Development of a statistical procedure for detecting
the number of signals in a radar measurement

P.Chen, M.C.Wicks and R.S.Adve

Abstract: Ranking and selection theory is applied to the eigenvalue problem. Of concern is the
development of a procedure for computing the number of signals in a measurement data vector. In
the authors’ approach, the multiplicity of the noise eigenvalue is computed, and used in
calculating the number of non-noise (signal) eigenvalues.

1 Introduction

In the analysis of measured data, an approach that is often
used involves modelling observations as the superposition
of a finite number of signals embedded in additive Gaus-
sian noise. This is especially true in phased array signal
processing, time-harmonic analysis, computing the natural
response of a system by estimating the number of poles
from measurement data, and in detecting overlapping
target echocs from radar backscatter. Practical space—time
adaptive processing for airborne radar requires effcctive
utilisation of available degrees of freedom. The question
therefore ariscs how many degrecs of frecdom are required
in a given interference scenario. A fundamental issue in
solving these problems is correct estimation of the number
of signals present.

One approach to solving this problem is based on the
obscrvation that the number of signals present can be
determined via eigen-analysis of measured data. To do
s0, an accurate estimate of the covariance matrix of the
observed data vector is essential. Once this estimate is
formulated, many different techniques are available for
eigendecomposition. Bartlett [1] and Lawley [2] developed
a multiple hypothesis test for multiplicity of the smallest
eigenvalue (latent root) and applied this approach to the
analysis of measured agriculture data. Schmidt [3] applied
the multiple signal classification (MUSIC) algorithm to
estimate the number of incident wavefronts present in an
electromagnetic signal, based upon the eigenstructure of
the covariance matrix of received data. Other hypothesis
testing and estimation methods based on eigenstructure
analysis have been proposed by Wax and Kailath [4] and
Zhao, Krishnaiah and Bai [5].

This paper uses statistical selcction theory to detect the
multiplicity of the smallest eigenvalue of the covariance
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matrix, computed using measured multichannel multipulse
radar data. A unique aspect of the proposed methodology
is that it predicts a confidence level iu the estimated
number of signals. As described in the aforementioned
articles, the number of signals present is the difference
between the total number of components in the observed
data vector and the multiplicity of the smallest eigenvalue.
In the analysis of measured data, the smallest eigenvalues
may be grouped about some nominal value, as opposed to
being identically equal. We propose a selection procedure
to estimate the multiplicity and value of the smallest
eigenvalue(s), which are significantly smaller than the
other eigenvalues. We derive the probability of a correct
selection, P(CS), and the least favourable configuration
(LFC) for our procedures. Under the LFC, the P(CS)
attains its minimum over the vector space of all eigen-
structures. Therefore, a minimum sample size can be
determined from the probability of CS under the LFC,
P(CS|LFC), in order to implement our new procedure
with a guarantced probability requirement. Numerical
examples are presented in order to illustrate our proposed
procedure.

The techniques described above can be applied to the
analysis of measured data collected from any multi-
channel/multipulse radar. As such, a new solution to the
adaptive beam-forming problem arises out of the applica-
tion of ranking and selection theory to the radar problem.
First, the number of interfering signals present in a data
vector is estimated using our new procedure. Then, optimal
rank reduction can be achieved given this knowledge. And
finally, adaptive processing for interference rejection and
target detection can be performed using any of the standard
techniques published in the literature (Reed, Kelly). This
technique for estimating the number of signals in noise
using statistical selection theory has applications to many
other arcas where eigenanalysis is useful. Note that, in this
paper, correct sclection includes overestimating the
number of signals. This is of particular importance in the
radar signal processing problem [6]. The techniques
discussed in this paper, presented within the context of
the radar problem, may be generalised. Targeted
approaches include multiple discriminant analysis, simul-
taneous inferencing, principal component analysis, and
canonical correlation analysis and multivariate analysis of
variance. As such, the analysis of economic, educational,
industrial, population, psychological, and scientific data
may all benefit from this new technique.
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2 Motivation and statement of the problem

As described [4, 5], the observed vector of certain signal
processing problems, denoted by the p x 1 vector x(f) can
be written as:

X(0) = 3 A@)s0) + () = As() +n(t) (1)
1
where
A =[A(D), ..., A((Dq)],

s(0) = (51(0) ... 5,0,
n(t) = (m (@), ....n,0))

and ¢ < p. It can be seen in eqn. | of Wax and Kailath [4]
and in eqn. 2.1 of Zhao, Krishnaiah, and Bai [5], that the
extreme case where ¢ =p is not realistic and therefore not
addressed.

