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Abstract—In this paper, it is shown that Cauchy’s method
can be used effectively to interpolate/extrapolate narrow-band
system responses. The given information can either be theo-
retical datapoints or measured experimental data over a band.
For theoretical data extrapolation or interpolation, the sampled
values of the function and, optionally, a few of its derivatives
have been used to reconstruct the function. For measured data,
only measured values of the parameter are used to create broad-
band information from limited data as derivative information
is too noisy. Cauchy’s method assumes that the parameter to
be extrapolated/interpolated, as a function of frequency, is a
ratio of two polynomials. The problem is to determine the order
of the polynomials and the coefficients therein. The method of
total least squares (TLS) has been used to solve the resulting
matrix equation involving the coefficients of the polynomials.
Typical numerical results have been presented to show that reli-
able interpolation/extrapolation can be done for various system
responses.

Index Terms—Cauchy’s method, extrapolation, interpolation.

I. INTRODUCTION

I N A HOST of applications in engineering, it is necessary
to obtain information about a system over a broad range.

In most cases it is not possible to evaluate the parameter
of interest in a closed form. However, either theoretical or
experimental data is available in a narrow band. Generation
of the data over the broad band is not possible or may be
extremely time-consuming. In this paper, the principle of
analytic continuation is utilized by the Cauchy method [1]
to extrapolate/interpolate the data over a wide band.

The Cauchy method deals with approximating a function by
a ratio of two polynomials. Given the values of the function
and its derivatives at a few points, the order of the polynomials
and their coefficients are evaluated. Once the coefficients of
the two polynomials are known, they can be used to generate
the parameter over the entire band of interest.

Rational polynomials have been used extensively to model
frequency-domain responses. The key difference between the
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various methods is the approach used to evaluate the order
of the two polynomials and the coefficients that define them.
In [1], the authors also introduce the frequency derivative
technique. The approach uses the derivatives of the parameter
being modeled with respect to frequency. These derivatives are
used to evaluate the coefficients. The order of the polynomials
is determined by the available information.

The more popular rational polynomial approach is to use
Pad́e approximations [2]. The approach is based on the Taylor
expansion of the parameter as a function of frequency, i.e., the
moments of the parameter around a given frequency point. In
[3], Sanaieet al.use complex frequency hopping without poles
such that moments at different frequency points can be used to
model the parameter of interest. The method is dependent on
choosing expansion points in frequency and then comparing
either resulting poles or the value of the rational polynomial
generated by these expansion points. In [4], the authors use
frequency-shifted moments to obtain the Padé approximation.
The performance of the model is strongly dependent on the
choice of frequency points. In both cases, the order of the
polynomials is determined by the available information. In
[5], Sakata has extended the Padé approximation to two
dimensions.

The approach presented in this paper is significantly dif-
ferent from Pad́e-type approximations. The model does not
depend on a Taylor expansion around a set of frequency points.
The coefficients are obtained directly using the singular value
decomposition (SVD) of a data matrix. The SVD also allows
one to estimate the required order of the polynomials used
in the rational model. This is a significant advance over the
earlier published methods. Further, total least squares (TLS)
are used to solve for the coefficients. This allows for some
suppression of the effects of noise in the data.

The basic difference between this paper and the work in
[1] is that, here, the computations have been made automatic
utilizing the SVD. This methodology also helps address the
two critical issues as to when the Cauchy model is not valid
for the data at hand and when is the data adequate for a
reliable interpolation/extrapolation. This is accomplished from
the distribution of the singular values and a decision can be
made on the reliability of the extrapolated/interpolated results.

In this paper, Cauchy’s method has been utilized to generate
broad-band currents on conducting bodies. The currents are
used to calculate the radar cross section (RCS) of the body as a
function of frequency. The extrapolation is done from narrow-
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band calculations of the currents using the method of moments
(MoM). Particularly in the MoM, generation of the response
at each frequency point is very time consuming. However,
the current and its derivatives with respect to frequency can
be quickly calculated at a few points using the MoM. Then
Cauchy’s method can be used to extrapolate/interpolate the
current over a broad frequency range from which the RCS
can be calculated.

Another example is the characterization of optical systems.
The time required to evaluate a response over a broad range of
the size parameter would be prohibitive. The Cauchy method
can be used to generate the response of interest over a broad
band from the value of the function at some discrete points.

