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the number of signals in a radar measurement 
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Abstract: Ranking and selection theory is applied to the eigenvalue problem. Of concern is the 
development of a procedure for computing the number of signals in a measurement data vector. In 
the authors' approach, the multiplicity of the noise eigenvalue is computed, and used in 
calculating the number of non-noise (signal) eigenvalues. 

1 Introduction 

In the analysis of measured data, an approach that is often 
used involves modelling observations as the superposition 
of a finite number of signals embedded in additive Gaus- 
sian noise. This is especially true in phased array signal 
processing, time-harmonic analysis, computing the natural 
response of a system by estimating the number of poles 
from measurement data, and in detccting overlapping 
target echocs from radar backscatter. Practical space-time 
adaptivc processing for airborne radar requires effcctive 
utilisation of available degrees of frcedom. The question 
therefore ariscs how many degrees of frccdom are required 
in a given interference scenario. A fundamental issue in 
solving these problems is correct estimation of the number 
of signals present. 

One approach to solving this problem is based on the 
obscrvation that the number of signals present can be 
determined via eigen-analysis of measured data. To do 
so, an accurate estimate of the covariance matrix of the 
observed data vector is essential. Once this estimate is 
formulated, many different techniques are available for 
eigendecomposition. Bartlett [ 11 and Lawley [2] developed 
a multiple hypothesis test for multiplicity of the smallest 
eigenvalue (latent root) and applied this approach to the 
analysis of measured agriculture data. Schmidt [3] applied 
the multiple signal classification (MUSIC) algorithm to 
estimate the number of incident wavefronts present in an 
electromagnetic signal, based upon the eigenstructure of 
the covariance matrix of received data. Other hypothesis 
testing and estimation methods based on eigenstructurc 
analysis have been proposed by Wax and Kailath [4] and 
Zhao, Krishnaiah and Bai [ 5 ] .  

This paper uses statistical selection theory to detect the 
multiplicity of the smallest eigenvalue of the covariance 
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matrix, computed using measured multichannel multipulse 
radar data. A unique aspect of the propo 
is that it predicts a confidence level 
number of signals. As described in the aforementioned 
articlcs, the number of signals present is the difference 
between thc total number of components in the observed 
data vector and the multiplicity of the smallest eigenvalue. 
In the analysis of ineasurcd data, thc smallest eigcnvalues 
may be grouped about some nominal value, as opposed to 
bcing identically equal. We propose a selection procedurc 
to estimate the inultiplicity and value of the smallest 
eigenvalue(s), which are significantly smaller than the 
other eigenvalues. We derive the probability of a correct 
selection, P(CS), and thc least favourable configuration 
(LFC) for our procedures. Under the LFC, the P(CS) 
attains its minimum over the vector space of all eigen- 
structures. Therefore, a minimum sample size can be 
determined from the probability of CS under the LFC, 
P(CSILFC), in order to implement our new procedure 
with a guaranteed probability requirement. Numerical 
examples are presented in order to illustrate our proposed 
procedure. 

The techniques described above can be applied to the 
analysis of measured data collected from any multi- 
channel/multipulse radar. As such, a new solution to the 
adaptive beam-forming problein arises out of the applica- 
tion of ranking and selection theory to the radar problem. 
First, the number of interfering signals present in a data 
vector is estimated using our new procedure. Then, optimal 
rank reduction can be achieved givcn this knowledge. And 
finally, adaptive processing for interference rejection and 
target detection can be performed using any of the standard 
techniques published in the literature (Reed, Kelly). This 
technique for estimating the number of signals in noise 
using statistical selection thcory has applications to many 
other arcas where eigcnanalysis is useful. Note that, in this 
paper, correct selection includes overestimating the 
number of signals. This is of particular importance in the 
radar signal processing problem [ 6 ] .  The techniques 
discussed in this paper, presented within the context of 
the radar problem, may he generalised. Targeted 
approaches include multiple discriminant analysis, simul- 
taneous inferencing, principal component analysis, and 
canonical correlation analysis and multivariate analysis of 
variance. As such, the analysis of economic, educational, 
industrial, population, psychological, and scientific data 
may all bcnefit from this new tcchnique. 
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2 Motivation and statement of the problem 

As described [4, 51, the observed vector of certain signal 
processing problems, denoted by thc p x 1 vector x(t) can 
be written as: 

4 

1 
x(t) = c A(@,),SL(t) + n(t) =A.+) + n(t) (I) 

where 

and q <I?. It can be seen in eqn. 1 of Wax and Kailath [4] 
and in eqn. 2.1 of Zhao, Krishnaiah, and Bai [5], that thc 
extreme case where y = y  is not realistic and therefore not 
addressed. 