In the above model, n(f) is a px 1 complex vector
referred to as the additive noise distributed independently
of s(¢) as complex multivariate normal with mean vector 0
and covariance matrix 02[/, where ¢? is unknown; s(f) is
distributed as complex multivariate normal with mean
vector 0 and nonsingular covariance matrix  wherc s;(¢)
is a scalar complex waveform associated with the ith
signal; and 4(®,) is a p x 1 complex vector, characteriscd
by an unknown parameter vector ®; associated with the ith
signal. A crucial problem associated with the model
described in egn. 1 and considered by all the articles
mentioned in Section 1 is that of determining the numbcr
of signals ¢ from a sample x(¢), x(1,), ..., x{(¢,). The goal
of this paper is to study formulations in statistical ranking
and selection theory to determine the value g.

The covariance matrix ¥ of x(#) is given by:

I =AYA + L, )

where 4’ denotes the conjugate transposc of 4.

Let 4y > 4, > -+ - = 4, denote the positive eigenvalues of
the covariance matrix X and let the hypothesis I
lp=0lda, (i=1, 2,...,q) Agijt o (j=1, 2,...,
p — q). Therefore H, s equivalent to the hypothesis that
g signals are transmitted. Wax and Kailath [4] used
Akaike’s information criterion (AIC) and Schwart Rissa-
nen’s MDL criterion for model selection, while Zhao,
Krishnaiah, and Bai [5] used an information theoretic
criterion to estimate the value ¢. Haimovich [7] used
asymptotic theory to estimate the convariance matrix X
in eqn. 2 under H,. In Section 3, we define a selection
formulation and propose selection procedures to determine
the value g.

3 Ranking and selection formulation and
proposed procedure

Ranking and selection procedures are generally developed
using either an indifference zone or a subset selection
approach. The literature on ranking and selection theory
is dominated by these two methods. Wicks [8] first
proposed applying statistical ranking and selection theory
to radar signal processing for covariance matrix estimation.
Chen, Melvin, and Wicks [9] used a variation of the subset
selection approach in developing a screening procedure for
choosing secondary data in radar signal processing. Their
results showed dramatically improved performance over
conventional techniques.
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Consider & populations 7, n,,. .., m; where the under-
lying distribution of =, is Fy, i=1, 2,...,%k In most
ranking and selection studies, the & populations are inde-
pendent. They could also be k-corrclated components of a
multivariate population, which possesses a multivariate
distribution with parameters of interest. As will become
clear later in this paper, we are dealing with p correlated
sample eigenvalues and our parameters are the population
eigenvalues. In general, the unknown real parameter, 6,,
i=1,2,...,k reprcsents the value of a quantity of interest
for the /th population. By definition, we sclect population
m; over 7, if 0, is greater than ;. The ordered values of 6;
for all i are denoted by 0y < 05 < . In general, 6} #6;.
One approach to solving the basic problem of selecting the
best population, called the indifference zone formulation,
was developed in Bechhofer [10]. In Bechhofer’s paper, the
selection of the population associated with the ranked
parameter 0, results in a correct selection (CS). For the
indifference zone approach to be of value, the procedure R
must establish a lower bound on the probability of a correct
selection P(CS). The minimum value of P(CS) is P,
with 1/k < P* <1 whenever the separation between Oy
and 8y,_ ) exceeds some minimum specified value. Let
o(8;, 8;) denote an appropriate non-negative measure of the
separation between the population associated with 0, and
0;. For the minimum probability of correct selection, P, §*
is the minimum scparation distance. For any specified
&% >0, let the preference zone, Qs be the subset of the
parameter space Q={0]0=(0;,...,0,)} defined by
Q(s* = {H | 5(0[&] 50[/{71]) > 5*} Let P(CS | R) denote the
probability of a correct selection under the procedure R.
For this procedure to be wvalid, it should satisfy
P(CS|R)=P* for all # Qs . The complement of the
preference zone Q- is called the indifference zone, a
subset of the parameter space where no requirement on
P(CS) is made.

For the analysis of measured data, 6* and P* are
specified in advance. Suppose that the procedure R is
based on samples of fixed size n from each population.
One problem of practical interest in radar signal processing
is to determine the smallest sample size n for which the
probability requirement P* holds. In the subset selection
approach of Gupta [11], a procedure was developed to
guarantee a non-empty subset of the & given populations
which include the desired (or best) population with a
minimum probability P* Any subset, which includes the
desired population, results in a correct selection. In case of
a tie, any contender may be tagged best. Any valid
procedure R should satisfy P(CS|R)=> P* for all #€Q.
In the subset selection approach, the size of the selected
subset S is not decided in advance, but is determined based
on the analysis of data. The procedures developed in
ranking and sclcction theory are designed to satisfy the
requirement for a minimum probability of a correct selec-
tion P*. Any parameter configuration # which yields the
infimum of the P(CS) over (s in the indifference zone
approach, or € in the subset selection approach, is called
the least favourable configuration (LFC).