The Cauchy method has wide application. A third example
is in the area of filter analysis. In the laboratory it is not
always possible to make accurate broad-band measurements.
This problem is especially severe in the case of measuring the
transfer function of a filter in the stopband. The signal-to-noise
ratio may be too low to be confident about the measurements of
filter characteristics. Here, the Cauchy method can be used to
generate broad-band information from measured narrow-band
data.

Yet another area of application for the Cauchy method
is that of device characterization. A very useful tool in
automated circuit design would be an online description of the
characteristics of many devices, but since each device may be
used under different operating conditions (each with its own
frequency characteristic) the memory required to describe all
devices would be prohibitive. Here, the Cauchy method can
be used to generate broad-band information while storing the
measured data at only a few frequency points.

In an application of the Cauchy method, the choice of
polynomial orders is restricted by the information at hand.
While it is true that the more information given, the higher
one can choose the orders, this is not always desirable. In filter
analysis especially, the choice of the order of the polynomials
proves to be very important.

In this paper, the Cauchy technique is used for the inter-
polation and extrapolation of frequency-domain responses. In
each of the cases mentioned above, the Cauchy technique
would save a significant amount of program execution time or
computer memory while still producing accurate results over
broad-band frequencies. The method is tested and numerical
results are presented along with two examples illustrating its
use as a time-saving device.

II. THE CAUCHY METHOD

Consider a system function . The objective is to
approximate by a ratio of two polynomials and

so that can be represented by fewer variables.
Consider

(1)

Here, the given information may be the value of and its
derivatives at some frequency points, . If

represents theth derivative of at point ,

the Cauchy problem is as follows:

Given for

find and

One solution to this problem has been outlined in [1]. Here
a different computational approach is taken which is more
reliable and gives usa priori a level of confidence in the
results. This includes whether the given data is adequate and
the more important problem of whether Cauchy’s method can
be applied to the data. These issues can be addressed by
utilizing the SVD in the solution of the problem.

As seen from [1], the unknowns and can be put in
the following form:

(2)

or

(3)

(4)

(5)

where the matrices and , of orders and
, respectively, and denoted transpose.

Define

(6)

(7)

For ease of notation, define . is of order
. A SVD of the matrix will give us a

gauge of the required values of and [7]. A SVD results
in the equation

(8)

The matrices and are unitary matrices and is a
diagonal matrix with the singular values of in descending
order as its entries. The columns of are the left singular
vectors of or the eigenvectors of . The columns of
are the right singular vectors of or the eigenvectors of .
The singular values are the square roots of the eigenvalues of
the matrix . Therefore, the singular values of any matrix
are real and positive. The number of nonzero singular values
is the rank of the matrix in (3) and so gives one an idea of
the information in this system of simultaneous equations. If

is the number of nonzero singular values, the dimension
of the right null space of is . The authors’
solution vector belongs to this null space. Therefore, to make
this solution unique, one needs to make the dimension of this
null space 1 so that only one vector defines this space. Hence,

and must satisfy the relation

(9)

The solution algorithm must include a method to estimate
. This is done by starting out with the choices of and

that are higher than can be expected for the system at
hand. Then, one gets an estimate forfrom the number of
nonzero singular values of the matrix. Now, using (9) better



ADVE et al.: APPLICATION OF THE CAUCHY METHOD 839

estimates for and are obtained. Letting and stand
for these new estimates of the polynomial orders, one can
recalculate the matrices and . Therefore, one comes back
to the relation

(10)

where is a rectangular matrix with more rows than
columns. Many methods to solve (10) are well documented
[7]. For reasons indicated in the Appendix, the authors choose
the method of total least squares TLS [8]. The Appendix also
outlines the technique of TLS.

How the singular values of matrix are distributed tells
the user if: 1) the Cauchy method is applicable to the data at
hand and 2) if the data are adequate, that a curve fitting can be
carried out. Both of these tests are carried out by observing the
distribution of the singular values of matrix and the ratio
of the largest singular value to the smallest singular value.

If there is a reasonable spread of singular values and the
ratio of the largest to smallest singular value is larger than
the signal-to-noise ratio in the data, then it is reasonable to
proceed with the Cauchy method. For example, if the data
have five effective bits, the approximate signal to noise ratio
is 30 dB (each bit increases the signal to noise ratio by about
6 dB). If the above conditions are not satisfied, the Cauchy
method may not yield meaningful results.