In the above model, n(t)  is a p x 1 complex vector 
referred to as the additive noise distributed independently 
of s( t )  as complex multivariate normal with mean vector 0 
and covariance matrix n21,, where n2 is unknown; s( t )  is 
distributed as complex multivariate normal with mean 
vector 0 and nonsingular covariance matrix $ wherc si([) 
is a scalar complex waveform associated with the ith 
signal; and A(@J is a p x 1 complex vector, characteriscd 
by an unknown parameter vector (Ill associated with the ith 
signal. A crucial problem associated with the model 
described in eqn. 1 and considered by all the articles 
mentioned in Section 1 is that of determining the numbcr 
of signals q from a sample x ( t l ) ,  x(t2), . . . , x(t,,j. The goal 
of this paper is to study formulations in statistical ranking 
and selection theory to dctermine the value q. 

of x( t )  is given by: The covariance matrix 

s = A Y 2  + a”, ( 2 )  

where A’ denotes the conjugate transposc of A .  
Let 1, 1 A, > . . . > lP denote the positive eigenvalues of 

thc covariance matrix Z and let the hypothesis I$: 
Ai: = n2 +a, (i = I ,  2 , .  . . , y); A,+j: cr2 ( j =  I, 2 , .  . . , 
p ~ y), Therefore H, is equivalent to the hypothesis that 

signals are transmitted. Wax and Kailath [4] used 
Akaike’s information criterion (AIC) and Schwart Rissa- 
nen’s MDL criterion for model selection, while Zhao, 
Krishnaiah, and Bai [5] used an information theoretic 
criterion to estimate the value q. Haimovich [7] used 
asymptotic theory to estimate the convariance matrix Z 
in eqn. 2 under H,. In Section 3, we define a selection 
formulation and propose selection procedures to determine 
the value q. 

3 
proposed procedure 

Ranking and selection procedures are generally developed 
using either an indifference zone or a subset selection 
approach. The literature on ranking and selection theory 
is dominated by these two methods. Wicks [8] first 
proposed applying statistical ranking and selection theory 
to radar signal processing for covariance matrix estimation. 
Chen, Melvin, and Wicks [9] used a variation of the subset 
selection approach in developing a screening procedure for 
choosing secondary data in radar signal processing. Their 
results showed dramatically improved performance over 
coiiventional techniques. 

Ranking and selection formulation and 
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Consider k populations n 1  , n2 ,  . . . , nk where the under- 
lying distribution of ni is Fo,, i =  I, 2,. . . , k. In most 
ranking and selection studies, the k populations are inde- 
pendent. Thcy could also bc k-corrclated components of a 
multivariate population, which possesses a multivariate 
distribution with parameters of interest. As will become 
clear later in this paper, we are dealing with p correlated 
sample eigenvalues and our parameters are the population 
eigenvalues. In general, the unknown real parameter, B i ,  
i = I, 2, .  . . , k, reprcscnts thc valuc of a quantity of interest 
for the ith population. By definition, we select population 
ni ovcr 7ci if Qi is grcatcr than t i .  The ordered valucs of Bi 
for all i are denoted by HE,]  i BPI i .QLk1. In general, BLil # Oi. 
One approach to solving the basic problem of selecting the 
best population, called the indifference zone formulation, 
was developed in Bechhofer [IO]. In Bechhofer’s paper, the 
selection of the population associated with the ranked 
parameter Olkl results in a correct selection (CS). For the 
indifference zone approach to be of value, the procedure R 
must establish a lower bound on the probability of a correct 
selection P(CS). The miniinuin value of P(CS) is P*, 
with I l k  < P* i 1 whenever the separation between Oly 
and O,ic+,l exceeds some minimum specified value. Let 
6(Ni, O j )  denote an appropriate non-negative measure of the 
separation between the population associated with Qi and 
t l j ,  For the minimum probability of correct selection, P*, 6* 
is the minimum scparation distance. For any specified 
6“ > 0, let the preference- zgne, C&* be the subset of the 
parametzr space s2 = { O  10 = (0, , . . . ,e,)} defined by 

= {.0.16(H,,,,Hl,~l~)~6*}. Let P(CS/R) denote the 
probability of a correct selection under the procedure R. 
For this procedure t_o be valid it should satisfy 
P(CSIR)?P* for all H E Q ~ ’ .  The complement of the 
preference zone Qa= is called the indifference zone, a 
subset of the parameter space where no requirement on 
P(CS) is made. 

For the analysis of measured data, S* and P* are 
specified in advance. Suppose that the procedure R is 
based on samples of fixed size n from each population. 
One problem of practical interest in radar signal processing 
is to determine the smallest sample size n for which the 
probability requirement P* holds. In the subset selection 
approach of Gupta [ I  11, a procedure was dcveloped to 
guarantee a non-empty subset of thc k given populations 
which include the desired (or best) population with a 
minimum probability P*. Any subset, which includes the 
desired population, results in a correct selection. In case of 
a tie, any contender may be tagged best. Any-valid 
procedure R should satisfy P(CS I R) 2 P* for all 0 ER.  
In the subset selection approach, the size of the selected 
subset S is not decided in advance, but is determined based 
on the analysis of data. The procedures developed in 
ranking and selcction theory are designed to satisfy the 
requirement for a minimum probability-of a correct selec- 
tion P*. Any parameter configuration H which yields the 
infimum of the P(CSj over sZh+ in the indifference zone 
approach, or Q in the subset selection approach, is called 
the least favourable configuration (LFC). 