Many variations and generalisations of these two basic
approaches have been studied. For example, one problem
involves procedures for selecting the most appropriate
sample populations better than a control population 7.
These sample populations may then be used to estimate
other parameters of interest such as the covariance matrix.
In our study of selection procedures for analysing the
eigenvalues of the covariance matrix in radar data, the
control population can be taken as the smallest eigenvalue.
The observations are taken and their covariance matrix is
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cstimatcd. Eigenvalues are selected from those populations
(cigenvalues in our study) n, 7,, ..., @, (instead of using
k in traditional selection theory, we use p here to represent
the total number of components in a random vector) having
the same or similar values as the control population.

We define two disjoint and cxhaustive sets €; and € of
the set Q={4,,....4,) by using ratio as the distance
function d. That is, we define

d(Z; /1,) = /li/}“j

QG = {;“i’ i= 2! 3s v 9p|d(/1f‘r }'p) > 0*}

and
Qp=Q -0 (3)

where 6* > 1 is a preassigned real number used to differ-
entiate between good and bad eigenvalues. Our goal is to
separate the set of eigenvalues into two disjoint subsets, S;
and S;. The separation is correct (CS) if S; = Q4 , mean-
ing that all cigenvalues with values significantly larger than
the smallest eigenvalue will be classified into Qg. Our
conclusion for the value of ¢ is the number of elements in
S.. We require a procedure R that will satisfy a predeter-
mined probability requirement P(CS|R) > P~

Procedure R: Compute the covariance matrix

1 & .
§ =13 XX
n =1
using the samples x(#)), x(z,),...,x(t,). Let Ay >4, >
-++> 4, be the ordered cigenvalues of §. Let r be the
largest integer in {1, 2,...,p — 1} such that 1,/Z, >c,
where ¢ > 1 is a real number chosen to satisfy the prob-
ability requirement P(CS)>P* Claim that So={4,,
Ayy...y 4.3 and the number of signals is g=7. When
A./4, <c for all integer in {1, 2,...,p — 1}, we claim
that ¢ =0. We will explain how to obtain a counservative
approximation for ¢, the procedure parameter, in the next
Section.
Wc make the following two assumptions about the
model:

Assumption 1: H,: h=0r+0, (i=1,2,...,9); i, 0
(j=1,2,...,p — q). That is, the multiplicity of the smal-
lest eigenvalue is p — g, where p is known and ¢ is
unknown, Moreover, we assume that 0, >0,--->0 .
This is a reasonable assumption because 6, 0.,..., éq
came from the first term of the covariance matrix in eqn. 2.
Adding ¢ to an eigenvalue and then letting it go to zero will
not change the form of the covariance matrix and therefore
it will not change our results.

Assumption 2: When ¢ > 1, the parameter configuration
belongs to Q. the so-called preference zone in ranking
and selection theory. That is, 4,/4, > 6*. The case g=0
corresponds to the case where there is no signal. The only
configuration for the parameter is thc cqual parameter
configuration 4,/4,=1.

The probability of a correct selection under H, using
procedure R can be written as:

p—1

P(CSIR) =P(g <r) = X P(,/4, > ¢,y 1[iy <€) (4)

i=q

To determine the sample size needed to achieve certain
probability requirement, we need to minimise the P(CS|R)
over the paramcter space {(4;, 4,...,4)|4;=
A= > /lq > lqﬂ = :)up >0}. The distributions of
the ordered sample eigenvalues 4, >/, >--->4,>0 of
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the sample covariance matrix play a very important role
in principal component analysis, multiple discriminant
analysis, simultaneous inferences, multivariate analysis of
variance, and canonical correlation analysis. Many statis-
ticians have studied them extensively in numerous articles.
Zonal polynomial expressions of the exact distributions of
eigenvalues for both real and complex cases can be found
in James [12]. It is clear from formulas (58) and (95) in
James [12] that the exact distributions of real Wishart and
complex Wishart have the same form and the distribution
in both cases depend on the population covariance matrix
only through their eigenvalues which can take only positive
real values. Therefore, for simplicity in expressions and
derivations, we will consider only the real case below.
Thorough summaries of sample eigenvalues can also be
found in Chapters 11 and 13 of Anderson [13] and in
Chapters 3, 7, and 9 of Muirhead [14]. As one can see from
the density given in thcorem 13.3.2 of Anderson [13] and
theorem 9.4.1 of Muirhcad [14], the exact computation of
the probability in (2.4) which involves the joint density of
A, (i=1,2,...,p) is almost impossible. In the following,
we will first prove an important result about the least
favourable configuration (LFC) of our procedure in asymp-
totic theory. Then we will express P(CS) under the asymp-
totic LFC. In Section 4, we will describe how the results in
this section can be used to determine the sample size
needed for our procedurc R.

The following two lemmas were shown by Anderson
[15].