III. A PPLICATIONS OF THECAUCHY METHOD

A. The Method of Moments

The method of moments (MoM) approximates the inter-
actions of complicated bodies with a set of smaller, easily
solvable interactions [6]. The currents are approximated by
a linear combination of some known basis functions. The
problem then of evaluating the current density, as a function
of frequency, reduces to finding the coefficients in the linear
combination. This approach allows the problem to be written
as a matrix equation with the unknown coefficients as the
solution to the equation. The major limitation of the MoM is
that a large matrix equation has to be solved at every frequency
point of interest. If a large system is to be studied, the program
execution time may be as long as days.

The Cauchy method can partially solve this problem. The
MoM program generates information over a limited band from
which the Cauchy method generates broad-band information.

1) Interfacing with the MoM:The Cauchy method can eas-
ily be incorporated as part of a MoM analysis. The MoM
converts a linear operator equation into a matrix equation of
the form

(11)

Here, is the vector of coefficients in the representation of
the current as a linear combination of basis functions. is
the known excitation to the system, while is the matrix that
describes the interaction of the currents and the excitation.

Differentiating the above equation with respect to frequency
results in a binomial expansion

(12)

In general,

(13)

In the above equations, is the vector with each element
of differentiated with respect to frequencytimes. Sim-
ilarly, is the matrix generated by differentiating each
element of the matrix with respect to frequency times.

Hence, using a MoM program, one can generate all the
information needed to apply the Cauchy method. The use
of derivative information saves execution time because no
new matrix inversions are required to generate the additional
information. Hence, evaluation of a derivative at a frequency
point required operations as opposed to solving for the
currents at a frequency point which takes operations.
Each element of the solution current vector is treated as
the function . Given the current and its derivatives at
some frequency points, one can use the Cauchy method to
approximate the current at many more points.

2) Numerical Examples:To test the Cauchy method, RCS’s
of five different perfectly conducting three-dimensional (3-D)
bodies were calculated over wide frequency bands. A program
to evaluate the currents on an arbitrarily shaped closed or open
body using the electric field integral equation and triangular
patching as described in [9] was used. The triangular patching
approximates the geometry of the surface of the body with a
set of adjacent triangles. The program then uses these currents
to evaluate the RCS of the body. It was modified to also
calculate the first four derivatives of the currents with respect
to frequency. This information was used as input to a Cauchy
subroutine. The original MoM program was used to calculate
the RCS without the Cauchy method. The two RCS plots were
compared to show the accuracy of the Cauchy method.

The bodies chosen were a sphere, a square plate, a disk, a
concave, and a convex hemisphere. In all cases, the currents
and their first four derivatives were evaluated at five frequency
points. Hence, the total information allows a maximum of

coefficients combined in the two polynomials
of (1). In the application of the Cauchy method to the MoM,
it was found that no singular values of the original matrix

are zero. This is to be expected, since the current as a
function of frequency is not a ratio of two polynomials. Hence,
the higher the polynomial orders chosen, the more accurate the
approximation would be. Therefore, in this application, the
step of estimating , , and , in (9), is bypassed. Given the
25 samples, the numerator polynomial was of order 11 while
the denominator was a polynomial of order 12. Physically,
one knows that for the polynomial approximation to be stable,
the numerator polynomial must be of lower order than the
denominator polynomial.

The motivation to apply the Cauchy method to the MoM is
to save program execution time. To get an idea of how much
time can be saved, the program was timed for two of the above
bodies and compared to the original MoM program. The two
bodies chosen were the sphere and the plate.
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Fig. 1. Radar cross section of a sphere.

In the first example, a sphere of radius 0.3 m was analyzed.
The sphere was triangularized using 182 nodes and 540 edges.
Because the sphere is a closed object, this results in 540
unknowns in the expansion of the current in terms of the
basis functions. The currents on the sphere and its first four
derivatives, with respect to frequency, were evaluated at five
frequency points. The points chosen were in the range

m and m at a spacing of 0.135 m. Using this
information and the Cauchy method, the current on the sphere
was calculated for 51 points in the same frequency range.
Using these currents, the RCS of the sphere was calculated at
the 51 frequency points. The time taken for this calculation is
compared to the time taken by the original MoM program to
evaluate the RCS at five frequency points in the same range:

1) using the MoM only (for 5 points): 47 min 56 s;
2) interpolating with the Cauchy method (for 51 points):

57 min 57 s;
3) to generate the same information at 51 points, the MoM

program would take approximately 8 h 8 min.
In Fig. 1, the results of applying the Cauchy method to the

evaluation of the RCS of a sphere are seen. Here, the RCS is
plotted over a decade bandwidth. This bandwidth was broken
up into three ranges:

m m

m m

m m

In each of the three ranges the current and its first four
derivatives were evaluated at five equally spaced points using
the MoM program. Using this information, the polynomials in
(1) were formed. This rational polynomial was used to evaluate
the current at 51 points in each range. Also, the original MoM
program was used to calculate the currents at a few points in
the decade bandwidth. The currents were used to calculate the
RCS of the sphere in this bandwidth. As can be seen from the
figure, the agreement between the results from the use of the
Cauchy program and the original MoM program is excellent.