Many variations and generalisations of these two basic 
approaches have been studied. For example, one problem 
involves procedures for selecting the most appropriate 
sample populations better than a control population no. 
These sample populations may then be used to estimate 
other paramcters of interest such as the covariance matrix. 
In our study of selection procedures for analysing the 
eigenvalues of the covariance matrix in radar data, the 
control population can be taken as the smallest eigenvalue. 
The observations are taken and their covariance matrix is 
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cstimatcd. Eigenvalues are selected froin those populations 
(eigenvalues in our study) n ,  , n2, .  . . , xp (instead of using 
k in traditional selection theory, we use p here to represent 
the total number of components in a random vector) having 
the same or similar values as the control population. 

We define two disjoint and cxhaustive sets R, and R, of 
the set s2 = { I , ,  . . . , ip) by using ratio as the distance 
function d. That is, we define 

and 

R ,=Q-R,  (3) 

where S* > 1 is a preassigned real number used to differ- 
entiate between good and bad eigenvalues. Our goal is to 
separate the set ofeigenvalues into two disjoint subsets, S, 
and S,. The separation is correct (CS) if S, = R, , mean- 
ing that all cigcnvalucs with values significantly larger than 
the smallest eigenvalue will be classified into Q G .  Our 
conclusion for the value of q is the number of elements in 
S, . We require a procedure R that will satisfy a predeter- 
mined probability requirement P(CS I R) 2 P". 

Procedure R: Compute the covariance matrix 

1 ' I  

n 1=1 

S = - x(t,)x'(t,) 

using the samples x(ll), x(f2). . . . ,x(t,J. Let > > 
. . . >IL,  be the ordered eigenvalues of S. Let r be the 
largest integer in { 1, 2 , .  . . , p  - 1 } such that A,./),!, > c, 
where c > 1 is a real number chosen to satisfy the prob- 
ability requiremcnt P(CS) 3 P*. Claim that S, = {ILl, 
I , ,  . . . , i r }  and the number of signals is q =r .  When 
&/A, i c  for all integer in {l, 2 , .  . . , p  - I ) ,  we claim 
that q=0. We will explain how to obtain a conservative 
approximation for c, thc proccdure parameter, i n  the next 
Section. 

Wc makc the following two assumptions about the 
model: 

Assumption I :  H,: l j  = LT* + B j  (i  = 1, 2, . . . , q ) ;  jLc,+i: u2 
( j =  1, 2 , .  . . , p  - q). That is, the multiplicity of the smal- 
lest eigenvalue is p - q, where p is known and q is 
unknown. Moreover, we assume that 0,  > 8, . . . > 0 
This is a reasonable assumption because 8,, e*,. . . ,el 
came from the first term of the covariance matrix in eqn. 2. 
Adding c to an eigenvalue and then letting it go to zero will 
not change the form of the covariance matrix and therefore 
it will not change our results. 

Assumption 2: When q > I ,  the parameter configuration 
belongs to R,: the so-called preference zone in ranking 
and selection theory. That is, IY/Ap,z 6*. Thc case q = 0 
corresponds to the case where there is no signal. The only 
configuration for the parameter is thc equal parameter 
configuration 1, / A p  = I .  

The probability of a correct selection under H, using 
procedure R can be written as: 

To determine the sample size needed to achieve certain 
probability requirement, we need to minimise the P(CS 1 R) 
over the paramcter space {(A,, 12, .  . . ,A,,) I 2 
2 . . . 2 i,, > A</+, = . . . = Ap > 0 ). The distributions of 

the ordered sample eigenvalues 1, > iL2 > . . . z Ap > 0 of 
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the sample covariance matrix play a very important role 
in principal component analysis, multiple discriminant 
analysis, simultaneous inferences, multivariate analysis of 
variance, and canonical correlation analysis. Many statis- 
ticians have studied them extensively in iiuiiierous articles. 
Zonal polynomial expressions of the exact distributions of 
eigenvalues for both real and complex cases can bc found 
in James [12]. It is clear from formulas (58) and (95) in 
James [ 121 that the exact distributions of real Wishart and 
complex Wishart have the same form and the distribution 
in both cases depend on the population covariance matrix 
only through thcir eigenvalues which can take only positive 
real values. Thcreforc, for simplicity i n  expressions and 
dcrivations? we will consider only the real case below. 
Thorough summaries of sample eigenvalues can also be 
found in Chapters 11 and 13 of Anderson [13] and in 
Chapters 3, 7, and 9 of Muirhead [ 141. As one can see from 
the density givcn in thcorem 13.3.2 of Anderson [I31 and 
theorem 9.4.1 of Muirhcad [ 141, the exact computation of 
the probability in (2.4) which involves the joint density of 
Aj ( i =  I ,  2 , .  . . , p )  is almost impossible. In the following, 
we will first prove an important result about the least 
favourable configuration (LFC) of our proccdure in asymp- 
totic theory. Then we will express P(CS) under the asymp- 
totic LFC. In Section 4, we will describe how the results in 
this section can be used to determine the sample size 
needed for our procedurc R. 