Lemma 1: Let V be distributed according to W,(Z, n) and
let 4 >4 >--->4,>0and 4; 24, >--- >/, >0 be the
ordered cigenvalues of ¥ and X, respectively. Let
A=04,. ..,)Lp) and 4 =(4, ,...,/1/,). It A, s are distinct
and n > p, then V/n(l/n — 1) is asymptoticaily distributed
as normal with mean 0 and covariance matrix:

Asy — COV(/n(A/n — i) = 2D? = 2((diag(1))*

Lemma 2. Suppose that 0, 0,,..., 0, are the eigenvalues
of = with multiplicity ¢, ¢,,...,q,,, respectively, where
the sum of gs is p. Then the eigenvalues of ¥ belonging
to different eigenvalues of X are asymptotically indepen-
dent and the limiting joint density function of
v = /20, — 0)/0,, j=1, 2,....q, for all Ls
belonging to 8, is given by

x£
1), (g, 2)g, -1
’J’q,) = qtlHalaa—1) o0/ )q,l—q’l(qz/z))

x ew(— %Z yf) [To:—y) &)

i<j

Jo, 0y

Theorem 1: The asymptotic least favourable configuration
(ALFC) for our procedure R under the preference zone
defined in assumption 2 is given by:

A=y == Ay > by = = Ay (6)
where ¢ is an integer between 1 and p and d(/;, 4,)=

Sy =5,

Proof: Consider a general configuration in the preference

zone, Ay Zlp>- -z A > A= =4,>0  where
)Lq//ll, > ¢*. From lemma 2, 4, 45,..., )uq are independent
among themsclves and independent of (Agyi,..., %)
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asymptotically. Thercfore we can writc P(CS|R) in
eqn. 4 as

p—1
Asy —P(CS|R) =Asy — 3 P(/4, > ¢, ;1 /4, <€)
j=¢

(M
A typical term in the above sum is
P(A; > 2y > -

>y > Chy > Ay > > A > ) (8)

R e

where j > g.

Case 1. j > 4. Consider the transformation

nli—A o
Z; = E—l—‘ (1—1,2,‘..,}7)

Then the cvent {1, > 4,,,} is equivalent to
7
-z, +1
\/}’I - ’L)H—l

P A
\/;~oc+\+l :

According to lemmas 1 and 2, the joint distribution of z,,
Z,...,Z, is independent of the parameters 2y, 4y,...,4
The probability given in eqn. 8 can be rcwritten as:

p-

P(hy > Ags Ay > Ageeos Ay > Doty -

Chy > Aty n A

byt > Ay) =
\/5 +1 \/5 +1 \/z +1
P nzl Zz I’ZZZ é an

> ) sy T —
2 A2 s o)
522—*‘1 EZ3+I -’,;Z(l+1+l

=2 | ©

.,ij- > ch,,

e Ay > Chy, Chy > A

where the second part of thc event in cqn. 9, {4; > c),p,
cly>Apys-s sy 1> 4,) does not depend on the para-
meters Ay, 4Ay,....4,. We first fix the ratios 4,/4,,
23/A2,. .-, Agf2q_ in the right-hand side of eqn. 9. The
probability decreases as we dccrcase the parameter A,
to its boundary 6"4,. Next, we fix the ratios A,/4;,
A3/235 5 Ay_1/A4_y. The probability decreases as we
decrcase the parameter 4, ; to its boundary 6*4, We
repeat the above process until all the 4;5,i=1,2,...,q are
reduced to 6*4,.

Case 2. j=gq: The only event in this case that is different
from case 1 is that {4, >c4,}. It is equivalent to

A
TEAR
We can proceed as in case 1 to obtain the desired result.
This completes the proof of the theorem.

Corollary 1: Under the asymptotic least favourable con-
figuration Ay =4, =---=4,> A, =---=4, where
A/ hy=38%> 1, Asy-P(CS) is a decreasing function of J*.
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Proof: 1t is clear from eqn. 9 that P(CS) is a dccreasing
function of any of the largest ¢ eigenvalues.

Theorem 2: Under the asymptotic least favorable con-
figuration given in Theorem 3.1, Asy-P(CS) is an
increasing function of n, the sample size.

Proof: As in the proof of theorem 1, we consider a typical
term in P(CS) given in eqn. 7 and we consider two cases
scparately.

Case 1: j>q: A typical term in P(CS|asy-LFC) can be
written as

Play = dy = o 4y = dguy

S>> k> ch, > A > > > )

J*OO ng J'ZJ 12 (‘22 J'é’l rpﬁ JZP*Z
B -0 —00 —00 o —00 -0 o =30 Z[)
X fdz,_1dz,_, ... dz; dz,dz; . .. dz, \dz, ... dz
(10)
where fis the joint density function of z, z,, . .. 22 which

is independent of 4|, 4,,..., 4, and g s are functions of
defined as

. i 1
gl(”)Zczp+\/§(c—1) gz(’l):;Zj-l-\/g(l—E)
() =Zq+\/§(6* )] (11)

Since 0 < ¢ < 6%, all the g s are increasing in #. Therefore,
P(CS |asy-LFC) is increasing function of n.