As a second example, a square plate of side 0.3 m was
analyzed. The plate was triangularized using 169 triangle
nodes and 456 edges. In the MoM formulation the nodes on
the boundary of an open object are not unknowns. Hence, the

Fig. 2. Radar cross section of a square plate.

number of unknowns in this case was only 408. The procedure
followed is similar to the analysis of the sphere. Here, the
five frequency points chosen were in the range
m and m at intervals of 0.0375 m. Using this
information and the Cauchy method, the currents on the plate
were evaluated at 201 frequency points. The time taken for
this calculation is compared to the time taken by the original
MoM program to evaluate the RCS at five frequency points
in the same range:

1) using the MoM (for 5 points): 21 min 50 s;
2) interpolating with the Cauchy method (for 201 points)

27 min 47 s;
3) to generate the same information at 201 points, the MoM

program would take approximately 14 h 38 min;
4) all programs were executed on an IBM RS6000 platform

running AIX.
Fig. 2 shows the application of this technique to the evalu-

ation of the RCS of a plate. Again, to evaluate the RCS over
a decade bandwidth, three intervals were chosen and the two
polynomials of (1) formed in each interval. The numerator
polynomial had order 11 while the denominator polynomial
had order 12. The intervals chosen were:

m m

m m

m m

The rational polynomial was used to evaluate the currents at
201 points in each range. The original MoM program was used
to evaluate the RCS of the plate in this decade bandwidth. As
can be seen from the figure, the agreement between the two
results is excellent.

The third example is a disk of radius 0.3 m. The disk was
triangularized using 142 nodes and 460 edges. Of these, only
440 were interior edges. Fig. 3 shows the RCS of the disk
over a decade bandwidth. Here too, the decade bandwidth was
broken up into three intervals and polynomials of order 11 and
12 formed in each interval. The rational polynomial was used
to evaluate the currents and then the RCS of the disk at 51
frequency points in each range. The intervals chosen were:

m m
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Fig. 3. Radar cross section of a disk.

m m

m m

Fig. 4 shows the results of the final example of the Cauchy
method applied to the MoM. The RCS of a convex and a
concave hemisphere was calculated over a decade bandwidth.
Fig. 4(a) shows the RCS of a convex hemisphere while
Fig. 4(b) shows the RCS of a concave hemisphere. The radius
of both hemispheres was 0.3 m. The convex hemisphere had
257 nodes and 736 edges. This resulted in a problem with
704 unknowns. The concave hemisphere had 316 nodes and
910 edges. Of these, 875 were interior nodes. The decade
bandwidth was broken into the following ranges:

m m

m m

m m

As in the case of the disk, for the hemispheres too, the
two polynomials of (1) were formed in each of the three
ranges. In both cases, the MoM program evaluated the currents
and its first four derivatives with respect to frequency at five
points in each range. This information was used by the Cauchy
subroutine to approximate the currents at 51 points in each
range from which the RCS of the hemispheres were calculated
at 51 points in each range. Also, the original MoM program
was used to calculate the RCS over the decade bandwidth. As
can be seen from Figs. 3 and 4, the agreement in each case
is excellent.

B. Optical Computations

The calculation of either the scattering efficiency or the in-
tensity is highly computationally intensive. If these parameters
are desired over a broad range and at finely spaced points of the
size parameter, the time required for the calculations may be
prohibitive. The Cauchy method would solve this problem by
needing the calculations to be done at a much coarser spacing
and interpolate the parameter of interest.

This application was tested on the scattering efficiency of
a sphere as a function of size parameter [10]. The sphere had
an index of refraction of 2.0. The original data calculated the
scattering efficiency at a spacing 0.002 in the size parameter.

(a)

(b)

Fig. 4. Radar cross section of a hemisphere. (a) Convex hemisphere. (b)
Concave hemisphere.