The following two lemmas were shown by Anderson 

Lemma 1: Let V be distributed according to WJC, n )  and 
let 1,, > i, > . > i,, > 0 and i, > i2 3 .  . . > L,, > 0 be the 
ordered cigenvalues of V and C, respectively. Let 
A = ( I , ,  . . . , L,,) and iL = (i, , . . . , 1J If 3,; s are distinct 
and n ~ p ,  then Jn(L/n - 1.) is asymptotically distributed 
as norinal with mean 0 and covariance matrix: 

[151. 

Asy - COV(,,&(lb/n - i)) = 20: = 2((diag(i))' 

Lemnza 2: Suppose that 0, , U ? .  . . . , 0177 are the eigenvalues 
of C with multiplicity 4 ,  , q 2 , .  . . , q,,, , respectivcly, where 
the sum of q s is p. Then the eigenvalues of V belonging 
to different eigenvalues of C are asymptotically indepcn- 
dent and the limiting joint density function of 
y j  = J (n /2 ) ( jY i  - o,)/o,, j =  1 ,  for a11 lj s 
belonging to 0, is givcn by 

2, . . . , q,, 

Thrown 1: The asymptotic least favourable configuration 
(ALFC) for our procedure R under the prefercncc zone 
defined in assumption 2 is givcn by: 

where q is an integer between 1 and p and do,, ,  I.!,) = 

Proof! Consider a general configuration in the prefcrence 
zone, 1, 2 I,, 2. . . 3 1, > Aqtl = .  . . = i,] > 0 where 
Aq/lL1, z S*. From lemma 2, A , ,  A ~ ,  . . . , i., are independent 
among themsclvcs and independent of (I4,., , . . . , ;vp) 

1 , /)$ = 6*. 
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asymptotically. Thercfore we can write P(CS I R) in 
eqn. 4 as 

U- I 

Asy - P(CS I R) = Asy - P(jLi/AP > e,  ),i+l/l-J, 5 e)  
i =u  

(7) 

A typical term in the above sum is 

p(al > > . . . > L~ > I,,, > . . . 
> i, > ci), > 1j+1 > . . > AI,-[ > I,!,) (8) 

where j 2 q. 

Case I :  j > 4: Consider the transformation 

Then the cvent { A ,  > i,+, 1 i s  equivalent to 

According to lemmas 1 and 2 ,  the joint distribution o f z l ,  
z2,. . . , zll is independent of the parameters 2 ,  , i2,. . . , A,. 
The probability given in eqn. 8 can be rcwritten as: 

P ( i ,  > A,, 1, 4 a.,,. . . , a., > A,+,, . . . ,1, > C A p ,  

C A p  > I.,+], . . . , A,-l > 5, = 

where the second part of thc event in cqn. 9, { i., > e?.,, 
cLJ, > i i+!, . . . , i, does not depend on the para- 
meters A L ,  &,. . .,).,. We first fix the ratios i2/il, 
l . 3 / A 2 , .  . . , i,/)",-l in the right-hand side of eqn. 9. The 
probability decreases as we dccrcase the parameter A, 
to its boundary "Ap. Next, we fix the ratios &//Il, 
A 3 / j L 2 , .  . . , A q -  , / A q - , .  The probability decreases as we 
decrcase the parameter iq7, to its boundary O")"p. We 
repeat the above process until all the i j  s, i = 1 , 2 ,  . . . , q are 
reduccd to " A p ,  

Case 2: j = q: The only event in this case that is different 
from casc 1 is that { A q  > cl.,}. It is equivalent to 

> 

We can proceed as in case 1 to obtain the desired result. 
This completes the proof of the theorem. 

Corollary I :  Under the asymptotic least favourable con- 
figuration = iL2 = . . = A y > I = . .  .=Ap where 
A, /i, = 6" > 1, Asy-P(CS) is a decreasing function of 6*. 
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PmoJ It is clear from eqn. 9 that P(CS) is a dccreasing 
function of any of the largest q eigenvalues. 

Theorem 2: Under the asymptotic least favorable con- 
figuration given in Theorem 3.1, Asy-P(CS) is an 
increasing function of n, the sample size. 

Proqf:. As in the proof of theorem 1 ,  we consider a typical 
term in P(CS) given in eqn. 7 and we consider two cases 
separately. 

Case I :  , j  > q: A typical term in P(CS 1 asy-LFC) can be 
written as 

where f'is the joint density function of z ,  , z2, . . . , zp which 
is indcpendent of 1, , i, , , . . , ip and g s are functions of n 
defined as 

Since 0 < c < h", all thc g s are increasing in n. Therefore, 
P(CS I asy-LFC) is increasing function of n. 

Case 2: j = q: A typical term in P(CS 1 asy-LFC) can be 
written as: 

where 

as in eqn. 11 and 

It is clear that g4(n) is also an increasing function of n. 
Therefore, P(CS I my-LFC) is increasing function of n. 
This completes the proof of the theorem. 