Case 2: j=gq: A typical term in P(CS|asy-LFC) can be
written as:

Ph>L> >l >c, > > > >1)

JDC j‘zl qu—l .r’zz I‘gl [‘Zp 3 r,vfz
—oQ J =0 00 J =00 J—00 o =0 ZF

X fdz,_1dz, ... dzg \dzydz, .. dzydz)
where
g =c,+ 2=
as in eqn. 11 and
s =2z+ 5 (5-1) (12

It is clear that gy4(n) is also an increasing function of n.
Therefore, P(CS|asy-LFC) is increasing function of n.
This completes the proof of the theorem.

From the above theorems and the corollary, we know
that the probability of a correct selection for our procedure
approaches 1 by either incrcasing 6*, the size of our
‘indifference zone” or tho sample size ». It is also clear
that P(CS) increases as ¢ decreases. But, the size of the
selected subset of the eigenvalues will also increase.
Therefore, we may overestimate the number of signals by
decreasing ¢. In the next Section, we will discuss the
method we use to find the procedurc parameter ¢ and the
role that the sample size » plays in the procedure.
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4 Approximation of the procedure parameter

In this Section, we explain how to approximate and obtain
a conservative bound for ¢, the procedure parameter. From
theorem 1 and the fact that the distributions of the sample
eigenvalues depend on the population covariance matrix
only through their eigenvalues, the Asy-LFC that we use to
calculate P(CS) can be written as

T =diag(a, ...,a,ad*, ..., ad") (13)

where « is a positive real number.

It is clear that we can takc ¢ =1 in eqn. 13 since our
procedure R is defined by the selection statistic /,/4,
(r=1,...,p — 1) whosc distribution is invariant under a
scalar multiplication. From James [16], the probability
density function of the sample eigenvalues 4,, 4;,...,4,
can be written as

r
ll(_n—p—[)/Z
ranr,tn U

L
X[ Gy — LFP(=LnL, 27" (14)

I<j

(n)ﬁn/Z ' 2(det T)" "/
2

where L=diag(4,, 45,...,72,) and oFg’) is a generalised
hypergeometric function of a pth-order matrix argument.
James [16] also expressed the PDF in terms of zonal
polynomials. The computation involving density (eqn.
14) is complicated. In 1970s, many statisticians made
contributions to asymptotic expansion and numerical
evaluations involving the distribution of functions of the
eigenvalues of covariance matrix. For example, Sugiyama
[17] gave expressions for the PDF of the ratio A,/2,.
Sugiura [18] gave expressions for the joint PDF of (/,,
4,5 4,). Clemm, Krishnaiah, and Waikar [19] tabulated
the percentage points for the largest and the smallest
eigenvalues. Waikar and Schuurmann [20] and Krishnaiah
and Schuurmann [21] obtained alternative forms for the
CDF of 2,/4, to compute the percentage points of the
ratio. The computations of all the tables in the aforemen-
tioned articles are based on the assumption that the
covariance matrix is an identity matrix. Here, in our
research, the covariance matrix is diagonal. But, the
eigenvalues are slippage. That is, in addition to the value
of unity that the smallest eigenvalues takes, the larger
eigenvalues take a value of 6*. Tnstead of finding the
asymptotic expansion and evaluating of the exact prob-
ability of correct selection as in the previously mentioned
articles, we calculate P(CS|R, Asy-LFC) directly using
simulation.

Table 1: The 5 percentiles for A,/ in case 1

In this paper, we use MATLAB version 5.0 on a PC
Pentium Pro to compute the eigenvalues of a Wishart
distribution generated from a random sample of multi-
variate Gaussian distribution. The simulation was accom-
plished using MVNRND and 10 000 repetitions. We first
compared the percentage points of the joint distribution of
the largest and the smallest obtained from our simulation to
those by Clemm, Krishnaiah, and Waikar [19]. We checked
5%, 2.5%, 1%, 0.5% percentage points for p =2, 5, 10, 20
(the largest p tabulated in Clemm, Krishnaiah, and Waikar
[19]D) and n=35, 10, 20, 50 (thc largest n tabulated in
Clemm, Krishnaiah, and Waikar [19]). All our simulation
results are within 5% of their exact values. Next, we
compared the percentage points of the ratio of the smallest
root to the largest root obtained in our simulation to those
in Krishnaiah and Schuurmann [21]. We checked the 0.99
and 0.95 percentage points for p =3, 4, 5 (the largest p
tabulated in Krishnaiah and Schuurmann [21]) and # =10,
30, 50 (the largest » tabulated in Krishnaiah and Schuur-
mann [21]). Again, all our simulation results are within 5%
of their exact values. However, our simulation results can
be extended to much larger p and # in both cases. We
conclude that simulation methods are appropriate for
calculating P(CS) in our study.