The range of the size parameter was from 7.0 to 8.0. Hence,
the original data had 501 points. The Cauchy method needed
a spacing of 0.01 in the size parameter, without any derivative
information, to accurately calculate the scattering efficiency
of the sphere at the original 501 points. This cuts down the
program execution time by a factor of 5. The input to the
Cauchy program is shown in Fig. 5(a).

Because all computer calculations suffer from roundoff
error, most of the singular values returned from the SVD
subroutine are not exactly zero. The choice of the threshold
was such that a singular value was considered zero if it
was 18 orders of magnitude lower than the largest singular
value. This is because the data was in double precision.
Only 72 singular values are above the chosen threshold, i.e.,

. Using this estimate for and (9), the choice for the
polynomial orders was reduced to 35 for the numerator and 36
for the denominator. Using these polynomials, the scattering
efficiency was calculated at the original 501 points.

Fig. 5(b) shows the results of the application of the Cauchy
method to optical computations. The dotted line represents the
original data while the unbroken line represents the interpo-
lated data. As can be seen, the two plots are nearly visually
indistinguishable. Also, even though the input data to the
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(a)

(b)

Fig. 5. Scattering efficiency as a function of size parameter. (a) Input to the
Cauchy program. (b) Results of application of the Cauchy method to optical
computations.

program did not have the peaks of the scattering parameter,
the Cauchy method was able to reproduce them.

C. Filter Analysis

The Cauchy method can also be used in analysis of filters
over broad frequency ranges. A filter response is a ratio
of two polynomials and, hence, lends itself easily to the
use of a Cauchy method. This has practical application to
the problem of generating the stopband response given the
passband response or the reverse, i.e., generating the passband
response given some data from the stopband.

A filter transfer function was measured using a
network analyzer at frequency points in and out of the filter
passband. The filter had its 3-dB points at 4.98 and 6.61 GHz,
respectively. Hence, the filter had a passband of 1.63 GHz
with a center frequency of 5.80 GHz. The filter response was
measured at 415 equally spaced points in the frequency range
4.31–7.42 GHz.

In the first application, the response over the entire band
of measurement was recovered using mostly passband in-
formation. 51 equally spaced points, in the frequency range
4.79–6.96 GHz, were chosen as input to a Cauchy method.

(a)

(b)

Fig. 6. Generation of stopband response using passband data. (a) Magnitude
response. (b) Phase response.

Because this is measured data, there is no information about
the derivative of the transfer function with respect to fre-
quency.

The threshold was chosen such that a singular value was
considered zero if it was 14 orders of magnitude lower than
the largest singular value. After the method checked for the
number of nonzero singular values, the estimate forwas
16. The order of the numerator polynomial was chosen to be
7 while that of the denominator polynomial was chosen to
be 8.

In Fig. 6(a) and 6(b) the results from the Cauchy program
are described. Fig. 6(a) shows the magnitude response while
Fig. 6(b) shows the phase response of the filter. As is often
the case with filters, the magnitude response was considered
more important. Hence, the phase response was allowed to
show a poor agreement so as to maximize the agreement of
the magnitude response. If a 10% error in the magnitude were
acceptable, the extrapolation is valid for 0.39 GHz. This is
6.7% of the center frequency and 23.9% of the bandwidth. For
frequencies beyond the passband, the extrapolation is accurate
within 10% up to 7.42 GHz, the frequency until which data
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(a)

(b)

Fig. 7. Generation of passband response using stopband data. (a) Recon-
structed magnitude response. (b) Reconstructed phase response.

was available. Hence, an accurate data over a bandwidth of
3.32 GHz starting with data over a bandwidth of 2.16 GHz
is generated.

In the second application, data from the stopband and a little
from the passband was used to interpolate into the passband.
Here too, the choice of threshold is very important. Using the
same threshold as in the first application, the estimate of
remained the same. Hence, in this case too, the numerator
polynomial had order 7 while the denominator had order 8.
In this case, 23 equally spaced points from 4.31 up to 5.35
GHz and 28 equally spaced points from 6.20 to 7.42 GHz
were used to interpolate into the passband. This represents
on interpolation of 0.85 GHz, which is 14.6% of the center
frequency or 52.7% of the bandwidth. Fig. 7(a) and 7(b) show
the results of this application. Fig. 7(a) is the reconstructed
magnitude response and Fig. 7(b) is the reconstructed phase
response. Again, since more attention is paid to the magnitude
response, the phase response shows poorer agreement with
the true response.