From the above theorems and thc corollary, we know 
that the probability of a correct selection for our procedure 
approaches 1 by either incrcasing O*,  the size of our 
'indifference zone' or thc sample size n. It is also clear 
that P(CS) increases as c decreases. But, the size of the 
selected subset of the eigenvalues will also increase. 
Therefore, we may overestimate the number of signals by 
decreasing e. In the next Section, we will discuss the 
method we use to find the procedure parameter e and the 
role that the sample size n plays in the procedure. 
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4 Approximation of the procedure parameter 

In this Section, we explain how to approximate and obtain 
a conservative bound for e, the proccdure parameter. From 
theorem 1 and the fact that the distributions of the sample 
eigenvalues depend on the population covariance matrix 
only through their eigenvalues, the Asy-LFC that we use to 
calculate P(CS) can be written as 

X = diag(a, . . . , a ,  ad*, . . . , ad*) (13) 

where U is a positive real number. 
It is clear that we can takc a = 1 in eqn. 13 since our 

procedure R is defined by the selection statistic ).,/A,> 
(v= 1, . . . , p  ~ 1) whosc distribution is invariant under a 
scalar multiplication. From James [ 161, the probability 
dcnsity function of the sample eigenvalues A, , A,, . . . , Ap 
can be written as 

IZ p n / 2  nd/*(det C) ~ n / 2  n p $-P-1 ) /2  

(2) rp(;n)rp(;p) i=l 

x fi (ii - Aj)&')(- i n L ,  E-') (14) 

where L = diag(A, , i,, , . . . , 1,) and oFt '  is a generalised 
hypergeometric function of a pth-order matrix argument. 
James [16] also expressed the PDF in terms of zonal 
polynomials. The computation involving density (eqn. 
14) is complicated. Tn 197Os, many statisticians made 
contributions to asymptotic expansion and numerical 
evaluations involving the distribution of functions of the 
eigenvalues of covariance matrix. For example, Sugiyama 
[I71 gavc expressions for the PDF of the ratio lL l / )"p .  
Sugiura [18] gave expressions for the joint PDF of (11, 
A 2 ,  . . . , Ap). Clemm, Krishnaiah, and Waikar [ 191 tabulatcd 
the percentage points for the largest and the smallest 
eigenvalues. Waikar and Schuumann [20] and Krishnaiah 
and Schuurmann [21] obtained alternative forms for thc 
CDF of lul/iI, to compute the percentage points of the 
ratio. The computations of all the tables in the aforemen- 
tioned articles are based on the assumption that the 
covariancc matrix is an identity matrix. Here, in our 
research, the covariance matrix is diagonal. But, the 
eigenvalues are slippage. That is, in addition to the value 
of unity that the smallest eigenvalues takes, the larger 
eigenvalues take a value of O*. Instead of finding the 
asymptotic expansion and evaluating of the exact prob- 
ability of correct selection as in the previously mentioned 
articles, we calculate P(CS I R, Asy-LFC) directly using 
simulation. 

i<.j 

In this paper, we use MATLAB version 5.0 on a PC 
Pentium Pro to compute the eigenvalues of a Wishart 
distribution generated from a random sample of multi- 
variate Gaussian distribution. The simulation was accom- 
plished using MVNRND and 10 000 repetitions. We first 
compared the percentage points of the joint distribution of 
the largest and the smallest obtained from our simulation to 
those by Clemm, Krishnaiah, and Waikar [19]. We checked 
5%, 2.5%, I%, 0.5% percentage points forp  =2,  5, 10, 20 
(the largest p tabulated in Clemm, Krishnaiah, and Waikar 
[19]) and n = 5 ,  10, 20, 50 (thc largest n tabulated in 
Clemm, Krishnaiah, and Waikar [19]). All our simulation 
results are within 5% of their exact values. Next, we 
compared the percentage points of the ratio of the smallest 
root to the largest root obtained in our simulation to those 
in Krishnaiah and Schuurmann [21]. We checked the 0.99 
and 0.95 percentage points for p = 3, 4, 5 (the largest p 
tabulatcd in Krishnaiah and Schuurmann [21]) and n = 10, 
30, 50 (the largest n tabulated in Krishnaiah and Schuur- 
mann [21]). Again, all our simulation results are within 5% 
of their exact values. However, our simulation results can 
be extended to much larger p and n in both cases. We 
conclude that simulation methods are appropriate for 
calculating P(CS) in our study. 

In the next example, we show how to obtain the 
procedure parameter c by simulation. MATLAB simulation 
program is used to find c value forp up to 50, n up to 5000, 
and any 6' > 1 .  It i s  available from the first author at 
pinchen@syr.edu. 

