer at frequency points in and out of the filté#€ described. Fig. 6(a) shows the magnitude response while
passband. The filter had its 3-dB points at 4.98 and 6.61 GHZ9- 6(b) shows the phase response of the filter. As is often
respectively. Hence, the filter had a passband of 1.63 GHe case with filters, the magnitude response was considered
with a center frequency of 5.80 GHz. The filter response w&0re important. Hence, the phase response was allowed to
measured at 415 equally spaced points in the frequency ras§éw a poor agreement so as to maximize the agreement of
4.31-7.42 GHz. the magnitude response. If a 10% error in the magnitude were

In the first application, the response over the entire baagceptable, the extrapolation is valid for 0.39 GHz. This is
of measurement was recovered using mostly passband Gn¢% of the center frequency and 23.9% of the bandwidth. For
formation. 51 equally spaced points, in the frequency ranffequencies beyond the passband, the extrapolation is accurate
4.79-6.96 GHz, were chosen as input to a Cauchy methedthin 10% up to 7.42 GHz, the frequency until which data
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Fig. 7. Generation of passband response using stopband data. (a) ReEim-8. The Cauchy method applied to device characterization. (a) Magnitude
structed magnitude response. (b) Reconstructed phase response. Y71 reconstructed over broad frequency range. (b) Phage over same
range.
was available. Hence, an accurate data over a bandwidth of L
3.32 GHz starting with data over a bandwidth of 2.16 GHP- Device Characterization
is generated. An application of the Cauchy method is in creating a data-
In the second application, data from the stopband and a litbase of many devices working in varying operating conditions.
from the passband was used to interpolate into the passbafite Cauchy method would require the value of a parameter at
Here too, the choice of threshold is very important. Using trefew frequency points and use this information to evaluate the
same threshold as in the first application, the estimaté& of parameter over a wide frequency band. Over many devices,
remained the same. Hence, in this case too, the numerand their operating conditions, this would yield significant
polynomial had order 7 while the denominator had order 8avings in memory requirements.
In this case, 23 equally spaced points from 4.31 up to 5.35To test this application, th& -parameters of a pseudo-
GHz and 28 equally spaced points from 6.20 to 7.42 GHmrorphic high electron mobility transistor (PHEMT) were
were used to interpolate into the passband. This represamisasured over the range of 1.0-40.0 GHz. Just five of these
on interpolation of 0.85 GHz, which is 14.6% of the centgooints were used as input to the Cauchy method. The points
frequency or 52.7% of the bandwidth. Fig. 7(a) and 7(b) shoshosen were at the frequency points 1.0, 10.0, 20.0, 30.0,
the results of this application. Fig. 7(a) is the reconstructeshd 40.0 GHz, respectively. This resulted in a numerator
magnitude response and Fig. 7(b) is the reconstructed phpeg/nomial of order 1 and denominator polynomial of or-
response. Again, since more attention is paid to the magnitwikr 2. Here again, the step of estimatify P, and @ is
response, the phase response shows poorer agreement yifassed. Fig. 8(a) shows the magnity#fe | reconstructed
the true response. over this broad frequency range. Fig. 8(b) shows the phase
In both figures the dotted line represents the measured dald; over the same range. As can be seen, the agreement
while the continuous line represents the results of the Cauchith the measured values and the interpolated values is ex-
method. cellent.
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V. CONCLUSIONS where, R is upper triangular ani ., is completely affected

This paper has presented a technique with many practi€¥ the noise. Hence,
applications. The Cauchy method starts by assuming that the
parameter of interest, as a function of frequency, can be = [Roo]b =0 (16)
approximated by a simple rational polynomial function. The
method presented here uses the singular value decomposition
to evaluate the order of the polynomials and the coefficierf8d
that define them. Using this form, the parameter is evaluated
at many frequency points. It is shown that the technique [Ri1]a = —[Ri2]b. (17)
has applications to many practical problems. In this paper,
the technique is applied to the MoM, optical systems, filter ] ]
analysis, and device characterization. In all applications theSVD of Ro; results in the equation
Cauchy method has shown to save time and memory.
The examples presented here show that the Cauchy method [U][Z][V]7b = 0. (18)
places little restriction on the required data. In the case that
the derivative of the parameter of interest with respect to
frequency is available, this information is used. However, if By the theory of the TLS [8], the solution of the above
the derivatives are not available, the values of the parame§uation is proportional to the last column of the maf¥ix

at given frequency points is adequate. Hence, one can choose
A topic of further research is to investigate when and
how the Cauchy method breaks down. As can be seen from b=[V]gs1. (19)

the results of applying the Cauchy method to model filter

responses, the method fails to yield extensive extrapolation

or interpolation in the case of very low signal-to-noise ratios. This is the optimal solution even in the case that the matrix

Initial results into the investigation of the effect of noise in th&22 does not have a null space. This was possible when the

data show that the method performs well for a signal-to-noi§educhy method to the MoM was applied.

ratio of over 20 dB [11]. Using this solution for the denominator coefficients and
It must be pointed out that the Cauchy method is complete{ping (22), the numerator coefficients using the conventional

general and can be used to extrapolate or interpolate with k& solution can be solved. The above TLS approach removes

spect to any variable other than frequency. However, in mafgme of the errors of the conventional LS approach.

applications in electromagnetics, frequency is the variable oflt can be shown [8] that for the case wheRy,, is

interest. contaminated by noise, the TLS is the optimum solution
technique.
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