In the next example, we show how to obtain the
procedure parameter ¢ by simulation. MATLAB simulation
program is used to find ¢ value for p up to 50, n up to 5000,
and any 6* > 1. It is available from the first author at
pinchen@syr.edu.

Example: Finding the procedure parameter ¢:

Case I: p=10, n=200, §* =2, simulation repetition =
10 000:

Table 1 shows the 5 percentiles for the given statistic
/lq /410, ¢=0,...,9. The underlined diagonal entries arc
the 5 percentiles of 4,/4,y when the ¢ valuc is the correct
number of signals. We choose ¢ =1.24, the Sth percentile
of A9/ iy rounded to the second decimal place. By doing
so0, more than 95% of the time our estimated ¢ values are 9,
8,7,6,6,6,6,6,6,6whenthetrueg=9,8,7,6,5,4,3, 2,
1, 0, respectively. P(Ay/ Ay = ¢, 4g/21y <)~ 0.95 which is
only the first term in the sum of P(CS|R) given in eqn. 4.
Therefore, ¢ is clearly a conservative procedure parameter
for our method and we overestimate the true number of
signals, especially when g is small when c¢ is chosen in this
manncr. The samplc size # and the value of o* play
important roles in the determination of ¢. The accuracy
of our estimation of ¢ increases as # and §* increase as we
can see from the following two cases.

q A/ %0 A8/ 710 A7/ %40 A6/ A0 A5/ 740 A4/ 10 23/ 210 Aa/ Ao A1/ 210
0 1.0308 1111 1.1906 1.2911 1.3791 1.4858 1.5950 1.7149 1.8697
1 1.0316 1.1099 1.2034 1.2867 1.3896 1.4910 1.6108 1.7766 2.5615
2 1.0272 1.1160 1.2061 1.3073 1.4037 1.56359 1.6788 2.3528 2.8001
3 1.0326 1.1137 1.2120 1.3180 1.4280 1.5790 2.1617 2.5029 2.8332
4 1.0329 1.1229 1.2193 1.3362 1.4794 1.9973 2.2989 2.5880 2.9165
5 1.0326 1.1280 1.2246 1.3739 1.8496 2.1157 2.3559 2.6030 29110
6 1.0335 1.1438 1.2717 1.7160 1.9542 2.1660 2.3603 2.5998 2.8688
7 1.0428 1.1627 1.6655 1.7828 1.9586 2.1677 2.3500 2.5700 2.8488
8 1.0539 1.4332 1.6123 1.7798 1.9533 2.1125 2.3034 2.4767 2.7523
9 1.2478 1.4225 1.56650 1.6958 1.8530 1.9999 2.1509 2.3423 2.5538
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Table 2: The 5 percentiles for A,/ A, in case 2

q 29/ A0 Ag/A1g A7liq0 26/ 410 A5/ 10 A4fdqg A3/ 410 2/ A0 Al A9
0] 1.0202 1.0740 1.1310 1.1906 1.2504 1.3146 1.3839 1.4604 1.5546
1 1.0204 1.0731 1.1319 1.1933 1.2582 1.3254 1.4023 1.4964 2.3318
2 1.0220 1.0772 1.1382 1.2017 1.2716 1.3476 1.4412 2.1800 2.4715
3 1.0223 1.0795 1.1427 1.2128 1.2875 1.3801 2.0621 2.3031 2.6379
4 1.0224 1.0828 1.1503 1.2263 1.3162 1.9493 2.1619 2.3533 2.5614
5 1.0234 1.0886 1.1621 1.2523 1.8486 2.0432 2.2088 2.3756 2.5685
6 1.0252 1.0941 1.1819 1.7475 1.9267 2.0725 2.2169 2.3706 2.5589
7 1.0259 1.1081 1.6481 1.8098 1.9410 2.0703 2.2024 2.3474 2.5148
8 1.0330 1.6427 1.6948 1.8150 1.9276 2.0423 2.1601 2.2942 2.4553
9 1.4010 1.56348 1.6392 1.7374 1.8376 1.9372 2.0488 21721 2.3259

Table 3: The 5 percentiles for A,/1,, in case 3

q A9/ 410 Ag/ 10 drl o A/ h1o As/710 A4/ 40 A3/ 10 Aa/l10 Ay /dsg
0 1.0294 1.1110 1.1959 1.2865 1.3800 1.4769 1.5868 1.7145 1.8736
1 1.0312 1.1118 1.2014 1.2922 1.3936 1.5006 1.6215 1.7762 4.9594
2 1.0317 1.1151 1.2064 1.3081 1.4126 1.6326 1.6827 4.4681 5.3721
3 1.0323 1.1173 1.2148 1.3200 1.4416 1.5861 4.1288 4.8395 5.5675
4 1.0329 1.1217 1.2239 1.3424 1.4842 3.8002 4.4334 4.9938 5.6465
5 1.0352 1.1290 1.2436 1.3782 3.5117 4,0754 4.5568 5.0733 5.6691
6 1.0361 1.1392 1.2763 3.2335 3.7432 41777 4.5986 5.0511 5.6148
7 1.0388 1.1620 2.9891 3.4236 3.8021 4.1696 4.5495 49746 5.4989
8 1.0469 2.6996 3.1019 3.4307 3.7491 4.0684 4.4222 48143 5.2971
9 2.3632 2.6949 2.9612 3.2386 3.4979 3.7905 4.0778 4.4106 4.8577