Example: Finding the procedure parameter c: 

Case I: p = 10, n = 200, 6" = 2, simulation repetition = 
I O  000: 

Table I shows the 5 percentiles for the given statistic 
i q / R I 0 ,  q = 0,. . . , 9 .  The underlined diagonal entries arc 
the 5 percentiles of A q / A l o  when the q valuc is thc correct 
number of signals. We choose c = 1.24, the 5th percentile 
of L 9 / L I o  rounded to the second decimal place. By doing 
so, more than 95% of the time our estimated q values are 9, 
8, 7, 6,6, 6, 6,6, 6 , 6  whenthe t rueq=9,  8, 7, 6, 5,4, 3 ,  2, 
1,  0, respcctivcly. P(i9/Alo > c,  ix/).lo 5 c)-0.95 which is 
only the first term in the sum of P(CS I R) given in eqn. 4. 
Therefore, c is clearly a conservative procedure parameter 
for our method and we overestimate the true number of 
signals, especially when q is small when c is chosen in this 
manncr. Thc samplc sizc n and the value of (S* play 
important roles in the determination of c. The accuracy 
of our estimation of q increases as n and 6" increase as we 
can see from the following two cases. 

Table 1: The 5 percentiles for A,/AIo in case 1 

4 ~9/;.io & 3 / 4 0  A7/i10 ' k / A i O  &/;.io &/h,O ) d & o  W & O  A I  /,Go 

0 1.0308 1.1111 1.1906 1.2911 1.3791 1.4858 1.5950 1.7149 1.8697 

1 1.0316 1.1099 1.2034 1.2867 1.3896 1.4910 1.6109 1.7766 2.5615 

2 1.0272 1.1160 1.2061 1.3073 1.4037 1.5359 1.6788 2.3528 2.8001 

3 1.0326 1.1137 1.2120 1.3180 1.4280 1.5790 2.1617 2.5029 2.8332 

4 1.0329 1.1229 1.2193 1.3362 1.4794 1.9973 2.2989 2.5880 2.9 165 

5 1.0326 1.1280 1.2246 1.3739 1.8496 2.1157 2.3559 2.6030 2.9110 

6 1.0335 1.1438 1.2717 1.7160 1.9542 2.1660 2.3603 2.5998 2.8688 

7 1.0428 1.1627 1.5655 1.7828 1.9586 2.1677 2.3500 2.5700 2.8488 

8 1.0539 1.4332 1.6123 1.7798 1.9533 2.1125 2.3034 2.4767 2.7523 

9 1.2478 1.4225 1.5650 1.6958 1.8530 1.9999 2.1509 2.3423 2.5538 

- 
- 

~ 

- 
~ 

~ 

~ 

~ 

- 
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Table 2: The 5 percentiles for Aq/A,,, in case 2 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1.0202 
1.0204 
1.0220 
1.0223 
1.0224 
1.0234 
1.0252 
1.0259 
1.0330 
1.4010 

1.0740 
1.0731 
1.0772 
1.0795 
1.0828 
1.0886 
1.0941 
1.1081 
1.5427 
1.5348 

1.1310 
1.1319 
1.1382 
1.1427 
1.1503 
1.1621 
1.1819 
1.6481 
1.6948 
1.6392 

1.1906 
1.1933 
1.2017 
1.2128 
1.2263 
1.2523 
1.7475 
1.8098 
1.8150 
1.1374 

1.2504 
1.2582 
1.2716 
1.2875 
1.3162 
1.8486 
1.9267 
1.9410 
1.9276 
1.8376 

Table 3: The 5 percentiles for AJA,,, in case 3 

1.3146 
1.3254 
1.3476 
1.3801 
1.9493 
2.0432 
2.0725 
2.0703 
2.0423 
1.9372 

1.3839 
1.4023 
1.4412 
2.0621 
2.1619 
2.2089 
2.2169 
2.2024 
2.1601 
2.0488 

1.4604 
1.4964 
2.1800 
2.3031 
2.3533 
2.3756 
2.3706 
2.3474 
2.2942 
2.1721 

I .5546 
2.3318 
2.4715 
2.5379 
2.5614 
2.5685 
2.5589 
2.5148 
2.4553 
2.3259 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1.0294 
1.0312 
1.0317 
1.0323 
1.0329 
1.0352 
1.0361 
1.0388 
1.0469 
2.3532 

1.1110 
1.1118 
1.1151 
1.1173 
1.1217 
1.1290 
1.1392 
1.1620 
2.6996 
2.6949 

1.1959 
1.2014 
1.2064 
1.2148 
1.2239 
1.2436 
1.2763 
2.9891 
3.1019 
2.9612 

1.2865 
1.2922 
1.3081 
1.3200 
1.3424 
1.3782 
3.2335 
3.4236 
3.4307 
3.2386 

1.3800 
1.3936 
1.4126 
1.4416 
1.4842 
3.51 17 
3.7432 
3.8021 
3.7491 
3.4979 

1.4769 
1.5006 
1.5326 
1.5861 
3.8002 
4.0754 
4.1777 
4.1696 
4.0684 
3.7905 

1.5868 
1.6215 
1.6827 
4.1288 
4.4334 
4.5568 
4.5986 
4.5495 
4.4222 
4.0778 

1.71 45 
1.7762 
4.4681 
4.8395 
4.9938 
5.0733 
5.051 1 
4.9746 
4.8143 
4.4106 

1.8736 
4.9594 
5.3721 
5.5575 
5.6465 
5.6691 
5.6148 
5.4989 
5.2971 
4.8577 

Case 2: p = 10, n = 400, S* = 2, simulation repetition = 
10 000 (Table 2). Our choice for c is 1.40. The estimate for 
q is 9, 8, 7 ,  6, 5,  4, 3, 3, 2, 2, respectively for q = 9, 8, 7, 6, 
5,4, 3, 2, 1,O. That is, 95% o f  the time our estimate for q is 
exactly the true q value when q = 3, . . . ,9 .  We overestimate 
q when q = 0, 1, and 2. Next, we consider the case: 