In both figures the dotted line represents the measured data
while the continuous line represents the results of the Cauchy
method.

(a)

(b)

Fig. 8. The Cauchy method applied to device characterization. (a) Magnitude
Y11 reconstructed over broad frequency range. (b) Phase6 Y11 over same
range.

D. Device Characterization

An application of the Cauchy method is in creating a data-
base of many devices working in varying operating conditions.
The Cauchy method would require the value of a parameter at
a few frequency points and use this information to evaluate the
parameter over a wide frequency band. Over many devices,
and their operating conditions, this would yield significant
savings in memory requirements.

To test this application, the -parameters of a pseudo-
morphic high electron mobility transistor (PHEMT) were
measured over the range of 1.0–40.0 GHz. Just five of these
points were used as input to the Cauchy method. The points
chosen were at the frequency points 1.0, 10.0, 20.0, 30.0,
and 40.0 GHz, respectively. This resulted in a numerator
polynomial of order 1 and denominator polynomial of or-
der 2. Here again, the step of estimating, , and is
bypassed. Fig. 8(a) shows the magnitude reconstructed
over this broad frequency range. Fig. 8(b) shows the phase

over the same range. As can be seen, the agreement
with the measured values and the interpolated values is ex-
cellent.
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IV. CONCLUSIONS

This paper has presented a technique with many practical
applications. The Cauchy method starts by assuming that the
parameter of interest, as a function of frequency, can be
approximated by a simple rational polynomial function. The
method presented here uses the singular value decomposition
to evaluate the order of the polynomials and the coefficients
that define them. Using this form, the parameter is evaluated
at many frequency points. It is shown that the technique
has applications to many practical problems. In this paper,
the technique is applied to the MoM, optical systems, filter
analysis, and device characterization. In all applications the
Cauchy method has shown to save time and memory.

The examples presented here show that the Cauchy method
places little restriction on the required data. In the case that
the derivative of the parameter of interest with respect to
frequency is available, this information is used. However, if
the derivatives are not available, the values of the parameter
at given frequency points is adequate.

A topic of further research is to investigate when and
how the Cauchy method breaks down. As can be seen from
the results of applying the Cauchy method to model filter
responses, the method fails to yield extensive extrapolation
or interpolation in the case of very low signal-to-noise ratios.
Initial results into the investigation of the effect of noise in the
data show that the method performs well for a signal-to-noise
ratio of over 20 dB [11].

It must be pointed out that the Cauchy method is completely
general and can be used to extrapolate or interpolate with re-
spect to any variable other than frequency. However, in many
applications in electromagnetics, frequency is the variable of
interest.

APPENDIX

Many methods to solve (10) are known [7]. The usual
approach is that of least squares (LS). In this, the equation
is rewritten as

(14)

The solution is taken as the eigenvector corresponding to

the zero eigenvalue of the resulting matrix. However, as has
been seen, it is important to limit the rank of the null space
of the matrix to one. But, this approach has an extra
step of a matrix multiplication. Also, since the eigenvalues are
not sorted, it is additional work to find the number of nonzero
eigenvalues.

A better approach would be the TLS [8]. In the matrix of
(10), the submatrix is a function of the frequencies only and
does not depend on the parameter measured. Hence, this matrix
is not affected by measurement errors and noise. However,
the submatrix is affected by the errors. To take this
nonuniformity into account, one needs a decomposition
of the matrix up to its first columns. A
decomposition of the matrix results in

(15)

where, is upper triangular and is completely affected
by the noise. Hence,

(16)

and

(17)

A SVD of results in the equation

(18)

By the theory of the TLS [8], the solution of the above
equation is proportional to the last column of the matrix.
Hence, one can choose

(19)

This is the optimal solution even in the case that the matrix
does not have a null space. This was possible when the

Cauchy method to the MoM was applied.
Using this solution for the denominator coefficients and

using (22), the numerator coefficients using the conventional
LS solution can be solved. The above TLS approach removes
some of the errors of the conventional LS approach.

It can be shown [8] that for the case where , is
contaminated by noise, the TLS is the optimum solution
technique.

REFERENCES

[1] K. Kottapalli, T. K. Sarkar, and Y. Hua, “Accurate computation of wide-
band response of electromagnetic systems utilizing narrow-band infor-
mation,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 682–688,
Apr. 1991.
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