Case 2: p=10, n =400, §* =2, simulation repetition =
10 000 (Table 2). Our choice for ¢ is 1.40. The estimate for
qis9,8,7,6,5,4,3,3,2, 2, respectively forg =9, 8, 7, 6,
5,4,3,2,1,0. That is, 95% of the time our estimate for ¢ is
exactly the true ¢ value when g =3, ..., 9. We overestimate
g when g =0, 1, and 2. Next, we consider the case:

Case 3: p=10, N=200, 6* =4, simulation repetition =
10000 (Table 3). Following the same way as in the
previous cases, we choose ¢ =2.35, The estimate for g is
exactly the true g value for all 4. The sample size n =200
and §* =4 are not unreasonable for p =10 in radar appli-
cations. The three examples in Wax and Kailath [4] all
have p =7, n=100, and §* =10. The three examples in
Wax, Shan, and Lailath [22] have p =9, # =200, 6* =10;
p=9, n=100, 6*=10; and p=15, n=06400, §*=3.98,
respectively.

5 lllustrative example

We present an example to demonstrate the performance of
our method. The example adopts the same sensor array
processing model assumed in all the three simulation
results given in Wax and Kailath [4], Section VI. For
comparison purposes, we use exactly the same model
configuration as in Wax and Kailath. That is, the vector
of the received signal at the array is given by

X = 3 Al +n(e) (15)
k=1
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where A(¢,) is the p x 1 ‘direction vector’ of the kth
wavefront; A(¢p ) =[1 e7% ... eY@-Dn] with ¢, =
msin ¢,; #(-)=random phase uniformally distributed on
(0, 2m); m(-)=vector of white noise with mean 0 and
covariance ¢2/. The signal-to-noise ratio, defined as
10 log(1/26?), is 10dB. From eqn. 15 (formula 24 in
Wax and Kailath [4]), the signals have variance 1. There-
fore, we assume that §* = 10 in our study. We first consider
seven sensors (p=7) and two sources (g=2). Using
n=100 samples, we simulate radar data according to
eqn. 1 and the resulting eigenvalues of the sample covar-
iance matrix are 1.0722, 0.9623, 1.1965, 0.7105, 0.5800,
7.3697, 10.3601. We next consider p =7 and ¢ =3. Using
n =100 samples, the eigenvalues of the sample covariance
matrix of simulated radar data are 1.0688, 1.1311, 0.7159,
1.5023, 8.2028, 8.5212, 10.6351. The simulated five
percentiles of A,/4; for g=0, 1,...,6 are in Table 4.

Table 4: The five percentiles of A;/1;

q  lellq A5/ Az Aqf 7 haf 7 lo/dz A1/27
0 1.0454  1.1709 1.3180  1.4908 1.6664 1.9125
1 1.0476 1.1834 1.3447 1.5262 1.7566 11.6115
2 1.0491 1.1900 1.3595 1.5759 9.8242 12.8793
3 1.0522 1.2059 1.4207 8.58561 10.9399  13.3350
4 1.0570 1.2364 7.4889 9.3746 11.1370 13.2385
5 1.0649 6.4364 7.9776 9.4016 10.9034  12.7948
6 5.2116 6.4327 7.5204 8.6702 9.9161 11.5024
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Following the method in Section 4, we choose c¢=5.21.
Therefore, by our procedure, we correctly declare that
there are two signals in the first case and that there are
three signals in the second casc. At least 95% of the time,
our method will detect correctly the number of signals in
this model no matter what the true ¢ is. Moreover, for any
sample size n great than or equal to 35, we have more than
95% probability of correctly detecting the number of
signals no matter what the true number ¢ is. The value
n =35 is obtained by running a search algorithm based on
the method used to produce the table above.

6 Example using measured radar data

One of the prime motivations for this research is the
application to radar signal processing. This cxample uses
data from the Multi-Channel Airborne Radar Measure-
ments (MCARM) program, a vast collection of airborne
radar measurements over many flights with multiple acqui-
sitions during flight. The radar antenna is a 22 (2 x 11)
rectangular array (p==22). In several acquisitions, the
transmitter was off resulting in no clutter to mask signals
generated by a moving target simulator (MTS) at preset
Doppler frequencies.