Case 3: p = 10, N =  200, S* = 4, simulation repetition = 
10000 (Table 3). Following the same way as in the 
previous cases, we choose c=2.35.  The estimate for q is 
exactly the true q value for all q. The sample size n = 200 
and 6* = 4 are not unreasonable for p = 10 in radar appli- 
cations. The three examples in Wax and Kailath [4] all 
have p = 7, n = 100, and b* = 10. The three examples in 
Wax, Shan, and Lailath [22] have p = 9, n = 200, S* = 10; 
p = 9 ,  n=100, 6*=10; a n d p = 1 5 ,  n=6400, 6*=3.98, 
respectively. 

5 Illustrative example 

We present an example to demonstrate the performancc of 
our method. The example adopts the same sensor array 
processing model assumed in all the three simulation 
results given in Wax and Kailath [4], Section VI. For 
comparison purposes, we use exactly the same model 
configuration as in Wax and Kailath. That is, the vector 
of the received signal at the ai-ray is given by 

Y 

k=l 
x( t )  = A($k)e-/h(t) + 40 (1 5 )  

where A($J is the p x 1 'direction vector' of the kth 
wavefront; A(+k)T = [ I  e-jzh . . . e-j(9-1)7k] with zk  = 
7t sin $ k ;  g ( . )  =random phase uniformally distributed on 
(0, 2n); n(.)=vector of white noise with mean 0 and 
covariance 02i. The signal-to-noise ratio, defined as 
1010g(1/202), is 10dB. From eqn. 15 (formula 24 in 
Wax and Kailath [4]), the signals have variance 1. There- 
fore, we assume that S* = 10 in our study. We first consider 
seven sensors ( p = 7 )  and two sources (q=2). Using 
n = 100 samples, we simulate radar data according to 
eqn. 1 and the resulting eigenvalues of the sample covar- 
iance matrix are 1.0722, 0.9623, 1.1965, 0.7105, 0.5800, 
7.3697, 10.3601. We next considerp = 7 and q= 3. Using 
n = 100 samples, the eigenvalues of the sample covariance 
matrix of simulated radar data are 1.0688, 1.1311, 0.7159, 
1.5023, 8.2028, 8.5212, 10.6351. The simulated five 
percentiles of A q / i 7  for q=0,  1,. . . , 6  are in Table 4. 

Table 4 The five percentiles of Aq/A, 

4 "1'17 

0 
1 
2 
3 
4 
5 
6 
- 

1.0454 
1.0476 
1.0491 
1.0522 
1.0570 
1.0649 
5.21 16 

1.1709 
1.1834 
1.1900 
1.2059 
1.2364 
6.4364 
6.4327 

G J . 7  

1.3180 
1.3447 
1.3595 
1.4207 
7.4859 
7.9776 
7.5204 

h11.7 

1.4908 
1.5262 
1.5759 
8.5851 
9.3746 
9.4016 
8.6702 

1.6664 
1.7566 
9.8242 
10.9399 
11.1370 
10,9034 
9.9161 

11 11.7 

1.9125 
11.6115 
12.8793 
13,3350 
13.2385 
12.7948 
11.5024 
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Following the method in Section 4, we choose c=5.21. 
Therefore, by our procedure, we correctly declare that 
there are two signals in the first case and that there are 
three signals in the second case. At least 95% of the time, 
our inethod will detect correctly the number of signals in 
this model no matter what the true q is. Moreover, for any 
sample size n great than or equal to 35, we have more than 
95% probability of correctly detecting the number of 
signals no matter what the true number y is. The value 
n = 35 is obtained by running a search algorithm based on 
the method used to produce the table above. 

6 Example using measured radar data 

One of the prime motivations for this research is the 
application to radar signal processing. This example uses 
data from the Multi-Channel Airborne Radar Measure- 
ments (MCARM) program, a vast collection of airborne 
radar measurements over many flights with multiple acqui- 
sitions during flight. The radar antenna is a 22 (2 x 11) 
rectangular array (p = 22). In several acquisitions, the 
transmitter was off resulting in no clutter to mask signals 
generated by a moving target simulator (MTS) at preset 
Doppler frequencies. 

In this example, the data cube comprising 1408 pulses 
with the transmitter off were analysed. The MTS transmits 
10 signals overall. Fig. 1 shows the MTS signal strength as 
a function of Doppler frequency. As can be seen, there are 
9 signals in a pattern centered at -500Hz and a strong 
signal at zero Doppler. Within the MCARM database, this 
data set matches the model of eqn. 1 with q = 10. All 1408 
pulses (n = 1408) were used to estimate thc covariance 
matrix S. As noted before, p = 22. 