In this example, the data cube comprising 1408 pulses
with the transmitter off were analysed. The MTS transmits
10 signals overall. Fig. 1 shows the MTS signal strength as
a function of Doppler frequency. As can be seen, there are
9 signals in a pattern centered at —500 Hz and a strong
signal at zero Doppler. Within the MCARM database, this
data set matches the model of eqn. 1 with ¢ =10. All 1408
pulses (n=1408) were used to estimate thc covariance
matrix S, As noted before, p=22.

The ratio of the eigenvalues to the smallest estimated
eigenvalue is shown in Fig. 2. The ratio of the first
eigenvalue is 520 times that of the smallest eigenvalue
and is not shown. In this case the value of ¢ for 0*=2.0
(3 dB) is found to be ¢=1.577. The eigenvalues and the
ratio to the smallest eigenvalue are shown in Table 5. From
Fig. 2 and Table 5, this sets the minimum number of
signals with signal-to-noise ratios greater than §* at 11.
Note that, in a radar signal processing problem, it is far
better to ovcrestimate than underestimate the number of
components present.
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Fig. 1 Plot of signal power as function of Doppler frequency, MTS fones
only

Angle index: 94; Range cell no. 33
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Fig. 2 Ratio of cigenvalue 1o smallest estimated eigenvalue, MTS tones
only

Table 5 also lists the AIC and MDL values, used to
determine the number of signals in this case, as suggested
by Wax and Kailath [4]. This approach used is to determine
the AIC or MDL values and the number of signals is the
number where the AIC and MDL values are the lowest. As
can be seen from Table 5, the AIC criterion sets the number
of signals to be 19, while the MDL criterion determines the
number of signals to be 4. Both values are erroneous since
the true number of signals is 10. In the AIC case, even
though it is better to overestimate the number of signals
rather than underestimate (the MDL case), the overestima-
tion here is extremely large. In a practical situation, this

Table 5: Statistics for determining number of signals in
noise. MCARM data

Number  Eigenvalue Ratio AIC value MDL value
0 4423.7 507.97 148733.9 74366.96
1 123.95 14.233 15253.19 7739.47
2 37.448 4.3002 3458.01 1949.50
3 21.403 2.4577 1636.28 1141.01
4 18.363 2.1086 1337.59 1088.79
5 16.847 1.9345 1214.14 1118.94
6 16.081 1.8466 1154.17 1175.57
7 15.859 1.8211 1113.94 1236.84
8 15.341 1.7616 1064.70 1288.34
9 14.196 1.6301 1021.56 1337.64

10 14.061 1.6147 1015.42 1400.20

11 13.543 1.56552 999.94 1452.83

12 13.199 1.5156 991.36 1503.67

13 12.621 1.4493 982.07 1548.89

14 12.263 1.4082 981.34 1593.16

15 11.944 1.3715 980.55 1632.13

16 11.705 1.4410 977.69 1664.83

17 11.030 1.2666 968.50 1689.11

18 10.708 1.2296 967.66 1712.31

19 9.9416 1.1416 962.57 1728.14

20 9.4735 1.0879 964.99 1742.48

21 8.7084 1 966.00 1750.86
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would imply a significant waste of energy and other
resources. This example indicates the superiority of the
proposed approach over the earlier approaches.

7 Conclusions

[n the analysis of measured radar data, a fundamental issue
is correct estimation of the number of signals present. One
approach to solving this problem is based on the observa-
tion that thc number of signals present can be determined
via eigenanalysis of measured data. To do so, an accurate
estimate of the covariance matrix of the observed data
vector is essential.

This paper uses statistical selection theory to detect the
multiplicity of the smallest eigenvalue of the covariance
matrix, computed using measured multi-channel multi-
pulse radar data. The number of signals present is the
difference between the total number of components in the
observed data vector and the multiplicity of the smallest
eigenvalue. In the analysis of measured data, the smallest
eigenvalues may be grouped about some nominal value, as
opposed to being identically equal. We presented a selec-
tion procedure to estimate the multiplicity and value of the
smallest eigenvalue(s), which are significantly smaller than
the other eigenvalues.

The techniques described above can be applied to the
analysis of mcasured data collected from any multi-
channel/multipulse radar. This technique for estimating
the number of signals in noise using statistical selection
theory has applications to many other areas where eigen-
analysis is useful. Analysis using both simulated and
measured radar data illustrate this new procedure and the
enhanced performance over earlier approaches.

In formulating the eigenvalue based statistical approach
to determine the number of signals in noise, the noise here
is assumed white. In many cases of practical interest, this
assumption is not valid and the measurements are
corrupted by coloured noise. The formulation of this
problem in terms of coloured noise remains an open
research problem. However, this does not detract from
the effectiveness of the proposed formulation in many
other cases of practical interest, including airborne radar,
which do satisty the assumptions of this formulation.
Furthermore, as such, the techniques discussed in this
paper, presented within the context of the radar problem,
may be generalised. Targeted approaches include multiple
discriminant analysis, simultancous inferencing, principal
component analysis, and canonical correlation analysis and
multivatiate analysis of variance.
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