The ratio of the eigenvalues to the smallest estimated 
eigenvalue is shown in Fig. 2. The ratio of the first 
eigenvalue is 520 times that of the smallest eigenvalue 
and is not shown. In this case the value of c for S* =2.0 
(3 dB) is found to be c =  1.577. The eigenvalues and the 
ratio to the smallest eigenvalue are shown in Table 5.  From 
Fig. 2 and Table 5 ,  this sets the minimum number of 
signals with signal-to-noise ratios greater than cS* at 11. 
Note that, in a radar signal processing problem, it is far 
better to ovcrestiinate than underestimate the number of 
components present. 

Doppler, Hz 

Fig. 1 
UfZk 

Angle index: 94; Range cell no. 33 
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Plot ofrignnulpower as function of Dupplerfiequency, MTS tones 

4 6 8 10 12 14 16 18 20 22 

Rutiu of eigenvulue to pmallevt estimated eigenwlur, MTS tunes 
eigenvalue no 

Fig. 2 
only 

Table 5 also lists the AIC and MDL values, used to 
determine the number of signals in this case, as suggested 
by Wax and Kailath [4]. This approach used is to determine 
the ATC or MDL values and the number of signals is the 
number where the AIC and MDL values are thc lowest. As 
can be seen from Table 5 ,  the AIC criterion sets the number 
of signals to be 19, while the MDL criterion determines the 
number of signals to be 4. Both values are erroneous since 
the true number of signals is 10. In the AIC case, even 
though it is better to overestimate the number of signals 
rather than underestimate (the MDL case), the overestima- 
tion here is extremely large. In a practical situation. this 

Table 5: Statistics for determining number of signals in 
noise. MCARM data 

Number Eigenvalue Ratio AIC value MDL value 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

4423.7 

123.95 

37.448 

21.403 

18.363 

16.847 

16.081 

15.859 

15.341 

14.196 

14.061 

13.543 

13.199 

12.621 

12.263 

11.944 

11.705 

11.030 

10.708 

9.9416 

9.4735 

8.7084 

507.97 

14.233 

4.3002 

2.4577 

2.1086 

1.9345 

1.8466 

1.8211 

1.7616 

1.6301 

1.61 47 

1.5552 

1.51 56 

1.4493 

1.4082 

1.3715 

1.4410 

1.2666 

1.2296 

1.1416 

1.0879 

1 

148733.9 

15253.19 

3458.01 

1636.28 

1337.59 

121 4.14 

1154.17 

11 13.94 

1064.70 

1021.56 

1015.42 

999.94 

991.36 

982.07 

981.34 

980.55 

977.69 

968.50 

967.66 

962.57 

964.99 

966.00 

74366.96 

7739.47 

1949.50 

1141.01 

1088.79 

11 18.94 

1175.57 

1236.84 

1288.34 

1337.64 

1400.20 

1452.83 

1503.67 

1548.89 

1593.16 

1632.13 

1664.83 

1689.11 

1712.31 

1728.14 

1742.48 

1750.86 
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would imply a significant waste of energy and other 
resources. This cxample indicates the superiority of the 
proposed approach over the earlier approaches. 

7 Conclusions 

In the analysis of measured radar data, a fundamental issue 
is correct estimation of the number of signals present. One 
approach to solving this problem is based on the observa- 
tion that the number of signals present can be determined 
via eigenanalysis of measured data. To do so, an accurate 
estimate of the covariance matrix of the observed data 
vector is essential. 

This paper uses statistical selection theory to detect the 
multiplicity of the smallest eigenvalue of the covariance 
matrix, computed using measured multi-channel multi- 
pulse radar data. The number of signals present is the 
difference between the total number of components in the 
observed data vector and the multiplicity of the smallest 
eigenvalue. In the analysis of measured data, the smallest 
eigenvalues may be grouped about some nominal value, as 
opposed to being identically equal. We presented a selec- 
tion procedure to estimate the multiplicity and value of the 
smallest eigenvalue(s), which are significantly smaller than 
the other eigenvalues. 

The techniques described above can be applied to the 
analysis of mcasured data collected from any multi- 
channel/multipulse radar. This technique for estimating 
the numbcr of signals in noise using statistical selection 
theory has applications to many other areas where eigcn- 
analysis is useful. Analysis using both simulated and 
measured radar data illustrate this new procedure and the 
enhanced performance over earlier approaches. 

In formulating the eigenvalue based statistical approach 
to determine the number of signals in noise, the noise here 
is assumed white. In many cases of practical interest, this 
assumption is not valid and the measurements are 
corrupted by coloured noise. The formulation of this 
problem in terms of coloured noise remains an open 
research problem. However, this does not detract fiom 
the effectiveness of the proposed formulation in many 
other cases of practical interest, including airborne radar, 
which do satisfy thc assumptions of this formulation. 
Furthermore, as such, the techniques discussed in this 
paper, presented within the context of the radar problem, 
may be generalised. Targeted approaches include multiple 
discriminant analysis, simultaneous inferencing, principal 
component analysis, and canonical correlation analysis and 
multivatiate analysis of variance. 
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